ACHIEVING THE VISION
 ventura's general plan

SCH \# 2004101014

CITY OF

City of Ventura 2005 General Plan

Final Environmental Impact Report

SCH \# 2004101014

Prepared by:

City of Ventura
501 Poli Street
Ventura, CA 93001

Prepared with the assistance of:

Rincon Consultants, Inc.
790 East Santa Clara Street
Ventura, California 93001

City of Ventura 2005 General Plan

Final Environmental Impact Report

Table of Contents

Page

Summary S-1
1.0 Introduction 1-1
1.1 General Plan Overview and Background 1-1
1.2 Lead, Responsible, and Trustee Agencies. 1-3
1.3 Purpose and Legal Authority 1-4
1.4 EIR Scope and Content 1-5
1.5 Environmental Review Process 1-6
2.0 Project Description. 2-1
2.1 Project Applicant 2-1
2.2 Geographic Extent of the Planning Area 2-1
2.3 Project Objectives 2-5
2.4 1989 Comprehensive Plan 2-6
2.5 Proposed 2005 General Plan 2-8
2.6 Discretionary Actions 2-39
3.0 Environmental Setting 3-1
3.1 Regional Overview. 3-1
3.2 Physical Setting 3-1
3.3 Transportation 3-2
3.4 Demographics 3-3
4.0 Environmental Impact Analysis 4-1
4.1 Aesthetics and Community Design
4.1.1 Setting 4.1-1
4.1.2 Impact Analysis 4.1-9
Summary Comparison of Impacts for EIR Scenarios. 4.1-10
4.2 Agricultural Resources4.2.1 Setting4.2-1
4.2.2 Impact Analysis 4.2-11
Summary Comparison of Impacts for EIR Scenarios. 4.2-13
4.3 Air Quality
4.3.1 Setting 4.3-1
4.3.2 Impact Analysis 4.3-8
Summary Comparison of Impacts for EIR Scenarios. 4.3-10
4.4 Biological Resources
4.4.1 Setting 4.4-1
4.4.2 Impact Analysis 4.4-13
Summary Comparison of Impacts for EIR Scenarios 4.4-15
4.5 Cultural and Historic Resources
4.5.1 Setting 4.5-1
4.5.2 Impact Analysis 4.5-8
Summary Comparison of Impacts for EIR Scenarios 4.5-11
4.6 Geologic Hazards
4.6.1 Setting 4.6-1
4.6.2 Impact Analysis 4.6-19
Summary Comparison of Impacts for EIR Scenarios. 4.6-20
4.7 Hazards and Hazardous Materials
4.7.1 Setting 4.7-1
4.7.2 Impact Analysis 4.7-10
Summary Comparison of Impacts for EIR Scenarios. 4.7-11
4.8 Hydrology and Water Quality
4.8.1 Setting 4.8-1
4.8.2 Impact Analysis 4.8-16
Summary Comparison of Impacts for EIR Scenarios. 4.8-17
4.9 Mineral Resources
4.9.1 Setting 4.9-1
4.9.2 Impact Analysis 4.9-5
Summary Comparison of Impacts for EIR Scenarios. 4.9-6
4.10 Noise
4.10.1 Setting 4.10-1
4.10.2 Impact Analysis 4.10-11
Summary Comparison of Impacts for EIR Scenarios. 4.10-13
4.11 Public Services
4.11.1 Setting 4.11-1
4.11.2 Impact Analysis 4.11-22
Summary Comparison of Impacts for EIR Scenarios 4.11-24
4.12 Transportation and Circulation
4.12.1 Setting 4.12-1
4.12.2 Impact Analysis 4.12-20
Summary Comparison of Impacts for EIR Scenarios. 4.12-21
4.13 Utilities and Service Systems
4.13.1 Setting 4.13-1
4.13.2 Impact Analysis 4.13-17
Summary Comparison of Impacts for EIR Scenarios. 4.13-19
4.14 Land Use and Planning
4.14.1 Setting 4.14-1
4.14.2 Impact Analysis 4.14-3
Summary Comparison of Impacts for EIR Scenarios. 4.14-4
4.15 Population and Housing
4.15.1 Setting 4.15-1
4.15.2 Impact Analysis 4.15-2
Summary Comparison of Impacts for EIR Scenarios. 4.15-4
5.0 Other CEQA-Required Discussions
5.1 Growth Inducing Impacts 5-1
5.2 Significant Irreversible Effects 5-3
6.0 Alternatives
6.1 No Project (No Further Development) 6-1
6.2 No Project (1989 Comprehensive Plan) 6-3
6.3 Restricted Growth 6-7
6.4 No Important Farmland Conversion 6-10
6.5 Upper North Avenue District Housing 6-13
6.6 Intensification/Reuse + Minor Map Clean-Up 6-17
6.7 All Expansion Areas 6-18
6.8 Environmentally Superior Alternative 6-21
7.0 References and Preparers.
7.1 References 7-1
7.2 Report Preparers 7-5
List of Figures
Figure 1-1 Environmental Review Process 1-7
Figure 2-1a Regional Location 2-2
Figure 2-1b Ventura Planning Area 2-3
Figure 2-2 Current Comprehensive Plan Land Use Map. 2-9
Figure 2-3 Scenario 1 - Intensification/Reuse Only 2-17
Figure 2-4 Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra 2-19
Figure 2-5 Scenario 3 - Intensification/Reuse + North Avenue + Olivas 2-21
Figure 2-6 Scenario 4 - Intensification/Reuse + North Avenue + Serra 2-23
Figure 2-7 Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga 2-25
Figure 2-8 Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia 2-27
Figure 2-9 Roadway Classification Plan 2-37
Figure 4.1-1 Scenic Corridors 4.1-5
Figure 4.1-2 Intensification/ Reuse Examples 4.1-13
Figure 4.1-3 Olivas Expansion Area 4.1-16
Figure 4.1-4 Serra and Poinsettia Expansion Areas 4.1-17
Figure 4.1-5 North Avenue and Western Cañada Larga Expansion Areas 4.1-18
Figure 4.2-1 Lands in Agriculture Use 4.2-3
Figure 4.2-2 Important Farmlands 4.2-5
Figure 4.2-3 Greenbelts, Land Conservation Act Contracts, SOAR Designated Lands, and Hillside Voter Participation Areas 4.2-9
Figure 4.3-1 Countywide Average CO Emissions 4.3-24
Figure 4.4-1 Habitat Types 4.4-3
Figure 4.4-2 Sensitive Elements Reported by the California Natural Diversity Database 4.4-7
Figure 4.4-3 Riparian Areas and Drainages 4.4-19
Figure 4.4-4 Sensitive Habitats 4.4-24
Figure 4.5-1 Historic Districts 4.5-3
Figure 4.5-2 Farmhouses in the North Avenue and Serra Expansion Areas 4.5-16
Figure 4.6-1 Major Fault Systems 4.6-3
Figure 4.6-2 Potential Landslide Areas 4.6-7
Figure 4.6-3 Hillside Management Program Area 4.6-9
Figure 4.6-4 Liquefaction Hazard Areas 4.6-11
Figure 4.6-5 Expansive Soil Areas 4.6-13
Figure 4.6-6 Tsunami Risk Areas 4.6-17
Figure 4.7-1 Major Rail and Truck Transportation Corridors 4.7-5
Figure 4.7-2 Areas within Brownfield Assessment Demonstration Pilot Project 4.7-7
Figure 4.8-1 Existing Major Drainages by Facility Size 4.8-3
Figure 4.8-2 Existing Major Drainages with Deficiencies 4.8-5
Figure 4.8-3 Relative Trunk Deficiencies by Neighborhood 4.8-7
Figure 4.8-4 FEMA Flood Zones 4.8-9
Figure 4.8-5 Dam Inundation Areas 4.8-11
Figure 4.9-1 Petroleum Resources 4.9-3
Figure 4.9-2 Aggregate Resources 4.9-4
Figure 4.10-1 Noise Compatibility Matrix 4.10-2
Figure 4.10-2 Noise Measurement Sites and Leq Values 4.10-5
Figure 4.10-3 Existing Noise Contours 4.10-15
Figure 4.10-4 Future Noise Contours 4.10-17
Figure 4.11-1 Police and Fire Stations 4.11-3
Figure 4.11-2 Wildfire Risk Areas 4.11-5
Figure 4.11-3 Public Schools and Libraries 4.11-9
Figure 4.11-4 Parks and Recreational Facilities 4.11-15
Figure 4.12-1 Intersection Location Map 4.12-3
Figure 4.12-2 Existing Intersection Capacity Utilization (ICU) 4.12-5
Figure 4.12-3 Existing Transit Routes 4.12-11
Figure 4.12-4 Existing System of Bikeways 4.12-13
Figure 4.12-5 Pedestrian System 4.12-17
Figure 4.12-6 2025 Intersection Capacity Utilization (ICU), Scenario 1 4.12-25
Figure 4.12-7 2025 Intersection Capacity Utilization (ICU), Scenario 2. 4.12-31
Figure 4.12-8 2025 Intersection Capacity Utilization (ICU), Scenario 3 4.12-41
Figure 4.12-9 2025 Intersection Capacity Utilization (ICU), Scenario 4 4.12-51
Figure 4.12-10 2025 Intersection Capacity Utilization (ICU), Scenario 5 4.12-65
Figure 4.12-11 2025 Intersection Capacity Utilization (ICU), Scenario 6. 4.12-77
Figure 4.13-1 Water Distribution Facilities 4.13-3
Figure 4.13-2 Sewage Collection Facilities 4.13-15
Figure 4.14-1 Coastal Zone Boundary 4.14-11
Figure 4.15-1 SCAG Population, Housing, and Employment Projections 4.15-6

List of Tables

Table S-1 Summary of Project Impacts and Mitigation Measures. S-8
Table 2-1 2005 General Plan Chapters 2-11
Table 2-2 2005 General Plan Land Use Designation Summary 2-12
Table 2-3 Population and Housing Projections 2-30
Table 2-4 Projected Job Growth by Sector, 2004-2025 2-30
Table 2-5 Projected Housing Growth Distribution 2-31
Table 2-6 Non-Residential Growth Distribution (square feet) 2-33
Table 2-7 Estimates of Expansion Area Residential and Non-Residential Development by Land Use Scenario 2-34
Table 2-8 Assumed Expansion Area Acres by Use. 2-35
Table 3-1 2000 and 2005 Population Estimates 3-3
Table 3-2 2000 and 2005 Housing Estimates 3-3
Table 4.2-1 Important Farmlands Designated for Non-Agricultural Use and Within Potential Expansion Areas 4.2-2
Table 4.2-2 Potential Conversion of Important Farmlands 4.2-12
Table 4.2-3 Acres Subject to SOAR, Greenbelt Agreements, and LCA Contracts 4.2-17
Table 4.3-1 Federal and State Ambient Air Quality Standards. 4.3-2
Table 4.3-2 Ambient Air Quality Data for the El Rio Monitoring Station 4.3-6
Table 4.3-3 Ambient Air Quality Data for the Emma Wood Monitoring Station 4.3-7
Table 4.3-4 Ambient Air Quality Data for the Ojai Monitoring Station 4.3-7
Table 4.3-5 Comparison of 2025 Population Projections 4.3-12
Table 4.3-6 Comparison of VMT and Emissions: Infill versus Greenfield Development 4.3-13
Table 4.3-7 Estimated Persons per Acre - 2004 and 2025 4.3-13
Table 4.3-8 2005 General Plan Consistency with VCAPCD Transportation Control Measures 4.3-14
Table 4.3-9 Project Size That Will Exceed VCAPCD Significance Thresholds for Ozone Precursors (ROC and NO_{x}) 4.3-17
Table 4.4-1 Sensitive Plant Species of the Ventura Planning Area. 4.4-8
Table 4.4-2 Sensitive Animals of the Ventura Planning Area 4.4-8
Table 4.6-1 Significant Faults and Estimated Maximum Credible Earthquake Size 4.6-5
Table 4.7-1 Potential Environmental Contaminants by Industry 4.7-9
Table 4.8-1 Existing Dams with Potential to Affect the Planning Area 4.8-13
Table 4.8-2 Pollutants of Concern 4.8-15
Table 4.10-1 Exterior Noise Levels 4.10-1
Table 4.10-2 Noise Survey Results 4.10-7
Table 4.10-3 Highway Traffic Noise Barrier Study Findings (dBA) 4.10-9
Table 4.10-4 Noise from Ventura Shooting Range 4.10-10
Table 4.10-5 Typical Noise Levels at Construction Sites. 4.10-23
Table 4.11-1 Police Officers to Population Ratios (2004) 4.11-8
Table 4.11-2 Crime Rates for Various Jurisdictions 4.11-11
Table 4.11-3 Current VUSD Elementary School Enrollment 4.11-12
Table 4.11-4 Current VUSD Middle School Enrollment 4.11-12
Table 4.11-5 Current VUSD High School Enrollment 4.11-13
Table 4.11-6 Public Library Statistics 4.11-14
Table 4.11-7 Park Standards per 1,000 Population 4.11-17
Table 4.11-8 City Park Facilities 4.11-18
Table 4.11-9 City-Owned Linear Parks 4.11-19
Table 4.11-10 Non-City Special Use Parks and Recreational Facilities 4.11-21
Table 4.11-11 Maximum Daily Capacity and Current Daily Throughput at Area Landfills 4.11-22
Table 4.11-12 Projected Increase in Demand for Firefighting Personnel and Facilities 4.11-27
Table 4.11-13 Projected Increase in Demand for Police Department Personnel 4.11-33
Table 4.11-14 Projected School Enrollment and Capacity 4.11-36
Table 4.11-15 Projected School Demand 4.11-37
Table 4.11-16 Projected Demand for Library Services 4.11-41
Table 4.11-17 Current and Projected Solid Waste Generation (tons per day) 4.11-43
Table 4.11-18 Current and Projected Parkland Demand 4.11-47
Table 4.12-1 Arterial Intersection Performance Criteria 4.12-2
Table 4.12-2 Existing ICU Summary 4.12-7
Table 4.12-3 Neighborhood Pedestrian System Concerns. 4.12-19
Table 4.12-4 Roadway Improvements - Scenario 1 4.12-24
Table 4.12-5 2025 ICU Summary - Scenario 1 4.12-27
Table 4.12-6 Roadway Improvements - Scenario 2 4.12-33
Table 4.12-7 2025 ICU Summary - Scenario 2 4.12-35
Table 4.12-8 Roadway Improvements - Scenario 3 4.12-40
Table 4.12-9 2025 ICU Summary - Scenario 3 4.12-43
Table 4.12-10 Roadway Improvements - Scenario 4 4.12-53
Table 4.12-11 2025 ICU Summary - Scenario 4 4.12-55
Table 4.12-12 Roadway Improvements - Scenario 5 4.12-67
Table 4.12-13 2025 ICU Summary - Scenario 5 4.12-69
Table 4.12-14 Roadway Improvements - Scenario 6 4.12-79
Table 4.12-15 2025 ICU Summary - Scenario 6 4.12-81
Table 4.13-1 Water Treatment Facilities 4.13-1
Table 4.13-2 Water Storage Facilities 4.13-2
Table 4.13-3 Distribution Mains 3.13-2
Table 4.13-4 Booster Pump Stations. 4.13-5
Table 4.13-5 Pressure Zones 4.13-6
Table 4.13-6 Water Wells 4.13-6
Table 4.13-7 Historic and Projected Water Source Supply Availability 4.13-7
Table 4.13-8 Historic and Projected Water Production 4.13-9
Table 4.13-9 Water Quality Testing, 2001 4.13-11
Table 4.13-10 Distribution System and Well Testing, 2001 4.13-12
Table 4.13-11 Wastewater Flows, 2001 4.13-13
Table 4.13-12 Wastewater Generation Factors 4.13-14
Table 4.13-13 Lift Station Capacities (City Facilities Only) 4.13-14
Table 4.13-14 Agriculture Water Credit 4.13-20
Table 4.13-15 Projected Water Demand, Intensification/ Reuse Only (Scenario 1) 4.13-21
Table 4.13-16 Projected Water Demand, Intensification/Reuse + North Avenue + Olivas + Serra (Scenario 2) 4.13-23
Table 4.13-17 Projected Water Demand, Intensification/Reuse + North Avenue + Olivas (Scenario 3) 4.13-25
Table 4.13-18 Projected Water Demand, Intensification/Reuse + North Avenue + Serra (Scenario 4) 4.13-27
Table 4.13-19 Projected Water Demand, Intensification/Reuse + North Avenue + Western Cañada Larga (Scenario 5) 4.13-29
Table 4.13-20 Projected Water Demand, Intensification/Reuse + North Avenue + Poinsettia (Scenario 6) 4.13-31
Table 4.13-21 Wastewater Generation, Intensification/Reuse Only (Scenario 1) 4.13-34
Table 4.13-22 Wastewater Generation, Intensification/Reuse + North Avenue + Olivas + Serra (Scenario 2) 4.13-36
Table 4.13-23 Wastewater Generation, Intensification/Reuse + North Avenue + Olivas (Scenario 3) 4.13-38
Table 4.13-24 Wastewater Generation, Intensification/Reuse + North Avenue + Serra (Scenario 4) 4.13-40
Table 4.13-25 Wastewater Generation, Intensification/Reuse + North Avenue + Western Cañada Larga (Scenario 5) 4.13-42
Table 4.13-26 Wastewater Generation, Intensification/Reuse + North Avenue + Poinsettia (Scenario 6) 4.13-44
Table 4.13-27 Projected Wastewater Flow Summary 4.13-45
Table 4.14-1 Regional Performance Indicators 4.14-24
Table 4.15-1 SCAG Population, Household, and Employment Forecasts for the Ventura Council of Governments (VCOG) Subregion 4.15-5
Table 4.15-2 Comparison of Population, Housing, and Employment Growth Projections 4.15-7
Table 4.15-3 Current and Projected Future Jobs/Housing Ratios. 4.15-10
Table 6-1 Comparison of Alternatives' 2025 Development Characteristics 6-2

Appendices

Appendix A: Notice of Preparation and Responses
Appendix B: 2005 General Plan Actions
Appendix C: Project Description Information
Appendix D: Cultural Resources List
Appendix E: Traffic Study
Appendix F: 2004 Biennial Water Supply Report
Appendix G: Responses to Comments on the Draft EIR
Appendix H: Mitigation Monitoring and Reporting Program

SUMMARY

This section summarizes the characteristics of the proposed 2005 General Plan, alternatives, environmental impacts associated with the General Plan, recommended mitigation measures, and the level of significance of impacts after mitigation.

PROJECT SYNOPSIS

Project Proponent

City of San Buenaventura
501 Poli Street
Ventura, California 93001

Project Description

Project Characteristics

The 2005 Ventura General Plan is an update to the 1989 Comprehensive Plan, which is the current general plan for the City. The 2005 General Plan is a policy document that sets over-arching goals for the future development of the City and specifies policies and actions to achieve these overall goals. The EIR analysis focuses on the possible physical effects of two primary components of the proposed General Plan: 1) physical development potential; and 2) the goals, policies, and actions. Because the goals, policies, and actions are specifically intended to mitigate the environmental effects associated with future growth in the City, they are discussed as part of an overall mitigation strategy, where applicable, for a given issue.

The City Council directed City and consultant staff to include analysis of six separate land use scenarios in the EIR. These scenarios range from an "intensification/reuse" only option in which only minimal changes to the City's sphere of influence (SOI) would occur to an option that includes three "expansion areas" that include a total of 1,423 acres currently in agricultural use for possible future development. The six land use scenarios, which are discussed in detail in Section 2.0, Project Description, are summarized below.

1. Intensification/Reuse Only Scenario - This scenario assumes that future development will be limited almost exclusively to areas within the current Sphere of Influence and that none of the possible expansion areas would be considered.
2. Intensification/Reuse + North Avenue + Olivas + Serra - This scenario assumes an emphasis on infill development at an intensity level similar to that of the Intensification/Reuse Only, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)
- Serra (438 acres)

3. Intensification/Reuse + North Avenue + Olivas Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)

4. Intensification/Reuse + North Avenue + Serra Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Serra (438 acres)

5. Intensification/Reuse + North Avenue + Western Cañada Larga Scenario This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Western Cañada Larga (110 acres)

6. Intensification/Reuse + North Avenue + Poinsettia Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Poinsettia (418 acres)

For the purpose of environmental analysis and forecasting future residential growth through 2025, two population growth scenarios were used. A 1.14% annual growth rate was used for the five scenarios that include expansion areas (Scenarios 2-6), while a lower growth rate of 0.88% annually was used for Scenario 1 (the Intensification/ Reuse Only scenario). The lower growth rate was used for Scenario 1 because it was assumed that limiting growth to the current SOI would result in a lower overall growth rate. The 1.14% growth rate represents the annual growth rate for the City from 1984-2004 (20-year rate), while the 0.88% growth rate represents the annual growth rate from 1994-2004 (10-year rate). Population and housing projections associated with each of these growth rates are summarized in the table on the following page.

Varying levels of non-residential (employment) growth were also assumed, with a lower rate corresponding to the lower population growth rate for Scenario 1 and a higher employment growth rate for Scenarios 2-6. For Scenario 1, it is anticipated that a total of just over 14,000 jobs would be added citywide through 2025. For Scenarios 2-6, overall citywide employment growth through 2025 is projected at just over 20,000 jobs. Projected growth in employment and non-residential building area is discussed in detail in Section 2.0.

Population and Housing Projections

	2004 Levels				
		2025 Estimates		Change from 2004-2025	
	$\mathbf{0 . 8 8 \%}$ Annual Growth	1.14\% Annual Growth	0.88\% Annual Growth	1.14\% Annual Growth	
Population	104,952	126,153	133,160	21,201	28,208
Housing Units $^{\mathrm{b}}$	40,880	49,138	51,867	8,258	10,987

${ }^{a}$ Source: California Department of Finance, City/County Population and Housing Estimates, 1/1/2004.
${ }^{b}$ Housing unit estimates assume that the current ratio of 2.57 persons per household remains constant through 2025. In reality, the number of persons per unit could go up or down, depending upon housing costs, the types of housing built in the City, population growth, and other factors.

Project Objectives

The proposed 2005 General Plan includes the following over-arching goals for the City of Ventura:

- Our Natural Community - Our goal is to be a model for other communities of environmental responsibility, living in balance with our natural setting of coastline, rivers, and hillside ecosystems.
- Our Prosperous Community - Our goal is to attract and retain enterprises that provide high-value, high wage jobs; to diversity the local economy; to increase the local tax base; and to anticipate our economic future in order to strengthen our economy and help fund vital public services.
- Our Well Planned and Designed Community - Our goal is to protect our hillsides, farmlands, and open spaces; enhance Ventura's historic and cultural resources; respect our diverse neighborhoods; reinvest in older areas of our community; and make great places by insisting on the highest standards of quality in architecture, landscaping and urban design.
- Our Accessible Community - Our goal is to provide residents with more transportation choices by strengthening and balancing bicycle, pedestrian and transit connections in the City and surrounding region.
- Our Sustainable Infrastructure - Our goal is to safeguard public health, well being and prosperity by providing and maintaining facilities that enable the community to live in balance with natural systems.
- Our Active Community - Our goal is to add to and enhance our parks and open spaces to provide enriching recreation options for the entire community.
- Our Healthy and Safe Community - Our goal is to build effective community partnerships that protect and improve the social well being and security of all our citizens.
- Our Educated Community - Our goal is to encourage academic excellence and life-long learning resources to promote a highly-educated citizenry.
- Our Creative Community - Our goal is to become a vibrant cultural center by weaving the arts and local heritage into everyday life.
- Our Involved Community - Our goal is to strive to work together as a community to achieve the Ventura Vision through civic engagement, partnerships, and volunteer service.

Required Approvals

The City of Ventura Planning Commission and City Council will need to take the following discretionary actions in conjunction with the proposed 2005 General Plan:

- Certification of the Final EIR on the 2005 General Plan
- Approval of the proposed 2005 General Plan
- Approval of the 2005 Local Coastal Program Amendment (LCPA), including the revised Land Use Plan (LUP) component of the Local Coastal Program

Any future adjustments to the SOI will require approval from the Ventura County LAFCO. Because a portion of the City of Ventura is within the Coastal Zone, the Comprehensive Plan Update also involves an update to the City's Local Coastal Program (LCP). The LCP update will require approval by the California Coastal Commission. The California Department of Conservation, Division of Mines and Geology, will review the plans and policies relating to seismic safety for compliance with state regulations.

ALTERNATIVES

In addition to the six land use scenarios for the 2005 General Plan, this EIR examines six alternatives, as described below.

- No Project (no further development) - This alternative assumes that no further development occurs in the City and environmental conditions do not change.
- No Project (1989 Comprehensive Plan) - This alternative assumes that growth continues under the 1989 Comprehensive Plan. Overall growth is assumed to be similar to that associated with General Plan Scenarios 2-6, but with areas in the hillsides above the City potentially developed rather than the expansion areas.
- Restricted Growth - This alternative assumes that population growth through 2025 would be limited to an annual average rate of 0.78%. This is consistent with the growth rate upon which the Ventura County AQMP and SCAG Regional Transportation Plan are based.
- No Important Farmland Conversion - This alternative assumes that no Prime, Statewide Importance, or Unique Farmland is converted. The average annual population growth rate for this alternative is assumed to be 0.88%.
- Upper North Avenue District Housing - This alternative is a derivative of General Plan Scenario 5. It assumes that a portion of the residential and nonresidential development assumed to occur in the North Avenue and Western Cañada Larga expansion areas would instead be built in the Upper North Avenue district.
- Intensification/Reuse + Minor Map Clean-Up - This alternative is a minor variation of General Plan Scenario 1 that changes the land use designation for a limited number of properties in Saticoy and West Ventura.
- All Expansion Areas - This alternative assumes that all five expansion areas are developed with a mix residential and non-residential uses. The average annual growth rate for this alternative is assumed to by 1.6%.

Although the No Project (no further development) alternative is not feasible (from either a legal or practical standpoint) and may not be desirable in many respects, it can be considered environmentally superior overall since it would avoid all impacts associated with future growth. However, it would not meet RHNA requirements or housing needs identified in the City's Housing Element. Among the remaining alternatives, either the Restricted Growth or No Important Farmland Conversion alternative would be environmentally superior, depending upon which issue(s) are deemed most important. The Restricted Growth alternative would incrementally reduce impacts in most issues areas due to the overall reduction in future development and would avoid the significant impact of the 2005 General Plan relating to exceedance of Ventura County AQMP and SCAG Regional Transportation Plan population forecasts. The No Important Farmland Conversion alternative would avoid the significant impact relating to conversion of agricultural lands to urban uses. A combination of the Restricted Growth alternative and the No Important Farmland Conversion alternative would achieve both a reduction of agricultural land impacts, as well as AQMP and SCAG consistency.

AREAS OF PUBLIC CONTROVERSY

The primary area of known public controversy with respect to the 2005 General Plan relates to which of the five expansion areas, if any, should be considered for future development. The inclusion of expansion areas was the source of substantial discussion among the public, the Comprehensive Plan Advisory Committee (CPAC), the Planning Commission, and the City Council during the development of the draft General Plan. Much of the controversy revolved around whether to consider future development of the Cañada Larga area near the north end of the Ventura River valley. Scenario 5 of this EIR considers the possible future development of an approximately 110-acre portion of the larger Cañada Larga area that was contemplated by the CPAC and Planning Commission. It should be noted that, with the exception of a portion of the Western Cañada Larga expansion area included in Scenario 5, future development of any of the potential expansion areas considered in this EIR could occur only following voter approval under the City's SOAR Ordinance.

INCORPORATION OF STUDIES, REPORTS AND OTHER DOCUMENTS

This EIR contains references to studies, reports and other documents that were used as a basis for, or a source of, information summarized in the body of the EIR. These documents are incorporated by reference in this EIR in accordance with Section 15150 of the CEQA Guidelines. Where a study, report or document is briefly cited or referred to for convenience in the body of this EIR, the reader may consult Section 7.0 of this document for the full citation.

SUMMARY OF IMPACTS AND MITIGATION MEASURES

Table S-1 lists the environmental impacts of the proposed project, proposed mitigation measures, and residual impacts. Impacts are categorized by classes. Each individual impact analysis subsection in Section 4.0, Environmental Impact Analysis, also includes a summary comparison of the impacts associated with each General Plan land use scenario.

Class I impacts are defined as significant, unavoidable adverse impacts, which require a statement of overriding considerations pursuant to Section 15093 of the CEQA Guidelines if the project is approved. Class II impacts are significant adverse impacts that can be feasibly mitigated to less than significant levels and which require findings to be made under Section 15091 of the CEQA Guidelines. Class III impacts are adverse, but less than adopted significance thresholds. Class IV effects are those where there is no impact or the effect would be beneficial.

As noted in Table S-1, most of the potential impacts associated with growth accommodated under the 2005 General Plan can be mitigated to a less than significant level through implementation of proposed policies and actions. However, certain significant impacts could occur under any of the EIR land use scenarios. The Class I and Class II impacts of the 2005 General Plan, along with the scenarios to which each impact applies, are listed below.

