

LNG Research Study

Rich Burn Engine

April 2006

Prepared By:

The Southern California Gas Company Engineering Analysis Center – Applied Technologies

> Jorge Gutierrez Firas Hamze Carol Mak

Acknowledgements

The authors express appreciation to the following people whose efforts contributed much to the success of this project.

Monica Clemens Robert Munoz Larry Sasadeusz Rod Schwedler Kevin Shea Gregg Arney Dale Tomlinson Angel Macias Henry Lam Geoff Ashton Dan McGivney Jeff Davis Michael Garibay Martin Kay

Disclaimer

LEGAL NOTICE

The Southern California Gas Company, its officers, employees, and contractors, make no warranty, expressed or implied, and assume no legal liability for accuracy of the information contained in this report; neither do they individually or collectively assume any liability with respect to the use of such information or report or for any damages which may result from the use of or reliance on any information, apparatus, methods, or process disclosed or described in or by this report.

No information contained in this report can be copied, reported, quoted, or cited in any way in publications, papers, brochures, advertising, or other publicly available documents without the prior written permission of the Southern California Gas Company.

Table	of	Contents

Results Summary	4
Equipment Selection Criteria	6
Standards	7
Installation	7
Test Gases	8
Rated Input Test (Tuned w/ Base Gas)	9
Results	10
Tuned w/ Base Gas	10
Input	10
Temperatures	11
Emissions	12
Appendix A: Testing Protocol	13
Test Arrangement	13
Basic Operating Conditions	13
Appendix B: Table of Averages for each 30-minute run	15
Appendix C: Test Gases Table, Certificates and GC reports	16
Appendix D: Zero, Span and Linearity Table and Certificates	29
Appendix E: Calculations	34
Appendix G: Test Set-Up/Schematic	40
Appendix H: Source Test Report	41

Results Summary

Results obtained from all tests conducted reveal that (a) there were no operational, knocking, or safety problems during testing with the different test gases or during transitions; (b) the average CO, VOC and NO_x emissions increased with the richer gases but remained below levels specified in SCAQMD rules for this type of equipment; (c) the air fuel controller adjusted the air fuel ratio promptly, thus maintaining a constant input rate and lambda with all the different gases; (d) none of the temperature measurements showed a significant increase and (e) there were some emissions spikes after switching with the different gases due to the variation in cylinder pressures between test gases.

NOTE: Emission test results are for information purposes. They were not the result of certified tests. All reported NO_x, CO and VOC emissions values were corrected to $15\% O_2$.

Other stakeholders that participated and witnessed the test provided the following comments:

Engine Consultant — Geoff Ashton of Advanced Engine Technologies Corporation

"AETC emissions results correlated well with changes between fuel gases. There was a proportional inverse balance between post catalyst NO_X and CO during gas changes. Initial 'spikes' in Post Catalyst emissions at the start of each gas is accounted for by change in the fuel gas pressure momentarily upsetting air fuel ratio. Pre and Post catalyst temperatures remained well within operating range. The lambda sensor was able to account for changes in emissions in and out of the catalyst, but did not exceed control set point to initiate AFR adjustment."

Engine Operator — Jeff Davis, Senior Industrial Engine Technician, EMWD

"No abnormal engine or air/fuel ratio controller conditions were noted with the introduction of the various fuel gasses."

Test Witness — Martin Kay, Program Supervisor, South Coast Air Quality Management District.

"The NOx, CO and VOC emissions generally increased with increasing Wobbe Number and higher heating value (HHV) of the fuel gas. There is a strong linear correlation between NOx and Wobbe Number, CO and HHV, and VOC and % VOC (propane and higher) by volume in the fuel gas. Compared to the Base Gas, the worst case gases, Gas 3 and Gas 7, increased NOx, CO and VOC by 23%, 73% and 259%, respectively. Although the emission increases were within the limits allowed by SCAQMD Rule 1110.2 for this engine, such increases may cause engines with more stringent Best Available Control Technology limits to exceed their emission limits."

Test Witness – Gregg Arney, Team Leader – Air Quality and Compressor Services, Southern California Gas Company.

"No abnormal engine operations were observed. The air fuel ratio controller took less than one minute to stabilize on each gas, although a reason for the longer transition observed during the switch from Base Gas to Gas 7 was not apparent.

NOx and CO concentrations both increased with an increase in the Wobbe Index; the largest increase in NOx from 2.6 to 3.2 ppm at 15% oxygen (a difference of only 0.6 ppm) and the largest increase in CO was from 587 to 882 ppm (a difference of 295 ppm.) Emissions stayed well below the 36 ppm NOx, and 2000 ppm CO limits and within variations typical observed with NSCR systems – even when running on a constant gas composition fuel. VOC results were much more varied. The highest VOC was measured with a mid-range Wobbe gas was 37.8 ppm, but lower VOC concentrations were measured for the two higher Wobbe gases, 23.8 and 17.1 ppm. As indicated in Appendix H, the VOC measurements were above the maximum level recommended for the method causing the results to be biased low. So, although the data clearly shows an upward trend in VOC with Wobbe Index, it is difficult to reach any specific conclusions. However, all VOC data was a fraction of the 250 ppm limit.

The trends of CO and NOx suggest that the overall emission variation observed would have been less from the lowest to highest Wobbe Index fuel, had the engine been tuned with a mid-range Wobbe fuel."

Equipment Selection Criteria

This engine was selected because:

- The engine made by this manufacturer and the emissions control equipment are commonly used in our service territory.
- Such equipment are subject to very stringent emission requirements.
- Industry experts were concerned that this type of engine could have some operational or knocking problems when running on rich gases.

The engine used for this test was installed before current Best Available Control Technology (BACT) requirments for such equipment were required by the SCAQMD. Thus, emission limits for this engine are set by SCAQMD Rule 1110.2, which has the following emissions requirements:

NO_X: 36, CO: 2,000, VOC: 250 (all in ppm @ 15% O₂)

By comparison, BACT requirements for a new, stationary, non-emergency natural gasfueled IC engine, currently being permitted at a non-Major Source, are:

NO_x: 0.15, CO: 0.6, ROG: 0.15 (all in g/BHP-hr) or

NO_X: ~9.5, CO: ~64, ROG: ~28 (all in ppm @ 15% O₂)

Equipment Specifications

Description	Rich-Burn Engine
BHP	225 @ 1200 RPM
Emissions Control Equipment	NSCR catalyst, air/fuel ratio controller
Type of fuel	Natural Gas
Required supply pressure	7.5 psig

Standards

A description of the test protocol and rationale used to develop testing procedures are included in Appendix A. The test protocol was developed based on the following test standards.

SCAQMD Rule 1110.2	Emissions from Gaseous - and Liquid-Fueled Internal Combustion Engines (Amended June 3, 2005) Emissions limits are: NO_X - 36 ppm, CO - 2,000 ppm and VOC - 250 ppm. All corrected to 15% O_2 .
SCAQMD Method	Instrumental Analyzer Procedure for Continuous Gaseous
100.1	Emissions

Installation

This engine provides air at a sewage treatment plant. It was installed according to manufacturer specifications for indoor installation. Thermocouples were installed to measure flue gas, natural gas, air intake, and pre/post catalyst temperatures. Pressure transducers were installed to measure gas manifold, gas delivery system

and gas supply pressures. A gas meter was installed to measure the gas flow and emissions probes were installed pre and post the catalyst.

Test Gases

Test gases were specifically formulated to cover the range of gas compositions and calorific values of natural gases that could be delivered in the Southern California Gas Company territory by current natural gas suppliers and future LNG suppliers. All test gases adhere to the Southern California Gas Company's Gas Quality Specification (Rule 30), which is approved by the California Public Utilities Commission (CPUC). Gas composition details are specified in Appendix C.

Gas	Wobbe Number (Btu/cf)	Heating Value (Btu/cf)
Base	1,330 (Low Wobbe)	1013 (Low heat content)
3	1,424 (Highest Wobbe)	1,137 (Highest heat content)
6	1,405 (High Wobbe)	1,095 (High heat content)
7	1,384 (High Wobbe)	1,134 (Highest heat content)
8	1,338 (Medium Wobbe)	1,063 (Medium heat content)

Test Procedure

Test procedures were developed based on the above test standard. However, due to cost, time limitations, and facility restrictions, the test procedures were simplified with input from industry experts directed to develop a realistic and sound test procedure.

Before the test, the following steps were performed:

- All emissions analyzers were calibrated and linearity was checked.
- Data loggers were checked and temperatures, pressures, and gas flow readings were verified.

During every test, the following steps were performed:

Setup Gas and Test Gases were run continuously. Each test run was 30
minutes with switching between gases taking less than 14 seconds.

 Emissions, pressures, temperatures and combustion stability were monitored during and after changeover.

After every test, the following steps were performed:

- Test data was downloaded.
- Linearity and drift inspections were performed on all emission analyzers.

Rated Input Test (Tuned w/ Base Gas)

The engine was adjusted by the Operator to achieve the highest possible load while running on baseline gas. No adjustments were made to the engine or air/fuel controller during the test. However, there were small changes to the load.

After operating at steady-state conditions with Base Gas for at least 30 minutes, a high-speed switch to Gas 3 was performed. Any changes in engine operation before, during and after changeover were observed and documented. Since the engine did not experience operational problems and/or none of the emissions constituents exceeded SCAQMD Rule 110.2 limits with Gas 3, the test gases were introduced in the following order:

- Gas 6, Gas 7
- Reestablish Base Gas
- Gas 8
- Reestablish Base Gas.

