

The Next Generation Near-Zero Emission Natural Gas Vehicles

Jeff Reed

Director of Emerging Technologies Southern California Gas Company November 29, 2011

© 2006 The Gas Company. All copyright and trademark rights reserved.

Context

Natural gas is

- Clean
- Cost effective
- Domestic

However – emission standards are getting tighter and tighter

Key question – how close can natural gas get to zero emissions and at what cost?

NGV Technology Advances will be Key

Opportunity Area	Comments			
Engine Technology and Drive Trains	 Improvements of 35% to 60%+ in fuel economy predicted by some experts Both engine technology and hybridization can help Aerodynamics, light-weight materials and peripherals can help as well Fuel efficiency eliminates all tailpipe emissions #1 in the "loading order" 			
Advanced After-treatment	 Catalyst systems similar to those in use today Has technical potential to reduce NOx to "near zero" levels (90% less than 2010 standards) 			
Carbon – the elephant in the room	BiogasSolar methane synthesis			
"Supporting " advances On-board tanks Fueling infrastructure	 Helps reduce lifecycle emissions by reducing required compression energy Low –cost, efficient fueling infrastructure is a key enabler Efficiency improvements reduce lifecycle emissions 			

Example -- Next Generation Refuse/Transit

Objective

Develop dedicated natural gas engine with near zero emissions without sacrificing performance or efficiency compared to 2010 diesel engine

Demonstration Elements

- Modify 11L 340hp Doosan engine (conversion from lean burn SCR)
- Stoichiometric operation
- Cooled Exhaust Gas Recirculation for mixture dilution
- Three way Catalyst
- Advanced ignition system for highly dilute mixtures
- Optimized in-cylinder turbulence
- High efficiency turbo matching
- Advanced control for knock and misfire detection

Expected Benefits:

- 80% reduction in NOx emissions
- Replace SCR with 3-way catalyst
- Similar efficiency and cost to diesel alternatives

Example -- Hybrid Heavy Duty Vehicles

Objective

Develop a near zero emissions dual liquid / natural gas combustor for the existing 350 kW gas turbine engine designed for Class-8 trucks.

Benefits

- Near-zero emissions (90% NOx improvement)
- Fuel flexibility
- Improved efficiency through hybridization

Biogas = Lowest GHG Vehicle Fuel Pathway

Source: CARB

Example – Near Zero Emission Buses

SoCalGas commissioned analysis to assess performance and cost effectiveness of various natural gas solutions for transit buses

- □ Baseline technologies
 - Model year 2010 diesel or natural gas engines (0.2 g/bhp-hr NOx)
 - □ Hydrogen hybrid-electric fuel cell
 - □ Battery electric

Fuel alternatives for a "zero emission" bus

- Natural gas with advanced after-treatment
- □ Natural gas hybrid-electric
- □ Renewable CNG
- Hydrogen-natural gas blended fuels

Analysis Results

Technologies	NOx (g/mi) (tailpipe)	GHG (g/mi) (WTW)	Cost per ton NOx reduced	Cost per ton GHG reduced	Total cost per mile
2010 CNG	0.8	2,607	n/a	(\$590)	\$1.56
CNG with advanced after- treatment	0.12	2,607	(\$536K)	(\$540)	\$1.60
H/CNG	0.8	2,688	n/a	(\$393)	\$1.74
Renewable NG	0.8	435	n/a	(\$52)	\$1.80
CNG hybrid	0.6	1,955	(\$705K)	(\$106)	\$1.85
2010 Diesel - baseline	0.8	3,282	n/a	n/a	\$2.00
Diesel hybrid	0.6	2,462	\$675K	\$164	\$2.15
Battery electric	0.0	1,593	\$1.1M	\$500	\$2.93
Fuel cell	0.0	1,793	\$4.7M	\$2,539	\$6.17

Advanced Storage Systems

- Advanced cost effective CNG and LNG on-board fuel storage systems
 - Adsorbed Natural Gas, new materials
 - Conformable Tank Configurations
 - Extended Cylinder Certification Life
 - Non-destructive Active Monitoring for Damage Detection
 - Nitrogen Blanketed/No Vent Cryogenic Tank Technology

A 120-gallon LNG tank is mounted under the cab.

Example – Low-Pressure Adsorption Storage

Objective

Reduce compression requirement for on-board natural gas fuel storage at comparable energy density (volume requirement

Benefits:

- Less-expensive, thinnerwalled pressure vessels
- Conformability
- Less-compression

Example – Next-gen CNG Infrastructure

Objective:

The project is demonstration of three self-contained CNG compressor units manufactured by GNC Galileo S.A., of Argentina for fleet and retail applications

Potential benefits over traditional CNG compressors:

- Compact, self-contained unit suitable for urban setting
- Plug and Play all components in explosion proof steel enclosure
- Ability to right size a fast-fill product to demand
- Provide solution for small and mid-sized fleets
- Smart software to optimize performance and diagnose problems quickly

Market development objectives:

- Full commercial availability of cost-effective solution for small and mid-sized fleets
- Create customer pull for other competitive products

Microbox – Riverside Base

Nanobox

Sempra Energy utility

Example -- Home Refueling Appliance

- Goal: Facilitate the design and manufacture of 'next generation' CNG fueling appliance(s) approved for residential use.
- Product Targets: Fuel cost adder of \$1/gal or less
- Potential Vendors/Manufacturers: over 25 identified to date
- Overall goal is to facilitate introduction of cost-effective products by 2013

Samples of HRA Products/Concepts

CNG More Economical for Many Segments Today

Heavy-Duty Vehicles

Economics – Passenger NGV can be Cheaper than Conventional

Assumptions:

- Current Honda Civic CNG vehicle price
- Cost difference reduced by 50% with high volume production (similar to current differential in Italy)
- Current fuel price \$3.85 per gallon; alternative case gasoline price \$5.00
- CNG price \$2.30 per gasoline gallon equivalent
- 15,000 miles per year at 29 mpg

Conclusions

- Emissions challenges are significant but solutions are in sight to meet long-term goals
- Low-cost, domestic fuel is a major advantage