Class I, Unavoidably Significant, Impacts

- Aesthetics - change in overall community character and alteration of views from scenic corridors due to agricultural land conversion (all scenarios)
- Agricultural Land Conversion - potential conversion of Prime, Statewide Importance, and Unique farmlands (all scenarios) and potential conflicts with agricultural land use designations (Scenarios 2-6)
- AQMP Inconsistency - inconsistency with Ventura County AQMP due to possible exceedance of citywide growth projections upon which the 1994 AQMP is based (all scenarios)
- Solid Waste Disposal Facilities - generation of solid waste exceeding disposal facility capacity given that landfills serving the City are projected to close within or close to the timeframe of the General Plan (all scenarios)
- Transportation and Circulation - potential exceedance of proposed performance standard at the Johnson Drive/North Bank Drive intersections (Scenario 2 only)
- Coastal Act Inconsistency - potential inconsistency with Coastal Act policy to preserve Prime farmland within the Coastal Zone (Scenarios 2 and 3 only)
- Exceedance of SCAG Population Forecast - possible exceedance of the Southern California Association of Government's 2025 population growth projection for the City (all scenarios)

Class II, Significant but Mitigable, Impacts

- Traffic Noise - potentially significant increases in traffic noise along North Ventura Avenue (all scenarios) and Johnson Drive (Scenario 6 only); this impact can be mitigated through re-surfacing of streets using rubberized
asphalt or other sound-reducing paving material (which can reduce noise by 3-5 decibels)
- Storm Drain System - potential impacts due to system deficiencies in older parts of the City, including Ventura Avenue corridor and Downtown district (all scenarios); this impact can be mitigated through development of funding mechanisms to address system deficiencies
- Fire Protection Service - potentially significant impacts to fire protection service in the North Ventura Avenue area (Scenarios 2-6); this impact can be mitigated through development of a new fire station in the North Ventura Avenue area
- Police Protection Service - potentially significant impacts relating to the need for new facilities (all scenarios); this impact can be mitigated through expansion of facilities as necessary
- Traffic Performance Standards - potentially significant impacts to roadway intersections (Scenarios 1, 3, 4, 5, and 6); impacts can be mitigated through policies and actions directing implementation of feasible system improvements as needed
- Wastewater Treatment Capacity - potentially significant impact relating to the capacity of the Ojai Valley Sanitary District plant (Scenario 5 only); this impact can be mitigated through restrictions on development in the North Ventura Avenue area until planned plant capacity expansions are completed

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation

AESTHETICS and COMMUNITY DESIGN

Impact AES-1 All six General Plan land use scenarios emphasize intensification and reuse of already urbanized lands and would therefore create a more densely settled, urban environment in some areas of the City. The reuse of urbanized areas in lieu of further growth at the City's periphery would be expected to generally enhance the visual character of the community and minimize impacts to existing natural and agricultural areas and is generally considered a beneficial effect. Nevertheless, all of the scenarios would change the visual character of the community and would accommodate the conversion of some agricultural lands in the Planning Area to urban uses. This change in visual character is considered Class I, unavoidably significant, under any of the six scenarios.
Impact AES-2 Development that would be accommodated under any of the 2005 General Plan land use scenarios would potentially alter and/or block views from various public view corridors. The magnitude of impact would vary among the scenarios and the 2005 General Plan includes several policies and actions to preserve public views. Nevertheless, the impact of all six scenarios is considered Class I, unavoidably significant.
Impact AES-3 Development accommodated under any of the 2005 General Plan land use scenarios would introduce new sources of light and glare. Light and glare conditions are not expected to change dramatically throughout most of the Planning Area because of the focus on intensification and reuse of already developed lands. Therefore, impacts would be Class III, less than significant, for any of the six scenarios.

Changing the fundamental character of the areas to be converted from agricultural and open space uses to urban use cannot be avoided if these areas are to be developed. Each of the proposed growth scenarios focuses development on intensification of the existing urban areas and encourages infill over city expansion. In addition, Actions 1.22 and 1.23 require the preservation of mature trees and agricultural windrows.

Policies included in the proposed 2005 General Plan, as described above, would reduce impacts on view corridors associated with intensification and reuse to a less than significant level. Other than the actions listed above and General Plan Action 1.23, which would preserve windrows on agricultural lands, additional mitigation is not available for the change in views from scenic corridors related to the conversion of agricultural lands.

None required.	Less than significant for all scenarios.

Unavoidably significant for all scenarios.
and agricultural windrows.

Unavoidably significant for all scenarios.

AGRICULTURAL RESOURCES

Impact AG-1 Any of the six scenarios for the 2005 General Plan would accommodate the development that would involve the conversion of Statedesignated Prime, Statewide Importance, and Unique farmland. The overall acreage of agricultural land that could be converted would range from

Implementation of proposed General Plan policies and actions would minimize the premature conversion of agricultural land under any of the land use scenarios. However, outside of re-designating important farmlands for continued agricultural use, additional mitigation is not available.

Unavoidably significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
about 674 acres under Scenario 1 to about 2,075 acres under Scenario 2. Conversion of farmland would represent a Class I, unavoidably significant, impact for any of the six scenarios.		
Impact AG-2 Five of the six land use scenarios under consideration for the 2005 General Plan would accommodate the future conversion of agricultural land that is designated for agricultural use, subject to the City SOAR Ordinance, within the VenturaOxnard Greenbelt, and/or under LCA contract. This is considered a Class I, unavoidably significant, impact of Scenarios 2 through 6. The impact for Scenario 1 (Intensification/Reuse Only) is considered Class III, less than significant.	Proposed General Plan policies and actions would reduce potential conflicts with policies relating to the preservation of agricultural land to the degree feasible. Additional mitigation outside of avoiding conversion of lands designated for agricultural use is not available.	Less than significant for Scenario 1. Unavoidably significant for Scenarios 2-6.
Impact AG-3 Development that could be accommodated under any of the 2005 General Plan land use scenarios could generally reduce agricultural compatibility conflicts in some locations. Though certain areas of agricultural/urban conflict would remain within the Planning Area, any of the six scenarios would generally reduce the potential for such conflicts. With the policies and actions recommended in the 2005 General Plan, effects under any of the six scenarios would be Class IV, beneficial.	Implementation of proposed General Plan policies and actions would generally reduce the potential for agricultural/urban compatibility conflicts. In particular, Action 3.21 would minimize effects to farming operations and adjacent urban uses by requiring that non-farm operations provide buffers between urban and agricultural uses. Mitigation beyond the General Plan policies and actions is not required.	Beneficial for all scenarios.

AIR QUALITY

Impact AQ-1 Anticipated growth under any of the six land use scenarios exceeds Ventura County Air Quality Management Plan population forecasts. This is largely because AQMP forecasts are outdated and the 2005 General Plan is not expected to hinder attainment of state or federal air quality standards. Nevertheless, the exceedance of population projections used for regional air quality planning represents a potential inconsistency with the AQMP. This is considered a Class I, unavoidably significant, impact of any of the six scenarios.
Impact AQ-2 Individual projects accommodated under the proposed 2005 General Plan would generate air pollutant emissions. The significance of air quality impacts associated with individual projects would depend upon

| The 2005 General Plan includes various | Unavoidably significant |
| :--- | :--- | policies and actions that encourage mixed use and infill development. Implementation of these policies/actions would reduce air pollutant emissions to the maximum degree feasible given the amount of growth anticipated under the 2005 General Plan. However, outside of restricting population growth to be within SCAG and VCAPCD forecasts, the potential inconsistency with the AQMP cannot be avoided.

None required. The following actions are recommended for inclusion in the 2005 General Plan.

AQ-2 Additional Air Quality Actions. The following actions should be added to the 2005

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
the characteristics of the projects and the availability of feasible mitigation measures. However, implementation of existing programs, in combination with proposed 2005 General Plan policies and actions, would reduce impacts associated with individual development projects to a Class III, less than significant, level for all six scenarios.	General Plan to address air quality impacts of future development on a case-by-case basis: - Require air quality analysis of individual development projects in accordance with the most current version of the Ventura County Air Pollution Control District Air Quality Assessment Guidelines and, when significant impacts are identified, require implementation of air pollutant mitigation measures determined to be feasible at the time of project approval. - In accordance with Ordinance 93-37, continue to require payment of fees to fund regional transportation demand management (TDM) programs for all projects generating emissions in excess of Ventura County APCD thresholds. The following action should be added if a land use scenario that includes expansion areas is adopted: - Require the development of specific plans for expansion areas for which overall air pollutant emissions shall be estimated to establish a TDM fund as required under Ordinance 93-37. Require individual developers within expansion areas to contribute pro rata fees to the TDM fund.	
Impact AQ-3 Construction of individual projects accommodated under the 2005 General Plan would result in temporary emissions of air pollutant emissions. The Ventura County APCD has not adopted significance thresholds for construction impacts because of their temporary nature; therefore, impacts would be Class III, less than significant, for all six scenarios. Nevertheless, implementation of standard emission and dust control techniques will be required on all future development regardless of the land use scenario selected.	None required, but the following is recommended to reduce construction-related emissions to the maximum degree feasible. AQ-3 Construction Mitigation. The following action should be added to the 2005 General Plan to address air quality impacts of future construction projects on a case-by-case basis: - Require individual construction contractors to implement the construction mitigation measures included in the most recent version of the Ventura County APCD's Ventura County Air Quality Assessment Guidelines.	Less than significant for all scenarios.
Impact AQ-4 Increased traffic congestion associated with projected growth under any of the General Plan land use scenarios would potentially increase carbon monoxide (CO) concentrations at congested intersections. However, because of the low ambient CO concentrations and anticipated reduction in emissions associated with less polluting vehicles, exceedance of state and federal CO	None required.	Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
standards is not expected. Impacts relating to CO "hot spots" are therefore considered Class III, less than significant, for all six scenarios.		

BIOLOGICAL RESOURCES

Impact BIO-1 All of the 2005 General Plan land use scenarios generally avoid direct impacts to riparian, wetland, and open water habitats. However, in certain areas, development could adversely affect the quality of riparian and wetland habitat. Implementation of proposed General Plan policies and actions, including Action 1.8 (which provides buffers from rivers, creeks, and barrancas), would reduce potential impacts to a Class III, less than significant, level for any of the six land use scenarios.
Impact BIO-2 All of the General Plan land use scenarios would largely avoid impacts to sensitive habitats and mature native trees by emphasizing intensification/reuse of urbanized areas. Implementation of General Plan policies and actions that aim to protect sensitive habitats and mature trees would reduce potential impacts to a Class III, less than significant, level for all six scenarios.
Impact BIO-3 All of the General Plan land use scenarios would largely avoid impacts to special-status plant and animal species by emphasizing intensification/reuse of already urbanized areas rather than developing greenfields at the City's periphery. Potential impacts could occur in certain locations, but would be addressed through implementation of proposed General Plan policies and actions. Impacts are considered Class III, less than significant, for all six scenarios.
Impact BIO-4 All of the General Plan land use scenarios would largely avoid impacts to wildlife movement corridors by emphasizing intensification/reuse of existing urbanized areas.
Implementation of General Plan Actions $1.8,1.9$, and 1.10 would maintain ecological connectivity corridors through urban spaces and potentially enhance connectivity in some locations. Therefore, impacts to wildlife movement are considered Class III, less than

Implementation of General Plan Actions 1.8 Less than significant for and 1.9 would reduce potential impacts to wetland and riparian habitats to a less than significant level. No additional mitigation measures are required.

Compliance with proposed General Plan actions would reduce potential impacts to sensitive habitats to a less than significant level. No additional mitigation measures are required.
all scenarios.

Implementation of General Plan Action 1.19 would require protect state and federally listed species and buffer such species from urban uses. Actions 1.22, 1.23, and 1.24 would preserve existing mature trees, including windrows. Additional mitigation is not needed.

Compliance with proposed General Plan policies and actions would reduce potential impacts to wildlife corridors to a less than significant level. No additional mitigation measures are required.

Less than significant for all scenarios.

Compliance with proposed General Plan policies and actions would reduce potential impacts to wildlife corridors to a less than significant level. No additional mitigation measures are required.	Less than significant for all scenarios.

Compliance with proposed General Plan policies and actions would reduce potential impacts to wildlife corridors to a less than significant level. No additional mitigation measures are required.	Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
significant, for all six scenarios.		

CULTURAL and HISTORIC RESOURCES

Impact CR-1 Growth accommodated under any of the six scenarios could adversely affect previously identified and unidentified pre-historic archaeological resources. However, implementation of policies and actions included in the 2005 General Plan would reduce impacts to a Class III, less than significant, level for any of six land use scenarios.
Impact CR-2 Several of the growth districts and corridors include identified historic resources, as does the Western Cañada Larga expansion area. The other expansion areas also include structures that meet the minimum age criterion for eligibility for the National and California Registers of Historic Places. However, implementation of proposed 2005 General Plan policies and action, in combination with existing regulatory requirements, would reduce impacts to a Class II, less than significant, level for Scenarios 1-6.

Implementation of Policy 9D and Actions 9.14 Less than significant for and 9.15 would reduce potential archaeological resource impacts to a less than significant level for all six land use scenarios. Mitigation is not required.

Implementation of the City of Ventura Historic Preservation Regulations and HD Overlay Zone regulations would reduce impacts to historical resources within designated Historic Districts under Scenarios 1-6. These existing requirements, in combination with the policies included in the 2005 General Plan, would reduce historic resource impacts to a less than significant level. Mitigation is not required.
all scenarios.

Less than significant for all scenarios.

GEOLOGIC HAZARDS

Impact GEO-1 Future seismic events could produce groundshaking throughout the Planning Area as well as surface rupture in some areas where future development could be accommodated. Groundshaking and surface rupture could damage structures and/or create adverse safety effects. However, compliance with City policies, in combination with the requirements of the CBC and the Alquist-Priolo legislation, would reduce the risk associated with groundshaking and surface rupture to a Class III, less than significant, level for six scenarios. Impact GEO-2 The Planning Area contains several steep slopes that present a potential slope stability hazards. However, none of the General Plan land use scenarios encourage substantial new development in areas of high landslide risk. In addition, General Plan actions require geotechnical analysis and case-by-case mitigation for any development in an area with a high potential for landslides. Therefore, impacts due to landslide risk are

Compliance with the California Building Code and General Plan Action 7.7 would reduce impacts to a less than significant level. No mitigation measures are required.

Compliance with applicable General Plan policies/actions and the City Hillside Management Program would reduce potential impacts from development in hillside areas to a less than significant level. No mitigation would be required.

Less than significant for all scenarios.

Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
considered Class III, less than significant, for all scenarios.		
Impact GEO-3 Future seismic events could result in liquefaction of soils in portions of the Planning Area. Development in certain areas within the City could be subject to liquefaction hazards under any of the 2005 General Plan land use scenarios. However, compliance with City General Plan policies would reduce potential impacts to Class III, less than significant, for all six scenarios.	Compliance with the California Building Code and implementation of General Plan Action 7.7 would reduce impacts due to liquefaction risk to a less than significant level. Additional mitigation is not required.	Less than significant for all scenarios.
Impact GEO-4 Expansive soil or other soil conditions leading to subsidence could result in foundation and building distress problems and cracking of concrete slabs. Areas that could accommodate development could be subject to subsidence hazards under any of the six land use scenarios. However, compliance with 2005 General Plan policies would reduce potential impacts to Class III, less than significant, for all six scenarios.	Compliance with the California Building Code and implementation of General Plan Action 7.7 would reduce impacts due to expansive soils to a less than significant level. Additional mitigation is not required.	Less than significant for all scenarios.
Impact GEO-5 Development along the coast and near rivers may be susceptible to inundation from tsunamis. However, provided that the City continues its participation in the Seismic Sea Wave Warning System and the SEMS Multihazard Functional Response Plan, impacts would be Class III, less than significant, for all six scenarios.	Continuing participation in the Seismic Sea Wave Warning System and maintenance of the SEMS Multihazard Functional Response Plan would reduce impacts related to tsunami risk to less than significant. No additional mitigation would be required.	Less than significant for all scenarios.

HAZARDS and HAZARDOUS MATERIALS

Impact HAZ-1 Some industrial and agricultural operations within the Planning Area use hazardous materials to which current and future residents could be exposed. Potential development near hazardous material users could expose individuals to health risks due to soil/groundwater contamination or emission of hazardous materials into the air. However, compliance with proposed General Plan policies and actions, in combination with existing regulations, would reduce potential impacts associated with hazardous material use to a Class III, less than significant, level for any of the six land use scenarios.
Impact HAZ-2 The transportation of hazardous materials could potentially

Compliance with federal, state, and local regulations, in combination with the proposed 2005 General Plan policies and actions, would reduce impacts to a less than significant level. No mitigation is required.

Less than significant for
all scenarios.

Compliance with existing hazardous materials transportation regulations as well as

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
create a public safety hazard for new development that could be accommodated along major transportation corridors under the General Plan Update. Provided that the City continues its participation in the SEMS Multihazard Functional Response Plan, impacts would be Class III, less than significant for any of the six land use scenarios.	continuing participation and maintenance of the SEMS Multihazard Functional Response Plan would reduce impacts related to hazardous material upset risk to a less than significant level. No mitigation would be required.	
Impact HAZ-3 Future development on brownfields and other sites with potential soil or groundwater contamination could create a public safety hazard. However, compliance with City policies requiring soil and groundwater assessments on these sites would reduce impacts to Class III, less than significant, for any of the six land use scenarios.	Compliance with General Plan Action 7.27 would reduce impacts to a less than significant level. No mitigation measures are required.	Less than significant for all scenarios.

HYDROLOGY AND WATER QUALITY

Impact HWQ-1 Most of the areas within the Planning Area that could accommodate new development are outside the 100-year flood zone. Limited portions of the Planning Area that could accommodate new development under any of the six land use scenarios are within the 100-year flood zones. However, compliance with the City Flood Plain Ordinance and proposed General Plan actions would reduce impacts to a Class III, less than significant, level for any of the six land use scenarios.
Impact HWQ-2 Development accommodated through the year 2025 under any of the land use scenarios under consideration for the 2005 General Plan would increase the amount of impervious surfaces within the Planning Area, potentially increasing surface runoff in areas where existing storm drain systems are deficient. This is considered a Class II, significant but mitigable, impact for all scenarios.

As noted above, proposed 2005 General Plan actions require continued compliance with the City's Flood Plain Ordinance and other applicable requirements. Additional mitigation is not needed.

Less than significant for all scenarios.

HWQ-2 Additional Drainage Actions. The following actions shall be added to the 2005 General Plan to address existing storm drain system deficiencies:

- Develop a financing program for the replacement of failing corrugated metal storm drain pipes in the City.
- Adopt assessment districts or other financing mechanisms to address storm drain system deficiencies in areas where new development is anticipated and deficiencies exist (e.g., Downtown district, Ventura Avenue corridor, and Harbor district).

The following actions are recommended to minimize the impact of future development on the local storm drain system and implement

Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
	City goals regarding sustainable infrastructure:	

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	\quad Mitigation Measures	Significance After Mitigation

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
Plan actions require acoustical analysis for any development in an area with a built within the 60 dBA CNEL contour. Therefore, impacts due to railroad noise are considered Class III, less than significant for all six scenarios.		
Impact N-5 Operation of recreational uses, including the Ventura County Fairgrounds, Ventura Shooting Range, and the Ventura Raceway could continue to create noise disturbance for existing and planned noise-sensitive uses. City policies pursue termination, relocation, or restriction of these noise- generating activities. Impacts due to recreational uses are considered Class	Impacts are not significant for any scenario. Therefore, mitigation is not required. Implementation of proposed General Plan policies may eliminate and/or reduce noise associated with activities at the Ventura Fairgrounds.	Less than significant for all scenarios.

PUBLIC SERVICES

Impact PS-1 Development under any of the 2005 General Plan land use scenarios would increase the City's population and density of development, and introduce new development into high fire hazard areas. This would increase demand for fire protection services and potentially create the need for new fire protection facilities. With proposed General Plan policies, impacts for Scenario 1 are Class III, less than significant. Impacts for Scenarios 2-6 are considered Class II, significant but mitigable.	PS-1(a) North Avenue and Western Cañada Larga Expansion Areas. The following action shall be added to the 2005 General Plan if any land use scenario that includes possible future development of the North Avenue expansion area or the Western Cañada Larga expansion area is adopted: - Add a fire station in the North Avenue area as determined necessary by the Ventura Fire Department. Consider an assessment district for the North Avenue area to fund a new station. PS-1(b) Poinsettia Expansion Area. The following action shall be added to the 2005 General Plan if any land use scenario that includes possible future development of the Poinsettia expansion area is adopted: - Include a fire station site in any future specific plan for the Poinsettia expansion area if determined necessary by the Ventura Fire Department.	Less than significant for all scenarios.
Impact PS-2 Possible future development under Scenarios 1-6 would increase the City's population and density of development, thereby resulting in the need to construct new facilities in order to provide effective police protection service. Impacts would be Class II, significant but mitigable, for any of the six land use scenarios.	PS-2 Police Protection Service. The following actions shall be added to the 2005 General Plan: - Establish a new Downtown storefront to meet the needs of the growing Downtown population - Expand the Police Department headquarters as necessary to accommodate staff growth.	Less than significant for all scenarios.
Impact PS-3 Projected enrollment growth under the 2005 General Plan would exceed the capacity of existing	None required, but the following are recommended:	Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
schools within the Ventura Unified School District, thereby creating the need to construct additional facilities. However, payment of State-mandated school impact fees is presumed to provide funding for needed new school facilities. Therefore, although available land for new schools may be limited (particularly for Scenarios 1 and 5), impacts to schools would be reduced to a Class III, less than significant, level for any of the six land use scenarios.	PS-3(a) School Coordination. The following action should be added to the 2005 General Plan: - Work with the Ventura Unified School District to ensure that school facilities can be provided to serve new development. PS-3(b) Expansion Area Schools. The following action should be added to the 2005 General Plan if any land use scenario that includes an expansion area is adopted: - Require expansion area specific plans to be prepared in coordination with the Ventura Unified School District and set aside land needed for new school facilities.	
Impact PS-4 Ventura libraries are currently undersized to serve the City's existing population and, given the projected population growth rates for Scenarios 1-6, the existing library services would be inadequate to serve the future service area population. Although new facilities would be needed to meet projected demand under Scenarios 1-6, facilities could be constructed without causing significant environmental impacts. This is considered to be a Class III, less than significant, impact for all six scenarios.	Mitigation is not needed, though increased funding of libraries would be needed if new facilities are to be developed.	Less than significant for all scenarios.
Impact PS-5 Existing landfills have adequate capacity to accommodate projected citywide increases in solid waste generation for the next 15-17 years. However, regional waste generation increases could exceed the daily capacity of area landfills. In addition, area landfills are projected to close in the 2022-2027 period; therefore, expanded or new facilities will be needed to accommodate solid waste generated in the City through 2025. Although the identification of new facilities is physically feasible, the City cannot ensure that new facilities are sited. Impacts are therefore considered Class I, unavoidably significant, for all six land use scenarios.	PS-5 Solid Waste Disposal Facilities. The following actions shall be added to the 2005 General Plan: - Coordinate with the Ventura Regional Sanitation District and the County to expand the capacity of existing landfills, site new landfills, or develop alternative means of disposing of solid waste that will provide sufficient capacity for waste generated in the City. - Develop incentives for new residences and businesses to incorporate recycling and waste diversion practices using guidelines provided by the Environmental Services Office.	Unavoidably significant for all scenarios. Development of new or expanded solid waste disposal facilities could have significant secondary effects.
Impact PS-6 Population growth accommodated under any of the 2005 General Plan land use scenarios would increase demand for recreational facilities and programs. With continued	Continued payment of required park fees and dedication of land for parks on a case-bycase basis would reduce impacts to a less than significant level. Mitigation is not required for any of the six scenarios.	Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
payment of Quimby fees and parkland dedication in conjunction with new development, impacts could be reduced to a Class III, less than significant, level for all six scenarios. It should be noted,		
however, that Scenario 1 does not		
include land that could accommodate		
new citywide park facilities, while the		
expansion areas included in Scenario 5		
do not include sufficient land to provide		
park acreage meeting the demands of		
projected expansion area population		
growth.		

TRANSPORTATION and CIRCULATION

Impact TC-1 Growth accommodated under any of the General Plan land use scenarios could result in deficiencies to the local circulation system based on recommended level of service standards. The number of locations that could have deficiencies based on the projected growth scenarios ranges from one (for Scenario 1) to four (for Scenarios 2 and 4). Feasible improvements are available to address all projected deficiencies for Scenarios 1, 3, 4, 5, and 6; therefore, impacts associated with those scenarios are considered Class II, significant but mitigable. For Scenario 2, implementation of feasible improvements would not achieve performance standards at the Johnson Drive/North Bank Drive intersection. The impact at that location is considered Class I, unavoidably significant, for Scenario 2.

To ensure that impacts are addressed and that the improvements identified in this EIR (or other feasible improvements that achieve the same objectives) are identified, the following measure is required:

TC-1 Additional Circulation Actions. The following actions shall be added to the 2005 General Plan to ensure that traffic impacts of future developments are addressed and mitigated:

- Require project proponents to analyze traffic impacts and implement mitigation as appropriate prior to development. Depending upon the nature of the impacts and improvements needed, mitigation may either consist of implementing needed physical improvements, contributing "fair share" fee toward implementation of needed improvements, or some combination thereof.
- Update the traffic mitigation fee program to fund necessary citywide circulation and mobility system improvements needed in conjunction with new development.
None required.

Less than significant for Scenarios 1, 3, 4, 5 , and 6. Unavoidably significant at Johnson Drive/North Bank Drive intersection for Scenario 2.

Beneficial for all scenarios. the 2005 General Plan land use scenarios would be expected to generally enhance the use of alternative transportation modes, including transit, bicycling, and walking. Impacts relating to alternative transportation are considered Class IV, beneficial, under any scenario.
Impact TC-3 None of the 2005 General Plan land use scenarios would accommodate design features that would create traffic hazards. The

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
placement of new residential development along highly traveled thoroughfares may incrementally increase hazards for pedestrians; however, implementation of proposed policies relating to traffic calming and improving walkability would reduce such impacts to a Clas III, less than significant, level for any of the General		
Plan land use scenarios.		
Impact TC-4 None of the 2005 General Plan land use scenarios would affect air traffic patterns. Impacts relating to air traffic are considered Class III, less than significant, under any scenario.		

UTILITIES and SERVICE SYSTEMS

Impact U-1 Development accommodated under any of the 2005 General Plan land use scenarios would increase water demand, with net increases in demand ranging from about 2,700 acre-feet per year (AFY) to 5,900 AFY. The total estimated water available from Lake Casitas, the Ventura River diversion, and groundwater basins of approximately 28,300 acre-feet per year is sufficient to meet these projected demand increases. Therefore, water supply impacts are considered Class III, less than significant, for all six scenarios .

Impact U-2 New development under any of the 2005 General Plan land use scenarios would increase wastewater generation. Projected future wastewater flows to the City's wastewater treatment plant are projected to remain within the current capacity for all six scenarios. Projected flows to the Ojai Valley Sanitary District plant would be within the capacity of the plant for all scenarios except Scenario 5 (Intensification/Reuse + North Avenue + Western Cañada Larga). Therefore, the impacts of Scenarios 1-4 and 6 are considered Class III, less than significant, while the impact of Scenario 5 is considered Class II, significant but mitigable.

The 2005 General Plan includes various policies and actions aimed at reducing water consumption. No mitigation is required, but the following action will be added to ensure that future .

U-1 Water System Analysis. The following action shall be added to the 2005 General Plan:

- Require project proponents to conduct evaluations of the existing water distribution system, pump station, and storage requirements for the proposed development in order to determine if there are any system deficiencies or needed improvements for the proposed development.
In addition to 2005 General Plan policies and actions, the following measure is recommended for all six scenarios.

U-2(a) Sewer System Analyses. The following action should be added to the 2005 General Plan:

- Require project proponents to conduct sewer collection system analysis to determine if downstream facilities are adequate to handle the proposed development.

The following measure is required for Scenario 5.

U-2(b) Ojai Valley Sanitary District Capacity. The following action shall be added to the 2005 General Plan if Scenario 5 or any other scenario that includes both the

Less than significant for all scenarios.

Less than significant for all scenarios.

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation

Table S-1
Summary of Environmental Impacts and Mitigation Measures

Impact	Mitigation Measures	Significance After Mitigation
found to be consistent with the Southern California Association of Governments' Regional Transportation Plan (RTP). Impacts would be Class III, less than significant, for any of the six land use scenarios.	General Plan policies and actions, Scenarios 1-6 could all be found to be consistent with the SCAG 2004 RTP. No mitigation is required.	all scenarios.
Impact LU-5 Scenarios 1-6 could all be found to be consistent with the Southern California Association of Governments' Growth Visioning Report. Impacts would be Class III, less than significant, for any of the six 2005 General Plan land use scenarios.	With implementation of the 2005 General Plan policies and actions, Scenarios 1-6 could be found to be consistent with SCAG's Visioning Report. No mitigation is required.	Less than significant for all scenarios.