Since the engine did not experience any operational problems and/nor any of the emissions constituents exceed SCAQMD Rule 1110.2 limits, no other tests were conducted.

Results^{1, 2}

Tuned w/ Base Gas

Input

The highest input rate was observed with Gas 3 (1,732,720 Btu/hr) whereas the lowest input rate occurred with Gas 8 (1,642,513 Btu/hr). Corrected gas flow rate ranged from 1,462 scfh (Gas 7) to 1,679 scfh (Base Gas). The supply gas pressure exhibited slight changes at the beginning of each test run due to different pressures in the cylinders. However, these pressure changes did not affect the operation of the engine and the gas pressure reading after the regulator remained stable throughout the test.

 $^{^1}$ All emissions, temperature and input values mentioned throughout the results section are average values. 2 CO, VOC & NO_X emissions values are corrected to 15% O₂.

Temperatures

Catalyst inlet and outlet temperatures were highest with Base Gas on its first and third runs. The catalyst inlet temperature ranged from 911°F (Gas 7) to 928°F (Base Gas) whereas the catalyst outlet temperature ranged from 836°F (Gas 7) to 869°F (Base Gas).

The fluctuation in gas temperatures between test runs was caused by the different pressures of the gas cylinders - higher gas pressure in the gas cylinders cause a higher pressure drop throughout the gas delivery system; lowering the gas temperature.

Emissions

Before the catalyst, NO_X emissions were highest with Gas 6 (883 ppm) and lowest with Base Gas (848 ppm). The NO_X emissions pattern was inversely proportional to the CO emissions pattern. CO emissions were highest with Base Gas (1,704 ppm) and lowest with Gas 8 (1,599 ppm). O₂ averaged 0.63% throughout the test.

After the catalyst, NO_X emissions were highest with Gas 3 (3.2 ppm) and lowest with Base Gas averaging 2.6 ppm for the three runs. The CO emissions ranged from 587 ppm (Base Gas) to 882 ppm (Gas 3). O₂ remained near zero throughout the test. NO_X and CO post catalyst followed the same pattern as the heating value and the Wobbe Number.

NOTE: Emission test results are for information purposes. They were not the result of certified tests

Appendix A: Testing Protocol

Test Arrangement

Basic Setup

The engine will be tested in actual production conditions, and within its normal operating parameters, as verified by the engine mechanic.

Exhaust Pipe

Emissions will be collected pre- and post- catalyst at the existing ports. Post catalyst port is the same one used for adjusting the engine and for SCAQMD certified source tests. Exhaust temperatures will be measured at the same location where the emissions sampling probe was located.

Data Collection and Processing

Temperatures, pressures and emissions data pre-catalyst, will be monitored by the Southern California Gas Company (SoCalGas). Emissions data post-catalyst will be collected by Advanced Engine Technologies Corporation (AETC). All the data will be electronically stored by AETC and analyzed by SoCalGas.

Testing Instrumentation

Instrumentation must adhere as close as possible to the SCAQMD protocol for Rules 1110.2 and SCAQMD Method 100.1. However, due to time limitations, test facility and cost concerns some deviations from the standards were made with industry experts input and approval.

Basic Operating Conditions

Unless required otherwise by specific test requirements, the following are to apply:

Gas Supply Pressure

All test gases will be supplied at pressures required by the engine manufacturer. Inlet pressure will be measured just before the engine gas control and the manifold pressure after the engine gas control or at the supplied pressure taps. Maximum achievable input rate must be measured at a specified time after cold start per required test standard.

Basic Firing Setup

The basic firing setup will deliver rated input with the Base Gas or selected Setup Gas. With gases other than the Base Gas and Setup Gas, the firing rate may *not* be at rated input.

Emissions Calculations

CO and NO_X emissions (ppm, Corrected to 15% O_2) are to be calculated per the SCAQMD protocol for Rule 1110.2 and method 100.1.

Rated Input Test

Adjust engine with Base Gas to operate as close as possible to the rated input and at highest possible load. Also, begin measuring temperature, pressure, input rate and emissions, and verify the firing rate.

Continue steady engine operation with Base Gas for at least 30 minutes and conduct a high-speed switch to Gas 3. Record data before, during and after changeover and observe transient phenomena. Possible phenomena include: high emissions, knocking, noise, or instability, etc. (Note: that the firing rate is not to be manually adjusted but engine controls may independently adjust firing rate in response to changes in the load or gas quality.

If there are no problems with the engine operating on Gas 3 for 30 minutes, conduct a high-speed switch to Gas 6 and record observations and data.

If there are no problems with the engine operating on Gas 6 for 30 minutes, conduct a high-speed switch to Base Gas and record observations and data per above to reestablish base line conditions.

Follow the same procedure with Gas 7 and Gas 8 and reestablish base line conditions by running Base Gas at the end.

However, if the engine experiences operational problems and/or any of the emissions constituents exceed SCAQMD limits after switching to Gas 3 from Base Gas, the test will be suspended. The engine will be retuned with the intermediate gas (Gas 8) and the test will be restarted.

After operating at steady-state condition with Gas 8 for at least 30 minutes, a highspeed switch to Gas 3 will be performed. Again, if the engine experiences operational problems and/or any of the emissions constituents exceed SCAQMD limits with Gas 3, the test will be suspended. If the engine does not experience operational problems and/or none of the emissions constituents exceed SCAQMD limits, operate the engine with Gas 3 for 30 minutes, record observations and data per above.

Conduct a high-speed switch to Gas 6 and record observations and data. If there are no problems with the engine operating on Gas 6 for 30 minutes, conduct a high-speed switch to Gas 8, record observations and data per above.

Follow the same procedure with Gas 7 and Base Gas and reestablish base line conditions by running Gas 8 at the end.

Appendix B: Table of Averages for each 30-minute run.

	Table of Averages Rich Burn Engine Testing							
Gasas	Base	A	pril 26, 2006	Basa	7	•	Basa	
		3	1 005	1 012	1 1 2 4	1.062	1 012	
	1,013	1,137	1,090	1,013	1,134	1,003	1,013	
	1,330	1,424	1,405	1,330	1,384	1,338	1,330	
Input Rate (Btu/hr)	1,701,651	1,732,720	1,649,134	1,655,294	1,658,659	1,642,513	1,647,664	
Corrected Flow (scfh)	1,679	1,524	1,506	1,633	1,462	1,545	1,627	
Methane Number	102.5	76.1	84.9	102.5	70.4	81.9	102.5	
Lambda (volts)	0.63	0.65	0.62	0.62	0.61	0.62	0.62	
Emissions (not from cer	tified tests)							
		pre Ca	talyst Emiss	sions				
O ₂ (%)	0.63	0.60	0.62	0.66	0.60	0.62	0.65	
CO (ppm @ 15% O ₂)	1,704	1,679	1,604	1,632	1,684	1,599	1,634	
NO _X (ppm @ 15% O ₂)	847.7	874.1	883.3	863.4	877.9	872.2	850.6	
		post Ca	atalyst Emis	sions				
O ₂ (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
CO (ppm @ 15% O ₂)	655.2	882.2	781.6	587.0	880.7	741.0	656.2	
NO _X (ppm @ 15% O ₂)	2.6	3.2	3.1	2.8	3.0	2.8	2.4	
VOC (ppm@15%O ₂)	12.6	23.8	17.1	8.2	37.3	20.8	N/A	
		Tem	peratures (°	°F)				
Cat. Inlet	928	920	916	915	911	921	928	
Cat. Outlet	869	852	845	845	836	850	864	
Air Intake	71	73	73	75	75	73	72	
Exhaust	1,132	1,126	1,126	1,128	1,125	1,124	1,126	
Supply Gas	72	67	70	71	74	69	73	
Supply Coo (poid)	7.49	7.40	Pressures	7 47	7.60	7.69	7 70	
After Regulator (in w.c.)	9 77	9.73	9.76	9.75	9.75	9.76	9.70	

Appendix C: Test Gases Table, Certificates and GC reports

Base line gas was analyzed with a portable GC during the test. Variation of the baseline gas were minimal during all tests and results shown are an average of all the tests. All the other test gases were analyzed by the supplier before they were shipped to the Southern California Gas Company and then, for quality control, by Chemical Section of the Southern California Gas Company. Copies of the manufacturer certificates and copies of the GC reports from the Southern California Gas Company are included

Gas	Baseline	3	6	7	8
Sample Date	4/26/2006	3/28/2006	3/28/2006	3/24/2006	3/28/2006
COMPONENTS	MolPct	MolPct	MolPct	MolPct	MolPct
C6 + 57/28/14	0.012	0.000	0.000	0.000	0.000
NITROGEN	0.419	0.337	0.034	3.542	3.999
METHANE	96.533	87.361	92.124	85.943	89.850
CARBON DIOXIDE	1.366	0.003	0.004	0.059	0.151
ETHANE	1.313	8.950	5.654	0.000	0.000
PROPANE	0.244	2.289	1.544	10.359	5.987
i-BUTANE	0.046	1.008	0.633	0.000	0.000
n-BUTANE	0.044	0.000	0.000	0.000	0.000
NEOPENTANE	0.000	0.000	0.000	0.000	0.000
i-PENTANE	0.015	0.000	0.000	0.000	0.000
n-PENTANE	0.010	0.000	0.000	0.000	0.000
OXYGEN	0.000	0.053	0.007	0.097	0.012
TOTAL	100.000	100.000	100.000	100.000	100.000
Compressibility Factor	0.9978	0.9973	0.9976	0.9972	0.9976
HHV (Btu/real cubic foot)	1013.38	1136.77	1095.09	1134.45	1063.08
LHV (Btu/real cubic foot)	912.85	1027.71	988.70	1026.62	960.19
Specific Gravity	0.5809	0.6375	0.6071	0.6719	0.6315
WOBBE Index	1329.59	1423.75	1405.47	1383.99	1337.76

