

Renewable Natural Gas

Its Potential, Opportunities, and Challenges

Fernando Berton, Air Quality Analyst

California Air Pollution Control Officers Association

June 14, 2011

Talking Points

- Who is CAPCOA
- Sources of Renewable Natural Gas
- Biomethane Potential
- Uses of Renewable Natural Gas
- Issues and Challenges
- Summary

Who is CAPCOA?

- Non-profit Association of Air Pollution Control Officers
 - Represent all 35 local air districts in California
 - Formed in 1975
- We are nationally recognized experts in the field of air quality management

35 air districts in California.

Renewable Natural Gas - Sources

- Natural Gas CH₄ (Fossil Derived)
- Biogas CH₄ (Non-fossil Derived)
- Biogas derived primarily from anaerobic digestion of organic material
 - Cellulosic Solid Waste
 - Dairy Waste

Renewable Natural Gas - Sources

Biogas Yield of Different Organic Materials

	Biogas Yield ft3/lb TS	Methane Content of Biogas (%)
Municipal		
Food Waste	7.7	70
Green Waste		
Summer	5.3	55
Winter	3.8	55
Agriculture and Food		
Fish Processing Waste	16.6	76
Vegetable Waste	7.3	60
Rice Straw	5.1	50
Dairy manure	4.7	65

Biomethane Potential

	CH ₄ Generated
	(BTU/lb input)
Vegetable oil	16024
Office paper	5609
Corrugated paper	4389
MSW C	2586
MSW B	2466
MSW D	2387
Food waste	1969
MSW A	1918
Newspaper	1534
Branches	1519
Grass	1161
Blend of grass, leaves,	branches 1130
Leaves	1123

Sources: Chynoweth, et.al., (1993) Owens and Chynoweth (1993) Eleaser, et.al., (1997) Tchobanoglous, et.al., (1993)

Uses of Renewable Natural Gas

Power Generation

- 1 m³ of biogas (=35.3K Btu)
- Generates 1.5 to 1.7 KWh
- Equals 1 lb of LPG
- Calorific Value 1000 Btu/m³
- Contains 65% CH₄ and 35% CO₂

Source: 1) Government of Alberta, Agriculture and Rural Development 2) Senederra, et. al. University of Adelaide

Uses of Renewable Natural Gas

Transportation Fuel

- CNG
- LNG
- Hydrogen

Issues and Challenges

- Criteria Pollutant Standards
 - Two Types of Standards
 - Primary Health Effects
 - Secondary Damage to Crops, Vegetation, Buildings
 - Regulation/Enforcement at Local Level
- NO_x and Ozone primary concern in some areas (Non-attainment areas)
 - Emission sources are cars, trucks, buses, etc.
 - Ozone forms by mixing NOx, VOCs, and sunlight

Issues and Challenges – EPA Standards

- New NO₂ Standard Jan 1, 2010
 - More Stringent 53 ppb annual average
 - Monitors required near major roads urban areas

OFFICER'S

- New Ozone Standard
 - Current Standard 0.075 ppb (8 hour standard)
 - Will be more Stringent
 - Not sure when new standard will be issued
- Check with your local air district

Issues and Challenges – Engine Use

- Primary Use for Renewable Natural Gas
 - Internal Combustion Engines (stationary and mobile)
- Primary Source of NO_x
 - Internal Combustion Engines
- Ozone Formation
 - NO_x + VOCs + Sunlight

Renewable Natural Gas– GHG Implications

- Methane 25X greater global warming potential than CO₂
- Major element in Scoping Plan
 2020 Reduction Goal 2 MMTCO₂E
- Mature Technology for Production
- High Potential for Distributed Generation

Renewable Natural Gas – Summary

- Derived from anaerobic digestion of organic material
- Similar calorific value as fossil-derived natural gas
- Can be used for energy/fuel production
- NO_x and Ozone could major issue in nonattainment areas

Renewable Natural Gas – Summary

- Higher GWP than CO₂ (25X)
- Mature technology lends to easy production/capture
- Can contribute to numerous policy goals
 - GHG Reduction
 - Renewable Portfolio
 - Low-Carbon Fuels
- Biggest may be NO_x Reduction

Contact Information

Fernando Berton, Air Quality Analyst CA Air Pollution Control Officers Assocation 1107 Ninth Street, Suite 210 Sacramento, CA 95814 Phone: (916) 441-5700 Email: fernando@capcoa.org