POPULATION and HOUSING

Impact PH-1 Scenarios 1-6 would not result in the displacement of substantial numbers of people or housing. Any displacement would be more than offset by new housing that would be accommodated under the 2005 General Plan. Impacts would be Class III, less than significant, for any of the General Plan land use scenarios.
Impact PH-2 Proposed General Plan policies implement most SCAG policies relating to growth. However, growth accommodated under Scenarios 1-6 exceeds SCAG's Regional Comprehensive Plan and Guide and Ventura County AQMP population forecasts. This is largely because regional growth forecasts have not been updated to reflect current conditions in the City. Nevertheless, exceedance of regional forecasts is considered a Class I, unavoidably significant, impact of any of the six scenarios.
Impact PH-3 The 2005 General Plan could be found to be consistent with the Southern California Association of Governments Growth Visioning Report. Impacts would be Class III, less than significant, for any of the six land use scenarios.
Impact PH-4 Any of the 2005 General Plan land use scenarios would provide for a balance of jobs and housing through 2025. Impacts relating to jobs/housing balances would be Class III, less than significant, for any of the six land use scenarios.

None required.	Less than significant for all scenarios.
The 2005 General Plan includes various policies that encourage mixed use and infill development and would be expected to reduce vehicle miles traveled (VMT) and associated air pollutant emissions as compared to continued low density development at the City's periphery. Additional mitigation beyond restricting growth to SCAG forecasts is not available.	Unavoidably significant for all scenarios.
None required.	Less than significant for
all scenarios.	
None required.	

1.0 INTRODUCTION

This document is a Final Environmental Impact Report (EIR) that evaluates the environmental impacts that could occur as a result of the growth and development envisioned in the City of San Buenaventura (Ventura) 2005 General Plan. The EIR has been prepared in accordance with the requirements of the California Environmental Quality Act (CEQA).

The 2005 General Plan is an update to the 1989 Comprehensive Plan, ${ }^{1}$ which is the current general plan for the City. The EIR analysis focuses on the possible physical effects of two primary components of the proposed General Plan: 1) physical development potential; and 2) the goals/policies and subsequent action items/ implementation measures.

This section: (1) provides an overview of the background behind the 2005 General Plan; (2) describes lead, responsible, and trustee agencies for the EIR; (3) describes the purpose of and legal authority of the document; (4) summarizes the scope and content of the EIR; and (5) provides a synopsis of the environmental review process required under CEQA.

The contents of other EIR sections are as follows:

- Section 2.0, Project Description, provides a detailed discussion of the proposed Plan.
- Section 3.0, Environmental Setting, describes the general environmental setting for the City.
- Section 4.0, Environmental Impact Analysis, describes the environmental effects associated with each of six development scenarios.
- Section 5.0, Other CEQA Requirements, discusses issues such as growth inducement and significant irreversible environmental effects.
- Section 6.0, Alternatives, discusses alternatives to the proposed Plan, including the CEQA-required "no project" alternative.
- Section 7.0, References and Preparers, lists informational sources for the EIR and persons involved in the preparation of the document.

1.1 GENERAL PLAN OVERVIEW AND BACKGROUND

The City of Ventura is in the process of updating all of the General Plan elements other than the Housing Element, an update of which was approved by the City Council in 2004. The 2005 General Plan will guide future development within the existing City limits as well as in areas being considered for possible future annexation and those areas potentially affected by City land use decisions. The study area evaluated in this EIR consists of this entire "planning area."

State law (Government Code Section 65300) requires that each city and county adopt a comprehensive general plan. The proposed project fulfills this requirement by updating the City's existing Comprehensive (General) Plan, which was last updated in 1989. The General

[^0]Plan defines the framework by which the City's physical and economic resources are to be managed and used in the future. The 2005 General Plan's planning horizon is 2025.

The 2005 General Plan embodies more than six years of intensive communitywide effort to chart a clear course for the future of Ventura. Based on that extensive public participation, the primary focus of the plan is the intensification and reuse of vacant or underutilized parcels in the established urban area of Ventura to provide housing and businesses that complement the needs of the community in attractive buildings and settings that enhance the unique character and identity of the City. This emphasis means that hillside open space will remain undeveloped and agriculturally-designated lands within the Planning Area will not be considered for urban development (which would require voter approval) unless and until they are needed to achieve community planning goals that cannot be met within the existing City limits.
The 2005 General Plan is the second in a series of three connected documents that will guide future conservation and change in the city. The Ventura Vision, published in 2000, set the stage for the policies and actions in the General Plan by establishing citizen desires for environmental preservation and resource protection, community character and design, infrastructure and services, and cultural, recreational, and educational programs. The final piece of the trilogy will be a formbased Development Code. This new approach to zoning prioritizes the appearance of development, while still ensuring that neighboring land uses are compatible and appropriate. The General Plan anticipates that the Code will focus on the districts, corridors, and neighborhood centers where future change will be concentrated.

Following publication of the Ventura Vision, the City Council established a 19-member Comprehensive Plan Advisory Committee (CPAC) to help translate the Vision concepts into issues and priorities to be addressed in the General Plan. The CPAC included people representing neighborhoods, agricultural interests, seniors, and schools, as well as one member from the Planning Commission and one from the City Council. The committee met more than 30 times over almost three years to formulate an issues summary and recommended future land use scenarios, which are presented in the September 2003 CPAC Issues \& Alternatives Report.

During the course of the CPAC process, the City published the August 2002 Comprehensive Plan Update Background Report, which provides a detailed account and analysis of the range of existing conditions, opportunities, and constraints that affect planning and land use in Ventura. CPAC took this information into account in refining its recommendations to the Planning Commission and City Council. After several months of review of the CPAC recommendations, the City Planning Commission in December 2003 made some modifications to the CPAC recommended land use scenario.

The City Council met 11 times from February through August 2004 to review the CPAC and Planning Commission recommendations, consider relevant data, and formulate broad goals, policies, and a diagram to guide growth and change in the City until 2025. In July 2004, the City Council selected a general plan diagram for consideration in the Draft EIR, including five potential "expansion areas," and directed City staff to proceed with the preparation of a draft general plan policy document.

In September 2004, the City Council established an ad-hoc General Plan Committee consisting of three Planning Commissioners and three City Council members to work with City staff and consultants to ensure that the General Plan would be completed by July 2005 with ample public
participation, and to ensure open communication, transparency, and coordination among all parties interested in the creation of the General Plan. All of the CPAC, Planning Commission, City Council, and General Plan Committee workshops, meetings, and hearings were open to the public and included significant, meaningful, and often extensive citizen input and participation.

1.2 LEAD, RESPONSIBLE, AND TRUSTEE AGENCIES

The City of Ventura is the Lead Agency for this EIR under CEQA. The City has primary discretionary authority to determine whether or how to approve the 2005 General Plan.

In addition to the City, other public agencies have discretionary authority over certain aspects of the General Plan. These agencies, called "Responsible Agencies," are responsible for carrying out or approving components of the 2005 General Plan (such as an annexation or an amendment of the City's sphere of influence). Section 15381 of the State CEQA Guidelines defines a "responsible agency" as:

> A public agency which proposes to carry out or approve a project, for which a Lead Agency is preparing or has prepared an EIR or Negative Declaration. For purposes of CEQA, responsible agencies include all public agencies other than the lead agency that have discretionary approval authority over the project.

The "responsible agencies" for the 2005 General Plan are listed below, along with their general approval responsibilities.

- California Coastal Commission - The coastal areas of the City are within the Coastal Zone. Therefore, the 2005 General Plan will also serve as an update to the City's Local Coastal Program (LCP). The updated LCP will require approval by the California Coastal Commission.
- California Department of Conservation - The State Geologist is responsible for the review and approval of the City's program for minimizing exposure to geologic hazards and for regulating surface mining activities.
- Ventura County LAFCO - Possible future adjustments to the City's Sphere of Influence (SOI) are subject to review and approval by the Ventura County Local Agency Formation Commission (LAFCO). In addition, any future annexations by the City that occur under the guise of the General Plan would be subject to LAFCO approval.

Though not responsible for approval of the 2005 General Plan, the Ventura County Transportation Commission and Caltrans are responsible for the review and approval of future regional transportation improvement projects (design, funding, and construction) that may be approved in concept as part of the General Plan. Similarly, the California Department of Fish and Game does not have specific permit authority over the General Plan, but may have review and permit authority over specific future developments that involve alterations of streambeds or that affect sensitive plant or animal species. Similarly, the Ventura County Watershed Protection District has review and permit authority over alterations to flood control facilities, while the Los Angeles Regional Water Quality Control Board (RWQCB) has permit authority over projects with the potential to affect surface water quality under the Clean Water Act.

The U.S. Army Corps of Engineers (USACOE) is a federal agency and therefore is not a responsible agency under CEQA. However, the USACOE has permit authority over individual projects that would affect waters of the United States. Therefore, the USACOE may have authority over certain future developments that could occur under the 2005 General Plan.

Trustee agencies have jurisdiction over certain resources held in trust for the people of California but do not have legal authority over approving or carrying out the project. CEQA Guidelines Section 15386 designates four agencies as Trustee Agencies: (1) the California Department of Fish and Game with regards to fish and wildlife, native plants designated as rare or endangered, game refuges, and ecological reserves; (2) the State Lands Commission, with regard to state-owned "sovereign" lands, such as the beds of navigable waters and state school lands; (3) the California Department of Parks and Recreation, with regard to units of the state park system; and, (4) the University of California, with regard to sites within the Natural Land and Water Reserves System.

1.3 PURPOSE AND LEGAL AUTHORITY

This EIR is as an informational document for use in the City's review and consideration of the proposed 2005 General Plan. The Plan will guide subsequent actions taken by the City in its review of new development projects and its establishment of new and/or revised citywide programs. The EIR will also be used by various responsible agencies (listed above) to facilitate informed decisionmaking with respect to their discretionary authority over the project.

The EIR has been prepared in accordance with the requirements of CEQA and the State CEQA Guidelines. In accordance with Section 15121(a) of the State CEQA Guidelines (California Code of Regulations, Title 14, Division 6, Chapter 3), the purpose of an EIR is to:

> Inform public agency decision-makers and the public of the significant environmental effects of a project, identify possible ways to minimize the significant effects, and describe reasonable alternatives to the project.

This EIR fulfills the requirements for a Program EIR. Although the legally required contents of a Program EIR are the same as those of a Project EIR, Program EIRs are typically more conceptual and contain a more comprehensive discussion of impacts, alternatives, and mitigation measures than a Project EIR. As provided in Section 15168 of the State CEQA Guidelines, a Program EIR may be prepared on a series of actions that may be characterized as one large project. Use of a Program EIR provides the City (as Lead Agency) with the opportunity to consider broad policy alternatives and program-wide mitigation measures. It also provides the City with greater flexibility to address environmental issues and/or cumulative impacts on a comprehensive basis.

Once a Program EIR has been prepared, subsequent activities within the program must be evaluated to determine whether an additional CEQA document needs to be prepared. However, subsequent activities could be found to be within the Program EIR scope and additional environmental documents may not be required if the Program EIR addresses all of the impacts of the subsequent activity [Guidelines Section 15168(c)]. When a Program EIR is relied on for a subsequent activity, the Lead Agency must incorporate feasible mitigation measures and alternatives developed in the Program EIR into the subsequent activities [Guidelines Section 15168(c)(3)]. If a subsequent activity would have effects not identified in the Program EIR, the Lead

Agency must prepare a new Initial Study, leading to either a Negative Declaration (ND), a Mitigated Negative Declaration (MND), or an EIR.

The CEQA Guidelines [Section 15168(b)] encourage the use of Program EIRs, citing five advantages:

- Provision of a more exhaustive consideration of impacts and alternatives than would be practical in an individual EIR
- Focus on cumulative impacts that might be slighted in a case-by-case analysis
- Avoidance of duplicative reconsideration of basic policy issues
- Consideration of broad policy alternatives and programmatic mitigation measures at an early stage when the agency has greater flexibility to deal with them
- Reduction of paperwork by encouraging the reuse of data (through tiering)

This document also serves as a Master Environmental Assessment (MEA) of the City. According to Section 15169 of the CEQA Guidelines, an MEA serves as an inventory or database describing the environmental characteristics of the Planning Area. The purpose of an MEA is to identify and organize environmental information that may be used for reference in future EIRs or NDs prepared for individual projects. As noted in the CEQA Guidelines, an MEA is used for the following:

- To identify the environmental characteristics and constraints of an area, information which can be used to influence the design and location of individual projects
- To provide information that agencies can use in initial studies to decide whether certain environmental effects are likely to occur and whether they would be significant
- To provide a central source of current information for use in preparing EIRs and NDs on individual projects
- To serve as a reference for EIRs and NDs on individual projects
- To assist in identifying long range, areawide, and cumulative impacts of individual projects
- To assist a City or County in formulating a general plan
- To serve as a reference document to assist public agencies that review other environmental documents dealing with activities in the area that are covered by the assessment

1.4 EIR SCOPE AND CONTENT

In accordance with the CEQA Guidelines, the City of Ventura issued a Notice of Preparation (NOP) of an EIR in October 2004. Subsequent to the release of the NOP, the City Council decided to revise the development scenarios to be studied in the EIR; therefore, a revised NOP reflecting the scenarios studied in this EIR was issued in December 2004. Both versions of the NOP and the NOP responses are contained in Appendix A. The NOP noted that the 2005 General Plan could have potentially significant impacts in each of the issue areas on the City's environmental checklist. Therefore, this EIR examines all environmental issues on the checklist, including:

- Aesthetics
- Air Quality
- Agricultural Resources
- Land Use and Planning
- Noise
- Population/Housing
- Biological Resources
- Cultural Resources
- Energy/Mineral Resources
- Geology/Soils
- Hazards/Hazardous Materials (including wildland fire hazards)
- Public Services (police, fire, schools)
- Recreation
- Utilities/Service Systems
- Transportation/Traffic
- Water (including Water Supply, Hydrology/Flooding, and Water Quality)

The City also held two public scoping meetings for the project to solicit comments on the scope and content of the EIR. The first meeting was held on October 13, 2004. Approximately ten people attended this meeting. The second meeting was held on January 12, 2005. The primary issues raised at both meetings revolved around the assumptions to be used in the EIR analysis. No significant new environmental issues were raised at either meeting.

The focus of this EIR is to:

- Provide information about the 2005 General Plan and different growth scenarios for consideration by the Planning Commission and the City Council
- Review and evaluate the potentially significant environmental impacts that could occur as a result of the growth and development envisioned in the 2005 General Plan and different growth scenarios
- Identify feasible mitigation measures that may be incorporated into the project in order to reduce or eliminate potentially significant effects.

1.5 ENVIRONMENTAL REVIEW PROCESS

The environmental review process, as required under CEQA, is summarized below and illustrated generally on Figure 1-1.

1. Notice of Preparation (NOP). After deciding that an EIR is required, the lead agency must file an NOP soliciting input on the EIR scope to the State Clearinghouse, other concerned agencies, and parties previously requesting notice in writing (CEQA Guidelines Section 15082; Public Resources Code Section 21092.2). The NOP must be posted in the County Clerk's office for 30 days. For projects of regional significance, the lead agency holds a scoping meeting during the 30-day NOP review period.
2. Draft EIR. The Draft EIR must contain: a) table of contents or index; b) summary; c) project description; d) environmental setting; e) discussion of significant impacts (direct, indirect, cumulative, growth-inducing and unavoidable impacts); f) a discussion of alternatives; g) mitigation measures; and h) discussion of irreversible changes.
3. Notice of Completion. Upon completion of a Draft EIR, the lead agency must file a Notice of Completion with the State Clearinghouse and prepare a Public Notice of Availability of a Draft EIR. The lead agency must place the Notice in the County Clerk's office for 30 days (Public Resources Code Section 21092) and send a copy of the Notice to anyone requesting it (CEQA

Guidelines Section 15087). Additionally, public notice of the availability of the Draft EIR must be given through at least one of the following procedures: a) publication in a newspaper of general circulation; b) posting on and off of the project site; or c) direct mailing to owners and occupants of contiguous properties and others who have requested such notification. The lead agency must solicit comments from the public and respond in writing to all written comments received (Public Resources Code Sections 21104 and 21253). The minimum public review period for a Draft EIR is 30 days. When a Draft EIR is sent to the State Clearinghouse for review, the public review period must be 45 days unless a shorter period is approved by the Clearinghouse (Public Resources Code Section 21091).
4. Final EIR. Following the close of the Draft EIR review period, a Final EIR is prepared. The Final EIR must include: a) the Draft EIR; b) copies of comments received during public review; c) a list of persons and entities commenting; and d) responses to comments.
5. Final EIR Certification. Prior to making a decision on a proposed project, the lead agency must certify that: a) the Final EIR has been completed in compliance with CEQA; b) the Final EIR was presented to the decisionmaking body of the lead agency; and c) the decision-making body reviewed and considered the information in the Final EIR prior to approving a project (CEQA Guidelines Section 15090).
6. Lead Agency Project Decision. Upon certification of an EIR, the lead agency makes a decision on the project analyzed in the EIR. A lead agency may: a) disapprove a project because of its significant environmental effects; b) require changes to a project to reduce or avoid significant environmental effects; or c) approve a project despite its significant environmental effects, if the proper findings and statement of overriding considerations are adopted (CEQA Guidelines Sections 15042 and 15043).
7. Findings/Statement of Overriding Considerations. For each significant impact of the project identified in the EIR, the lead or responsible agency must find, based on substantial evidence, that either: a) the project has been changed to avoid or substantially reduce the magnitude of the impact; b) changes to the project are within another agency's jurisdiction and such changes have or should be adopted; or c) specific economic, social, or other considerations make the mitigation measures or project alternatives infeasible (CEQA Guidelines Section 15091). If an agency approves a project with unavoidable significant environmental effects, it must prepare a written Statement of Overriding Considerations that sets forth the specific social, economic, or other reasons supporting the agency's decision and explaining why the project's benefits outweigh the significant environmental effects.
8. Mitigation Monitoring/Reporting Program. When an agency makes findings on significant effects identified in the EIR, it must adopt a reporting or monitoring program for mitigation measures that were adopted or made conditions of project approval to mitigate significant effects.

2.0 PROJECT DESCRIPTION

The proposed project is an update of the City of Ventura Comprehensive (General) Plan (hereinafter referred to as the " 2005 General Plan"). The 2005 General Plan, which updates the 1989 Comprehensive Plan, establishes the community's vision for the development of Ventura through the year 2025 and will serve as the fundamental land use policy document for the City.

This section of the EIR describes the key characteristics of the 2005 General Plan, including the project applicant, the geographic extent of the plan, project objectives, required approvals, and the various development scenarios under consideration. This section also summarizes the key policy statements from the various General Plan elements that have the potential to result in physical environmental effects.

2.1 PROJECT PROPONENT

City of San Buenaventura
501 Poli Street
Ventura, California 93001

2.2 GEOGRAPHIC EXTENT OF THE PLANNING AREA

Ventura is located in western Ventura County, approximately 60 miles north of Los Angeles and 25 miles south of Santa Barbara. Figure 2-1a shows the City within the Southern California region. The City is generally bounded by the Ventura River to the west, the Pacific Ocean to the southwest, the Santa Clara River to the south, and the Transverse Range to the north. The key planning boundaries for the community - corporate limits, the sphere of influence, and the Planning Area - are illustrated on Figure 2-1a and described below. An aerial photograph of the Planning Area is presented on Figure 2-1b.
a. Corporate Limits. The corporate limits of the City currently encompass approximately 13,700 acres, or 21 square miles. The City stretches from the Pacific Ocean eastward to the community of Saticoy and northward up the Ventura River valley. The City is not currently seeking annexation of any lands outside the current City limits. However, the City may seek annexation of unincorporated islands as well as urbanized areas adjacent to the current City limits (such as in Saticoy and the North Ventura Avenue area) over the life of the 2005 General Plan. Any annexations would be sought only at such time as the area to be annexed is contiguous with the current (at that time) City limit.
b. Sphere of Influence. The Sphere of Influence (SOI) encompasses both incorporated and unincorporated territories that either are or are anticipated to be within a local agency's ultimate service area. In other words, it represents the probable physical boundaries and service area of a local agency. Typically, an SOI encompasses the area that a local agency expects to annex. The SOI must be approved by the Local Agency Formation Commission (LAFCO). With the passage of the Cortese-Knox-Hertzberg Local Government Reorganization Act of 2000 (California Government Code Section 56000 et seq.), LAFCOs are required to update spheres of influence every five years either in conjunction with, or after completing, service reviews.

2-1

Project Location
C_City Planning Area
\square City Limits
防
Sphere of Influence

Ventura's current SOI encompasses the entire City as well as several areas outside the current City limits. Areas outside the City, but within the current SOI include portions of the North Ventura Avenue area, the communities of Montalvo and Saticoy, and the Arundell industrial area. About 2,300 acres in the hillsides above the City are also outside the City, but within the current SOI. Finally, all or portions of four of the "expansion areas" under consideration are within the current SOI. These include all of the North Avenue and Poinsettia areas and portions of the Olivas and Serra areas, which are discussed in detail in subsection 2.5, beginning on page 2-8.

The City is not seeking any adjustments to the SOI at this time. However, the 2005 General Plan includes a land use designation ("Industrial") for a small area outside the current SOI. This area encompasses approximately 10-11 acres located north of the City's water filtration plant. The City may seek inclusion of that area within the SOI over the life of the 2005 General Plan; however, any application for an adjustment to the SOI and annexation would occur (if ever) only at such time as the City's corporate boundary has been extended to be contiguous with the boundary of the area. Similarly, should any potential expansion areas be selected for inclusion in the General Plan land use map in the future, the SOI may be proposed for adjustment at that time to encompass the expansion areas. Applications for any necessary SOI adjustments would be sought at such time as development of these areas is proposed. The SOI adjustments that would be needed for each expansion area are discussed in detail in subsection 2.5. Finally, the City is interested in having the SOI moved to be coterminous with the City's corporate boundary for the hillside areas above the City pursuant to Action 1.13 of the Draft General Plan. It is the City's understanding that the Ventura LAFCO is planning to prepare a Municipal Service Review (MSR) for the City that will likely result in the removal this area (and possibly other areas, including all of the potential expansion areas) from the SOI; therefore, the City will not seek an SOI adjustment at this time. However, if the LAFCO does not take action to remove the hillside areas from the SOI, the City may apply for such an adjustment in the future.
c. Planning Area. The Ventura Planning Area encompasses all areas within and outside the City's boundaries that bear a relation to the City's planning area as contemplated by State Government Code section 65300. The current Planning Area for the City encompasses about 31,000 acres and includes the entire City and SOI, as well as the Taylor Ranch area west of the City, additional acreage in the hillsides above the City, and farmlands south and east of the City, including the Olivas expansion area (see subsection 2.5 for discussion of this expansion area). The entire Planning Area is the focus of this EIR.

2.3 PROJECT OBJECTIVES

The 2005 General Plan is intended to function as a policy document to guide land use decisions within the City's planning area through the year 2025. The Plan includes goals, objectives, policies, and implementation programs adopted from the 1989 Comprehensive Plan, the Ventura Vision 2000, and input from the Comprehensive Plan Advisory Committee (CPAC), Planning Commission, City Council, and community received over the course of the development of the Plan.

Adopted by the Ventura City Council in March 2000, the Ventura Vision 2000 set the framework for the 2005 General Plan by setting the overall goals and direction for the
community. The Vision includes a number of vision statements covering a wide range of topics. These are presented on page 2-7 and categorized into five areas for convenience (Environmental, Economic, Social, Planning and Design, and Collaboration). Taken as a whole, the Vision principles establish the general objectives for the 2005 General Plan.
Based on the vision statements and input from the community, CPAC, and Planning Commission, the City Council established the following goals to guide City decision-making.

- Our Natural Community - Our goal is to be a model for other communities of environmental responsibility, living in balance with our natural setting of coastline, rivers, and hillside ecosystems.
- Our Prosperous Community - Our goal is to attract and retain enterprises that provide high-value, high wage jobs; to diversity the local economy; to increase the local tax base; and to anticipate our economic future in order to strengthen our economy and help fund vital public services.
- Our Well Planned and Designed Community - Our goal is to protect our hillsides, farmlands, and open spaces; enhance Ventura's historic and cultural resources; respect our diverse neighborhoods; reinvest in older areas of our community; and make great places by insisting on the highest standards of quality in architecture, landscaping and urban design.
- Our Accessible Community - Our goal is to provide residents with more transportation choices by strengthening and balancing bicycle, pedestrian and transit connections in the City and surrounding region.
- Our Sustainable Infrastructure - Our goal is to safeguard public health, well being and prosperity by providing and maintaining facilities that enable the community to live in balance with natural systems.
- Our Active Community - Our goal is to add to and enhance our parks and open spaces to provide enriching recreation options for the entire community.
- Our Healthy and Safe Community - Our goal is to build effective community partnerships that protect and improve the social well being and security of all our citizens.
- Our Educated Community - Our goal is to encourage academic excellence and life-long learning resources to promote a highly-educated citizenry.
- Our Creative Community - Our goal is to become a vibrant cultural center by weaving the arts and local heritage into everyday life.
- Our Involved Community - Our goal is to strive to work together as a community to achieve the Ventura Vision through civic engagement, partnerships, and volunteer service.

2.4 1989 COMPREHENSIVE PLAN

The City Council adopted the current Comprehensive Plan Update to the Year 2010 on August 28, 1989. The 1989 Comprehensive Plan has since served as a policy document that guides land use decisions in the City.

Ventura Vision 2000 Vision Statements

Environmental

- A community that seeks sustainability by simultaneously promoting ecological health, as well as economic vitality and social well-being for current and future generations.
- An environmentally responsible coastal community serving as a model for other areas.
- A community that protects and restores the natural character of its beaches, ocean views, hillsides, barrancas, and rivers as a scenic backdrop for its high quality urban environment.

Economic

- A community that develops a flourishing and balanced economy by encouraging a broad range of high quality employment and entrepreneurial opportunities.
- A community that encourages private economic development that can in turn support public services and amenities associated with a high quality of life.
- A community that develops a vital, prosperous, and stable economy while maintaining its "small town" characteristics and qualities.
- A community where the private and public sectors cooperate to enhance economic vitality.
- A community that actively participates in regional economic development efforts.

Social

- An inclusive, diverse, and tolerant community that welcomes and celebrates all people.
- A community in which all residents have access to quality and affordable health and social services.
- A community that recognizes the importance of children and seniors by providing exceptional cultural, educational, and social support programs.
- A community that provides a diverse range of active and passive recreation for residents and visitors of all ages and abilities.
- A community dedicated to educational excellence and an emphasis on lifelong learning.
- A community that celebrates and is enriched by the arts and its diverse cultural opportunities.

Planning and Design

- A community that retains its character as an attractive coastal town by growing slowly and sustainably and by emphasizing its history, diversity, and natural environment.
- A community that cherishes its distinctive, diverse, and eclectic neighborhoods and recognizes that future changes to the community must preserve their character.
- A community with safe, accessible, and balanced transportation that promotes multiple modes of travel to local and regional destinations.

Collaboration

- A community in which residents collaborate with each other and with the city government in an informed, active, and constructive manner to assess and resolve common issues.

The 1989 Comprehensive Plan is made up of the "Visions of Ventura" and nine individual elements, including each of the seven state-mandated general plan elements plus Parks and Community Design. The elements establish goals, objectives, policies, and programs for public and private entities. The Visions of Ventura is a list of generalized principles and philosophies that serve as guidelines for long-term decision making established by the City Council.

The 1989 Comprehensive Plan land use map is shown on Figure 2-2. The current map includes about 30 individual land use designations. Most of the area within the current City limits is simply designated "Existing Urban," a designation intended to indicate that the site is already developed with an urban use. Other designations allow a variety of residential, commercial, industrial, and institutional uses throughout the City. The hillsides above the City are currently designated Hillside Planned Residential (HPR). Many of the agricultural lands within the planning area continue to be designated Agriculture (AG). These include four of the five areas under evaluation as potential expansion areas to accommodate future growth (North Avenue, Olivas, Serra, Poinsettia). The 1995 "Save Our Agricultural Resources" initiative ("SOAR") amended the 1989 Comprehensive Plan by, among other things, specifying that these Agriculture designations should remain in effect until the year 2030.

The current circulation map includes three roadway designations: (1) Primary Arterial; (2) Secondary Arterial; and (3) Collector. ${ }^{1}$ The map shows planned extensions of several roadways, including Cedar Street in West Ventura, Mills Road from U.S. 101 to Harbor Boulevard, and Johnson Drive and North Bank Drive in East Ventura. The map also delineates the existing linear park system and planned improvements.