Certificates and GC reports

Southern California Gas Company Engineering Analysis Center BTU content of Natural Gas by Gas Chromatography

Sample ID: Gas 3 Pod 1 03/28/06 1208-01 Data File ID: HC03475.dat_DA... GC Used: Hydrocarbon BTU GC Analysis Date: 3/28/06 2:32:41 PM Analyst: lab

	Norm	(a)	(b)	(c)	Xi * HHV	Xi *	LHV	
Component	Mole %	HHV	LHV	SG	Btu/SCF	Btu/SCF	Xi * SG	Unnorm
Methane	87.3607	1012.3	911.5	0.5539	884.4	796.3	0.4839	87.1949
Ethane	8.9496	1773.8	1622.4	1.0382	158.7	145.2	0.0929	8.9326
Propane	2.2889	2522.0	2320.3	1.5226	57.7	53.1	0.0349	2.2845
i-Butane	1.0084	3259.5	3007.3	2.0068	32.9	30.3	0.0202	1.0065
n-Butane	0.0000	3269.9	3017.8	2.0068	0.0	0.0	0.0000	0.0000
i-Pentane	0.0000	4010.2	3707.6	2.491	0.0	0.0	0.0000	0.0000
n-Pentane	0.0000	4018.0	3715.5	2.491	0.0	0.0	0.0000	0.0000
C6+	0.0001	5194.5	4421.3	3.2522	0.0	0.0	0.0000	0.0001
Oxygen	0.0526	0.0	0.0	1.1048	0.0	0.0	0.0006	0.0525
Nitrogen	0.3369	0.0	0.0	0.9672	0.0	0.0	0.0033	0.3363
CO2	0.0029	0.0	0.0	1.5196	0.0	0.0	0.0000	0.0029
	100.000				1133.7	1024.9	0.6358	99.8103

(d) Compressibility Factor (Z) for mixed gases

Total Inorganics:	0.3924
A=(Total SG)(0.0101)	0.0064
B=(Total Ing.)(0.007)	0.0000
Z = 1.00369 - A + B	0.9973

(e) Adjusted Values (14.73 psia, 60F, Gross, Dry, real volume basis)
High Heating Value 1136.773 BTU/real cubic foot
Low Heating Value 1027.708 BTU/real cubic foot
Specific Gravity 0.6375

(a) Higher Heating Value per Ideal CF @ 14.73 psia, GPA Standard 2145-03

(b) Lower Heating Value per Ideal CF @ 14.73 psia, GPSA Vol. II - Sec. 23 - Fig. 23-2 (1987)

(c) Specific Gravity, GPA Standard 2195 - 03

(d) Empirical Formula for Compressibility Factor, AGA Transmission Report No. 5

(e) Values reflect real volumes instead of ideal by dividing by the compressibility factor (EXAMPLE: BTU/Ideal Gas Volume)/Z, Where Z = (real gas volume/ideal gas volume)

Analysts:	
QAQC:	

02/28/06 02·22·42 DM

1/1 1

Scott Specia	Ity Gases NARDINO.CA 92411 Phone: 909-887-2571 Fa	<i>x: 909-887-0549</i>
CERTIFICATE OF ACCUR, Project No.: 02-42264-001 tem No.: 0202240093TK P.O. No.: 4400050784 Civinder Number: K025375	ACY: Certified Working Class Calibration S <u>Customer</u> SOUTHERN CALIFORNIA BLDG H-EAC-M.L. 723B 8730 E. SLAUSON AVE. PICO RIVERA, CA. 9066	tandard GAS
Cylinder Size: K Certification Date: 07Mar2006 Expiration Date: 06Mar2008 CERTIFIED CONCENTRATIC Component Name	Concentration Accuracy (Moles) (+/-%)	
ITHANE ISOBUTANE METHANE PROPANE	9.23 % 5 1.0 % 5 87.0 % 2 2.76 % 5	
TRACEABILITY Traceable To NIST		
PPROVED BY:BLM	<u>1-lull</u> DATE: <u>3/7/</u>	06
	Page 1 of 2	

					1	
SPECIFICATIONS	Requested Concentration	Certified Concentration	Blend Tolerance Result	Certified Accuracy Result		
Component Name	(Moles)	(Moles)	(+/- %)	(+/- %)		-
ETHANE ISOBUTANE METHANE PROPANE	9.23 % 0.99 % 87.02 % 2.76 %	9.23 % 1.0 % 87.0 % 2.76 %	.0 1.0 .0	5.00 5.00 2.00 5.00		
TRACEABILITY						
Traceable To NIST						
PHYSICAL PROPERT	IES					
Cylinder Size: K	Pressur Expirat	e: 1833 P ion Date: 06Mar	SIG 2008	Valve Connection:	CGA 350 BRASS	
SPECIAL HANDLING	INSTRUCTION	IS				
Do not use or store cylind components could result. point, place cylinder in hea	er at or below the In the event the cy ated area for 24 ho	stated dew point t linder has been ex urs and then roll c	emperature. Po posed to tempe ylinder for 15 m	ssible condensation ratures at or belo ninutes to re-mix.	on of heavier w the dew	
Use of calibration standard	ls at or below dew	point temperature	may result in c	alibration error.		
COMMENTS						
PGS# 58 BTU VALUE: 1146.8 WOBBE FACTOR: 143 CYLINDER CONTENTS	3.6 : APPROX. 275 CU	BIC FEET				
		Page 2	of 2			
		-9- 1				

Southern California Gas Company Engineering Analysis Center BTU content of Natural Gas by Gas Chromatography

Sample ID: Gas 6 Single Pico Rivera 1208-03 Data File ID: HC03476.dat_DA... GC Used: Hydrocarbon BTU GC Analysis Date: 3/28/06 2:49:56 PM Analyst: lab

	Norm	(a)	(b)	(c)	Xi * HHV	Xi *	LHV	
Component	Mole %	HHV	LHV	SG	Btu/SCF	Btu/SCF	Xi * SG	Unnorm
Methane	92.1242	1012.3	911.5	0.5539	932.6	839.7	0.5103	92.0700
Ethane	5.6543	1773.8	1622.4	1.0382	100.3	91.7	0.0587	5.6510
Propane	1.5437	2522.0	2320.3	1.5226	38.9	35.8	0.0235	1.5427
i-Butane	0.6332	3259.5	3007.3	2.0068	20.6	19.0	0.0127	0.6328
n-Butane	0.0000	3269.9	3017.8	2.0068	0.0	0.0	0.0000	0.0000
i-Pentane	0.0000	4010.2	3707.6	2.491	0.0	0.0	0.0000	0.0000
n-Pentane	0.0000	4018.0	3715.5	2.491	0.0	0.0	0.0000	0.0000
C6+	0.0000	5194.5	4421.3	3.2522	0.0	0.0	0.0000	0.0000
Oxygen	0.0070	0.0	0.0	1.1048	0.0	0.0	0.0001	0.0070
Nitrogen	0.0338	0.0	0.0	0.9672	0.0	0.0	0.0003	0.0338
CO2	0.0038	0.0	0.0	1.5196	0.0	0.0	0.0001	0.0038
	100.000				1092.4	986.3	0.6057	99 9412

(d) Compressibility Factor (Z) for mixed gases

Total Inorganics:	0,0446
A=(Total SG)(0.0101)	0.0061
B=(Total Ing.)(0.007)	0.0000
Z = 1.00369 - A + B	0.9976

(e) Adjusted Values (14.73 psia, 60F, Gross, Dry, real volume basis)

High Heating Value	1095.094 BTU	/real cubic foot
Low Heating Value	988.704 BTU	/real cubic foot
Specific Gravity	0.6071	

(a) Higher Heating Value per Ideal CF @ 14.73 psia, GPA Standard 2145-03

- (b) Lower Heating Value per Ideal CF @ 14.73 psia, GPSA Vol. II Sec. 23 Fig. 23-2 (1987)
- (c) Specific Gravity, GPA Standard 2195 03
- (d) Empirical Formula for Compressibility Factor, AGA Transmission Report No. 5
- (e) Values reflect real volumes instead of ideal by dividing by the compressibility factor (EXAMPLE: BTU/Ideal Gas Volume)/Z, Where Z = (real gas volume/ideal gas volume)

Analysts:

QAQC:

03/28/06 02:49:58 PM

1/1 - 1

Scott Specialty	Gases	CERTIFIED WORKING CLASS Single-Certified Calibration Standard Phone: 909-887-2571 Fax: 909-887-0549
CERTIFICATE OF ACCURACY:	Certified Working	g Class Calibration Standard
Product Information Project No.: 02-42264-002 Item No.: 0202E400094TK P.O. No.: 4400050784 - Cylinder Number: K025371 Cylinder Size: K cylinder Date: 02Mar2006		Customer SOUTHERN CALIFORNIA GAS BLDG H-EAC-M.L. 723B 8730 E. SLAUSON AVE. PICO RIVERA, CA 90660
Expiration Date: 03Mar2008		
CERTIFIED CONCENTRATION	Concentration	Accuracy
	5.81 %	5
METHANE PROPANE	0.62 % 91.82 % 1.74 %	2 5
TRACEABILITY		
Traceable To		
NIST		
APPROVED BY: Pom Skul	<u> }</u>	DATE: <u>3/3/06</u>
	Page 1 of 2	