2.5 PROPOSED 2005 GENERAL PLAN

The EIR analysis focuses on two primary components of the 2005 General Plan: (1) physical development potential; and (2) the goals and policies, including subsequent actions. The potential physical development of the City is reviewed and evaluated for each of the areas of environmental impact. As appropriate, the environmental effects of the goals, policies, and actions included in the 2005 General Plan are also reviewed and evaluated for each area of potential impact. Because many of the goals, policies, and actions are specifically intended to mitigate the environmental effects associated with future growth in the City, they are discussed as part of an overall mitigation strategy, where applicable, for a given issue.

2.5.1 General Plan Organization

The proposed 2005 General Plan has been organized into ten chapters that correlate to the chapters of the Ventura Vision document. These chapters encompass the seven elements required by California General Plan law as well as some optional elements. The chapters are listed in Table 2-1. The table also shows how the chapters correlate to the required and optional General Plan elements and the types of topics covered in each chapter.

[^1]

Table 2-1
2005 General Plan Chapters

2005 General Plan Chapters	Required/Optional Elements	Examples of Topics Covered
Our Natural Community	Conservation, Open Space	Open space, hillsides, riparian areas, sensitive plants and animals
Our Prosperous Community	Economic Development	Commercial and industrial growth, economic diversification, job opportunities, tourism
Our Well-planned and Designed Community	Land Use, Housing, Community Design	Development patterns, neighborhoods, visual character, urban design, demographics, housing needs, affordability, constraints on production
Our Accessible Community	Circulation	Traffic, street network, parking, transit services, bike routes
Our Sustainable Infrastructure	Land Use, Parks and Recreation	Public facilities, utilities
Our Active Community	Land Use	Park and recreation facilities, youth and senior programs
Our Healthy and Safe Community	Safety, Noise, Parks and Recreation	Development in hazardous areas, hazardous waste management, seismicity, flood control, water quality, brownfields, noise
Our Educated Community	Land Use	Schools, libraries, cultural and historic resources
Our Creative Community	Land Use	Arts, events, community programs
Our Involved Community	Land Use	Participation in governance

Each of the General Plan chapters listed in Table 2-1 includes specific policies and action items intended to meet the overall goals discussed under subsection 2.3, Project Objectives. Most of the policies either do not involve physical environmental changes or are intended to reduce the potential environmental changes associated with future development within the City. For example, Chapter 7, Our Healthy and Safe Community, includes policies and actions intended to minimize potential conflicts relating to noise, hazardous materials, and seismic and other natural hazards. Consequently, the policies themselves generally would not create significant environmental impacts and are not listed in this project description. A complete listing of proposed 2005 General Plan actions is included in Appendix B. Individual policies and actions with the potential to either create or address physical environmental impacts are discussed as appropriate in the individual impact discussions in Section 4.0, Environmental Impact Analysis.

2.5.3 Land Use Map

The purpose of the land use map is to guide the general distribution, location and extent of the various types of land uses in the City. For the 2005 General Plan, the roughly 30 existing land use designations in the current land use map are proposed to be consolidated into 10 designations in four categories, as shown in Table 2-2. Specific land use regulations for parcel development will continue to be defined in the Zoning Ordinance, which will be updated following adoption of the 2005 General Plan.

City of Ventura

Table 2-2 Planning Designations

Designation	Principal Use Development Intensity/Density
Neighborhood Low	Emphasizes detached houses with some attached units in a small mix of building types at approximately 8 dwelling units per acre. Predominantly residential
Neighborhood Medium	Anticipates a mixture of detached and attached dwellings and higher building types at approximately 9 to 20 dwelling units per acre. Predominantly residential with small scale commercial at key locations, primarily at intersections and adjacent to corridors.
Neighborhood High	Accommodates a broader mix of building types, primarily attached, at up to 54 dwelling units per acre. A mix of residential, commercial, office, and entertainment that includes mixed-use buildings.
Commerce	Encourages a wide range of building types of anywhere from two to six stories that house a mix of functions, including commercial, entertainment, office, and housing.
Industry	Encourages intensive manufacturing, processing, warehousing, and similar uses, as well as light, clean industries and support offices; also encourages limited workplace-serving retail functions and work-live residences where such secondary functions would complement and be compatible with largescale buildings.
Public and Institutional	Accommodates civic functions such as government offices, hospitals, libraries, and schools.
Agriculture	Predominantly commercial cultivation of food and plants and raising of animals.
Parks and Open Space	Dedicates land to public recreation and leisure and visual resources.

The map specifies land uses for all areas of the City. The land use map does not change the land use designation of any agricultural lands within the Planning Area that are currently designated for agricultural or open space uses under either the City's 1989 Comprehensive Plan or the County of Ventura General Plan. However, at the direction of the City Council, the EIR analysis considers a range of possible future land use scenarios, some of which include potential "expansion areas" that are currently used for agriculture or open space, but may be considered for future development. Discussions of areas where intensification and reuse of urbanized lands is to be emphasized and each of the expansion areas follow.
a. Intensification/Reuse. The proposed land use map is intended to primarily emphasize intensification and reuse of already urbanized lands within the current City and SOI. To that end, the map includes nine growth districts and eight growth corridors located throughout the City that are to be the focal points of future development and land use intensification. Most of the growth districts and corridors are already within the City and developed with urban uses. However, portions of the Upper North Avenue, North Avenue, Saticoy, and Arundell districts are currently either in oil or agricultural production and within the current SOI, but outside the current City limits. These areas are already designated for urban uses (primarily industrial) under the 1989 Comprehensive Plan, but would require annexation prior to development within urban uses.

City of Ventura

The districts and corridors are primarily commercial or industrial in character, though some (Upper North Avenue, Arundell, Saticoy) include agricultural and vacant lands that are designated for urban use under the 1989 Comprehensive Plan. The districts and corridors are anticipated over time to be partially re-developed with a mix of uses that may include the underlying land use and/or residential use (for example, properties within the primarily commercial Main Street corridor could be developed with either commercial or residential uses, or some combination thereof). All or portions of three of the districts - Downtown, North Bank, and Saticoy - are to be subject to Specific Plans that specify mixed land uses. The Harbor district is subject to the draft Harbor Master Plan.

On Commerce-designated parcels, it is assumed that future developments could entail: (1) commercial only projects; (2) mixed use projects that include a commercial component and a residential component; or (3) multiple family residential only projects. For Industrialdesignated parcels, industrial only projects would be allowed. Residential uses could include work/live or live/ work residences or traditional housing as part of mixed use development so long as residences are not subject to significant compatibility conflicts relating to such issues as aesthetics, noise, or health and safety that cannot be addressed through site planning.

Additional development may also occur outside the growth districts and corridors as infill of vacant parcels occurs. The City is largely built out, but vacant parcels are located throughout the community. In addition, there are a number of undeveloped parcels outside the City, but within the SOI that could develop over the next 20 years. All of these areas are currently designated for urban uses under the 1989 Comprehensive Plan and therefore are not subject to the Save Our Agricultural Resources (SOAR) Ordinance (see Section 4.1, Agriculture, for a discussion of the SOAR Ordinance).
b. Potential Expansion Areas. As discussed above, the General Plan land use map does not include any re-designation of lands currently designated for agricultural or open space use. Nevertheless, at City Council direction, this EIR considers five separate areas for possible future expansion. These include:

- North Avenue - a 55-acre area west of Ventura Avenue and north of Los Cabos Lane that is currently primarily in agricultural production (orchards)
- Olivas - a 930-acre agricultural area (mix of row crops and orchards) located between the Midtown and Arundell communities and Ventura Harbor that is roughly bounded by the Union Pacific Railroad, Telephone Road, Olivas Park Drive, and Harbor Boulevard
- Serra - a 438-acre area in East Ventura that is primarily in agricultural production (mix of row crops and orchards) and is roughly bounded by Telephone Road, Montgomery Avenue, Bristol Road, and Ramelli Avenue
- Western Cañada Larga - a 110-acre area along the east and west sides of SR 33 at the entrance to Cañada Larga that is primarily undeveloped grazing land, with a limited amount of irrigated agriculture
- Poinsettia - a 418-acre agricultural area (orchards) generally bounded by SR 126 on the south, Hill Road on the west, Foothill Road on the north, and Harmon Barranca on the east.

The entirety of four of the five potential expansion areas - North Avenue, Olivas, Serra, and Poinsettia - are designated "Agriculture" in the 1989 Comprehensive Plan; therefore, a public vote is required in accordance with the City's SOAR Ordinance prior to any re-designation of these areas to allow a non-agricultural use until 2030. An approximately 29-acre portion of the Western Cañada Larga expansion area is also subject to SOAR. The 2005 General Plan would not change the land use designation for any of these areas. Any land use designation change and subsequent development in any of these areas would need to be pursued by individual landowners and would occur only after receiving voter approval of a General Plan amendment.

The portion of the 110-acre Western Cañada Larga area east of SR 33 is outside the current SOI and has no City land use designation. This area is designated Open Space under the County of Ventura General Plan and would be subject to the County's SOAR Ordinance if a re-designation were sought through the County. However, if considered for annexation by the City, the area would not be subject to either the County or City SOAR Ordinances. Nevertheless, no redesignation of the area is being proposed or considered at this time.

Because no re-designation or specific development concepts are currently being considered for any of the potential expansion areas, the magnitude and type of development (if any) that may occur in any of the areas cannot be predicted with certainty. It is anticipated that any of the expansion areas would only be developed in accordance with a specific plan that provides guidance with respect to land use, infrastructure, circulation, and development standards. However, the CPAC provided the following general parameters for future development in any of the expansion areas, which are assumed to form the basis for possible future development proposals:

- Build new neighborhoods in a compact form and plan for walkability (i.e., 80-to-100 acres, $1 / 4$ - mile from center);
- Encourage development that promotes a mix of housing types and meets affordable housing needs;
- Connect street systems that balance auto, pedestrian, and bicycle movement in a finegrained block, pedestrian and park network system;
- Encourage mixed-use development, preferably near transit nodes;
- Encourage development that responds to unmet needs in nearby existing neighborhoods;
- Connect open spaces, parks and trails into an integrated system;
- Protect sensitive habitat and watershed land;
- Recognize traditional downtown, commercial districts and urban neighborhoods as being critical anchors for the economic and community vitality of a region; and
- Assume that each potential neighborhood has the opportunity not only to provide amenities to its residents directly, but also to improve quality of life for the larger comтипity.
c. Possible Future Changes to Sphere of Influence Boundaries. As noted in subsection 2.2, although the City is not seeking adjustment to the Sphere of Influence (SOI) at this time, implementation of the 2005 General Plan may require several adjustments to the Sphere of Influence (SOI) that would subsequently be processed and subject to approval by LAFCO. About 2,300 acres in the hillsides above the City are proposed to be removed from the SOI. This would remove these areas from consideration for future City extension of services and focus

City of Ventura
future development on non-hillside areas. In addition, approximately 10-11 acres north of the City's water filtration plant along the west of SR 33 may need to be included in the SOI at some point in the future. This area is partly in agricultural use, but it is designated for industrial development in the Ventura County General Plan and in the 1989 Comprehensive Plan.

The SOI would not need to be adjusted at this time to include any of the expansion areas considered in this EIR. However, certain expansion areas would require expansion of the SOI if they are to be considered for future development. Such SOI expansions would be sought, if ever, at such time as development of the areas is proposed. Possible future expansions of the SOI include the following:

- Western Cañada Larga - This 110-acre area, located at the northern end of the Planning Area along the State Route (SR) 33 corridor, would need to be included in the SOI if selected for possible future development. Inclusion within the SOI could occur only at such time as the City's corporate boundary has been extended to be contiguous with the boundary of the expansion area.
- Olivas - About 55 acres of the 930-acre Olivas area (the portion of this area north of U.S. 101) are within the current SOI. However, the remaining 875 acres, which consist of agricultural land located primarily between U.S. 101 and Harbor Boulevard, would need to be included in the SOI if this area is selected for possible future development.
- Serra - About 160 acres of the 438-acre Serra area are currently outside the SOI. This area, which is located south of Bristol Road and along the north bank of the Santa Clara River, would need to be included in the SOI if the Serra area is selected for possible future development.

Because the Ventura LAFCO may remove all areas subject to voter approval from the SOI as a result of its Municipal Service Review, any of the expansion areas may have been removed from the SOI by the time they are considered for development.
Therefore, an SOI adjustment may need to be sought for any of the expansion areas.

2.5.4 Possible Land Use and Growth Scenarios

This EIR considers six different land use scenarios selected by the City Council that represent options for accommodating future growth in the City. The options range from including no expansion areas and focusing development almost exclusively on already urbanized areas to including up to three expansion areas for possible future development. The six 2025 development scenarios include:

1. Intensification/Reuse Only Scenario - This scenario assumes that future development will be limited to areas within the current Sphere of Influence and that none of the possible expansion areas would be considered.
2. Intensification/Reuse + North Avenue + Olivas + Serra - This scenario assumes an emphasis on infill development at an intensity level similar to that of the Intensification/Reuse Only, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)
- Serra (438 acres)

3. Intensification/Reuse + North Avenue + Olivas Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)

4. Intensification/Reuse + North Avenue + Serra Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Serra (438 acres)

5. Intensification/Reuse + North Avenue + Western Cañada Larga Scenario This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Western Cañada Larga (110 acres)

6. Intensification/Reuse + North Avenue + Poinsettia Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Poinsettia (418 acres)

The various land use scenarios are shown on Figures 2-3 through 2-8.
Each of the land use scenarios emphasizes intensification and reuse of already urbanized lands prior to development of "greenfields" at the City's periphery. As discussed previously, future growth is to be primarily focused within the nine growth districts and eight growth corridors located throughout the City.

The primary difference among the land use scenarios is in the areas included for possible future expansion of the City. The Intensification/Reuse Only scenario (Scenario 1) assumes that future growth would be limited to areas within the proposed SOI that are already designated for nonagricultural uses (this excludes the hillside areas above the City, which are proposed for removal from the SOI). The Intensification/Reuse + North Avenue + Olivas + Serra scenario (Scenario 2) assumes eventual development of three expansion areas. The other scenarios with potential expansion areas (Scenarios 3-6) include the North Avenue area plus one of the other expansion areas. The primary purpose of analyzing these scenarios is to weigh the relative impacts and benefits of considering future development of the Olivas, Serra,

Scenario 1 - Intensification/Reuse Only

Scenario 6 - Intensification/Reuse +

North Avenue + Poinsettia Figure 2-8

Western Cañada Larga, and Poinsettia areas. It is assumed that the SOI would be adjusted as necessary for each of the scenarios to include the expansion areas being considered for the scenario at such time as future development is considered. Figures 2-3 through 2-8 show the possible future SOIs under each land use scenario.

Based on the policies and actions outlined in Chapter 3 of the 2005 General Plan, each expansion area is assumed to include a mix of residential uses at varying densities and nonresidential uses, including retail and office uses, schools, and other institutional facilities. It is assumed that any of the areas would also include large areas of public open space (parks, passive open space, recreational facilities) that serve the community as a whole. The actual amount of development and open space that may be provided in future specific plans for the expansion areas will likely vary from what is assumed in the EIR. However, any future development within any of the expansion areas would be subject to a vote of the electorate and/or further independent environmental review under CEQA.

2.5.5 Growth Projections

a. Growth Assumptions for Environmental Analysis. Residential and non-residential growth estimates were developed for purposes of environmental analysis in order to provide decision-makers and the community a realistic assessment of the potential environmental effects of growth through 2025. The residential and non-residential growth assumptions used for the analysis of the various land use scenarios are discussed below.

Population and Residential Growth. For the purpose of environmental analysis and forecasting future residential growth through 2025, two growth scenarios were used. A 1.14\% annual growth rate was used for the five scenarios that include expansion areas (Scenarios 2-6), while a lower growth rate of 0.88% annually was used for Scenario 1 (the Intensification/ Reuse Only scenario). The lower growth rate was used for Scenario 1 because it was assumed that limiting growth to the current SOI would result in a lower overall growth rate. The 1.14\% growth rate represents the annual growth rate for the City from 1984-2004 (20-year rate), while the 0.88% growth rate represents the annual growth rate from 1994-2004 (10-year rate).

Table 2-3 shows the level of housing and population growth that would occur in the City through 2025 under both the 1.14% and 0.88% annual growth rates. As shown, the 1.14% growth rate would add about 11,000 residences and, based on the current average of 2.57 persons per dwelling unit (California Department of Finance, 2004), about 28,000 people. The 0.88% annual growth rate would add roughly 8,300 residential units and 21,000 people.

Non-Residential Growth. Non-residential growth through 2025 was estimated based upon job growth estimates developed by Stanley R. Hoffman Associates, Inc. as part of a land supply and demand analysis performed in conjunction with the 2005 General Plan. The "medium growth" estimate from the Stanley R. Hoffman report was assumed to apply to the five land use scenarios that include expansion areas (Scenarios 2-6) and the "lower growth" estimate was applied to the Intensification/Reuse Only Scenario (Scenario 1).

Table 2-4 shows the medium and lower job growth estimates for the City. As indicated, the medium growth scenario would add about 12,300 new retail, office, and industrial jobs, and about 19,700 total jobs. Under the lower growth estimate, the City would add about 8,600

Table 2-3
Population and Housing Projections

	2004 Levels				
		2025 Estimates		Change from 2004-2025	
	$\mathbf{0 . 8 8 \%}$ Annual Growth	1.14\% Annual Growth	0.88\% Annual Growth	1.14\% Annual Growth	
Population	104,952	126,153	133,160	21,201	28,208
Housing Units $^{\text {b }}$	40,880	49,138	51,867	8,258	10,987

${ }^{a}$ Source: California Department of Finance, City/County Population and Housing Estimates, 1/1/2004. Note that 2004 data are used as the baseline because 2005 data were not available when the EIR was initiated in Fall 2004; 2005 population and housing estimates are provided in Table 3-1 in Section 3.0, Environmental Setting.
${ }^{b}$ Housing unit estimates assume that the current ratio of 2.57 persons per household remains constant through 2025. In reality, the number of persons per unit could go up or down, depending upon housing costs, the types of housing built in the City, population growth, and other factors.

Table 2-4
Projected Job Growth by Sector, 2004-2025

Sector	$\begin{aligned} & 2004 \\ & \text { Jobs } \end{aligned}$	2025 Jobs		Job Growth 2004-2025	
		Lower Growth (Scenario 1)	Medium Growth Scenario (Scenarios 2-6)	Lower Growth (Scenario 1)	$\begin{gathered} \text { Medium } \\ \text { Growth } \\ \text { (Scenarios 2-6) } \end{gathered}$
Retail	12,095	13,432	13,857	1,337	1,762
Office	14,014	17,943	20,189	3,929	6,175
Industrial	9,322	12,662	13,684	3,340	4,362
Total (Retail, Office, Industrial)	35,432	44,037	47,730	8,605	12,298
Total Jobs (all sectors)	54,732	69,211	75,060	14,479	20,328

Job estimates from Stanley R. Hoffman Associates, Inc., August 2003, and UCSB Economic Forecast Project. Job estimates for 2004 are based on interpolation between 2000 and 2005 "low growth" estimates.
retail, office, and industrial jobs, and about 14,500 total jobs. Under the medium growth scenario, the projected job growth would increase citywide employment by about 37% through 2025. Under the lower growth scenario, citywide employment would grow by about 26% through 2025.

Table 2-5 on page 2-32 shows the projected increase in retail, office, and industrial building area needed to accommodate the job growth projections shown in Table 2-4. As indicated, the projected increase in jobs is expected to create demand for about 5.3 million square feet of new building area under the medium growth scenario and about 3.8 million square feet of new building area under the lower growth scenario. Discounting the amount of non-residential

Table 2-5
Projected Housing Growth Distribution

Growth Area	Intensification/ Reuse Only (Scenario 1)	Scenarios 2-6
Currently Planned/ Pending $^{\text {a }}$	1,700	1,700
Growth Districts/ Corridors $^{\text {SOI/Other Infill }}$ b	3,950	3,950
Expansion Areas	2,650	2,650
Total	--	$\mathbf{2 , 7 0 0}$

See Appendix C for a detailed breakdown of assumed residential growth by district/corridor and expansion area.
${ }^{a}$ From City of Ventura Community Development Department, Pending Projects, July 2004.
${ }^{5}$ Includes development of non-agriculturally designated agricultural lands in East Ventura (1,250 units), growth expected within the Pierpont and other neighborhood centers (200 units), development of up to 300 second units on single family lots, and development of vacant and underutilized parcels outside the districts and corridors (700 units).
development already planned or pending (estimated at 639,724 square feet per the City's pending projects list, July 2004), the net increase in retail, office, and industrial development needed to meet demand would range from about 3.2 million square feet under the lower growth scenario to about 4.7 million square feet under the medium growth scenario.
b. Projected Distribution of Growth. In order to assess the possible impacts of projected growth through 2020, it was necessary to develop working assumptions regarding how overall residential and non-residential growth might be distributed throughout the Planning Area. Working assumptions were developed by City and consultant staff based on the general guidance and priorities provided by the CPAC, the Planning Commission, and the City Council.

Potential residential and non-residential growth can be broken down into four geographic categories:

- Currently planned and pending projects that are being or are planned to be developed under the existing Comprehensive Plan;
- Intensification or reuse development in Growth Districts and Corridors;
- Infill development in other already urban areas of the City;
- Development of expansion areas.

Currently planned and pending projects were taken from the City's Pending Projects list. These were assumed to occur. The remainder of the growth was distributed throughout the planning area for each of the scenarios based on the following general assumptions:

- Intensification/reuse within already urbanized areas has highest priority and development within expansion areas will occur only when it can help implement City
planning objectives. To this end, it was assumed that about 8,300 residential units would be built within areas of the proposed SOI that are designated for urban uses under any scenario. For the scenarios that include expansion areas, the remaining 2,700 units would be built within expansion areas.
- Within the intensification/reuse areas, the older core areas of the City - in particular, Downtown and the Ventura Avenue corridor - will continue to be a focal point of development and are likely to accommodate a large proportion of the residential and non-residential growth.
- The Downtown and Harbor Districts will generally develop in accordance with the Specific Plans being developed for those two areas.
- Expansion areas will be developed with a mix of residential and non-residential uses. The overall mix and density of development assumed to be developed is dictated by the amount of available land. For example, expansion areas with more acreage than necessary to accommodate projected growth will be assumed to have a high percentage of civic space (recreational facilities, etc.) or to remain partially in agriculture.

It is important to note that the assumptions used in the EIR analysis are not meant to serve as development caps, either in an overall sense or within individual districts/corridors or expansion areas. Rather, the growth assumptions are used for analytical purposes in order to provide information about the possible effects of growth through 2025. In reality, any of the EIR scenarios, if developed to full "buildout" could accommodate substantially more development than is assumed in this EIR and the overall amount and distribution of new development that will occur through 2025 could be somewhat different than that assumed herein.

Tables 2-5 and 2-6 show the projected distribution of residential and non-residential growth among the four geographic categories described above for each of the land use scenarios under consideration (more detailed breakdowns of assumed growth levels by district/corridor and expansion area are included in Appendix C). The non-residential growth estimates shown in Table 2-6 are based upon the job growth projections shown in Table 2-4; however, the building area estimates have been increased in some instances to account for specific projects considered likely to occur over the next 20 years.

Scenarios 2-6 would each accommodate an estimated 11,000 total units, while Scenario 1 (Intensification/Reuse Only) is assumed to accommodate less overall housing growth (8,300 units over the 20-year period). Based on City Council direction, it is assumed that intensification/reuse within already urbanized areas and areas already designated for urban development is the first priority. Therefore, the level of growth within these areas has been assumed to be a constant for all six scenarios, with the growth beyond that accommodated through intensification/reuse to be achieved in the expansion areas for Scenarios 2-6.

Based on the development potential of each growth district and corridor and direction from the community, CPAC, Planning Commission, and City Council on where growth in the community should be encouraged, growth was distributed among the various corridors and districts in the City. The bulk of new intensification/reuse residential development was

Table 2-6
Non-Residential Growth Distribution (square feet)

Growth Area	Scenario 1 (Intensification/ Reuse Only)		Scenarios 2-6	
	Commercial (Retail, Office, Hotel)	Industrial	Commercial (Retail, Office, Hotel)	Industrial
	355,000	435,000	355,000	435,000
Growth Districts/ Corridors	$2,055,000$	$1,800,000$	$2,055,000$	$2,325,000$
SOI/Other Infill	245,000	--	245,000	--
Expansion Areas	--	--	915,000	--
Total	$\mathbf{2 , 6 5 5 , 0 0 0}{ }^{\text {b }}$	$\mathbf{2 , 2 3 5 , 0 0 0}$	$\mathbf{3 , 5 7 0 , 0 0 0}{ }^{\text {b }}$	$\mathbf{2 , 7 6 0 , 0 0 0}$

All figures are rounded. See Appendix C for a detailed breakdown of growth projections by corridor, district, and expansion area.
${ }^{a}$ From City of Ventura Community Development Department, Pending Projects, July 2004.
${ }^{\text {b }}$ Includes 450,000 square feet of hotel development.
assumed to occur in the older urban core of the City. For example, Downtown and the Ventura Avenue, Main Street, and Thompson Boulevard corridors were assumed to accommodate a combined 2,800 new residences through 2025. This is about 67% of the total residential growth anticipated to occur within the districts and corridors. These older core areas are presumed to be a focal point of non-residential growth as well, though to a lesser degree. Industrial growth is anticipated to be focused primarily in the Arundell, North Avenue, and Upper North Avenue districts, which are assumed to accommodate a combined total of about 1.4-1.8 million square feet of industrial development (of the 2.2-2.7 million square feet of projected growth).
c. Assumed Expansion Area Development. Table 2-7 on page 2-34 summarizes the total amount of development assumed to be accommodated in the potential expansion areas under each of the five land use scenarios that include expansion areas in terms of residential units and square feet of non-residential development. The assumed overall level of growth within the expansion areas is based upon City Council direction and is the same for each scenario. The overall mix of uses has been adjusted from scenario to scenario based on available acreage. For Scenario 5, in particular, the intensity of development for the North Avenue area was greatly increased as compared to the other scenarios because substantially less overall acreage would be available under that scenario.

Table 2-8 on page 2-35 compares the overall acreage of various uses assumed for each scenario. The amount of acreage dedicated to most uses does not vary widely among the scenarios since the overall level of development is assumed to be the same for all scenarios. However, the amount of civic space varies widely, depending upon the overall acreage available. For Scenario 2, for example, it is assumed that up to about 937 acres (66% of the total acreage) would be open (civic) space because this scenario includes far more land than would be

City of Ventura

Table 2-7
Estimates of Expansion Area Residential and Non-Residential Development by Land Use Scenario

Expansion Area	Land Use Scenario									
	2		3		4		5		6	
	Residential (units)		Residential (units)	Commercial (square feet)						
North Avenue	180	20,000	320	90,000	320	90,000	1,000	330,000	320	90,000
Olivas	1,480	550,000	2,380	810,000	--	--	--	--	--	--
Serra	1,040	350,000	--	--	2,380	810,000	--	--	--	--
Western Cañada Larga	--	--	--	--	--	--	1,700	570,000	--	--
Poinsettia	--	--	--	--	--	--	--	--	2,380	810,000
Total	2,700	920,000	2,700	900,000	2,700	900,000	2,700	900,000	2,700	900,000

All estimates of units and square feet are rounded. The totals presented herein are estimates only to be used for analytical purposes.

Table 2-8
Assumed Expansion Area Acres by Use

Use	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Residential Low ${ }^{\text {a }}$	200	175	155	--	155
Residential Medium ${ }^{\text {b }}$	77	88	68	--	68
Residential High ${ }^{\text {c }}$	20	20	35	94	35
Office	38	38	38	36	38
Retail	12	12	12	11	12
Schools	110	70	50	--	40
Open Space ${ }^{\text {d }}$	937	565	121	32	113
Other ${ }^{\text {e }}$	29	17	14	3	12
Total	1,423	985	493	176	473

The totals presented herein are estimates only to be used for analytical purposes. Detailed breakdowns by expansion area are included in Appendix C.
${ }^{a}$ Up to 8 units per acre.
${ }^{\text {b }} 8$-20 units per acre.
${ }^{\text {c }}$ 20-36 units per acre
${ }^{d}$ Open space is expected to consist of civic space such as parks and other recreational facilities. For certain expansion areas, it is possible that some land could remain in agricultural production under the scenarios studied herein. However, for analytical purposes, it is assumed that land would be converted from agricultural use.
${ }^{e}$ Could include various non-recreational public facilities, such as fire stations.
necessary to accommodate projected growth. For Scenario 5, on the other hand, only about 32 acres of open space are assumed to be available because of the limited amount of available usable land under that scenario. It should also be noted that, under Scenario 5, all residential lands in both the North Avenue and Western Cañada areas would need to be developed with high density development in order to provide 2,700 residential units. Because such a scenario may not be realistic for these areas, an alternative with a more modest amount of growth within these areas is considered in Section 6.0, Alternatives.