SPECIFICATIONS Requested Concentration Certified Concentration Biend Tolerance Result Certified Accuracy Result Component Name (Moles) (Moles) (H.I. %) (H.I. %) ETHANE 5.81 * .0 5.00 ISOBUTANE 0.62 * .0 5.00 METHANE 91.83 * 91.82 * .0 2.00 PROPANE 1.74 * 1.74 * .0 5.00 Traceable To NIST Traceable To NIST Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Cylinder Size: K Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Dew Point: 32 F Expiration Date: 03Mar2008 Valve Connection: CGA 350, BRASS SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PROSPA 58 BTU VALUE: 1096.7	(
ETHANE 5.81 \$ 5.81 \$.0 5.00 ISOBUTINAE 91.83 \$ 91.82 \$.0 2.00 PROPARE 1.74 \$ 1.74 \$.0 5.00 Traceable 1.74 \$ 1.74 \$.0 5.00 Traceable To 1.74 \$.0 5.00 Traceable To 1.74 \$.0 5.00 Traceable To NIST PHYSICAL PROPERTIES Cylinder Size: K Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Dew Point: 32 F Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS BTU VALUE: 1096.7 WOBBE FACTOR: 1406	(
TRACE ABILITY Traceable To NIST PHYSICAL PROPERTIES Cylinder Size: K Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Dew Point: 32 F Expiration Date: 03Mar2008 Valve Connection: CGA 350, BRASS SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
Traceable To NIST PHYSICAL PROPERTIES Cylinder Size: K Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Dew Point: 32 F Expiration Date: 03Mar2008 Valve Connection: CGA 350, BRASS SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
PHYSICAL PROPERTIES Cylinder Size: K Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Dew Point: 32 F Expiration Date: 03Mar2008 Valve Connection: CGA 350, BRASS SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
Cylinder Size: K Pressure: 2000 PSIG Valve Connection: CGA 350, BRASS Dew Point: 32 F Expiration Date: 03Mar2008 Valve Connection: CGA 350, BRASS SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
SPECIAL HANDLING INSTRUCTIONS Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
Do not use or store cylinder at or below the stated dew point temperature. Possible condensation of heavier components could result. In the event the cylinder has been exposed to temperatures at or below the dew point, place cylinder in heated area for 24 hours and then roll cylinder for 15 minutes to re-mix. Use of calibration standards at or below dew point temperature may result in calibration error. COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
Use of calibration standards at or below dew point temperature may result in calibration error. PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
COMMENTS PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
PGS# 58 BTU VALUE: 1096.7 WOBBE FACTOR: 1406.6 CYLINDER CONTENTS: APPROX. 299 CUBIC FEET	
	(
Page 2 of 2	

Southern California Gas Company Engineering Analysis Center BTU content of Natural Gas by Gas Chromatography

Sample ID: Gas 7 Pod 1 1205-03 Data File ID: HC03461.dat_DA... GC Used: Hydrocarbon BTU GC Analysis Date: 3/24/06 12:18:49 ... Analyst: lab

	Norm	(a)	(b)	(c)	Xi * HHV	Xi *	LHV	
Component	Mole %	HHV	LHV	SG	Btu/SCF	Btu/SCF	Xi * SG	Unnorm
Methane	85.9429	1012.3	911.5	0.5539	870.0	783.4	0.4760	85.5596
Ethane	0.0000	1773.8	1622.4	1.0382	0.0	0.0	0.0000	0.0000
Propane	10.3588	2522.0	2320.3	1.5226	261.2	240.4	0.1577	10.3126
i-Butane	0.0000	3259.5	3007.3	2.0068	0.0	0.0	0.0000	0.0000
n-Butane	0.0000	3269.9	3017.8	2.0068	0.0	0.0	0.0000	0.0000
i-Pentane	0.0000	4010.2	3707.6	2.491	0.0	0.0	0.0000	0.0000
n-Pentane	0.0000	4018.0	3715.5	2.491	0.0	0.0	0.0000	0.0000
C6+	0.0000	5194.5	4421.3	3.2522	0.0	0.0	0.0000	0.0000
Oxygen	0.0974	0.0	0.0	1.1048	0.0	0.0	0.0011	0.0970
Nitrogen	3.5421	0.0	0.0	0.9672	0.0	0.0	0.0343	3.5263
CO2	0.0587	0.0	0.0	1.5196	0.0	0.0	0.0009	0.0585
	100.000				1131.2	1023.7	0.6700	99.5540

(d) Compressibility Factor (Z) for mixed gases

Total Inorganics:	3.6982
A=(Total SG)(0.0101)	0.0068
B=(Total Ing.)(0.007)	0.0003
Z = 1.00369 - A + B	0.9972

(e) Adjusted Values (14.73 psia, 60F, Gross, Dry, real volume basis)

High Heati	ing Value	1134	1.447 B	TU/real	cubic for	ot
Low Heatin	ng Value	1026	6.619 B	FU/real	cubic for	ot
Specific Gr	avity	0.6	719			

(a) Higher Heating Value per Ideal CF @ 14.73 psia, GPA Standard 2145-03

- (b) Lower Heating Value per Ideal CF @ 14.73 psia, GPSA Vol. II Sec. 23 Fig. 23-2 (1987)
- (c) Specific Gravity, GPA Standard 2195 03
- (d) Empirical Formula for Compressibility Factor, AGA Transmission Report No. 5
- (e) Values reflect real volumes instead of ideal by dividing by the compressibility factor (EXAMPLE: BTU/Ideal Gas Volume)/Z, Where Z = (real gas volume/ideal gas volume)

Analysts: _____

QAQC:

03/24/06 12:18:50 PM

1/1 - 1

Scott Specialty	CER Single CA 92411 Phone: 90	CTIFIED WORKING CLA -Certified Calibration Standard 19-887-2571 Fax: 909-887-0549
CERTIFICATE OF ACCURACY:	Certified Working Class	Calibration Standard
Product Information Project No.: 02-42264-003 Item No.: 0202M300087TK P.O. No.: 4400050784 Cylinder Number: K025385 Cylinder Size: K Certification Date: 13Mar2006 Expiration Date: 12Mar2008 CERTIFIED CONCENTRATION Component Name METHANE NITROGEN PROPANE TRACEABILITY Traceable To	Concentration (Moles) Accu (+/) 86.1 % 2 2.97 % 5	RN CALIFORNIA GAS EAC-M.L. 723B SLAUSON AVE. YERA, CA 90660
APPROVED BY: BIM Cully	D	NATE: 3/14/26

Name6.196.190.20.02.00Schwart10.910.910.910.910.92.00Schwart <th>SPECIFI CATIONS</th> <th>Requested Concentration (Moles)</th> <th>Certified Concentration (Moles)</th> <th>Blend Tolerance Result (+/-%)</th> <th>Certified Accuracy Result (+/- %)</th> <th></th> <th></th>	SPECIFI CATIONS	Requested Concentration (Moles)	Certified Concentration (Moles)	Blend Tolerance Result (+/-%)	Certified Accuracy Result (+/- %)		
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	METHANE NITROGEN PROPANE	86.1 % 3. % 10.9 %	86.1 % 2.97 % 10.9 %	.0 1.0 .0	2.00 5.00 5.00		C
<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>	TRACEABILITY						
Cylinder Size: K Pressure: 630 PSIG Valve Connection: CGA 350, BRASS SECIAL HANDLING INSTRUCTIONS Components could neaver the cylinder has been exposed to temperatures at or below the dewe point place cylinder in the cylinder has been exposed to temperatures to re-ink. Use of calibration standards at or below dew point temperature may result in calibration error. Cymmetric Mark Size: 128 Pressure: 2003 Pressure: 2004 Pressure: 2005 Pressure: 2004 Pressure: 2004 Pressure: 2004 Pressure: 2005 Pressure: 2004 Pressure: 2005 Pressure: 2004 Pressure: 2004 Pressure: 2005 Pressure: 2005 <tr< td=""><td>PHYSIC AL PROPERTI</td><td>IFS</td><td></td><td></td><td></td><td></td><td></td></tr<>	PHYSIC AL PROPERTI	IFS					
<section-header><section-header><section-header><section-header><text><text><section-header></section-header></text></text></section-header></section-header></section-header></section-header>	Cylinder Size: K	Pressure Expiration	e: 630 PS on Date: 12Mar	SIG 2008	Valve Connection:	CGA 350, BRASS	
Description Description		INSTRUCTION	s				
Use of calibration standards at or below dew point temperature may result in calibration error. PGS# 58 DU VALUE: 1147 WOBBE FACTOR: 1399.2 Pgg 2 of 2	Do not use or store cylinde components could result. point, place cylinder in hea	er at or below the s In the event the cy ted area for 24 hou	stated dew point f linder has been ex urs and then roll of	temperature. F kposed to temp sylinder for 15	Possible condensation eratures at or below minutes to re-mix.	n of heavier v the dew	
Page 2 of 2	Use of calibration standard	s at or below dew	point temperature	may result in	calibration error.		
POS# 55 BTU VALUE: 1147 WOBBE FACTOR: 1399.2	COMMENTS						
Page 2 of 2	PGS# 58 DUE: 3-22-06 BTU VALUE: 1147 WOBBE FACTOR: 139:	9.2					
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2							
Page 2 of 2						а.	
Page 2 of 2							
Page 2 of 2							
			Page	2 of 2			

Southern California Gas Company Engineering Analysis Center BTU content of Natural Gas by Gas Chromatography

Sample ID: Gas 8 Pod 1Pico Rivera 1208-07 Data File ID: HC03478.dat_DA... GC Used: Hydrocarbon BTU GC Analysis Date: 3/28/06 3:22:57 PM Analyst: lab

	Norm	(a)	(b)	(c)	Xi * HHV	Xi *	LHV	
Component	Mole %	HHV	LHV	SG	Btu/SCF	Btu/SCF	Xi * SG	Unnorm
Methane	89.8502	1012.3	911.5	0.5539	909.6	819.0	0.4977	89.3975
Ethane	0.0000	1773.8	1622.4	1.0382	0.0	0.0	0.0000	0.0000
Propane	5.9872	2522.0	2320.3	1.5226	151.0	138.9	0.0912	5.9570
i-Butane	0.0000	3259.5	3007.3	2.0068	0.0	0.0	0.0000	0.0000
n-Butane	0.0000	3269.9	3017.8	2.0068	0.0	0.0	0.0000	0.0000
i-Pentane	0.0000	4010.2	3707.6	2.491	0.0	0.0	0.0000	0.0000
n-Pentane	0.0000	4018.0	3715.5	2.491	0.0	0.0	0.0000	0.0000
C6+	0.0000	5194.5	4421.3	3.2522	0.0	0.0	0.0000	0.0000
Oxygen	0.0122	0.0	0.0	1.1048	0.0	0.0	0.0001	0.0121
Nitrogen	3.9994	0.0	0.0	0.9672	0.0	0.0	0.0387	3.9792
CO2	0.1511	0.0	0.0	1.5196	0.0	0.0	0.0023	0.1503
	100.000				1060.5	957.9	0.6300	99,4961

(d) Compressibility Factor (Z) for mixed gases

Total Inorganics:	4.1626
A=(Total SG)(0.0101)	0.0064
B=(Total Ing.)(0.007)	0.0003
Z = 1.00369 - A + B	0,9976

(e) Adjusted Values (14.73 psia, 60F, Gross, Dry, real volume basis)
High Heating Value 1063.081 BTU/real cubic foot
Low Heating Value 960.191 BTU/real cubic foot
Specific Gravity 0.6315

(a) Higher Heating Value per Ideal CF @ 14.73 psia, GPA Standard 2145-03

(b) Lower Heating Value per Ideal CF @ 14.73 psia, GPSA Vol. II - Sec. 23 - Fig. 23-2 (1987)

(c) Specific Gravity, GPA Standard 2195 - 03

(d) Empirical Formula for Compressibility Factor, AGA Transmission Report No. 5

(e) Values reflect real volumes instead of ideal by dividing by the compressibility factor (EXAMPLE: BTU/Ideal Gas Volume)/Z, Where Z = (real gas volume/ideal gas volume)

Analysts:

QAQC:

03/28/06 03:22:58 PM

1/1 _ 1

Rich Burn Engine

Draft/Confidential - Do Not Cite

Scott Specialty	Gases	CERTIFIED WORKING Single-Certified Calibration Standa. Phone: 909-887-2571 Fax: 909-887-0549	CLA rd
CERTIFICATE OF ACCURACY:	Certified Worki	ng Class Calibration Standard	
Product Information Project No.: 02-42264-004 Item No.: 020M300086TK P.O. No.: 4400050784 . Cylinder Number: 1D1727 Cylinder Size: K Certification Date: 16Mar2008 Expiration Date: 15Mar2008		Customer SOUTHERN CALIFORNIA GAS BLDG H-EAC-M.L. 723B 8730 E. SLAUSON AVE. PICO RIVERA, CA 90660	
CERTIFIED CONCENTRATION			
Component Name	Concentration (Moles)	Accuracy (+/-%)	
METHAN E NITROGEN PROPANE	89.6 % 3.98 % 6.40 %	2 5	
TRACEABILITY	0.40 /0	3	
Traceable To			
APPROVED BY: BIM	Page 1 of	DATE: <u>3/17/26</u>	

SPECIFICATIONS	Requested Concentration (Moles)	Certified Concentration (Moles)	Blend Tolerance Result (+/-%)	Certified Accuracy Result (+/- %)		
METHANE NITROGEN	89.6 % 4. %	89.6 % 3.98 %	.0	2.00		G
PROPANE	6.4 %	6.40 %	.0	5.00		
TRACEABILITY						
NIST	150					
Cylinder Size: K	Pressure Expiratio	: 1071 PS n Date: 15Mar2	SIG 2008	Valve Connection:	CGA 350, BRASS	
SPECIAL HANDLING Do not use or store cylind components could result. point, place cylinder in her	INSTRUCTIONS ler at or below the st In the event the cyli ated area for 24 hour	tated dew point to nder has been ex rs and then roll cy	emperature. P posed to temp ylinder for 15	ossible condensatio eratures at or belo minutes to re-mix.	on of heavier w the dew	
Use of calibration standard	ds at or below dew p	point temperature	may result in	calibration error.		
COMMENTS PGS# 58 DUE: 3-22-06 BTU VALUE: 1068.7 WOBBE FACTOR: 134	13.9					
		Page 2	of 2			

Appendix A-2

Appendix D: Zero, Span and Linearity Table and Certificates

	Zero, Span & Linearity Data							
	Rich Burn En	gine Testing	9					
	April 26	, 2006				NO		
		O ₂ (%)	CO ₂ (%)	CO (ppm)	HC (ppm)	(ppm)		
	Analyzer Emission Ranges	0-5	0 - 20	0-10,000	0-10,000	0-10,000		
	Zero Calibration Gas (Low-Range Values)	0.00	0.00	0.00	0.00	0.00		
_	Allowable Zero Drift (Less Than ± 3% of Range)	0.75	0.60	6.00	300.00	3.00		
S	Zero Calibration - 9:22:00 AM	0.02	0.00	0.00	0.00	-0.01		
Ze	Zero Drift Check -2:02:00 PM	0.05	0.00	0.00	0.00	0.00		
	Total Drift Over Test Period	0.03	0.00	0.00	0.00	0.01		
	Was the Zero Drift Within Allowable Deviation?	Yes	Yes	Yes	Yes	Yes		
	Span Calibration Gas (High-Range Values)	3.96 ²	16.03 ²	8613 ²	2800 ⁴	3819		
_	Allowable Span Drift (Less Than ± 3% of Range)	0.75	0.60	6.00	300	3.00		
ar	Span Calibration - 9:23:00 AM	3.97	15.89	8615	2800	3819		
S S	Span Drift Check - 1:40:00 PM	3.93	15.90	8616	2820	3818		
	Total Drift Over Test Period	0.04	0.01	1.00	20	1.00		
	Was the Span Drift Within Allowable Deviation?	Yes	Yes	Yes	Yes	Yes		
	Linearity Calibration Gas (Mid-Range Values)	1.98 ¹	7.88 ¹	4471 ¹	2800 ⁴	476.2 ³		
	Allowable Linearity Drift (Less Than ±1% of Range)	0.25	0.20	2.00	100	1.00		
ΞŦ	Linearity Check - 09:52:00 AM	1.98	7.89	4471.30	2800	477.10		
ar	Difference From Mid-Range Values	0.00	0.01	0.30	0.00	0.90		
ne De	Was the Linearity Within Allowable Deviation?	Yes	Yes	Yes	Yes	Yes		
-	Linearity Check - 01:48:00 PM	2.02	7.80	4472	2820	477.90		
	Difference From Mid-Range Values	0.04	0.09	0.70	20.00	0.80		
	Was the Linearity Within Allowable Deviation?	Yes	Yes	Yes	Yes	Yes		

- 1 Tank CC -128558: CO $_2$ 7.88%, CO 4,471 ppm, O $_2$ 1.977%
- 2 Tank CC 94500: CO₂ 16.03%, CO 8,613 ppm, O₂ 3.96%
- 3 Tank AAL 4788: NO_X 476.2 ppm
- 4 Tank CC 126804: HC 2,800 ppm

Appendix A-2

Certificates

And a state of the second		Website: h	http://www.spectra-gases.com
SHIPPED FROM: 80 I	NDUSTRIAL DRIVE ALPHA,	NJ. 08865 TEL: (908) 454-7455	
SHIPPED TO:	Southern California Gas 8730 E. Slauson Ave, Bl Pico Rivera, CA 90660	Co. dg H	
		CERTIFICATE	
		OF	
Water and the state of the stat		ANALYSIS	
SGI ORDER # : ITEM# : CERTIFICATION DAT P.O.# : BI END TYPE:	0054412 8 TE: 6/7/2004 Verbal-Cyrus CERTIFIED	CYLI CYLINDE CYLINDEF	NDER # : CC-126804 R PRES: 2000 psig R VALVE: CGA 350
BLEND THE.		ANALYTICAL AC	CURACY: +/-2%
COMPONENT		REQUESTED GAS CONC	ANALYSIS
Methane		2,780 ppm	2,800 ppm
Nitrogen		Balance	Balance
/			