A complete breakdown of the projected growth by district, corridor, and expansion area for each of the land use scenarios is provided in Appendix C. The projections included in this EIR are assumptions for analytical purposes only and provide a reasonable estimate of where and how much growth will occur in the City through 2025. The growth projections for each of the districts and corridors are well within the maximum theoretical buildout under the proposed land use designations. However, the actual locations and distribution of growth in the City over the next 20 years cannot be predicted with certainty.

2.5.6 Circulation Map

The proposed circulation system map is shown on Figure 2-9. For the most part, the map reflects the current roadway network. Possible new roadway links shown on the map include:

- Extension of Thille Street to connect Telephone Road to the current Thille Street terminus;
- Extension of Hill Road between Ralston Street and Moon Drive;
- Completion of A Street between Saticoy Avenue and Wells Road;

Additional new roads may be included if the North Avenue, Olivas, Serra, or Poinsettia expansion areas are developed at some point in the future. The new road links anticipated to accompany any possible future development in these areas are listed below.

Olivas Expansion Area

1. Mills Road extension to Harbor Boulevard (connection at Schooner Drive)
2. New collector between Mills Road and Telephone Road in the Olivas expansion area

Serra Expansion Area

1. North Bank Drive extension from Johnson Drive to Bristol Road
2. Kimball Road extension from Telephone Road to North Bank Drive
3. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Poinsettia Expansion Area

1. Johnson Drive extension from $S R 126$ to Foothill Road
2. Loma Vista Road extension from Victoria Avenue to Kimball Road
3. Woodland Street extension from Hill Road to Johnson Drive

Several additional conceptual links are included on the draft circulation map to facilitate City Council discussion. These road links are listed below and circled on Figure 2-9 as needing "additional policy direction."

- Floral Drive connection linking N. Ventura Avenue to existing residential neighborhoods on the east side of N. Ventura Avenue and possibly the North Avenue expansion area
- Two extensions of Cedar Street that would provide a continuous link between residential neighborhoods on the east side of Ventura Avenue and Poli Street
- Portola Road "flyover" connecting the Arundell district to neighborhoods north of U.S. 101
- Portola Road southerly extension to connect to Olivas Park Drive
- Olivas Park Drive extension to connect to Johnson Drive at U.S. 101
- Two extensions of North Bank Drive in the East Ventura/Saticoy area to Wells Road

Other than the two extensions of North Bank Drive, the above road links are not included in the traffic analysis in Section 4.12, Transportation and Circulation, and are not needed to address any identified circulation system deficiencies. However, they may serve other objectives relating to overall system connectivity. These road links are discussed in Chapter 5.0 of the traffic study in Appendix E.

City of Ventura
Existing
Future Widening
Design Classifications

Primary Secondary Collector *

 Arterial * Arterial **
Future Extension

\qquad
\qquad
Functional Classifications $B L V D$ BLVD BLVD avenue avenue avenue STREET STREET MAIN STREET
PRIMARY ARTERIAL - A six or more lane roadway designed to expedit hrough traffic with intermediate access to freways other expedite rterials, secondary arterials, and collector streets. Access to restricted. * SECONDARY ARTERIAL - A four lane roadway that provides access to some access to local roads and major traffic-generating land uses.
*** COLLECTOR - A two lane roadway that provides both land access and

* COLLECTOR - A two lane roadway hat provides bot land access and well as connects the local areas with the arterial street system.
santaciaraRiver
NithAdditional Policy Direction
- --- Planning Boundary

2.6 DISCRETIONARY ACTIONS

With recommendations from the Planning Commission, the City of Ventura City Council will need to take the following discretionary actions in conjunction with the proposed 2005 General Plan:

- Certification of the Final EIR on the 2005 General Plan
- Approval of the proposed 2005 General Plan
- Approval of the 2005 Local Coastal Program Amendment (LCPA), including the revised Land Use Plan (LUP) component of the Local Coastal Program (LCP)

The City is not seeking annexation of lands or adjustments to the SOI at this time. However, implementation of the 2005 General Plan may require future approval of adjustments to the City's SOI, as described above. Annexations and SOI adjustments would be sought as appropriate at such time as developments are proposed for the areas in question. Any adjustments to the SOI will require approval from the Ventura LAFCO.

Because a portion of the City of Ventura is within the Coastal Zone, the 2005 General Plan also involves an amendment to the City's Local Coastal Program (LCP). The LCP update will require approval by the California Coastal Commission.

The California Department of Conservation, Division of Mines and Geology, will review the plans and policies relating to seismic safety for compliance with state regulations.

3.0 ENVIRONMENTAL SETTING

This section provides a general overview of the environmental setting for the City of Ventura. More detailed descriptions of the setting with respect to specific environmental issues can be found in the setting discussions for individual issue areas in Section 4.0, Environmental Impact Analysis.

3.1 REGIONAL OVERVIEW

Ventura is located in western Ventura County, about 60 miles northwest of Los Angeles and 30 miles southeast of Santa Barbara. The County is topographically diverse, with mountains, rich agricultural valleys, and distinct urban areas, all within close proximity of the Pacific Ocean. The Mediterranean climate of the region and coastal influence produce moderate temperatures year round, with rainfall concentrated in the winter months. The region is subject to various natural hazards, including earthquakes, landslides, flooding, and wildfires.

3.2 PHYSICAL SETTING

3.2.1 Geography and Topography

Ventura is situated between the Pacific Ocean, the Ventura foothills, and the Ventura and Santa Clara rivers. The City is located at the western edge of the Oxnard Plain, an alluvial plain that covers over 200 square miles in the southern portion of Ventura County. Much of the City is on the relatively flat coastal plain, but steeply sloped hills abut the northern portion of the community. The western portion of the City stretches north along the Ventura River and is characterized by a narrow valley with steeply sloped areas on both sides.

Drainage throughout the Planning Area is generally to the southwest toward the Pacific Ocean. The older parts of the City near the coast are drained by a series of barrancas that drain directly to the Pacific Ocean. The eastern portion of the community generally drains toward the Santa Clara River, while West Ventura generally drains toward the Ventura Rivers. Both the Santa Clara and Ventura rivers are fed by a series of smaller creeks and barrancas, some of which have been channelized and others of which remain in a relatively natural condition.

Similar to much of southern California, Ventura is located within a seismically active region and is crossed by several potentially active fault systems. Major fault zones in the Planning Area include the Ventura-Foothill, Country Club, Oak Ridge, McGrath, and Red Mountain faults.

3.2.2 Climate

Ventura is located in the South Central Coast Air Basin, which includes all of San Luis Obispo, Santa Barbara, and Ventura counties. The climate of Ventura County and all of the SCCAB is strongly influenced by its proximity to the Pacific Ocean and the location of the semi-permanent high pressure cell in the northeastern Pacific. The area is characterized by warm, dry summers and cool winters with occasional rainy periods.

Daytime summer temperatures in the area average in the high 70s to the low 90s. Nighttime low temperatures during the summer are typically in the high 50 s to low 60 s, while the winter high temperatures tend to be in the 60 s. Winter low temperatures are in the 40 s. Annual average rainfall in Ventura ranges from about 14 to 16 inches, the majority of which falls in winter months.

3.2.3 Natural Resources

The Ventura Planning Area has a wide variety of landscapes and seascapes, including natural, agricultural, and urban components. The hills of the Transverse Range rise above Ventura about 1,200 feet, providing a dramatic visual backdrop and scenic vistas of the City, ocean, Ventura River Valley, and Oxnard coastal plain. The hillside area covers about 4,000 acres of steep slopes, incised drainages, ridge tops, and narrow flat valleys. Much of the foothills have been used for grazing in the past; and grazing operations remain in some locations. Vegetation and habitat includes annual grasses with scattered pockets of coastal sage scrub and remnant riparian corridors.

The well-developed riparian communities found along the Ventura and Santa Clara Rivers are dominated primarily by Arroyo willow, with occasional trees, including Western sycamore, cottonwoods, and white elder. The area now covered by riparian vegetation represents a small remnant of the historic riparian zone, and recent flooding has temporarily denuded some areas. A more diverse, extensive and native plant dominated habitat has been lost due to permanent development and disturbance.

Coastal Freshwater Marshes are found along the upper reaches of the Santa Clara and Ventura Rivers where saltwater does not intrude at high tide. Freshwater marshes are also found at the Alessandro Lagoon, the mouth of the San Jon Barranca, and at the end of the Kalorama Canyon Drain. The marshes are very high in biological productivity and scarce in the region. The habitat areas at the mouth of the Ventura and Santa Clara Rivers and the Alessandro Lagoon are used as resting and feeding areas for migratory and residential shorebirds and waterfowl, and to a lesser degree, by resident terrestrial species.

The Planning Area includes about seven miles of beach. Although not owned entirely by the City, the waterfront open space provides valuable recreational opportunities for Ventura residents and visitors. Scarce dune habitat and beach vegetation provide some nesting, foraging, and mating grounds for wildlife. Exposure to the elements and human intrusion has diminished the habitat value of the beach area, but ongoing rehabilitation and conservation programs aim to enhance the beach area.

3.3 TRANSPORTATION

Regional access to Ventura is provided by a series of freeways and the Union Pacific Railroad. U.S. Highway 101 is the main regional transportation artery, providing connections to points both north and south along the Pacific Coast. State Route 126 is an east-west running highway that connects Ventura to the Santa Clara River Valley, the City of Santa Clarita, and Interstate 5. State Route 33 is a north-south running highway that connects U.S. 101 to the Ojai Valley. The railroad connects Ventura to points north and south, providing both freight and passenger service.

City of Ventura

3.4 DEMOGRAPHICS

Tables 3-1 and 3-2 show population and housing trends from 2000-2005. As indicated, Ventura's 2005 population is estimated at 106,096. The population has grown by an estimated 5,180 persons since 2000 . This represents an average annual growth rate of 1.00% over the 5 year period. About 97.5% of the City's residents reside in households, with the remainder in group quarters.

Table 3-1
2000 and 2005 Population Estimates

Year	Population		
	Household	Group Quarter	Total
2000	98,546	2,370	100,916
2005	103,435	2,661	106,096

Source: California Department of Finance, 2005. (http://www.dof.ca.gov/HTML/DEMOGRAP/E-5a.xIs)
2004 data are used as the baseline for the analysis contained throughout this EIR. The 2005 data have been provided for informational purposes.

Table 3-2
2000 and 2005 Housing Estimates

Year	Housing Units			
	Detached Single Family	Attached Multi-Family	Mobile Homes	Total
2000	22,238	14,942	2,623	39,803
2005	23,110	15,410	2,623	41,143

Source: California Department of Finance, 2005.
(http://www.dof.ca.gov/HTML/DEMOGRAP/E-5a.xls)
2004 data are used as the baseline for the analysis contained throughout this EIR. The 2005 data have been provided for informational purposes.

Ventura's 2005 housing stock is estimated at 41,143 units. An estimated 1,340 units have been added since 2000, which represents an average annual growth rate of about 0.66% over the 5 year period. As of 2005, single family residences make up about 56% of the City's housing stock, while 38% are attached multiple family residences and 6% are mobile homes. The housing vacancy rate has remained steady over the past five years and is estimated at 3.21% (California Department of Finance, 2005).

4.0 ENVIRONMENTAL IMPACT ANALYSIS

This section discusses the potentially significant environmental impacts associated with each of the land use scenarios described in Section 2.0, Project Description. A "significant effect" is defined by the CEQA Guidelines (Section 15382) as "a substantial, or potentially substantial, adverse change in any of the physical conditions within the area affected by the project including land, air, water, minerals, flora, fauna, ambient noise, and objects of historic or aesthetic significance. An economic or social change by itself shall not be considered a significant effect on the environment, but may be considered in determining whether the physical change is significant."

The assessment of each issue area begins with a description of the setting for the particular issue. The setting describes current conditions within the Planning Area and, as appropriate, the regulatory framework under which that specific issue area is regulated at the federal, state, and/or local level.

Following the setting is the analysis of the potential impacts associated with each of the land use scenarios. Within the impact analysis, the first subsection identifies the methodologies used and the "significance thresholds." Significance thresholds are those criteria adopted by the City or other agencies, which are universally recognized, or are developed specifically for this analysis to determine whether potential effects are significant. The next subsection describes each impact of the proposed project, mitigation measures for significant impacts, and the level of significance after mitigation. At the beginning of each impact discussion is a matrix that provides a summary comparison of the impacts of each scenario. Following the summary matrix is a detailed discussion of impacts. Each effect under consideration for an issue area is separately listed in bold text, with the discussion of the effect and its significance following. Each bolded impact listing also contains a statement of the significance determination for the environmental impact, as follows:

Class I, Unavoidably Significant: An impact that cannot be reduced to below the threshold level given reasonably available and feasible mitigation measures. Such an impact requires a Statement of Overriding Considerations to be issued if the project is approved per Section 15093 of the CEQA Guidelines.

Class II, Significant but Mitigable: An impact that can be reduced to below the threshold level given reasonably available and feasible mitigation measures. Such an impact requires findings to be made under Section 15091 of the CEQA Guidelines.

Class III, Less than Significant: An impact that may be adverse, but does not exceed the threshold levels and does not require mitigation measures. However, mitigation measures that could further lessen the environmental effect may be suggested if readily available and easily achievable.

Class IV, No Impact or Beneficial: An instance in which the project would result in no physical change or an effect that would reduce existing environmental problems or hazards.

When appropriate, the impact analysis describes the impacts of each land use scenario individually. When the impacts of the scenarios are the same or are more easily understood when the scenarios are discussed together, the discussion of the impacts of the three phases consists of a single narrative.

Following each environmental effect discussion is a list of recommended mitigation measures (if required) and the residual effects or level of significance remaining after the implementation of the measures. Because this is a program level document, the mitigation measures consist of new policies and actions that can be added to the General Plan to address potential impacts at a programmatic level. Individual developments that could be accommodated under any of the land use scenarios may require specific mitigation that would be incorporated as part of the subsequent environmental review of the individual project. In those cases where the mitigation measure for an impact could have a significant environmental impact in another issue area, this impact is discussed as a residual effect.

It should be noted that this EIR does not include a separate discussion of cumulative effects because projected growth under the 2005 General Plan constitutes cumulative development; therefore, project and cumulative impacts are one and the same. For issues where cumulative growth in the region would contribute to overall impacts (traffic and noise, for instance), the effects of regional growth have been factored into the analysis of project impacts.

4.1 AESTHETICS and COMMUNITY DESIGN

This section analyzes the 2005 General Plan's potential impacts with respect to aesthetics and community design. Specifically, changes in visual character, impacts to viewsheds, and light and glare are discussed.

4.1.1 Setting

a. Visual Character. The Ventura Planning Area has a wide variety of landscapes and seascapes, including natural, agricultural, and urban components. The major visual components of the community are described below.

Hillsides. The northern portion of the Planning Area consists of the rolling hills and steep mountains of the coastal range. West of the Ventura River, hills form the western and northern boundaries of the Planning Area. Mesas and steep bluffs provide variation and create visual interest. The greatest diversity in the hillside area can be found in and near Harmon and Hall Canyons, where slopes can exceed 60% and the canyons form deep cuts in the landscape. The remaining hillside areas have slopes ranging from 20% to 60%, with scattered mesas and rolling terrain. In addition to providing distinctive views from the urban core looking north, the hillsides provide residents and visitors panoramic views of the City and the ocean. Grant Park affords the best public access to vista points.

The hillsides dominate much of the city landscape and can be seen from throughout the Planning Area. The visual quality of the hillsides is a function of their open space, partially agricultural character, and topographic diversity. The visual condition of the hillsides varies widely depending on whether and how an area has been developed (residential or industrial) and how visible it is. The hills west of the Ventura River have a significant amount of oil production activity that is not screened and is highly visible from portions of West Ventura, including State Route 33. The hillside areas above the Downtown and Midtown communities have substantial residential development, which has significantly altered their visual character. Farther east, the hillsides include a mix of residential communities (Skyline, Ondulando), orchards, and open space.

Shorelines. Ventura's beaches begin at the mouth of the Santa Clara River and continue in a northwesterly direction to Promenade Park at the southern terminus of Figueroa Street. Beyond this point, the beaches become rocky, providing a variation in the visual character of the coastline. The coastline and offshore views exhibit extensive human-made alterations in the form of the Ventura Pier, Ventura Harbor, and several breakwaters along the shore. The coastline offers clear views of the Channel Islands and a distant open horizon that area residents value highly. Most of the area directly inland from the beaches from the Ventura Marina to San Buenaventura State Beach Park is densely developed. This limits travelers' seashore vistas to views along Harbor Boulevard from the state beach to the Holiday Inn, and from U.S. Highway 101, which is elevated in this area. Public views of the shore are also available from state beaches. The Promenade that runs parallel to the shore from the pier to Figueroa Street is a prime public view corridor developed by the City and State to take advantage of the seashore as a scenic resource.

Rivers and Barrancas. The Ventura River and its associated floodplain form a distinctive landmark along the western boundary of the City as it parallels the State Route 33 for several miles. Views of the river from the highway are limited by the levee between the river and the freeway.

The area where the Ventura River flows into the Pacific Ocean offers unique scenic opportunities with changes in vegetation as the floodplain freshwater meets seawater. This estuary provides a distinctive view for pedestrians and bicyclists using the path that parallels the river and for Amtrak travelers crossing the river. Motorists also have an opportunity to see this vista from U.S. 101. Looking north, travelers see the densely vegetated Ventura River and the grass-covered hills when entering or leaving the City.

The Santa Clara River forms the southeastern boundary of the City. The river and adjacent floodplain serve as important visual elements in creating a scenic approach to the City from the south. The river is nearly dry most of the year, exposing an expansive rock and sand streambed interspersed with riparian vegetation. Aside from the visual opportunities provided from the City circulation system, the Santa Clara River is visible only to residents in the southeastern portion of the City along the northern riverbank and to some hillside residents. Human-made features such as sand and gravel operations, maintenance roads, levees, and utility lines are all present, but do not dominate views of the Santa Clara River.

The Planning Area contains several barrancas of varying depth and width that add another visual dimension to the landscape. In their natural state, barrancas are often densely vegetated and provide a pleasant contrast to surrounding urban or undeveloped areas because of their lush green appearance. Several wooded barrancas in the Planning Area enhance the surrounding neighborhoods.

Agricultural Lands and Windrows. Agricultural activity is prevalent in portions of East and West Ventura. Orchards and irrigated row crops create distinctive colored patterns that contrast sharply with the urban landscape and with the wheat-colored grasslands of the hillsides from April through November. Large parcels of farmland in East Ventura are interspersed with suburban residential developments, providing a visual break from the suburban land use pattern.

Windrows are rows of trees planted adjacent to agricultural lands to serve as windbreaks. They function as visual accompaniments to the various agricultural parcels throughout the Planning Area. Tree windrows also serve as reference points or demarcation lines within the community. Finally, they preserve a sense of the local heritage and contribute to the aesthetics of the City.
b. View Corridors. Principal travel corridors are important to an analysis of aesthetic features because they define the vantage points for the largest number of views. The following routes in the Planning Area have particular scenic value:

- State Route 33
- State Route 126
- U.S. Highway 101
- Anchors Way
- Brakey Road
- Fairgrounds Loop
- Ferro Drive
- Figueroa Street
- Harbor Boulevard
- Main Street
- Navigator Drive
- North Bank Drive
- Poli Street/Foothill Road
- Olivas Park Drive
- Schooner Drive
- Spinnaker Drive
- Summit Drive
- Telegraph Road east of Victoria Avenue
- Victoria Avenue South of Highway 101
- Wells Road

Railroads and Roadways that serve as important view corridors are shown on Figure 4.1-1 and described below.

State Route 33. State Route 33 is the primary route linking Ventura to the Ojai Valley to the north. This highway runs along the Ventura River at the western boundary of the City. Travelers entering or leaving the City along this route have views of the hillsides. Where State Route 33 meets U.S. 101, views of the Pacific Ocean and beaches are available.
U.S. Highway 101. U.S. 101 is the major public viewing corridor traversing the City in a northwest/southeast direction. Within the City, U.S. 101 generally runs parallel to the shoreline with foreground views to the east of the City and background views of the hillsides behind the City. To the west, views of the ocean, beaches, and harbor are intermittent along the highway.

State Route 126. State Route 126, also known as the Santa Paula Freeway, is the primary route linking Ventura to Santa Paula and points farther east. The highway runs through the eastern portion of the City and, traveling east, it offers background views of the hillsides behind the City.

Brakey, Summit, and Ferro Drives. These roads are within Grant Park and offer views of the hillsides, Pacific Ocean, and the City.

Fairgrounds Loop. The road encircles the Ventura County Fairgrounds. Portions of the road offer views of Surfers Point Park and the Pacific Ocean.

Figueroa Street. This road connects the shoreline to the downtown in the northern portion of the City. Traveling south on this road offers views of the Pacific Ocean and shoreline. Northbound travelers can view the hillsides as a background to the City.

Harbor Boulevard. Harbor Boulevard runs parallel to U.S. 101 in the western portion of the City and along the harbor area in the southwestern portion of the City. In the west, there are views of the San Buenaventura State Beach, the Ventura Pier, and the Pacific Ocean. In the southwest, Harbor Boulevard offers views of the Ventura Harbor and the ocean.

Main Street. Main Street links neighborhoods and districts within the City together, running through the Downtown and Midtown areas. Views of historic buildings, parks, and the surrounding hillsides are intermittent along this corridor.

Navigator Drive, Spinnaker Drive, Schooner Drive, and Anchors Way. These roads, adjacent to the Ventura Harbor, offer views of the Pacific Ocean, the Harbor itself, and marine related activities.

North Bank Drive. North Bank Drive crosses through suburban residential neighborhoods in East Ventura along the north bank of the Santa Clara River. Portions of North Bank Drive offer views of agricultural activity and the Santa Clara River.

Poli Street/Foothill Road. Poli Street runs through the downtown past the historic City Hall and the San Buenaventura Mission. Foothill Road, in many places, is the boundary of urban development, separating it from the hillsides to the north. This corridor has aesthetic value because of the views of historic structures and unobstructed views of the hillsides.

Olivas Park Drive. Olivas Park Drive connects the Harbor area to the southern portion of the City to the east. The road travels through the agricultural area between the southern edge of the City and the Santa Clara River and provides views of this area as well as the hillsides as a backdrop to the City.

Telegraph Road east of Victoria Avenue. East of Victoria Avenue, Telegraph Road crosses through a mix of agricultural and residential suburban areas. Portions of this road offer views of the foothills to the north.

Victoria Avenue south of U.S. 101. This section of Victoria Avenue crosses the Santa Clara River, and continues south to Oxnard. This road offers views of agricultural areas in the south and the foothills north of the City.

Wells Road. Wells Road is in the eastern part of the City and runs between the hills to the north and SR 126. This road provides views of the hills and agriculture areas on the east side of the road at the base of the hills.

Union Pacific Rail Corridor. The Union Pacific Railroad (UPRR) runs parallel to U.S 101, crossing over the highway in the northern portion of the City. Currently, the rail line is used for both freight and interstate passenger service. Views of the City, surrounding hillsides, and the Pacific Ocean are intermittent along the corridor.
c. Districts and Corridors. The proposed land use map identifies a number of districts and corridors that are anticipated to be the focus of land intensification and reuse through 2025. These districts and corridors are shown on Figures 2-3 through 2-8 in Section 2.0, Project Description. The general visual characteristics of these districts and corridors are described below.

Districts. A neighborhood or parts of neighborhoods can form a district. Districts consist of streets or areas emphasizing specific types of activities. A corridor may also be district, such as when a major shopping avenue runs between adjoining neighborhoods. The following districts are depicted on the General Plan Diagram:

1. Upper North Avenue. This area, located primarily along the west side of SR 33 and outside the current City limits, includes an educational institute and a mix of industrial uses, including an abandoned oil refinery. It is a transitional area between the more urban areas to the south and more rural areas to the north. The area includes a number of vacant properties. The Ventura River and hills to the west are key visual features.
2. North Avenue. A mix of oilfield, industrial, and residential development characterizes this district, which is located north of the current City limits and east of SR 33. The area includes a number of vacant properties and abandoned businesses, with relatively low visual quality.

Source: City of San Buenaventura and Rincon Consultants, Inc., 2005.
3. Downtown. This is the most intensely developed area of the City and its central core. Downtown is characterized by a mix of retail, office, and residential uses, with some industrial uses present in the west end of the district. The area has seen intensification of both commercial and residential use, and this pattern is anticipated to continue.
4. Pacific View Mall. This district encompasses an enclosed shopping mall and adjacent commercial uses along Telegraph and Mills Roads. The area is a focal point of commercial activity in the City as well as a transit hub.
5. Harbor. This district includes the Ventura Harbor Village, other visitor-serving uses, and various harbor-related facilities, as specified in the Harbor Master Plan. The area is planned for intensification of use, with new residential, hotel, and recreational developments intended to complement the current uses in the area and facilitate greater use of the Harbor as a community amenity.
6. Arundell. This is an industrial district characterized by a mix of primarily small-scale industrial uses, business park development, and limited retail services. Buildings generally emphasize function over form. Areas of agricultural activity remain and are highly visible from U.S. 101. Suburbanscaled retail development is located in the northern portion of this district along the south side of Telephone Road.
7. North Bank. This district includes a mix of automobile retail and industrial/business park uses. The auto center and other uses within this area are highly visible from U.S. 101.
8. Montalvo. This district includes a mix of older industrial and generally heavier commercial uses. The area, highly visible to U.S. 101 northbound travelers, exhibits relatively low visual quality.
9. Saticoy. This district contains a mix of older industrial and agricultural operations, as well as a small residential area. Much of the area east of Route 118 is in agriculture, and there is a neighborhood center that anchors the north end of this district.

Corridors. Corridors often form boundaries, as well as connections, between neighborhoods and/or districts. Corridors frequently encompass major access routes, especially ones with commercial destinations. Corridors also can incorporate parks or natural features such as streams or canyons. The following corridors are depicted on the General Plan Diagram:
A. Ventura Avenue. A mix of older, small-scale commercial, industrial, and residential uses characterizes this corridor. The corridor retains a pedestrian scale. The corridor has been undergoing visual improvements over the past several years (newer developments, removal of overhead power lines), though a large number of buildings that are either vacant or lacking maintenance remain.
B. Main Street. This is primarily a commerce-oriented corridor with a limited amount of mixed residential/commercial development. Development consists
of one- to two-story buildings at a relatively urban intensity. Buildings are generally well-maintained throughout the corridor, though landscaping is sparse in some areas.
C. Thompson Boulevard. This is primarily a commerce-oriented corridor with a limited amount of mixed residential/commercial development. The intensity of development is lower than along Main Street, with a high number of auto dealerships and large parking areas.
D. Loma Vista Road. This corridor is characterized by a mix of commercial and residential development at varying scales, with a high concentration of medical facilities, including two hospitals. Other than the hospitals, development consists primarily of one- and two-story buildings.
E. Telegraph Road. This corridor is characterized primarily by suburban-scale commercial development, with some single-family and multifamily residences. Some portions of this corridor are characterized by "zero lot line" development with on-street parking. Other developments are more suburban scaled.
F. Victoria Avenue. This corridor consists of a wide arterial roadway that accommodates high traffic volumes at relatively high speeds. It is primarily characterized by newer large-scale, suburban shopping centers and other retail development, though single-family residential development is also present on the east side in some areas.
G. Johnson Drive. This is a relatively high-speed travel corridor that connects East Ventura to U.S. 101. The corridor is characterized by suburban-scale retail development. A number of vacant parcels are present near the U.S. 101 interchange.
H. Wells Road. A mix of older industrial uses and newer suburban commercial and residential development characterizes this corridor. Over the past several years, this area has been undergoing a transition toward a mix of suburban-scale residential and retail uses.
d. Light and Glare. The majority of the Planning Area is urban and includes outdoor lighting associated with development. Light pollution is present in and around the City, particularly in the vicinity of development, but it is still fairly localized. Nighttime illumination is currently generated by streetlights and vehicular lights associated with roadways, as well as housing developments. Other prominent sources of light within the City include the fairgrounds, parks with sports fields, and the auto center along U.S. 101, where there is a concentration of auto sales businesses. Glare is created by exterior building materials, surface paving materials, and vehicles traveling or parked on roads and driveways. Any highly reflective facade materials are of particular concern, as buildings reflect sunlight.
e. Regulatory Setting. Development in the City is subject to the following regulatory programs aimed in part at the preservation of the community's visual character.

Zoning Ordinance. The Zoning Ordinance implements the 1989 Comprehensive Plan by establishing setback, parking and sign standards, building height limits, hillside development restrictions, and building densities.

Hillside Management Program. The Hillside Management Program sets forth a slope/density formula to be used in determining the appropriate density of development in the Hillside Area. In addition, this land use designation requires that any proposed project meet the objectives, policies, and submittal requirements contained in the Hillside Management Program.