ANALYST: Cherry Patino

USA • United Kingdom • Germany • Japan

DATE: 6/10/2004

Appendix A-2

CERTIFICATE OF A	NALYSIS	,		
	2A 3120	5	PROCEDURE #: 0	31
CUSTOMER: SGI ORDER # : TEM# : P.O.# :	Southern California 0053375 2 8595072200-1180 824 50 727200-1140	Gas Co. ඊ	CYLINDER # : CYLINDER PRES: 2 CYLINDER PRES: 2 CGA OUTLET: 2	CC-128558 2000 PSIG 350
EXPIRATION DATE:	5/20/2004			
CERTIFICATION HISTOR	Y			
	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT Carbon Dioxide	ASSAY 5/20/2004	7.88 %	7.88 %	+/- 1%
CORDON DIGNING	GIEGEOU I		and the second second	
Carbon Monoxide	5/13/2004	4472 ppm	4471 ppm	+/- 1%
Oxygen	5/20/2004	1.977 %	1 977 %	+/- 1%
	[1] A. C. M.		1.011 /0	
BALANCE PREVIOUS CERTIFICATIO	Nitrogen ON DATES: None		1.017.10	
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARE COMPONENT	Nitrogen ON DATES: None DS	CYLINDER#	CONCENTRATION	
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARE COMPONENT Carbon Dioxide	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1	CYLINDER# CC-90832	CONCENTRATION 9.99 %	
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARD COMPONENT Carbon Dioxide Carbon Monoxide	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1	CYLINDER# CC-90832 CC-118667 CC-94813	CONCENTRATION 9.99 % 5023 ppm 2.02 %	
BALANCE PREVIOUS CERTIFICATIO REFERENCE STANDARE COMPONENT Carbon Dioxide Carbon Monoxide Oxygen	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1	CYLINDER# CC-90832 CC-118667 CC-94813	CONCENTRATION 9.99 % 5023 ppm 2.02 %	
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARE COMPONENT Carbon Dioxide Carbon Monoxide Oxygen	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1	CYLINDER# CC-90832 CC-118667 CC-94813	CONCENTRATION 9.99 % 5023 ppm 2.02 %	
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARE COMPONENT Carbon Dioxide Carbon Monoxide Oxygen	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1 MAKE/MODEL	CYLINDER# CC-90832 CC-118867 CC-94813 SERIAL #	CONCENTRATION 9.99 % 5023 ppm 2.02 % DETECTOR	CALIBRATION DATE(S)
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARD COMPONENT Carbon Dioxide Carbon Monoxide Oxygen NSTRUMENTATION COMPONENT Carbon Dioxide	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1 GMIS-1 Horiba VIA-510	CYLINDER# CC-90832 CC-118667 CC-94813 SERIAL# 571417045	CONCENTRATION 9.99 % 5023 ppm 2.02 % DETECTOR NDIR	CALIBRATION DATE(S) 4/29/2004
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARE ComPONENT Carbon Dioxide Carbon Monoxide Oxygen NSTRUMENTATION COMPONENT Carbon Dioxide Carbon Dioxide	Nitrogen ON DATES: None DS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1 GMIS-1 Horiba VIA-510 Horiba VIA-510	CYLINDER# CC-90832 CC-118667 CC-94813 SERIAL# 571417045 42331960012	CONCENTRATION 9.99 % 5023 ppm 2.02 % DETECTOR NDIR NDIR NDIR	CALIBRATION DATE(S) 4/29/2004 5/6/2004
BALANCE PREVIOUS CERTIFICATION REFERENCE STANDARE ComPONENT Carbon Dioxide Oxygen INSTRUMENTATION COMPONENT Carbon Dioxide Carbon Dioxide Oxygen	Nitrogen ON DATES: None OS SRM/NTRM# GMIS-1 GMIS-1 GMIS-1 GMIS-1 Horiba VIA-510 Horiba VIA-510 Horiba MPA-510	CYLINDER# CC-90832 CC-118667 CC-94813 SERIAL # 571417045 42331960012 570694081	CONCENTRATION 9.99 % 5023 ppm 2.02 % DETECTOR NDIR NDIR NDIR PM	CALIBRATION DATE(S) 4/29/2004 5/6/2004 5/20/2004

Appendix A-2

ERTIFICATE OF A	NALYSIS	. (†	EPA PROTOCOL PROCEDURE # :	L MIXTURE	
USTOMER: GI ORDER # : TEM# : P.O.# :	Southern California (0072392 1 SG824507GS	Gas Co.	CYLINDER # : CYLINDÈR PRES: CGA OUTLET:	CC-94500 2000 PSIG 350	
ERTIFICATION DATE:	6/10/2005 7 42/ 6/10/2008				
ERTIFICATION HISTOR	Y				77
A A M A A M A M A M A M A M A M A M A M	DATE OF		CONCENTRATION	ACCURACY	
Component Carbon Dioxide	6/10/2005	16.03 %	16.03 %	+/- 1%	1
				1 49/	-
Carbon Monoxide	6/3/2005	8608 ppm	8613 ppm	+/- 1%	
	0400005	0010			1
Ovvren	6/10/2005	8618 ppm 3.96 %	3.96 %	+/- 1%	-
Oxygen BALANCE PREVIOUS CERTIFICATI	6/10/2005 6/10/2005 Nitrogen ON DATES: None	8618 ppm 3.96 %	3.96 %	+/- 1%	_
Oxygen BALANCE PREVIOUS CERTIFICATI	6/10/2005 6/10/2005 Nitrogen ON DATES: None	8618 ppm 3.96 %	3.96 %	+/- 1%	-
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARI COMPONENT Carbon Dioxide	6/10/2005 6/10/2005 Nitrogen ON DATES: None DS SRM/NTRM# NTRM-82745x	8618 ppm 3.96 % CYLINDER# CC-79803	3.96 %	+/- 1%	-
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARD COMPONENT Carbon Dioxide Carbon Monoxide	6/10/2005 6/10/2005 Nitrogen ON DATES: None OS SRM/NTRM# NTRM-82745x GMIS-1	8618 ppm 3.96 % CYLINDER# CC-79803 CC-113877	3.96 %	+/- 1%	-
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARD COMPONENT Carbon Dioxide , Carbon Monoxide Oxygen	6/10/2005 6/10/2005 Nitrogen ON DATES: None OS SRM/NTRM# NTRM-82745x GMIS-1 GMIS-1	8618 ppm 3.96 % CC-79803 CC-113877 CC-106741	3.96 % CONCENTRATION 20.0 % 0.995 % 4.99 %	+/- 1%	-
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARD COMPONENT Carbon Dioxide Carbon Dioxide Oxygen	6/10/2005 6/10/2005 Nitrogen ON DATES: None OS SRM/NTRM# NTRM-82745x GMIS-1 GMIS-1	8618 ppm 3.96 % CYLINDER# CC-79803 CC-113877 CC-106741	3.96 % CONCENTRATION 20.0 % 0.995 % 4.99 %	+/- 1%	-
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARD COMPONENT Carbon Dioxide , Carbon Monoxide Oxygen	6/10/2005 6/10/2005 Nitrogen ON DATES: None OS SRM/NTRM# NTRM-82745x GMIS-1 GMIS-1 GMIS-1 MAKE/MODEL	8618 ppm 3.96 % CYLINDER# CC-79803 CC-113877 CC-106741 SERIAL #	3.96 % CONCENTRATION 20.0 % 0.995 % 4.99 % DETECTOR	+/- 1%	
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARI COMPONENT Carbon Dioxide Oxygen INSTRUMENTATION COMPONENT Carbon Dioxide	6/10/2005 6/10/2005 Nitrogen ON DATES: None OS SRM/NTRM# NTRM-82745x GMIS-1 GMIS-1 GMIS-1	8618 ppm 3.96 % CYLINDER# CC-79803 CC-113877 CC-106741 SERIAL #	3.96 % CONCENTRATION 20.0 % 0.995 % 4.99 % DETECTOR NDIR	+/- 1% CALIBRATION DATE(S) 6/1/2005	
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARI COMPONENT Carbon Dioxide Oxygen INSTRUMENTATION COMPONENT Carbon Dioxide Carbon Dioxide Carbon Monoxide	6/10/2005 6/10/2005 Nitrogen ON DATES: None OS SRM/NTRM# NTRM-82745x GMIS-1 GMIS-1 GMIS-1 CAI-300 Horiba VIA-510	8618 ppm 3.96 % CYLINDER# CC-79803 CC-113877 CC-106741 SERIAL # S03001 42331960012	3.96 % CONCENTRATION 20.0 % 0.995 % 4.99 % DETECTOR NDIR NDIR	+/- 1% CALIBRATION DATE(S) 6/1/2005 6/3/2005	
Oxygen BALANCE PREVIOUS CERTIFICATI REFERENCE STANDARI COMPONENT Carbon Dioxide , Carbon Monoxide Oxygen INSTRUMENTATION COMPONENT Carbon Dioxide Carbon Dioxide Oxygen	6/10/2005 6/10/2005 6/10/2005 Nitrogen ON DATES: None DS SRM/NTRM# NTRM-82745x GMIS-1 GMIS-1 GMIS-1 CAI-300 Horiba VIA-510 Horiba MPA-510	8618 ppm 3.96 % CYLINDER# CC-79803 CC-113877 CC-106741 SERIAL # \$03001 42331960012 570694081	3.96 % CONCENTRATION 20.0 % 0.995 % 4.99 % DETECTOR NDIR NDIR PM	+/- 1% CALIBRATION DATE(S) 6/1/2005 6/1/2005	

Appendix A-2

		RATA CL	ASS	
Scott Specialty G	ases	Dual-Analyzed	l Calibration	n Standard
2600 CAJON BLVD., SAN BERNARDINO, CA	92411	Phone: 909	-887-2571	Fax: 909-887-054
CERTIFICATE OF ACCURACY: E	PA Protocol Gas	Ð.,		
Assay Laboratory P.O. No.: SCOTT SPECIALTY GASES 2600 CAJON BLVD. SAN BERNARDINO.CA 92411	FG859507220022001 2-33900-001	Customer 1850UTHERN CAL APPLIED TECH A ENG ANALYSIS 8730 E. SLAUSO PICO RIVERA CA	FORNIA GAS IR QUALITY CTR BLDG H DN AVENUE 90660	
ANALYTICAL INFORMATION		1. Contiliantian of	Casagous Calibra	tion Standards
This certification was performed according to EPA Tr Procedure G-1; September, 1997. Cylinder Number: <u>AAL4788</u> Cultuder Broceure***: 2000 PSIG	Certification Date:	190ct2004	Exp. Date:	190ct2006
COMPONENT CERTIFIE NITRIC OXIDE NITROGEN - OXYGEN FREE	ED CONCENTRATION (473.4 PPM BALANC	ANAL' Moles) <u>ACC</u> E	YTICAL URACY** +/- 1%	TRACEABILITY Direct NIST and NMi
TOTAL OVIDER OF NITROGEN	476.2 PPM			Reference Value Onl
EFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE CYLINDE NTRM 1687 01Feb2007 AAL06780	R NUMBER CONCE 891	976.5 PPM	NITRIC OXIDE	
INSTRUMENTATION INSTRUMENT/MODEL/SERIAL# MKS Online/2030/0929060	DATEL	AST CALIBRATED 16Sep2004	AN FTI	R
ANALYZER READINGS (Z = Zero Gas First Triad Analysis	R = Reference Gas T = Second Triad Analys	= Test Gas r = Co sis	rrelation Coeff Calibra	ficient) ation Curve
NITRIC OXIDE Date: 110ct2004 Response Unit:PPM 21 = -0.04171 R1 = 242.7311 T1 = 474.1067 2 R2 = 242.7329 22 = -0.02780 T2 = 474.2849 2 23 - 0.01280 T3 = 474.5177 R3 = 242.7413 2 Avg. Concentration: 472.1 PPM 2	Date: 190ct2004 Response U Z1 = -0.06649 R1 = 971.3696 R2 = 972.9679 Z2 = 0.02269 Z3 = 0.10862 T3 = 473.1233 Avg. Concentration: 474.	nit: PPM T1 = 472.7895 T2 = 473.0930 R3 = 974.0912 8 PPM	Concentration = / r = 9.99992E-1 Constanta: B = 4.23978E-1 D = 0.00000E+1	A + Bx + Cx2 + Dx3 + Ex4 A = 0.00000E + 0 C = 2.90000E + 0 E = 0.00000E + 0
PGS# 78 APPROVED BY:				DUE: 11-3-04

Appendix E: Calculations

Emission Concentrations

Corrected to O₂ Standard (15% O₂)

CO, HC & NO_x Concentrations (corrected to 15% O₂) = Raw Concentrations (ppm) × $\left[\frac{20.9 - 15}{20.9 - \%O_2}\right]$

Where

Raw Concentration = Measured CO, VOC & NO_x concentrations, by volume (ppm)

 $\% O_2 = Measured O_2 Concentration$

Gas Meter Accuracy Table

The gas meter used during testing was compared to a certified bell prover to determine its accuracy (error percentage) at various flow rates.

The gas meter accuracy table (below) shows the prover flow rates that the meter was tested, error percentage for each accuracy test and an average meter error.

Also included on the table is a gas meter flow rate. The gas meter flow rate is the meter's reading at each prover flow rate when the average meter error is factored in. This flow rate was calculated using the meter accuracy equation:

% Error = $\left(\frac{\text{Gas Meter Flow - Prover Flow}}{\text{Prover Flow}}\right) \times 100$

Through algebraic manipulation, the gas meter flow is determined using the following equation:

Gas Meter Flow = Prover Flow
$$\times \left(1 + \frac{\% \text{ Error}}{100}\right)$$

Appendix A-2

A negative error percentage indicates the gas meter flow rate was below the prover flow rate whereas a positive error percentage indicates the gas meter flow rate was above the prover flow rate.

Model Number: 3M175						
Date: June 30, 2006						
Meter Number: 10266179						
Prepared By: David Ceballos						
	Serial Nun	n ber: 9590094				
	CPUC CERTIFICA	TE OF BELL PRC	VER			
	REPEA	TABILITY				
	Coo Motor Err	r Doroontogo	Average	Gas Meter		
Prover Flow Rate	Gas weter End	or Percentage	Meter	Flow Rate		
cfh	% CORR.	% CORR.	Error	cfh		
300	0.26%	0.32%	0.29%	300.87		
600	0.33%	0.28%	0.31%	601.83		
1500	1500 0.49% 0.48% 0.49% 1507.28					
2100	0.58%	0.58%	0.58%	2112.18		
2700	0.59%	0.58%	0.59%	2715.80		

Actual Gas Flow with Meter Correction (acfh)

To correct the actual gas flow that was measured during testing, a gas meter flow rate range is selected from the meter accuracy table. The gas meter flow rates and the average meter error (divided by 100) will be used to calculate the meter correction factor at any given gas flow rate.

Setting y = average meter error (divided by 100) and x = gas meter flow rate, the error can be calculated using the following equation:

$$\frac{y - y_0}{y_1 - y_0} = \frac{x - x_0}{x_1 - x_0}$$

Manipulating the right side of the equation algebraically:

$$\alpha = \frac{\mathbf{x} - \mathbf{x}_0}{\mathbf{x}_1 - \mathbf{x}_0}$$

The equation would then simplify into:

$$y = \frac{y_1 - y_0}{x_1 - x_0} (x - x_0) + y_0$$

Appendix A-2

If the appliance has an actual gas flow rate (F_A) of 610.0 actual cubic feet per hour (acfh), the gas meter flow rate range would be 601.83 to 1507.28 acfh and the average meter error range (divided by 100) would be 0.0031 to 0.0049. Using this information, the meter error (y) is:

 $y = \frac{0.0049 - 0.0031}{1507.28 \operatorname{acfh} - 601.83 \operatorname{acfh}} (610.0 \operatorname{acfh} - 601.83 \operatorname{acfh}) + 0.0031 = 0.003116$

Once the meter error is known, the actual gas flow rate with meter correction ($F_{meter.}$) can be calculated using the following equation:

$$F_{meter} = \frac{F_A}{(1+y)}$$

$$F_{\text{meter}} = \frac{610.0 \text{ acfh}}{(1+0.003116)} = 608.105 \text{ acfh}$$

Corrected Gas Flow (scfh)

$$\mathsf{F}_{\mathsf{corrected}} = \mathsf{F}_{\mathsf{meter}} \times \left[\frac{\mathsf{P}_{\mathsf{Fuel}} \left(\mathsf{psig} \right) + \mathsf{P}_{\mathsf{1}} \left(\mathsf{psia} \right)}{\mathsf{P}_{\mathsf{standard}}} \right] \times \left[\frac{\mathsf{T}_{\mathsf{standard}}}{\mathsf{T}_{\mathsf{Fuel}} \left({}^{\circ}\mathsf{F} \right) + 459.67} \right]$$

Where

F_{corrected} = Gas flow corrected to standard temperature and pressure (scfh)

 F_{meter} = Actual gas flow with meter correction (acfh)

P_{Fuel} = Natural gas inlet pressure (psig)

 P_1 = Average pressure in Pico Rivera at an average elevation of 161 ft (psia)

P_{standard} = Standard atmospheric pressure (14.735 psia @ 60°F)

 T_{standard} = Standard atmospheric temperature (519.67 R @ 1 atm)

 T_{Fuel} = Fuel temperature (°F)

Appendix A-2

Input Rate (Btu/cf)

Input Rate = Corrected Gas Flow \times HHV

Where

Wobbe Number (Btu/cf)

$$W_{_0}=\frac{HHV}{\sqrt{G}}$$

Where

 $W_0 =$ Wobbe Number (Btu/cf)

HHV = Higher Heating Value (Btu/cf)

G = Specific gravity of gas sample

Appendix A-2

Emissions Analyzer and Conditioner						
Analyzer Range	Manufacturer	Model	Туре	Accuracy		
NO/NO _X 0 - 10,000 ppm	Thermo Environmental Instruments Inc.	10AR	Chemiluminescent	± 1% of full scale		
CO 0 - 10,000 ppm	Thermo Environmental Instruments Inc.	48H Nondispersive infrared (NDIR) gas analyzer		± 1% of full scale		
CO ₂ 0 - 20 %	Fuji	ZRH Nondispersive infrared (NDIR) gas analyzer		± 1% of full scale		
HC 0 - 10,000 ppm	California Analytical Instruments, Inc.	300 HFID Flame ionization detector (FID)		± 1% of full scale		
O ₂ 0 - 5 %	Teledyne	326RA	Electrochemical cell	± 1% of full scale		
Flow Rate 0 - 10 L/M (at STP)	Universal Analyzers Inc.	Blower Series 3080	Thermoelectric gas sample cooler	n/a		
Calibration & Span Gases						
Gas	Manufacturer		Туре	Accuracy		
Calibration	Scott Specialty Gases	E	EPA Protocol Gas	± 1%		
NO/NO _X	Praxair	E	EPA Protocol Gas	± 1%		
СО	Spectra	E	EPA Protocol Gas	± 1%		
CO ₂	Spectra	E	EPA Protocol Gas	± 1%		
HC	Scott Specialty Gases	Certified Master Class		± 2%		
O ₂	Spectra	EPA Protocol Gas		± 1%		
	Gas De	elivery Sys	tem			
Equipment Range	Manufacturer	Model	Туре	Accuracy		
Data logger	Delphin	Top Message	Data logging system	n/a		
Gas Meter	Roots Meter	3M175	Dry meter - 3000 cfh max	99.90%		
Pressure Sensor 0 - 10 in. w.c	Dwyres	607-8	Pressure Transducer	± 0.5%		
Pressure Sensor 0 - 15 psig	Omega Engineering Co.	PX205- 015GI Pressure Transducer		0.25%		
Pulser	IMAC System Inc	300-5D-100	100 pulses per 10 cu ft	n/a		
	Thermocouples	& Pressure	e Transducers			
Туре	Manufacturer		Model	Accuracy		
К	Omega Engineering Co.		KMQSS	4.0° F or 0.75%		
J	Omega Engineering Co.		JMQSS	4.0° F or 0.75%		

Appendix F: Test Equipment from SoCalGas

Appendix A-2

Appendix F: Test Equipment from Advance Engine Technology Corporation

AETC Mobile CEMS is based on a transportable office trailer carrying a fully automated CEMS. The 15' insulated, air-conditioned trailer houses the workspace, communications, PC's, calibration gasses and CEMS rack. The Mobile CEMS has been used for many District approved Alternative Continuous Emission Monitoring System (ACEMS) certification tests and recent research projects.