SOAR Ordinance. The City's Save Our Agricultural Resources (SOAR) Ordinance, adopted by the voters in 1995, prevents changes in specified land use designation unless the land use change is approved by a majority of voters. A number of agricultural and open space areas in East Ventura and West Ventura, including all of the North Avenue, Olivas, and Serra, Poinsettia expansion areas and a portion of the Western Cañada Larga expansion area are subject to the SOAR Ordinance.

4.1.2 Impact Analysis

a. Methodology and Significance Thresholds. The assessment of aesthetic impacts involves qualitative analysis that is inherently subjective in nature. Different viewers react to viewsheds and aesthetic conditions differently. This evaluation measures the existing visual environment against the proposed action, analyzing the nature of the anticipated change.

An impact is considered significant if year 2025 buildout development under a proposed General Plan land use scenario would result in one or more of the following conditions, which are based upon the environmental checklist in Appendix G of the CEQA Guidelines:

- A substantial adverse effect on a scenic vista
- Substantial damage to scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings
- Substantial degradation of the existing visual character of quality of the community
- New sources of light or glare that would adversely affect day or nighttime views
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the six 2005 General Plan land use scenarios. A discussion of the impacts for each scenario follows.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Visual Character Changes (Impact AES-1)	Intensification and reuse would generally enhance visual character by adding appropriately scaled infill development and would reduce pressure for development at the City's periphery. However, the conversion of agricultural lands in the Saticoy and Arundell areas would transform the character of these areas. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts would be similar to Scenario 1. Possible future conversion of the North Avenue, Olivas, and Serra expansion areas would further the transformation toward a more urban community. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts would be similar to Scenario 1. Possible future conversion of the North Avenue and Olivas expansion areas would further the transformation toward a more urban community. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts would be similar to Scenario 1. Possible future conversion of the North Avenue and Serra expansion areas would further the transformation toward a more urban community. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts would be similar to Scenario 1. Possible future conversion of the North Avenue and Western Cañada Larga expansion areas would further the transformation toward a more urban community. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts would be similar to Scenario 1. Possible future conversion of the North Avenue and Poinsettia expansion areas would further the transformation toward a more urban community. Impacts are Class I, unavoidably significant.
Alteration of Views (Impact AES-2)	Intensification/reuse development generally would not substantially alter public views and may enhance views from some locations. However, the conversion of highly visible agricultural lands along U.S. 101 and SR 126 would alter views from these major view corridors. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts similar to Scenario 1. Possible future development of the North Avenue, Olivas, and Serra areas would alter views from U.S. 101, SR 33, Harbor Boulevard, Union Pacific Railroad, Telephone Road, and Bristol Road. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts similar to Scenario 1. Possible future development of the North Avenue and Olivas areas would alter views from U.S. 101, SR 33, Harbor Boulevard, and Union Pacific Railroad. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts similar to Scenario 1. Possible future development of the North Avenue and Serra areas would alter views from SR 33, Telephone Road, and Bristol Road. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts similar to Scenario 1. Possible future development of the North Avenue and Western Cañada Larga areas would alter views from SR 33. Impacts are Class I, unavoidably significant.	Intensification/reuse impacts similar to Scenario 1. Possible future development of the North Avenue and Poinsettia areas would alter views from SR 33, SR 126, Telegraph Road, and Foothill Road. Impacts are Class I, unavoidably significant.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Light and Glare (Impact AES-3)	Intensification/reuse would incrementally increase lighting levels in districts and corridors and introduce residential development in heavily lighted areas. Implementation of General Plan actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Possible future expansion area development would increase overall light levels, but would not significantly affect sensitive uses. Implementation of General Plan actions reduces impacts to Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.

> | Impact AES-1 | $\begin{array}{l}\text { All six General Plan land use scenarios emphasize } \\ \text { intensification and reuse of already urbanized lands and } \\ \text { would therefore create a more densely settled, urban } \\ \text { environment in some areas of the City. The reuse of } \\ \text { urbanized areas in lieu of further growth at the City's } \\ \text { periphery would be expected to generally enhance the visual } \\ \text { character of the community and minimize impacts to existing }\end{array}$ |
| :--- | :--- |
| | natural and agricultural areas and is generally considered a |
| beneficial effect. Nevertheless, all of the scenarios would | |
| change the visual character of the community and would | |
| accommodate the conversion of some agricultural lands in the | |
| | Planning Area to urban uses. This change in visual character |
| is considered Class I, unavoidably significant, under any of the | |
| | six scenarios. |

All of the six land use scenarios under consideration emphasize intensification and reuse of already developed areas of the Planning Area prior to developing agricultural lands or other areas at the urban fringe. The intensification of land use anticipated to occur as the City grows over time may be considered an adverse effect to some viewers due to the presence of larger and taller buildings and the corresponding reduction in open land within the City's urban framework. However, the reuse and intensification of already developed areas would be expected to reduce the pressure for development at the City's periphery, thus minimizing the potential for the loss of open lands surrounding the City. Notably, by seeking to remove the hillside areas above the City from the SOI, the City indicates no intention to seek or accommodate development of those areas, thus largely preserving these important visual features of the City in their current undeveloped condition. Areas where hillside development could occur would be limited to a small area above Poli Street/Foothill Road that is within the City limits. This area, known as Mariano Ranch, is not highly visible from any public view area. The focus on intensification and reuse would also be expected to minimize pressure to develop agricultural properties within the Planning Area.

Much of the intensification and reuse that would be anticipated under any of the land use scenarios would also generally be expected to enhance the visual character of the community. In particular, it is anticipated that future developments in the West Ventura area, Downtown, and the Midtown travel corridors (Main Street and Telegraph Road) would enhance the visual quality of these areas by adding attractive infill developments with new landscaping and other amenities. Figure 4.1-2 shows examples of the types of infill development projects anticipated to occur under any scenario.

The 2005 General Plan includes the following policies and actions intended to enhance the appearance of the community.

Policy 3A Sustain and complement cherished community characteristics.

Photo 1 - Casa de Anza Apartment building on Ventura Avenue, with a ground floor library and apartments above. This is the type of intensification/ reuse project anticipated for the Ventura Avenue corridor.

Photo 2 - New mixed-use development on Poli Street in Downtown Ventura, with ground floor commercial uses and residences above. This project typifies the intensity and style of development anticipated for the Downtown district.

Action 3.2	Enhance the appearance of districts, corridors, and gateways (including views from highways) through controls on building placement, design elements, and signage.
Action 3.5	Establish land development incentives to upgrade the appearance of poorly maintained or otherwise unattractive sites, and enforce existing land maintenance regulations.
Policy 3C	Maximize use of land in the city before considering expansion.
Action 3.14Utilize infill, to the extent possible, development to accommodate the targeted number and type of housing units described in the Housing Element.	
Action 3.16 \quadRenew and modify greenbelt agreements as necessary to direct development to already urbanized areas.	
Action 3.17Continue to support the Guidelines for Orderly Development as a means of implementing the General Plan, and encourage adherence to these Guidelines by all the cities, the County of Ventura, and the Local Agency Formation Commission (LAFCO); and work with other nearby cities and agencies to avoid urban sprawl and preserve the rural character in areas outside the urban edge.	
Policy 3EEnsure the appropriateness of urban form through modified development review.	
Action 3.23Develop and adopt a form-based Development Code that emphasizes pedestrian orientation, integration of land uses, treatment of streetscapes as community living space, and environmentally sensitive building design and operation.	

Although the effect of much of intensification and reuse would generally be beneficial, any of the six scenarios would allow for conversion of agricultural lands in the Planning Area to urban uses. Many viewers would see this change in visual character as a negative aesthetic effect; therefore, impacts are considered significant for any of the scenarios. A discussion of the specific impacts of each scenario follows.

Scenario 1 - Intensification/Reuse Only

This scenario would emphasize land intensification and reuse within the nine districts and eight corridors described in the Setting. Though any of the districts and corridors could theoretically undergo major intensification under the land use plan for this scenario, it is anticipated that the major growth areas would include the Ventura Avenue corridor, Downtown, and the Midtown area (Main Street and Thompson Boulevard corridors and the Pacific View Mall district). Intensification within these areas would create a more urban appearance, but would be expected to generally enhance the character of the areas by adding appropriately scaled infill development that emphasizes mixed use, neighborhood character, and walkability. Actions 3.2 and 3.5 would facilitate the general improvement in the visual character of community districts and corridors. Nevertheless, the visual character of portions of the Planning Area would change to that of a more intensely developed, urban community.

The North Avenue, Upper North Avenue, Arundell, and North Bank districts would accommodate the majority of future industrial/business park development. New development would generally enhance the visual character of the North Avenue and Upper North Avenue districts by replacing abandoned and deteriorating oil-related businesses (including the Petrochem refinery) with new industrial development. Such new development would have a less dramatic effect on the visual character of the Arundell and North Bank districts, but would be expected to generally enhance visual conditions in these areas.

Though the visual effects of implementing this scenario are generally expected to be positive, Scenario 1 would accommodate the conversion of a number of agricultural properties within Planning Area to urban uses. These areas, discussed in detail in Section 4.2, Agricultural Resources, include more than 300 acres of farmland in the Saticoy area, the 75-acre McGrath property in the Arundell district, and a 25-acre agricultural parcel near the U.S. 101/SR 126 interchange. Several agricultural parcels are highly visible from U.S. 101 and/or SR 126 and provide visual relief to both freeway travelers and area residents. The visual change associated with conversion is not necessarily adverse and many of the agricultural lands are largely or completely surrounded by urban land uses. Nevertheless, the complete change in character of these areas is considered a significant visual impact.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

This scenario would accommodate all of the visual changes that could occur under Scenario 1. This scenario also includes three potential expansion areas - North Avenue, Olivas, and Serra that potentially could be developed in the future. All three of the expansion areas are currently used for agricultural production. Thus, development of these areas with a mix of residential, retail, and office uses would involve a complete transformation of the areas' visual character. Photographs of the three areas are shown on Figures 4.1-3 through 4.1-5. The North Avenue area is highly visible from SR 126, while portions of the Olivas area are highly visible to both northbound and southbound travelers on U.S. 101 as well as travelers on Harbor Boulevard.

The Olivas area also includes large eucalyptus windrows along Harbor Boulevard that could potentially be removed if the area is developed. The Serra area is not highly visible from any freeway, but can be readily viewed from Telephone Road, Bristol Road, and a number of private residences surrounding the area.

The impact upon the visual character of the expansion areas is considered significant due to the complete change in visual character that could occur in any of the areas. Implementation of General Plan Action 1.21 would reduce the impact of this visual change, particularly for the Olivas area, by requiring the preservation of healthy tree windrows and incorporation of trees into the design of new developments. It should also be noted that this scenario includes substantially more land (1,423 acres) than would be needed to accommodate the level of growth anticipated through 2025 under this scenario. Therefore, it is likely that either: (1) not all of the expansion areas would actually be converted within the timeframe of the 2005 General Plan; or (2) any development could include wide areas of open space that could either allow portions of the areas to remain in agriculture or allow for large areas of civic spaces (parks) that would soften the visual effects of any future development. It should again be noted that the SOAR Ordinance would require a public vote approving a change in land use designation for any of the expansion areas.

Photo 3 - Olivas expansion area looking northwest from northbound U.S. 101. This portion of the Olivas area is highly visible to northbound travelers.

Photo 5- Olivas expansion area looking northeast from Harbor Boulevard. Much of the Harbor Boulevard corridor is lined with eucalyptus trees that provide a distinctive visual character.

Photo 4 - Olivas expansion area looking southeast from southbound U.S. 101. Views of most of the Olivas area are available sporadically to southbound travelers.

Photo 6 - Channelized Arundell Barranca, which traverses the Olivas area. This channel could potentially be returned to a quasi-natural condition if the Olivas area is developed.

Olivas Expansion Area

Photo 7 - Serra expansion area looking east from Ramelli Avenue. This expansion area consists almost entirely of agricultural land, but is surrounded by residential development.

Photo 9 - Poinsettia expansion area looking northwest from SR 126. This area is planted in orchards and also includes several visually distinctive poplar windrows.

Photo 8 - Serra expansion area looking east from eastbound Bristol Road. The area sough of Bristol Road fronts the Santa Clara River.

Photo 10 - Poinsettia expansion area looking south from Foothill Road. The Foothill Road corridor provides expansive views of the Poinsettia area and points beyond, including the Pacific Ocean.

Photo 11 - North Avenue expansion area looking southeasterly from Ventura Avenue. The entire expansion area is visible to travelers on Ventura Avenue.

Photo 13 - Western Cañada Larga expansion area looking northeasterly from northbound SR 33. Portions of the hillside area fronting the freeway were graded for the construction of SR33 and could potentially be re-graded and developed if this expansion area is selected.

Photo 12 - North Avenue expansion area looking northeasterly from SR 33. Much of the expansion area is visible to both northbound and southbound travelers on SR 33.

Photo 14 - Agricultural land adjacent to the Western Canada Larga expansion area looking south from SR 33. This area is within the Upper North Avenue District and is currently designated Industrial.

Scenario 3-Intensification/Reuse + North Avenue + Olivas

Scenario 3 would accommodate all of the visual changes that could occur under Scenario 1. This scenario also includes two potential expansion areas - North Avenue and Olivas - that potentially could be developed in the future. Visual impacts associated with the potential conversion of these areas would be similar to those described under Scenario 2 and are considered significant. Similar to Scenario 2, this scenario would include more land than would be necessary to accommodate anticipated growth through 2025. As noted under Scenario 2, the SOAR Ordinance would require a public vote approving a change in land use designation for either expansion area.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Scenario 4 would accommodate all of the visual changes that could occur under Scenario 1. This scenario also includes two potential expansion areas - North Avenue and Serra - that potentially could be developed in the future. Visual impacts associated with the potential conversion of these two areas would be similar to those described under Scenario 2 and are considered significant. As noted under Scenario 2, the SOAR Ordinance would require a public vote approving a change in land use designation for either expansion area.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Scenario 5 would accommodate all of the visual changes that could occur under Scenario 1. This scenario also includes two potential expansion areas - North Avenue and Western Cañada Larga - that potentially could be developed in the future. Visual impacts associated with the potential conversion of the North Avenue area would be similar to those described under Scenario 2 and are considered significant. The Western Cañada Larga area consists primarily of grazing land that has been disturbed by past activity. This expansion area also includes a small area of irrigated agriculture west of SR 33. Cańada Larga is semi-rural in character and is within a transitional area between the suburban/urban areas to the south and undeveloped hills to the north. The conversion of the area would represent a complete change in visual character, which is considered a significant impact.

It should be noted that this scenario includes relatively little expansion area land (about 165 acres, about 30 acres of which are within the Ventura River floodplain). The only way that these areas could accommodate the 2,700 residential units assumed to occur within the expansion areas would be to develop the areas with all high density development (30 units per acre or more). This probably is not a realistic land use pattern for this area and would be out of character with the semi-rural nature of the area. Therefore, Section 6.0, Alternatives, considers an alternative land use pattern for this area that would allow for less intense development of the North Avenue and Western Cañada Larga areas.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Scenario 6 would accommodate all of the visual changes that could occur under Scenario 1. This scenario also includes two potential expansion areas - North Avenue and Poinsettia - that potentially could be developed in the future. Visual impacts associated with the potential conversion of the North Avenue area would be similar to those described under Scenario 2 and
are considered significant. The Poinsettia area is also in agricultural production (orchards) and is highly visible from portions of SR 126, Telegraph Road, and Foothill Road, as well as from residential areas to the west, north, and east. This area includes several poplar windrows that provide an important visual feature that could potentially be lost if the area is developed in the future. General Plan Action 1.23 would require preservation of these windrows, thus partially mitigating the impact of the visual change. The visual change associated with the possible conversion of this area is considered a significant impact.

MITIGATION MEASURES

Changing the fundamental character of the areas to be converted from agricultural and open space uses to urban use cannot be avoided if these areas are to be developed. Each of the proposed growth scenarios focuses development on intensification of the existing urban areas and encourages infill over city expansion. In addition, Actions 1.22 and 1.23 require the preservation of mature trees and agricultural windrows.

SIGNIFICANCE AFTER MITIGATION

Any of the six scenarios would be expected to generally improve visual conditions in the Planning Area, but would accommodate the conversion of agricultural land within the Planning Area to urban uses. This change in the visual character of agricultural lands is a significant impact that cannot be avoided outside of leaving the properties in agriculture. Among the six scenarios, Scenario 1 would accommodate the least amount of agricultural land conversion and would only accommodate conversion of lands that are already designated for urban uses. Scenario 2 would accommodate the greatest amount of agricultural land conversion among the six scenarios.

$$
\begin{array}{ll}
\text { Impact AES-2 } & \begin{array}{l}
\text { Development that would be accommodated under any of the } \\
\text { 2005 General Plan land use scenarios would potentially alter }
\end{array} \\
\text { and/or block views from various public view corridors. The } \\
\text { magnitude of impact would vary among the scenarios and the } \\
\text { 2005 General Plan includes several policies and actions to } \\
\text { preserve public views. Nevertheless, the impact of all six } \\
\text { scenarios is considered Class I, unavoidably significant. }
\end{array}
$$

By emphasizing intensification and reuse of already developed lands, all six land use scenarios would minimize the potential to alter identified scenic resources. In particular, by seeking to remove the hillsides above the City from the SOI, the 2005 General Plan would avoid altering views of this important visual feature. Nevertheless, development that could be accommodated under any of the six scenarios would potentially alter views of such visual resources as the Pacific Ocean and agricultural land from scenic corridors in the Planning Area. A discussion of the potential impacts associated with each land use scenario follows. In addition to the policy and actions listed under Impact AES-1, the 2005 General Plan includes the following actions intended to minimize impacts to view sheds.

Policy 1B Increase the area of open space protected from development impacts.

Action 1.8 Buffer barrancas and creeks that retain natural soil slopes from development according to State and Federal guidelines.
Action 1.11 Require that sensitive wetland and coastal areas be preserved as undeveloped open space wherever feasible and that future developments result in no net loss of wetlands or "natural" coastal areas.
Action 1.12 Update the provisions of the Hillside Management Program as necessary to ensure protection of open space lands.
Action 1.13 Recommend that the City's Sphere of Influence boundary be coterminous with the existing City limits in the hillsides in order to preserve the hillsides as open space.
Action 3.3 Require preservation of public viewsheds and solar access.
Policy 4D Protect views along scenic routes.
Action 4.36 Require development along the following roadways - including noise mitigation, landscaping, and advertising - to respect and preserve views of the community and its natural context.

- State Route 33
- U.S. Highway 101
- Anchors Way
- Brakey Road
- Fairgrounds Loop
- Ferro Drive
- Figueroa Street
- Harbor Boulevard
- Main Street
- Navigator Drive
- North Bank Drive
- Poli Street/Foothill Road
- Olivas Park Drive
- Schooner Drive
- Spinnaker Drive
- Summit Drive
- Telegraph Road - east of Victoria Avenue
- Victoria Avenue - south of U.S. 101
- Wells Road

Action 4.37 Request that State Route 126 and 33, and U.S. HWY 101 be designated as State Scenic Highways.
Action 4.38 Continue to work with Caltrans to soften the barrier impact of U.S. Highway 101 by improving signage, aesthetics and undercrossings and overcrossings.

Scenario 1 - Intensification/Reuse Only

In general, the intensification and reuse of lands that would be accommodated under Scenario 1 would avoid substantial alteration of scenic resources. However, new development could potentially block views of the Pacific Ocean or the hillsides above the City from certain identified scenic corridors. For example, three- to four-story development that could be accommodated in the Downtown district could potentially block ocean views from portions of Poli Street. In addition, similarly scaled development along the north sides of the Main Street and Thompson Boulevard corridors could potentially block existing views of the hillsides to the north from some vantage points. View changes in these areas are not considered significant since the view blockage would only be sporadic and because the change in views along the corridors is generally expected to be enhanced by the presence of attractive infill development.

As discussed under Impact AES-1 and in Section 4.2, Agricultural Resources, this scenario would accommodate development of a number of agricultural lands that are visible from U.S. 101 and SR 126. Notable conversions include the McGrath property in the Arundell district, a 25-acre agricultural parcel near the U.S. 101/SR 126 interchange, and agricultural lands east of Wells Road in the Saticoy community. Conversion of these highly visible agricultural lands would alter views from these scenic corridors. The overall image of the community from U.S. 101 and SR 126 would not change dramatically under this scenario and implementation of Actions 4.36 through 4.38 would minimize the impact of agricultural land conversion from scenic corridors. Nevertheless, the incremental change associated with the conversion of remaining agricultural lands visible from important view corridors is considered a significant impact.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

All of the view corridor changes that would occur under Scenario 1 would also occur under Scenario 2. In addition, this scenario includes the North Avenue, Olivas, and Serra expansion areas, each of which is currently in agricultural production. The North Avenue expansion area is occupied by an orchard and is in a semi-rural portion of the SR 33 corridor. The Olivas area can be readily viewed from U.S. 101, Harbor Boulevard, and the Union Pacific Railroad. The Serra area is not highly visible from any freeway corridor, but is highly visible from portions of Telephone Road and Bristol Road/North Bank Drive. Among the three expansion areas, conversion of the Olivas area would affect the largest number of viewers because of its proximity to U.S. 101. Conversion of the portion of the Olivas area north of U.S. 101, in particular, may alter the image of the City for northbound freeway viewers. The North Avenue and Serra areas are less prominent visually than the Olivas area. Nevertheless, conversion of any of the three areas would be considered a significant impact to views from identified scenic corridors.

As discussed under Impact AES-1, this scenario includes far more land than would be necessary to accommodate projected growth through 2025. In addition, a land use designation change for any of the three expansion areas included in this scenario would require voter approval under the SOAR Ordinance. As such, it is unlikely that all three areas would develop by 2025.

Scenario 3-Intensification/Reuse + North Avenue + Olivas

All of the view corridor changes that would occur under Scenario 1 would also occur under Scenario 3. In addition, this scenario includes the North Avenue and Olivas areas. As discussed under Scenario 2, view corridor impacts associated with the conversion of either area would be significant.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

All of the view corridor changes that would occur under Scenario 1 would also occur under Scenario 4. In addition, this scenario includes the North Avenue and Serra areas. As discussed under Scenario 2, view corridor impacts associated with the conversion of either area would be significant.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

All of the view corridor changes that would occur under Scenario 1 would also occur under Scenario 5. In addition, this scenario includes the North Avenue and Western Cañada Larga expansion areas. As discussed under Scenario 2, view corridor impacts associated with conversion of the North Avenue area would be significant. As with the North Avenue area, the Western Cañada area is located in a semi-rural portion of the SR 33 corridor. The area that could be developed includes hillside grazing land and a small amount of irrigated agriculture. Conversion of this area to urban uses would fundamentally alter the nature of views along this semi-rural stretch of SR 33. This is considered a significant impact.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

All of the view corridor changes that would occur under Scenario 1 would also occur under Scenario 6. In addition, this scenario includes the North Avenue and Poinsettia areas. As discussed under Scenario 2, view corridor impacts associated with conversion of the North Avenue area would be significant. The Poinsettia area is currently used as an orchard and is visible from SR 126, Foothill Road, and Telegraph Road. Telegraph Road runs through the center of this area. Development of this area would result in the loss of a break from the suburban development that is present east and west of the area and fundamentally alter views for travelers on all three affected roadways. Although the Poinsettia area is completely surrounded by urban uses, the loss of this break in the suburban development pattern is considered a significant view impact to the SR 126, Telegraph Road, and Foothill Road corridors.

MITIGATION MEASURES

Policies included in the proposed 2005 General Plan, as described above, would reduce impacts on view corridors associated with intensification and reuse to a less than significant level. Other than the actions listed above and General Plan Action 1.23, which would preserve windrows on agricultural lands, additional mitigation is not available for the change in views from scenic corridors related to the conversion of agricultural lands.

SIGNIFICANCE AFTER MITIGATION

Implementation of 2005 General Plan policies and actions would reduce impacts to view corridors associated with agricultural land conversion to the degree feasible. Nevertheless, outside of avoiding development of agricultural lands that are visible from scenic corridors, the impact cannot be reduced to a less than significant level. View corridor impacts are considered unavoidably significant for all six scenarios. Scenario 1 would have the least impact among the scenarios, while Scenario 2 would have the greatest potential for impacts. It should again be noted that the conversion of agriculturally-designated lands in the expansion areas could occur only with a public vote under the SOAR Ordinance.

$$
\begin{array}{ll}
\text { Impact AES-3 } & \begin{array}{l}
\text { Development accommodated under any of the } 2005 \text { General } \\
\text { Plan land use scenarios would introduce new sources of light } \\
\text { and glare. Light and glare conditions are not expected to } \\
\text { change dramatically throughout most of the Planning Area } \\
\text { because of the focus on intensification and reuse of already } \\
\text { developed lands. Therefore, impacts would be Class III, less }
\end{array} \\
& \text { than significant, for any of the six scenarios. }
\end{array}
$$

Development in accordance with the any of the land use scenarios for the 2005 General Plan would incrementally increase ambient nighttime lighting throughout the City and potentially introduce new sources of glare. Increased lighting could come from streetlights, parking lot lights, and signage on business establishments. Increased glare could potentially occur as a result of building materials, roofing materials and windows reflecting sunlight. A discussion of impacts for each scenario follows.

Scenario 1 - Intensification/Reuse Only

Scenario 1 would emphasize intensification and reuse of already developed areas. As such, it may incrementally increase overall lighting in portions of the community, but would not be expected to dramatically change communitywide light and glare conditions or greatly extend lighting into large areas where lighting is not currently present. As discussed under Impacts AES-1 and AES-2, this scenario would accommodate the conversion of a number of agricultural properties that are already designated for urban development. However, these areas are already surrounded primarily by urban uses and are therefore in areas where urban lighting is present; therefore, the extension of lighting into these areas would not significantly alter overall lighting. Similarly, the undeveloped areas in the North Avenue and Upper North Avenue areas are already lighted by the sporadic existing development.

This scenario would potentially accommodate residential development in the commercially oriented districts and corridors as well as at the neighborhood centers. Many of these areas notably, Downtown, the Pacific View Mall, and all of the corridors - include retail development with relatively high levels of lighting and associated glare; therefore, the introduction of large numbers of light sensitive residences to these areas could pose conflicts with respect to light and glare. However, it is anticipated that implementation of Action 3.23 would result in the development of appropriate design standards as part of a form-based Development Code that emphasizes pedestrian orientation, integration of land uses, treatment of streetscapes as
community living space, and environmentally sensitive building design and operation. Thus, significant impacts are not anticipated.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Light and glare impacts associated with intensification and reuse would be similar to those of Scenario 1 and would be reduced a less than significant level through implementation of Action 3.23. This scenario would also accommodate future development in the North Avenue, Olivas, and Serra expansion areas. All three areas are currently in agricultural production. The North Avenue expansion area is in a semi-rural area along SR 33. The Olivas area encompasses a large area (930 acres) that currently lacks lighting, but is located between U.S. 101 and the Ventura Harbor. The Serra area is surrounded on three sides by urban uses, with the Santa Clara River to the southeast. The North Avenue and Olivas areas are relatively isolated; therefore, the extension of lighting into these areas would not affect a high number of sensitive uses. Extension of lighting into the Serra area would affect a higher number of uses due to the area's proximity to existing residential neighborhoods. However, development in any of the expansion areas would be subject to current City lighting standards as well as new standards to be developed as part of the new development code (Action 3.23) and any additional standards developed as part of a specific plan for the expansion area. Thus, significant impacts are not anticipated.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Light and glare impacts associated with intensification and reuse would be similar to those of Scenario 1 and would be reduced to a less than significant level through implementation of Action 3.23. This scenario would also accommodate future development in the North Avenue and Olivas expansion areas, both of which are currently in agricultural production. As discussed under Scenario 2, both areas are relatively isolated; therefore, extension of lighting into these areas would affect relatively few sensitive receivers. As with Scenario 2, significant impacts are not anticipated.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Light and glare impacts associated with intensification and reuse would be similar to those of Scenario 1 and would be reduced a less than significant level through implementation of Action 3.23. This scenario would also accommodate future development in the North Avenue and Serra expansion areas, both of which are currently in agricultural production. The North Avenue area is relatively isolated; therefore, the extension of lighting into this area would not affect a high number of sensitive uses. Extension of lighting into the Serra area would affect a higher number of uses due to the area's proximity to existing residential neighborhoods. However, development in any of the expansion areas would be subject to current City lighting standards as well as new standards to be developed as part of the new development code (Action 3. 23) and any additional standards developed as part of a specific plan for the expansion area. Significant impacts are not anticipated.

$\underline{\text { Scenario } 5 \text { - Intensification/Reuse + North Avenue + Western Cañada Larga }}$

Light and glare impacts associated with intensification and reuse would be similar to those of Scenario 1 and would be reduced a less than significant level through implementation of Action 3.23. In addition, this scenario would accommodate future development in the North Avenue and Western Cañada Larga expansion areas. Both areas are in a semi-rural portion of the community that is relatively isolated; therefore, the extension of lighting into these areas would not affect a high number of sensitive uses. Assuming implementation of existing requirements and new development code standards, significant impacts are not anticipated.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Light and glare impacts associated with intensification and reuse would be similar to those of Scenario 1 and would be reduced a less than significant level through implementation of Action 3.23. In addition, this scenario would accommodate future development in the North Avenue and Poinsettia expansion areas. As discussed under Scenario 2, extension of lighting into the North Avenue area would not affect a high number of sensitive uses. Like the Serra area, the Poinsettia area is almost entirely surrounded by existing residential neighborhoods; therefore, extension of lighting into this area would affect a relatively high number of adjacent uses. Assuming implementation of existing requirements and new development code standards, significant impacts are not anticipated.

MITIGATION MEASURES

Mitigation is not required for any of the six scenarios.

SIGNIFICANCE AFTER MITIGATION

With implementation of proposed General Plan policies, impacts from light and glare associated with new development would not be significant for any of the six land use scenarios.

4.2 AGRICULTURE

This section analyzes the impacts of development accommodated under the 2005 General Plan upon agricultural resources. Both direct impacts relating to the potential conversion of agricultural lands and indirect effects associated with placing urban development adjacent to agriculture are addressed.

4.2.1 Setting

a. General Setting. Agriculture plays an important role in the economy of Ventura County and the City of Ventura. Ventura County is one of the principal agricultural counties in the state; in 2003, the total value of agriculture production for Ventura County was $\$ 1.118$ billion. This level of production is made possible by the presence of high quality soils, adequate water supply, favorable climate, long growing season, and level topography. In 2003, the top five cash crops in the County were strawberries, nursery stock, lemons, celery, and avocados.
b. Planning Area Agriculture. Figure 4.2-1 shows lands within the Ventura Planning Area that are currently in agricultural production. The City has soil and climate conditions suitable for specialty crops, including citrus, strawberries, and selected vegetables, sometimes yielding three crops per year. The top crops in Ventura County by value are lemons, strawberries, celery, nursery stock, and avocados. Nursery stock and cut flowers are of increasing importance to local agricultural production.

Approximately 17,000 acres of land within the Planning Area are currently used for active agricultural activity or grazing. Figure 4.2-1 shows lands currently used for agriculture. Irrigated farmland is located primarily within the eastern and southern portions of the Planning Area. Dry land farming and grazing occur on the Taylor Ranch west of the Ventura River. Grazing occurs on the hillside areas north of the City. These four general types of agricultural lands can be further separated into the following categories of products:

- Row crops. These include vegetables (such as broccoli and lettuce) and strawberries.
- Orchards. Most of the City orchards are in lemons, although oranges are found in the flatlands. The orchards located on the hillsides in the northeast portion of the Planning Area are in avocados.
- Dry Farming. The only dry farming in the Planning Area is lima beans on the Taylor Ranch.
- Grazing. Grazing includes lands used for cattle and sheep.

The U.S. Soil Conservation Service Important Farmlands Inventory (IFI) system is used to inventory lands with agricultural value. Figure 4.2-2 shows important farmlands in the Planning Area. This system divides farmland into classes based on productive capability of the land (rather than the mere presence of ideal soil conditions). The system effectively recognizes that a large amount of agricultural land in California and Ventura County that would not ordinarily be classified as "prime" under the previous evaluation system and is among the most productive land in the country. The major classifications for farmlands are described below.

- "Prime" farmlands in California are irrigated soils (Class I and II) over 40 inches deep with an available water-holding capacity of four inches or more. They are generally well drained and free from frequent flooding. Soil reaction is neither extremely acid nor strongly alkaline. The erosion hazard is slight and farming is not limited by cobbly surface layers, slow subsoil permeability, or freezing soil temperatures.
- Farmlands of "statewide" importance are lands other than "prime" that have a good combination of physical and chemical characteristics to produce food, feed, forage, fiber, and oil seed crops. The criteria are like that for "prime" except that no minimum soil depth limitation or permeability restriction exists. "Statewide" farmlands have broader waterholding capacity, soil reaction, may be slightly saline or alkali affected, and may have a slight erosion hazard.
- "Unique" farmlands are additional lands that produce high value food and fiber crops, as listed in the annual report of the Department of Food and Agriculture.

Table 4.2-1 summarizes the acreage of important farmlands within the potential expansion areas. A number of properties within the current Sphere of Influence (SOI) that are designated for urban uses in the current Comprehensive Plan are currently in agricultural production. Major agricultural lands currently slated for eventual urbanization include nearly 300 acres in the Saticoy area, the 75 -acre McGrath property in the Arundell district, and a 25 -acre area near the U.S. 101/SR 126 interchange. An estimated 520 acres currently designated for urban uses are classified as "Prime" farmland. About 138 acres currently designated for urban uses are classified as "Statewide Importance" farmland, and another 16 acres are designated "Unique."

Table 4.2-1
Important Farmlands Designated for Non-Agricultural Use and Within Potential Expansion Areas

Area	Acres of Prime, Statewide Importance, and Unique Farmlands			
	Prime	Statewide Importance	Unique	Totals
Areas Already Planned for Non-Agricultural Use	520	138	16	674
Potential Expansion Areas				
North Avenue	0	32	1	33
Olivas	876	33	21	930
Serra	228	207	3	438
Western Cañada Larga	0	0	$\mathbf{4 8}$	0
Poinsettia	$\underline{194}$	1,298	$\mathbf{1 7 6}$	73
Expansion Area Subtotal	$\mathbf{1 , 8 1 8}$	586	89	1,819
Totals		2,493		

[^2]

All of the potential expansion areas studied in this EIR are wholly or partially in agriculture use. Four of the five expansion areas are wholly or partially within the current SOI; however, these areas are all currently designated Agriculture under the current Comprehensive Plan.

North Avenue. This 55-acre area is currently a lemon orchard. It is surrounded by low to medium density residential developments to the north and south, Ventura Avenue to the west with industrial uses across the Avenue, and open hillsides to the east. About 32 acres of this area are designated as "Statewide Importance" farmland and about one acre is designated as "Unique" farmland. The remainder of the area is classified as being of local importance.

Olivas. This 930 -acre area includes a mix of row crops and orchards. The Union Pacific Railroad (UPRR) runs the length of the northeast side of the site and U.S. 101 bisects the area in the northwest corner. Across the UPRR are residential development and industrial uses. Across Harbor Boulevard to the south and west are harbor-related uses and multiple and single family residential development. Across Olivas Park Drive to the south and east is the Olivas Park golf course and more row crop agriculture. The Department of Conservation has classified about 876 acres of the Olivas expansion area as "Prime" farmland. The remainder of the area consists of "Statewide Importance" and "Unique" farmlands.

Serra. This 438-acre area is currently used for lemon and avocado orchards and for row crops. Adjacent to the farmland on the north are residential development and Telephone Road. Across Telephone Road to the north are more single family homes and the new 100-acre community park that is currently under construction. To the east is low density residential development, and to the west are both low and medium density residential development. At the corner of Montgomery Avenue and Bristol Road is a 26 -acre parcel that is no longer subject to the SOAR Ordinance and that is planned for development. Commercial uses are to the southwest along Johnson Drive. The Santa Clara River is located along the southern boundary of this area. The Department of Conservation has classified this area as a mix of "Prime," "Statewide Importance," and "Unique" farmland.

Western Cañada Larga. This 110-acre area is primarily used as grazing land, though a small area west of SR 33 is currently used for row crop production. No portion of this area is classified as "Prime," "Statewide Importance," or "Unique" farmland. The area is classified as a mix of "Grazing Land" and "Farmland of Local Importance."

Poinsettia. This 418-acre area is currently a lemon orchard. The site is surrounded on all sides by residential development except for Balboa Middle School and Mound Elementary School, both of which are adjacent to the southwest corner of the area. The Department of Conservation has classified this area as a mix of "Prime," "Statewide Importance," and "Unique" farmland.
b. Conflicts Between Agricultural and Urban Uses. Large agricultural parcels abut urban land uses, including residences and schools, in portions of the Planning Area. Various conflicts have arisen between farmers and users of adjoining parcels. Areas of potential conflict are primarily in East Ventura, where newer housing tracts, schools, and other uses are located immediately adjacent to agricultural parcels. This land use pattern also occurs to a lesser degree in portions of the North Ventura Avenue community.

The direct interface between agricultural and urban uses has created a variety of potential conflicts for both growers and urban interests. Issues concerning the agricultural/urban interface include:

Issues for Urban Interests

- Use of pesticides/dust problems in vicinity of residential neighborhoods, particularly near schools
- Odors associated with pesticides and livestock
- Noise related to farming equipment
- Growing presence and operation of large greenhouses
- General effects of agriculture on air quality

Issues for Agricultural Interests

- Restrictions on activity
- Restrictions on conversion
- Loss of revenue and competitiveness
- Competition for water and land
- Pilferage, trespassing, and littering
- Dust from adjacent construction activity
c. Regulatory Setting. A number of state and local regulatory mechanisms are in place to preserve farmland and agricultural activity. These are described below. Figure $4.2-3$ shows lands that are affected by one or more of these policies.

Land Conservation Act. A primary tool to preserve farmlands is the California Land Conservation Act (LCA) or Williamson Act contract program, established in 1965. Under provisions of the Act, private landowners may voluntarily enter into a long-term contract (minimum of 10 years) with cities and counties to form agricultural preserves and maintain their property in agricultural or open space uses in return for a reduced property tax assessment based on the agricultural value of the property. The term of an LCA contract is generally ten years and the contract automatically renews itself each year for another ten-year period, unless a Notice of Non-Renewal is filed or the contract is cancelled. State Government Code Section 51282 provides specific findings that must be made for the approval of LCA contract cancellations. Ventura County entered the program in 1969, and as of April 2002, between 130,000 and 132,000 acres of crops were in under LCA contracts. Properties within the Planning Area that are subject to LCA contracts are shown on Figure 4.2-3. These properties include portions of the Olivas, Serra, and Western Cañada Larga expansion areas.

Save Our Agricultural Resources (SOAR) Initiative. In November 1995, a majority of voters (52%) in Ventura passed the Save Our Agricultural Resources (SOAR) Ordinance, also called the Agricultural Lands Preservation Initiative. The Ventura County Save Open Space and Agricultural Resources Initiative, Measure B, passed in November 1998 by a 63% majority. Both measures generally prevent changes in specified land use categories (of the City's Comprehensive Plan and the County General Plan) unless the land use change is approved by a majority of voters. The City SOAR Ordinance reaffirms and readopts the Agriculture designations defined in the current Comprehensive Plan until the year 2030. Areas subject to

Greenbelts, Land Conservation Act Contracts,

the SOAR Ordinance are shown on Figure 4.2-3. The North Avenue, Olivas, Serra, and Poinsettia expansion areas all contain land subject to the City SOAR Ordinance.

Greenbelt Agreements. Several cities, Ventura County, and the Local Agency Formation Commission (LAFCO) have adopted greenbelt agreements between jurisdictions to further the objectives of the Guidelines for Orderly Development and to assist in preserving agriculture and other open space lands located between cities. Greenbelt agreements are joint or coadopted resolutions by cities, the County (when applicable) and LAFCO, whereby it is agreed to cooperatively administer a policy of non-annexation and non-development in a specific area. The basic purpose of the greenbelt is to establish a mutual agreement between cities regarding the limits of urban growth for each city. A greenbelt agreement must be amended by all parties involved before the LAFCO will consider any proposal that may be in conflict with the agreement.

The City of Ventura is a participant in two greenbelt agreements. Ventura and Santa Paula adopted an agreement in 1967 to maintain the area between the Franklin Barranca east of the Ventura city limits and the Adams Barranca west of the Santa Paula city limits in agriculture production. The majority of agricultural lands in this greenbelt are under LCA contract. Ventura first entered into a greenbelt agreement with the City of Oxnard in 1994 and updated the agreement in 2002. That agreement applies to farmlands between the two cities, including the Olivas expansion area.

Boundaries for the greenbelts involving the City of Ventura are depicted on Figure 4.2-3.
Right-To-Farm Ordinances. In 1997, the City approved a Right-To-Farm Ordinance to provide protection to farmers against nuisance claims and frivolous lawsuits involving legal and accepted farming practices. The measure requires realtors to disclose potential conflicts with agriculture (e.g., pesticide smells, noise from machinery, pesticides use) when properties adjacent to agricultural parcels are for sale. The ordinance also provides a statement that agriculture is not subject to nuisance claims if it is being properly conducted. Ventura County also has a Right-To-Farm Ordinance that mediates similar disputes between neighboring cities.

4.1.2 Impact Analysis

a. Methodology and Significance Thresholds. Agricultural impacts were based upon review of Department of Conservation farmland classifications, regulatory requirements that apply to the various agricultural lands within the Planning Area, and the potential of future development to create agricultural/urban interface.

Impacts to agriculture would be significant if development accommodated by the 2005 General Plan 2025 would:

- Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland) to nonagricultural use
- Conflict with existing zoning for agricultural use, or a Williamson Act contract
- Involve other changes in the existing environment which, due to their location or nature, could individually or cumulatively result in the loss of Farmland
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the six 2005 General Plan land use scenarios. A discussion of impacts for each scenario follows.

$$
\begin{array}{ll}
\text { Impact AG-1 } & \begin{array}{l}
\text { Any of the six scenarios for the } 2005 \text { General Plan would } \\
\text { accommodate the development that would involve the } \\
\text { conversion of State-designated Prime, Statewide Importance, } \\
\text { and Unique farmland. The overall acreage of agricultural land } \\
\text { that could be converted would range from about } 674 \text { acres } \\
\text { under Scenario } 1 \text { to about } 2,075 \text { acres under Scenario } 2 .
\end{array} \\
\text { Conversion of farmland would represent a Class I, } \\
\text { unavoidably significant, impact for any of the six scenarios. }
\end{array}
$$

Development in accordance with any of the six land use scenarios under consideration for the proposed 2005 General Plan could result in the conversion of agriculture land that is classified as Prime Farmland, Unique Farmland, or Farmland of Statewide Importance to non-agricultural uses. Table 4.2-2 compares the acreage of important farmlands that could potentially be converted under each scenario. The potential impact relating to agricultural land conversion is considered significant for all six scenarios.

Table 4.2-2
Potential Conversion of Important Farmlands

Farmland Classification	Important Farmlands Potentially Converted (in acres)					
	Scenario $\mathbf{1}$	Scenario $\mathbf{2}$	Scenario $\mathbf{3}$	Scenario $\mathbf{4}$	Scenario $\mathbf{5}$	Scenario $\mathbf{6}$
Prime Farmland	520	1,624	1,370	748	494	688
Farmland of Statewide Importance	138	410	203	377	170	314
Unique Farmland	16	41	38	20	17	65
Total	$\mathbf{6 7 4}$	$\mathbf{2 , 0 7 5}$	$\mathbf{1 , 6 1 1}$	$\mathbf{1 , 1 4 5}$	$\mathbf{6 8 1}$	$\mathbf{1 , 0 6 7}$

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes the intensification and reuse of already urbanized areas in order to accommodate projected growth. This scenario includes none of the expansion areas, all of which are wholly or partially in agricultural production and include important farmlands under IFI criteria. Consequently, this scenario would have the least potential for direct impacts relating to agricultural land conversion among the six scenarios. Nevertheless, Scenario 1 would accommodate the development of a number of properties that are already designated for non-agricultural uses under the current Comprehensive Plan, but that contain important farmlands. These include the 75 -acre McGrath property in the Arundell area, the 25-acre

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Important Farmland Conversion (Impact AG-1)	Potential conversion of up to about 674 acres of important farmlands, including 520 acres of "Prime" farmland, 138 acres of "Statewide Importance" farmland, and 16 acres of "Unique" farmland. Impacts are Class I, unavoidably significant.	Potential conversion of up to 2,075 acres of important farmlands, including 1,624 acres of "Prime" farmland, 410 acres of "Statewide Importance" farmland, and 41 acres of "Unique" farmland. Impacts are Class I, unavoidably significant.	Potential conversion of up to 1,611 acres of important farmlands, including 1,370 acres of "Prime" farmland, 203 acres of "Statewide Importance" farmland, and 38 acres of "Unique" farmland. Impacts are Class I, unavoidably significant.	Potential conversion of up to 1,145 acres of important farmlands, including 748 acres of "Prime" farmland, 377 acres of "Statewide Importance" farmland, and 20 acres of "Unique" farmland. Impacts are Class I, unavoidably significant.	Potential conversion of up to 681 acres of important farmlands, including 494 acres of "Prime" farmland, 170 acres of "Statewide Importance" farmland, and 17 acres of "Unique" farmland. Impacts are Class I, unavoidably significant.	Potential conversion of up to 1,066 acres of important farmlands, including 688 acres of "Prime" farmland, 314 acres of "Statewide Importance" farmland, and 65 acres of "Unique" farmland. Impacts are Class I, unavoidably significant.
Conflicts with Agricultural Zoning, SOAR Ordinance, Greenbelt Agreements, and LCA contracts (Impact AG-2)	No conflicts with agricultural zoning, SOAR Ordinance, greenbelt agreements, or LCA contracts. Impacts are Class III, less than significant.	Potential conversion of 1,423 acres subject to SOAR Ordinance, 930 acres within Ventura-Oxnard greenbelt, and 170 acres under LCA contract. Impacts are Class I, unavoidably significant.	Potential conversion of 959 acres subject to SOAR Ordinance, 930 acres within Ventura-Oxnard greenbelt, and 170 acres under LCA contract. Impacts are Class I, unavoidably significant.	Potential conversion of 493 acres subject to SOAR Ordinance. Impacts are Class I, unavoidably significant.	Potential conversion of 84 acres subject to SOAR Ordinance and 26 acres under LCA contract. Impacts are Class I, unavoidably significant.	Potential conversion of 473 acres subject to SOAR Ordinance. Impacts are Class I, unavoidably significant.
Agricultural/Urban Conflicts (Impact AG-3)	Certain areas of conflict would continue in East Ventura, though conversion of agricultural lands adjacent to urban areas would generally reduce conflicts. Impacts are Class IV, beneficial.	Impacts generally similar to Scenario 1; potential conflicts with Olivas area, though conversion of expansion areas generally reduces conflicts. Impacts are Class IV, beneficial.	Impacts generally similar to Scenario 1; potential conflicts with Olivas area, though conversion of expansion areas generally reduces conflicts. Impacts are Class IV, beneficial.	Impacts generally similar to Scenario 1; conversion of N . Avenue and Serra areas generally reduces conflicts. Impacts are Class IV, beneficial.	Impacts generally similar to Scenario 1; conversion of N . Avenue and Western Cañada Larga area would not create significant conflicts. Impacts are Class IV, beneficial.	Impacts generally similar to Scenario 1 ; conversion of N . Avenue and Poinsettia areas generally reduces conflicts. Impacts are Class IV, beneficial.

agricultural property in the Thille community near the U.S. 101/SR 126 interchange, several properties in the Saticoy area, and approximately 11 acres of agricultural land north of the City's water filtration plant. As indicated in Table 4.2-2, up to about 674 acres of important farmlands could be converted under this scenario, including 520 acres of "Prime" farmland, 138 acres of "Statewide Importance" farmland, and 16 acres of "Unique" farmland. Such conversion is considered a significant impact.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Farmland conversion relating to intensification and reuse would be the same as Scenario 1. In addition, this scenario includes three expansion areas - North Avenue, Olivas, and Serra - that are designated Agriculture under the current Comprehensive Plan. Although the land use designations for these areas would remain Agriculture, all three would be considered for future development under this scenario. As shown in Table 4.2-2, this scenario would accommodate eventual conversion of up to 2,075 acres of important farmlands, including 1,624 acres of "Prime" farmland, 410 acres of "Statewide Importance" farmland, and 41 acres of "Unique" farmland. This is considered a significant impact.

This scenario would potentially accommodate the greatest amount of agricultural land conversion among the six scenarios, though it should be noted that the above estimates represent the maximum potential conversion. Re-designation of any of the three expansion areas included in this alternative would require voter approval under the SOAR Ordinance. In addition, this alternative includes substantially more acreage than would be needed to accommodate projected growth through 2025. Therefore, the actual acreage converted through 2025 may be less than presented herein.

Scenario 3- Intensification/Reuse + North Avenue + Olivas

Farmland conversion relating to intensification and reuse would be the same as Scenario 1. This scenario also includes two expansion areas - North Avenue and Olivas - that are designated Agriculture under the current Comprehensive Plan. The land use designations for these areas would not change, but both areas would be considered for future development under this scenario. As shown in Table 4.2-2, this scenario would accommodate eventual conversion of up to 1,611 acres of important farmlands, including 1,370 acres of "Prime" farmland, 203 acres of "Statewide Importance" farmland, and 38 acres of "Unique" farmland. This is considered a significant impact.

As noted under Scenario 2, the acreage estimates represent the maximum potential conversion. Re-designation of either the North Avenue or Olivas expansion areas would require voter approval under the SOAR Ordinance. In addition, this alternative includes substantially more acreage than would be needed to accommodate projected growth through 2025. Therefore, the actual acreage converted through 2025 may be less than presented herein.

Scenario 4-Intensification/Reuse + North Avenue + Serra

Farmland conversion relating to intensification and reuse would be the same as Scenario 1. This scenario also includes two expansion areas - North Avenue and Serra - that are designated Agriculture under the current Comprehensive Plan. The land use designations for these areas
would not change, but both areas would be considered for future development under this scenario. As shown in Table 4.2-2, this scenario would accommodate eventual conversion of up to 1,145 acres of important farmlands, including 748 acres of "Prime" farmland, 377 acres of "Statewide Importance" farmland, and 20 acres of "Unique" farmland. This is considered a significant impact.

As noted under Scenario 2, the acreage estimates represent the maximum potential conversion. Re-designation of either the North Avenue or Serra expansion areas would require voter approval under the SOAR Ordinance. Therefore, the actual acreage converted through 2025 may be less than presented herein.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Farmland conversion relating to intensification and reuse would be the same as Scenario 1. This scenario also includes two expansion areas - North Avenue and Western Cañada Larga. The North Avenue area is designated Agriculture under the current Comprehensive Plan, while the Western Cañada Larga area is primarily designated Open Space under the County of Ventura General Plan and includes no "Prime," "Statewide Importance," or "Unique" farmland. The land use designations for these areas would not change, but both areas would be considered for future development. As shown in Table 4.2-2, this scenario would accommodate eventual conversion of up to 681 acres of important farmlands, including 494 acres of "Prime" farmland, 170 acres of "Statewide Importance" farmland, and 17 acres of "Unique" farmland. This is considered a significant impact.

As noted under Scenario 2, the acreage estimates represent the maximum potential conversion. Re-designation of the North Avenue expansion area or 29 acres of the Western Cañada Larga expansion area west of SR 33 would require voter approval under the SOAR Ordinance. Therefore, the actual acreage converted through 2025 may be less than presented herein.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Farmland conversion relating to intensification and reuse would be the same as Scenario 1. This scenario also includes two expansion areas - North Avenue and Poinsettia - that are designated Agriculture under the current Comprehensive Plan. The land use designations for these areas would not change, but both areas would be considered for future development. As shown in Table 4.2-2, this scenario would accommodate eventual conversion of up to 1,067 acres of important farmlands, including 688 acres of "Prime" farmland, 314 acres of "Statewide Importance" farmland, and 65 acres of "Unique" farmland. This is considered a significant impact.

As noted under Scenario 2, the acreage estimates represent the maximum potential conversion. Re-designation of either the North Avenue or Poinsettia expansion areas would require voter approval under the SOAR Ordinance. Therefore, the actual acreage converted through 2025 may be less than presented herein.

MITIGATION MEASURES

Policy 3C of the 2005 General Plan states that the City will "[m]aximimize the use of land in the city before considering expansion." To that end, General Plan Actions 3.16 and 3.17 direct the City to renew and modify greenbelt agreements as necessary to direct development to already urbanized areas and continue to support the Guidelines for Orderly Development, which generally direct future urban development to the urban areas. Action 3.20 directs the City to adopt development code provisions to "preserve agricultural and open space lands as a desirable means of shaping the City's internal and external form and size."

General Plan Policy 3D directs the City to "Continue to preserve agricultural and other open space lands lands within the City's Planning Area." To that end, Action 3.21 directs the City to adopt performance standards for non-farm activities in agricultural areas to protect and support farm operations, including requiring non-farm uses to provide all necessary buffers.

Implementation of the above policies/actions would minimize the premature conversion of agricultural land under any of the land use scenarios. Outside of re-designating important farmlands for continued agricultural use, additional mitigation is not available.

SIGNIFICANCE AFTER MITIGATION

Implementation of 2005 General Plan policies and actions would minimize the premature conversion of productive agricultural lands within the Planning Area to non-agricultural uses. In addition, the Ventura County LAFCO will review all proposed conversions of agricultural land that require annexation into the City. Nevertheless, potential impacts relating to the conversion of agricultural land to urban uses is considered unavoidably significant for all six land use scenarios.

$$
\begin{array}{ll}
\text { Impact AG-2 } & \begin{array}{l}
\text { Five of the six land use scenarios under consideration for the } \\
\\
\text { 2005 General Plan would accommodate the future conversion } \\
\text { of agricultural land that is designated for agricultural use, } \\
\text { subject to the City SOAR Ordinance, within the Ventura- } \\
\text { Oxnard Greenbelt, and/or under LCA contract. This is } \\
\text { considered a Class I, unavoidably significant, impact of } \\
\text { Scenarios } 2 \text { through 6. The impact for Scenario 1 } \\
\text { (Intensification/Reuse Only) is considered Class III, less than } \\
\text { significant. }
\end{array}
\end{array}
$$

Table 4.2-3 compares acreage subject to the SOAR Ordinance, adopted greenbelt agreements, and existing LCA contracts under the six land use scenarios. A discussion of each scenario follows.

Scenario 1 - Intensification/Reuse Only

Scenario 1 limits future growth and development to intensification and reuse of properties that are already designated for non-agricultural uses under the current Comprehensive Plan. As

Table 4.2-3
Acres Subject to SOAR, Greenbelt Agreements, and LCA Contracts

	Scenario $\mathbf{1}$	Scenario $\mathbf{2}$	Scenario $\mathbf{3}$	Scenario $\mathbf{4}$	Scenario $\mathbf{5}$	Scenario $\mathbf{6}$
Acres Subject to SOAR	0	1,423	959	493	84	473
Acres Within a Greenbelt	0	930	930	0	0	0
Acres Currently Under LCA Contract	0	170	170	0	26	0

discussed under Impact AG-1, this scenario would allow for the conversion of certain agricultural lands to non-agricultural uses; however, all such lands are already designated for urban use. None of the areas that could be developed under this scenario are subject to the City SOAR Ordinance and none are within established greenbelts or subject to LCA contracts. As such, this scenario would not accommodate any development that would conflict with agricultural zoning or other policies regarding the preservation of agriculture. Impacts relating to conflicts with agricultural policy would not occur under this scenario.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Like Scenario 1, the Intensification/Reuse + North Avenue + Olivas + Serra Scenario also emphasizes intensification and reuse development. However, this scenario also includes three expansion areas - North Avenue, Olivas, and Serra - that are currently designated Agriculture and subject to the City's SOAR Ordinance. These areas combined total about 1,423 acres. In addition, the 930 -acre Olivas area is within the Ventura-Oxnard Greenbelt. Finally, about 170 acres within the Olivas area are under LCA contract. The California Government Code (Section 56856.5) generally precludes the LAFCO from approving annexation of lands under LCA contract unless a notice of non-renewal has been filed and the annexing agency (the City) agrees that no services will actually be provided during the remaining life of the contract for land uses or activities not allowed under the contract.

The 2005 General Plan would not change the land use designation for either the North Avenue, Olivas, or Serra areas, but all three areas would be considered for future conversion. None of the expansion areas could be converted without voter approval in accordance with the SOAR Ordinance and lands under LCA contract could only be converted upon cancellation of the contracts._Nevertheless, this alternative potentially conflicts with current policies relating to the preservation of agricultural land. This is considered a significant impact.

Conversion of any of the three expansion areas may require a future adjustment to the SOI because the Ventura LAFCO will likely remove all areas subject to the SOAR Ordinance, including the North Avenue, Olivas, and Serra areas, from the SOI following a Municipal Service review for Ventura.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

This scenario also emphasizes intensification and reuse, but includes two expansion areas North Avenue and Olivas - that are currently designated Agriculture and subject to the City's SOAR Ordinance. These two areas total about 959 acres. In addition, the Olivas area is within the Ventura-Oxnard Greenbelt Agreement and about 170 acres within the Olivas area are under LCA contract. The California Government Code (Section 56856.5) generally precludes the LAFCO from approving annexation of lands under LCA contract unless a notice of non-renewal has been filed and the annexing agency (the City) agrees that no services will actually be provided during the remaining life of the contract for land uses or activities not allowed under the contract.