The CEMS rack houses the Rosemount analyzers, sample conditioning unit, DAQ and alarm panel. Analyzers are- Rosemount NO2 NGL/PMP paramagnetic, Rosemount NOx/NO CDL chemiluminescent, and Rosemount CO 880A NDIR (with high pressure capillary CO2 compensation). Stack gas was taken from a single point in the port normally used for reference method tests. Calibration gas is administered at the probe. Stack gas travels in a heated umbilical, 300deg F to the CEMS rack. A model 3050 Universal Analyzer sample conditioning unit handles water knockout and constant pressure sample gas delivery to the analyzers.

CEMS DAQ program automatically challenges (calibration) all analyzers local/remote bias daily with zero and span gasses. All analyzers were set up with linearity, bias, converter and interference checks. The CEMS DAQ writes to a 15 minute average database. Mapping runs are preformed at a 15 second interval. For this test, calibration was checked immediately before and after the test, and data was collected at the 15 second interval.

Analyzer ranges are indicated below, and calibration gases with the following values and Scott Specialty Gas EPA certification numbers were used:

Zero g	jas N2		FDU623
02	0-5%	3.96%O2/9.25CO2	SG9151224
NOx	0-50ppm	44.1ppm	CC485885
NOx	linearity check	25.1ppm	CC48585
CO	0-10,000ppm	874ppm	CC146055
CO lin	earity check	176ppm	CC44551
NO2 d	converter check	15.08	CA01957

Appendix A-2

Appendix G: Test Set-Up/Schematic

Equipment utilized for testing adheres to industry standards for testing laboratories that certify such equipment. The test rig is transportable and includes a data logger, emissions cart, gas meter, thermocouples and pressure transducers; plus, a gas regulation system that can take natural gas from 3,000 PSIG and deliver up to 2,000 CFH at low pressure (~8" w.c.). The test rig is illustrated below

Rich Burn Engine

Appendix A-2

Appendix H: Source Test Report

Next Page

SOURCE TEST REPORT

06-0252

Conducted at

Eastern Municipal Water District 1301 Case Road Perris, CA

Determination of VOC Emissions from a Rich Burn IC Engine Fired on Various Qualities (HHV & Wobbe Index) of Natural Gas.

TESTED: April 26, 2006

ISSUED:

REPORTED BY: Carey A. Willoughby Air Quality Engineer II

REVIEWED BY:

Michael Garibay Supervising Air Quality Engineer

SOURCE TEST ENGINEERING BRANCH

MONITORING AND ANALYSIS DIVISION

South Coast Air Quality Management District

21865 Copley Drive, Diamond Bar, CA 91765-4182 (909) 396-2000

b. Test Location	<u>1301 Case Street Perris, CA</u>
c. Unit Tested	Rich Burn IC Engine w/Various Qualities of Natural Gas
d. Test Requested by	Marty Kay, Engineering & Compliance, x3115
e. Reason for Test Request	Emission Determination
f. Date of Test	<u>April 26, 2006</u>
g. Source Test Performed by	Mike Garibay, Ron Lem <u>Wayne Stredwick, Carey Willoughby</u>
h. Test Arrangements Made Through	Gregg Arney, Sempra Utilities, (562) 806-4349
	Marty Kay

i. Source Test Observed byEd Filadelfia, EMWD; Dan McGivney, EMWD

South Coast Air Quality Management District 21865 Copley Drive, Dlamond Bar, CA 91765-4182 (909) 396-2000

Test No. 06-252

-44-

Date: 4/26/06

INTRODUCTION

On April 26th, 2006 personnel from the South Coast Air Quality Management District (SCAQMD) Source Test Engineering Branch conducted several source tests on a rich burn IC engine owned by the Eastern Municipal Water District (EMWD). The tests were conducted at the EMWD facility in Perris, CA. The tests were conducted to determine Volatile Organic Compound (VOC) emissions from firing the engine on various qualities of natural gas. The testing was requested by the SCAQMD TAO Division.

<u>RESULTS</u>

RUNS	PARAMETERS	NMNEOC (PPM)	O ₂ (%)	CO ₂ (%)	CO (PPM)
	Gas 1 Baseline (Pipeline)				
1	Low Wobbe (1,303 Btu/cf)	43	0.80	11.60	1,040
	Low heat content gas (1,002 Btu/cf)				
	Gas 3				
2	Highest Wobbe (1,437 Btu/cf)	81	0.85	11.05	1,720
	Highest heat content gas (1,150 Btu/cf)				
	Gas 6				
3	Medium Wobbe (1,400 Btu/cf)	58	0.85	11.45	1,395
	High heat content gas (1,100 Btu/cf)				
	Gas 1 Baseline (Pipeline)				
4	Low Wobbe (1,303 Btu/cf)	28	0.65	11.45	1,055
	Low heat content gas (1,002 Btu/cf)				
	Gas 7				
5	High Wobbe (1,400 Btu/cf)	127	0.80	11.75	1,805
	High heat content gas (1,142 Btu/cf)				
	Gas 8				
6	Medium Wobbe (1,342 Btu/cf)	71*	0.79*	11.59*	1,381*
	Medium heat content gas (1,066 Btu/cf)				

* Correction Factor of 1.241 used to compensate for high O_2 due to external wind event during final run using average O_2 from other runs.

TEST METHODOLOGY

All VOC sampling was conducted using District Method 25.3 from the exhaust of the NSCR.

South Coast Air Quality Management District

21865 Copley Drive, Diamond Bar, CA 91765-4182 (909) 396-2000

Test No. 06-252

-45-

Date: 4/26/06

SCAQMD Method 25.3

Integrated gas samples were collected from the exhaust of the NSCR using a SCAQMD Method 25.3 sampling apparatus. The apparatus consisted of 0.5 micron filters and stainless steel probes inserted entirely into the stack so that they are heated by the stack gases. The probes were connected to 18 inch lengths, 0.125 inch o.d. Perfluoroalkoxy (also known as PFA, a type of Teflon) line for connection to small 4 ml glass impingers containing 2 ml of hydrocarbon free water. The impingers were immersed in ice water baths with the outlets connected to six liter summa polished canisters as shown in Figure 3. The ice bath heights were adjusted so that the water level did not exceed the level of any impinger connections as to avoid potential contamination. A constant sampling rate was maintained by using small orifice flow controllers. Such samples were collected continuously and concurrently for a period of 30 minutes.

The sample canisters were checked for leaks by observing the internal vacuum gauges over a period of several hours. An observation of a zero loss in vacuum indicated an acceptable canister leak check. The remainder of the sampling apparatus was checked for leaks both before and after sampling by blocking the flow at the probe tip with a clean tubing cap and introducing a portion of the tank vacuum into the remainder of the sampling system. An observation of the resulting cease in the gauge for a period of one minute indicated an acceptable leak check.

After the post-test leak check the PFA lines were disconnected from the probe. The condensate present in the lines were rinsed into the impingers with hydrocarbon free water. This was accomplished by introducing a small amount of the remaining tank vacuum to the line while dipping the open end of the line into the water. After the impingers were filled to approximately 80-90% of capacity, the impinger bodies were disconnected, capped, sealed, and stored at approximately 32 °F. This method is designed for non-methane organics concentration below 50 ppm.

The liquid within the impinges was analyzed with an infrared total carbon analyzer. The contents of the canister were analyzed for Carbon Dioxide (CO₂), Carbon Monoxide (CO), Methane (CH₄), Ethane (C₂H₆), Nitrogen (N₂), and Oxygen (O₂), and Non-Methane Non-Ethane Organic Compounds (NM/NEOC). The gases were separated by gas chromatography. Carbon Monoxide, Carbon Dioxide, Methane, Ethane, and Total Non-Methane Non-Ethane Organic Compounds were analyzed by draft SCAQMD Method 25.3 (TCA-FID & TOC). Oxygen and Nitrogen were analyzed by SCAQMD Method 10.1, gas chromatography with a thermal conductivity detector (GC/TCD).

South Coast Air Quality Management District 21865 Copley Drive, Dlamond Bar, CA 91765-4182 (909) 396-2000

Test No. 06-252

-46-

Date: 4/26/06

TEST CRITIQUE

It must be noted that most of the results of NMNEOC are above the maximum Method 25.3 applicability limit of 50 ppm. Therefore these results are biased low. The results are, however, adequate to do a relative comparison.