The 2005 General Plan would not change the land use designation for either the North Avenue area or the Olivas area, but both areas would be considered for future conversion. Neither of the expansion areas could be converted without voter approval in accordance with the SOAR Ordinance and lands under LCA contract could only be converted upon cancellation of the contracts._Nevertheless, this alternative potentially conflicts with current policies relating to the preservation of agricultural land. This is considered a significant impact.

Conversion of either expansion area may require a future adjustment to the SOI because the Ventura LAFCO will likely remove all areas subject to the SOAR Ordinance, including the North Avenue and Olivas areas, from the SOI following a Municipal Service review for Ventura.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

This scenario also emphasizes intensification and reuse, but includes two expansion areas North Avenue and Serra - that are currently designated Agriculture and subject to the City's SOAR Ordinance. These two areas total about 493 acres.

The 2005 General Plan would not change the land use designation for either the North Avenue area or the Serra area under this scenario; nevertheless, both areas would be considered for future conversion. Therefore, although neither of the expansion areas could be converted without voter approval in accordance with the SOAR Ordinance, this alternative potentially conflicts with current policies relating to the preservation of agricultural land. This is considered a significant impact.

Conversion of either expansion area may require a future adjustment to the SOI because the Ventura LAFCO will likely remove all areas subject to the SOAR Ordinance, including the North Avenue and Serra areas, from the SOI following a Municipal Service review for Ventura.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

This scenario also emphasizes intensification and reuse, but includes two expansion areas North Avenue and Western Cañada Larga. The entire North Avenue expansion area is currently designated Agriculture and subject to the City's SOAR Ordinance. This area encompasses about 55 acres. About 29 acres of the 110 -acre Western Cañada Larga expansion area (the area west of SR 33) are also designated Agriculture and subject to SOAR. The
remainder of the Western Cañada Larga area (the portion east of SR 33) is not subject to the City SOAR Ordinance and, if annexed by the City, would not be subject to the County SOAR Ordinance. An estimated 26 acres within the Western Cañada Larga area are subject to an LCA contract. The California Government Code (Section 56856.5) generally precludes the LAFCO from approving annexation of lands under LCA contract unless a notice of non-renewal has been filed and the annexing agency (the City) agrees that no services will actually be provided during the remaining life of the contract for land uses or activities not allowed under the contract.

The 2005 General Plan would not change the land use designation for either the North Avenue area or the Western Cañada Larga area, but both areas would be considered for future conversion. In accordance with the SOAR Ordinance, neither of the expansion areas could be converted without voter approval. Lands under LCA contract could only be converted upon cancellation of the contracts. Nevertheless, this alternative potentially conflicts with current policies relating to the preservation of agricultural land. This is considered a significant impact.

Conversion of either expansion area may require a future adjustment to the SOI. The Western Cañada Larga area is already outside the SOI and the Ventura LAFCO will likely remove all areas subject to the SOAR Ordinance, including the North Avenue area, from the SOI following a Municipal Service review for Ventura.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

This scenario also emphasizes intensification and reuse, but includes two expansion areas North Avenue and Poinsettia - that are currently designated Agriculture and subject to the City's SOAR Ordinance. These two areas total about 473 acres. No portion of either expansion area is within an existing Greenbelt Agreement or under LCA contract.

The 2005 General Plan would not change the land use designation for either the North Avenue area or the Poinsettia area; nevertheless, both areas would be considered for future conversion. Therefore, although neither of the expansion areas could be converted without voter approval in accordance with the SOAR Ordinance, this alternative potentially conflicts with current policies relating to the preservation of agricultural land. This is considered a significant impact.

Conversion of either expansion area may require a future adjustment to the SOI because the Ventura LAFCO will likely remove all areas subject to the SOAR Ordinance, including the North Avenue and Poinsettia areas, from the SOI following a Municipal Service review for Ventura.

MITIGATION MEASURES

The policies and actions included in the 2005 General Plan and discussed under Impact AG-1 would reduce potential conflicts with policies relating to the preservation of agricultural land to the degree feasible. Additional mitigation outside of avoiding conversion of lands designated for agricultural use is not available.

SIGNIFICANCE AFTER MITIGATION

No impact with respect to agricultural land preservation policy would occur under Scenario 1. The amount of agriculturally-designated land would vary among Scenarios 2 through 6. However, Scenarios 2 through 6 would all potentially accommodate the eventual conversion of lands designated for agricultural use, within existing Greenbelt Agreements, and/or under LCA contracts to non-agricultural use. Thus, impacts associated with each of these scenarios are considered unavoidably significant.

$$
\begin{array}{ll}
\text { Impact AG-3 } & \begin{array}{l}
\text { Development that could be accommodated under any of the } \\
\\
\\
\\
\text { agricultural compatibility conflicts in some locations. Though } \\
\text { certain areas of agricultural/urban conflict would remain } \\
\text { within the Planning Area, any of the six scenarios would } \\
\text { generally reduce the potential for such conflicts. With the } \\
\text { policies and actions recommended in the 2005 General Plan, } \\
\text { effects under any of the six scenarios would be Class IV, } \\
\text { beneficial. }
\end{array}
\end{array}
$$

Residents living adjacent to agricultural lands often cite odor nuisance impacts, noise from farm equipment, vehicle conflicts, dust and pesticide spraying as land use conflicts. Conflicts between farm vehicles and high-speed automobiles used by residents on adjacent roadways can lead to accidents. Pesticide spraying can result in health hazards, while odor and noise are nuisances that can affect the enjoyment of private dwellings. Increased dust from soils and farm equipment can be both a nuisance and a health hazard. These conflicts can also result in reduced property values along the interface with agricultural uses.

The placement of residential development adjacent to farmland can also have negative impacts on farming operations. Direct physical impacts include vandalism to farm equipment or fencing, and theft of fruits and vegetables. Soil compaction from trespassers or equestrians can also damage crop potential. These can result in indirect economic impacts. One study (Ventura County Agricultural Land Trust, 1996) showed that crop production in the first two rows adjacent to urban uses is about 20% lower than the rows beyond. Reduced air quality from adjacent urban development can also result in impacts to adjacent farmland.

Placement of residences adjacent to cultivated agriculture can also have economic impacts to growers. Increased regulations and liability insurance to protect the farmer from adjacent urban uses cost time and money. Some farmers' sensitive to nearby residences voluntarily limit their hours of operation and do not intensively use the portions of their property closest to urban uses, in effect establishing informal buffer zones on their own property. This has the effect of lowering crop yields, which can potentially affect the long-term economic viability of the agricultural operation. Though these types of economic impacts are not environmental effects under CEQA, they could ultimately cause the loss of agricultural production due to cessation of operations if the economic impacts become severe enough. The City and County's right to farm ordinances help protect on-going agricultural operation from nuisance lawsuits.

Scenario 1 - Intensification/Reuse Only

This land use scenario focuses on intensification and reuse of properties within the existing developed City and does not include expansion areas. As noted under Impact AG-1, several agricultural properties that are currently designated for non-agricultural uses could be developed under this scenario. Development of these areas would take agriculture land currently adjacent to urban uses out of operation, thereby reducing the potential for agricultural/urban compatibility conflicts in these areas. The only areas where new development could potentially create new conflicts with existing agriculture area are in the Saticoy area. Development of residentially-designated lands along the west side of Saticoy Avenue could potentially create new conflicts with agricultural activity along the west side of that roadway. In addition, new residential development east of Wells Road may abut agricultural lands to the east. Conflicts similar to those currently present in portions of the Saticoy area may occur in these areas, though proposed policies requiring buffers between agricultural and urban uses (described below under Mitigation Measures) would minimize impacts.

The impact of this scenario with respect to urban/agricultural conflicts would primarily be beneficial. Nevertheless, it should be noted certain areas of potential conflict would remain, including the agricultural/ urban interface that exists at the North Avenue, Olivas, Serra, and Poinsettia expansion areas. Although areas where intensification is expected to occur generally are not adjacent to agricultural areas, remaining growers may be further isolated in a general sense by the further urbanization of the Planning Area.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

This scenario would potentially result in the same primarily beneficial effects noted for Scenario 1, but would also potentially accommodate the future development of all or portions of the North Avenue, Olivas, and Serra areas. Each of these areas is wholly or partially surrounded by urban uses, including residential development. Therefore, taking these areas out of agricultural production would potentially eliminate conflicts that currently exist in these areas. This is considered a potentially beneficial effect of this scenario.

The North Avenue and Serra areas are essentially completely surrounded by urban uses; therefore, conversion of these areas would not create any new interface between agricultural and urban uses. On the other hand, full or partial conversion of the Olivas area could potentially create new areas of conflict as that area is bounded by agricultural operations to the east and south. Thus, conversion of the Olivas area would eliminate some existing conflicts, while potentially creating others.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

This scenario would potentially result in the same primarily beneficial effects noted for Scenario 1, but would also potentially accommodate the future development of all or portions of the North Avenue and Olivas areas. Both of these areas are wholly or partially surrounded by urban uses, including residential development. Therefore, taking these areas out of agricultural production would potentially eliminate conflicts that currently exist in these areas. On the other hand, as noted for Scenario 2, the Olivas area is bounded by agricultural operations to the
east and south; therefore, partial or complete conversion of this area could potentially create new areas of conflict. Thus, as with Scenario 2, conversion of the Olivas area would eliminate some existing conflicts, while potentially creating others.

Scenario 3's effects would be primarily beneficial, though this scenario would not accommodate conversion of the Serra area to non-agricultural use. Therefore, there would be somewhat greater residual potential for conflict than under Scenario 2.

$\underline{\text { Scenario } 4 \text { - Intensification/Reuse + North Avenue + Serra }}$

This scenario would potentially result in the same primarily beneficial effects noted for Scenario 1, but would also potentially accommodate the future development of all or portions of the North Avenue and Serra areas. Both of these areas are surrounded by urban uses, including residential development. Therefore, taking these areas out of agricultural production would potentially eliminate conflicts that currently exist in these areas. This is considered a potentially beneficial effect of this scenario. Though certain areas of agricultural/urban conflict would remain in portions of the Planning Area, including the Olivas and Poinsettia areas, this scenario's effect would be primarily beneficial and no new areas of conflict would be created.

$\underline{\text { Scenario } 5 \text { - Intensification/Reuse + North Avenue + Western Cañada Larga }}$

This scenario would potentially result in the same primarily beneficial effects noted for Scenario 1, but would also potentially accommodate the future development of all or portions of the North Avenue and Western Cañada Larga areas. The North Avenue area is primarily surrounded by urban uses, including residential development. Therefore, taking these areas out of agricultural production would potentially eliminate conflicts that currently exist in this area. This is considered a potentially beneficial effect of this scenario. The Western Cañada Larga area does not have any current agricultural activity that poses conflicts with urban uses, though conversion of this area would not create any compatibility conflicts with existing agricultural activity.

As with the other scenarios, certain areas of agricultural/urban conflict would remain in portions of the Planning Area under this scenario, including the Olivas and Poinsettia areas. Nevertheless, this scenario's effect would be primarily beneficial and no new areas of conflict would be created.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

This scenario would potentially result in the same primarily beneficial effects noted for Scenario 1, but would also potentially accommodate the future development of all or portions of the North Avenue and Poinsettia areas. Both of these areas are surrounded by urban uses, including residential development and, in the case of the Poinsettia area, Ventura Unified School District schools that have been a source of compatibility concerns. Therefore, taking these areas out of agricultural production would eliminate conflicts that currently exist in these areas. This is considered a potentially beneficial effect of this scenario. Though certain areas of agricultural/urban conflict would remain in portions of the Planning Area, including the Olivas and Serra areas, this scenario's effect would be primarily beneficial and no new areas of conflict would be created.

MITIGATION MEASURES

Implementation of the policies and actions listed under Impact AG-1 would be expected to generally reduce the potential for agricultural/urban compatibility conflicts. In particular, Action 3.21 would minimize effects to farming operations and adjacent urban uses by requiring that non-farm operations provide buffers between urban and agricultural uses. Mitigation beyond the General Plan policies and actions is not required.

SIGNIFICANCE AFTER MITIGATION

Any of the six land use scenarios would generally reduce the potential for agricultural/urban compatibility conflicts. Certain areas of conflict would remain within the Planning Area, primarily in East Ventura where agricultural lands would continue to directly abut residential and other urban uses. However, the overall effect of any of the scenarios would be beneficial.

4.3 AIR QUALITY

This section analyzes the impacts of the 2005 General Plan upon local and regional air quality. Both temporary impacts relating to construction activity and long-term impacts associated with population growth and associated growth in vehicle traffic and energy consumption are discussed.

4.3.1 Setting

a. Local Climate and Meteorology. The semi-permanent high pressure system west of the Pacific coast strongly influences California's weather. It creates sunny skies throughout the summer and influences the pathway and occurrence of low pressure weather systems that bring rainfall to the area during October through April. As a result, wintertime temperatures in Ventura are generally mild, while summers are warm and dry. During the day, the predominant wind direction is from the west and southwest, and at night, wind direction is from the north and generally follows the Santa Clara River Valley.

Predominant wind patterns are occasionally broken during the winter by storms coming from the north and northwest and by episodic Santa Ana winds. Santa Ana winds are strong northerly to northeasterly winds that originate from high pressure areas centered over the desert of the Great Basin. These winds are usually warm, very dry, and often full of dust. They are particularly strong in the mountain passes and at the mouths of canyons.

Daytime summer temperatures in the area average in the high 70s to the low 90s. Nighttime low temperatures during the summer are typically in the high 50 s to low 60 s, while the winter high temperatures tend to be in the 60 s. Winter low temperatures are in the 40 s. Annual average rainfall in Ventura ranges from about 14 to 16 inches, the majority of which falls in winter months.

Two types of temperature inversions (warmer air on top of colder air) are created in the Ventura County area: subsidence and radiational (surface). The subsidence inversion is a regional effect created by the Pacific high in which air is heated as it is compressed when it flows from the high pressure area to the low pressure areas inland. This type of inversion generally forms at about 1,000 to 2,000 feet and can occur throughout the year, but is most evident during the summer months. Surface inversions are formed by the more rapid cooling of air near the ground at night, especially during winter. This type of inversion is typically lower and is generally accompanied by stable air. Both types of inversions limit the dispersal of air pollutants within the regional airshed. The primary air pollutant of concern during the subsidence inversions is ozone, while carbon monoxide and nitrogen oxides are of greatest concern during winter inversions.
b. Local Regulatory Framework. Both the federal and state governments have established ambient air quality standards for the protection of public health. The U.S. Environmental Protection Agency (USEPA) is the federal agency designated to administer air quality regulation, while the California Air Resources Board (CARB) is the state equivalent in the California Environmental Protection Agency. Local control in air quality management is provided by the CARB through county-level Air Pollution Control Districts (APCDs). The CARB has established air quality standards and is responsible for the control of mobile emission
sources, while the local APCDs are responsible for enforcing standards and regulating stationary sources. The CARB has established 14 air basins statewide. In addition, the City further regulates air quality through the City's Air Quality Ordinance (Ordinance 93-37). This ordinance requires developers of projects that generate emissions exceeding Ventura County APCD (VCAPCD) significance thresholds to pay air quality impact fees that are placed in a transportation demand management (TDM) fund that is used by the City to offset project emissions through implementation of regional air quality programs.

The USEPA has set primary national ambient air quality standards (NAAQS) for ozone $\left(\mathrm{O}_{3}\right)$, carbon monoxide (CO), nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, suspended particulates, known as PM_{10} (particulate matter with a diameter of 10 microns or less) and $\mathrm{PM}_{2.5}$ (particulates of less than 2.5 microns in diameter), and lead (Pb). Primary standards are those levels of air quality deemed necessary, with an adequate margin of safety, to protect public health. In addition, the State of California has established health-based ambient air quality standards for these and other pollutants, some of which are more stringent than the federal standards. Table 4.3-1 lists the current Federal and State standards for regulated pollutants.

Table 4.3-1
Federal and State Ambient Air Quality Standards

Pollutant	Averaging Time	Federal Primary Standards	California Standard
Ozone	1-Hour	---	0.09 ppm
	8-Hour	0.08 ppm	0.07 ppm
Carbon Monoxide	8-Hour	9.0 ppm	9.0 ppm
	1-Hour	35.0 ppm	20.0 ppm
Nitrogen Dioxide	Annual	0.05 ppm	---
	1-Hour	---	0.25 ppm
Sulfur Dioxide	Annual	0.03 ppm	---
	24-Hour	0.14 ppm	0.04 ppm
	1-Hour	---	0.25 ppm
PM ${ }_{10}$	Annual	$50 \mu \mathrm{~g} / \mathrm{m}^{3}$	$20 \mu \mathrm{~g} / \mathrm{m}^{3}$
	24-Hour	$150 \mu \mathrm{~g} / \mathrm{m}^{3}$	$50 \mu \mathrm{~g} / \mathrm{m}^{3}$
PM ${ }_{2.5}$	Annual	$15 \mu \mathrm{~g} / \mathrm{m}^{3}$	$12 \mu \mathrm{~g} / \mathrm{m}^{3}$
	24-Hour	$65 \mu \mathrm{~g} / \mathrm{m}^{3}$	--
Lead	30-Day Average	---	$1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$
	3-Month Average	1.5 g / m^{3}	---

ppm = parts per million
$\mu g / m^{3}=$ micrograms per cubic meter
Source: California Air Resources Board
The federal one-hour ozone standard was revoked in June 2005. Under this new rule, Ventura County has been listed as "moderate nonattainment" for the eight-hour ozone standard with a required attainment date of June 2010.

The USEPA is currently in the process of reviewing the particulate matter standards and issued a Draft Staff Paper in January 2005 for public review and comment regarding the policy implications of the latest scientific and technical information regarding particulate matter. In this report, USEPA staff recommends continuing the $\mathrm{PM}_{2.5}$ annual standard while reducing the 24 -hour standard to between $25-35 \mu \mathrm{~g} / \mathrm{m}^{3}$ or reducing both standards, the annual to $12 \mu \mathrm{~g} / \mathrm{m}^{3}$ (same as California standard) and the 24 -hour standard to $35-40 \mu \mathrm{~g} / \mathrm{m}^{3}$. The PM_{10} standard is recommended to be revised to not include the 2.5 micron increment.

Ventura is located in the Ventura County portion of the South Central Coast Air Basin. The Ventura County Air Pollution Control District (APCD) is the designated air quality control agency in the Ventura County portion of the Basin. The Ventura County portion of the South Central Coast Air Basin is a state and federal non-attainment area for ozone and a state nonattainment area for suspended particulates. In addition, though the Ventura County portion of the South Central Coast Air Basin is in attainment for the state and federal carbon monoxide standards, carbon monoxide can potentially be a problem at heavily congested intersections. Each of these pollutants is described below. The City is within the "Ventura growth area" designated by the VCAPCD; however, portions of West Ventura are immediately adjacent to the "Ojai Planning Area" and emissions generated in West Ventura can affect air quality within the Ojai Valley airshed.

Ozone. Ozone is produced by a photochemical reaction (triggered by sunlight) between nitrogen oxides $\left(\mathrm{NO}_{\mathrm{x}}\right)$ and reactive organic gases (ROG). Nitrogen oxides are formed during the combustion of fuels, while reactive organic gases are formed during combustion and evaporation of organic solvents. Because ozone requires sunlight to form, it mostly occurs in serious concentrations between the months of May and October. Ozone is a pungent, colorless toxic gas with direct health effects on humans including respiratory and eye irritation and possible changes in lung functions. Groups most sensitive to ozone include children, the elderly, people with respiratory disorders, and people who exercise strenuously outdoors.

Suspended Particulates. PM_{10} is small particulate matter measuring no more than 10 microns in diameter. It is mostly composed of dust particles, nitrates, and sulfates. PM_{10} is a byproduct of fuel combustion and wind erosion of soil and unpaved roads, and is directly emitted into the atmosphere through these processes. PM_{10} is also created in the atmosphere through chemical reactions. Particles less than 10 micrometers in diameter $\left(\mathrm{PM}_{10}\right)$ pose a health concern because they can be inhaled into and accumulate in the respiratory system. Particles less than 2.5 micrometers (=microns) in diameter $\left(\mathrm{PM}_{2.5}\right)$ are referred to as "fine" particles and are believed to pose the greatest health risks. Because of their small size (approximately 1 /30th the average width of a human hair), fine particles can lodge deeply into the lungs. Fine particulate matter is composed primarily as a by-product of combustion, while matter between 2.5 and 10 microns is mostly dust from roads and grinding or crushing operations. Fine particulate matter poses a serious health threat to all groups, but particularly to the elderly, children, and those with respiratory problems. More than half of the fine particulate matter that is inhaled into the lungs remains there, which can cause permanent lung damage. These materials can damage health by interfering with the body's mechanisms for clearing the respiratory tract or by acting as carriers of an absorbed toxic substance.
An important fraction of the particulate matter emission inventory is that formed by diesel engine fuel combustion. Particulates in diesel emissions are very small and readily respirable. The particles have hundreds of chemicals adsorbed onto their surfaces, including many known
4.3-3

City of Ventura
or suspected mutagens and carcinogens. The California Office of Environmental Health Hazard Assessment (OEHHA) reviewed and evaluated the potential for diesel exhaust to affect human health, and the associated scientific uncertainties (California EPA, ARB, April 1998). Based on the available scientific evidence, it was determined that a level of diesel PM exposure below which no carcinogenic effects are anticipated has not been identified. The Scientific Review Panel that approved the OEHHA report determined that based on studies to date that 3×10^{-4} $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)^{-1}$ is a reasonable estimate of the unit risk for diesel PM. This means that a person exposed to a diesel PM concentration of $1 \mu \mathrm{~g} / \mathrm{m}^{3}$ continuously over the course of a lifetime has a 3 per 10,000 chance (or 300 in one million chance) of contracting cancer due to this exposure. Based on an estimated year 2000 statewide average concentration of $1.26 \mu \mathrm{~g} / \mathrm{m}^{3}$ for indoor and outdoor ambient air, about 380 excess cancer cases per one million population could be expected if diesel PM concentrations remained the same (ARB, October 2000).

Compared to other air toxics the ARB has identified and controlled, diesel PM emissions are estimated to be responsible for about 70% of the total ambient air toxics risk. In addition to these general risks, diesel PM can also be responsible for elevated localized or near-source exposures ("hot spots"). Depending on the activity and nearness to receptors, these potential risks can range from small to 1,500 per million or more (ARB, October 2000). Risk characterization scenarios have been conducted by the ARB staff to determine the potential excess cancer risks involved due to the location of individuals near to various sources of diesel engine emissions, ranging from school buses to high volume freeways.

Diesel PM emissions are expected to decrease 30\% from 2000 to 2020 due to currently adopted on-road standards and fleet turn-over as new vehicles with controls replace older vehicles with little or far less effective controls, but such reductions will not be sufficient to fully reduce the existing risk. ARB staff have prepared a Diesel Risk Reduction Plan (ARB, October 2000) that includes a comprehensive plan to significantly reduce diesel PM emissions. The ARB is in the process of developing specific regulations to implement the plan. The basic concept is to require all new diesel-fueled vehicles and engines to use state-of-the-art catalyzed diesel particulate filters (DPFs) and very low-sulfur diesel fuel. Also, where technically and economically feasible, the ARB staff recommends that existing vehicles and engines should be retro-fitted to further reduce particulate emissions. For example, the ARB in 2001 adopted new PM and NO_{x} emission standards to clean up large diesel engines that power big-rig trucks, trash trucks, delivery vans and other large vehicles. The new standard for PM takes effect in 2007 and reduces emissions to 0.01 gram of PM per brake horsepower-hour (g/bhp-hr.), a 90% reduction from the existing standard.

The USEPA is also working to reduce the emissions from diesel engines. The USEPA finalized a new rule in December 2000 for on-road vehicles requiring petroleum refiners to remove all but 15 ppm of sulfur from diesel fuel by mid-2006, and requiring engine makers to reduce particulate matter emissions by almost 90% and NO_{x} levels by up to 95% for new engines by the model year 2007.

Carbon Monoxide. Carbon monoxide, a colorless, odorless, poisonous gas, is a local pollutant that is found in high concentrations only very near the source. The major source of carbon monoxide is automobile engines. Elevated concentrations, therefore, are usually only found near areas of high traffic volumes. Carbon monoxide's health effects are related to its affinity for hemoglobin in the blood. At high concentrations, carbon monoxide reduces the
4.3-4

City of Ventura
amount of oxygen in the blood, causing heart difficulties in people with chronic diseases, reduced lung capacity and impaired mental abilities.
c. Current Ambient Air Quality. The Air Quality Monitoring Stations in El Rio and at Emma Wood State Beach are the nearest to the City of the seven VCAPCD monitoring stations. Air quality at the Ojai monitoring station can also be affected by air pollutants generated in the West Ventura area. The El Rio monitoring station measures ozone, $\mathrm{CO}, \mathrm{NO}_{2}$, and PM_{10}. The Emma Wood station measures ozone. The Ojai station measures ozone, PM_{10}, and NO_{2}. Table 4.3-2 lists air quality data for the El Rio monitoring station, Table 4.3-3 lists air quality data for the Emma Wood station, and Table 4.3-4 lists air quality data for the Ojai monitoring station.

Ozone concentrations at the El Rio monitoring station did not exceed federal or state standards during 2002-2004. Ozone concentrations at the Emma Wood station exceeded state standards on three days in 2003 and one day in 2004. Concentrations of PM_{10} at El Rio exceeded the state standard all three years (2002-2004), but the federal PM_{10} standard was not exceeded in either location. Ventura County is in attainment for the federal $\mathrm{PM}_{2.5}$ standard. Neither carbon monoxide nor nitrogen dioxide at the El Rio station exceeded federal or state standards.

Ozone concentrations at the Ojai monitoring station exceeded the federal 1-hour standard once in 2002 and once in 2003, but did not exceed the federal standard in 2004. Ozone concentrations exceeded the state 1-hour standard on 15 days in 2002, 24 days in 2003, and 7 days in 2004. Eight-hour concentrations exceeded the federal standard on 12 days in 2002, 22 days in 2003, and 13 days in 2004. PM_{10} concentrations did not exceed the federal standard during the 200204 period, but the state standard was exceeded twice in 2003.

The major sources of ozone precursors in Ventura County are motor vehicles and other mobile equipment, solvent use, pesticide application, the petroleum industry, and electric utilities. The major sources of PM_{10} are road dust, construction, mobile sources, and farming operations. Locally, Santa Ana winds are responsible for entraining dust and occasionally causing elevated PM_{10} levels.
d. Air Quality Management Plan. The 1994 Air Quality Management Plan (AQMP) prepared by the Ventura County APCD includes a number of air pollution control measures to reduce emissions and bring the region into compliance with the federal ozone standard. The AQMP was revised in 1995, 1997, and 2004 and predicted attainment of the federal one hour ozone standard by 2005. Based on the last three years of monitoring, Ventura County has effectively attained the federal one hour ozone standard. Further emission reductions are needed to attain the eight hour standard. To that end, the APCD is currently developing a new AQMP, which will be completed in 2007. The 2007 AQMP will contain strategies for attainment of the new eight-hour federal ozone standard by 2010. It will also incorporate updated projections of population, dwelling units, and motor vehicle emissions.

Ventura County must also comply with the California Clean Air Act (effective January 1, 1989), which requires attainment of the California Ambient Air Quality Standards by the earliest practicable date. The state ozone standard is more stringent than the federal standard and is more difficult to achieve. The latest Triennial Plan Assessment and Update (VCAPCD, February 2004) does not predict an attainment date for the state ozone standard, but provides documentation that the County has met exposure reductions mandated under the state Health
4.3-5

City of Ventura

Table 4.3-2
Ambient Air Quality Data for the El Rio Monitoring Station

Pollutant	Air Pollution Data		
	2002	2003	2004
Ozone, ppm - maximum hourly concentration (ppm)	0.086	0.081	0.090
Number of days of state exceedances (>0.09 ppm)	0	0	0
Number of days of federal exceedances (>0.12 ppm)	0	0	0
Ozone, ppm - maximum 8-hour concentration (ppm)	0.067	0.071	0.080
Number of days of federal exceedances (>0.08 ppm)	0	0	0
Carbon Monoxide, ppm - Worst 8 Hours	1.23	3.50	1.52
Number of days of state 1-hour exceedances (>20.0 ppm)	0	0	0
Number of days of state 8-hour exceedances (>9.0 ppm)	0	0	0
Nitrogen Dioxide, ppm - Worst Hour	0.048	0.057	0.063
Number of days of state exceedances ($>0.25 \mathrm{ppm}$)	0	0	0
Particulate Matter <10 microns, maximum concentration in $\mu \mathrm{g} / \mathrm{m}^{3}$ (State/Fed)	$\begin{gathered} 100.4 / \\ 97.4 \end{gathered}$	$\begin{aligned} & \hline 127.2 / \\ & 123.8 \end{aligned}$	$\begin{gathered} 59.3 / \\ 59.6 \end{gathered}$
Number of samples of state exceedances ($>50 \mu \mathrm{~g} / \mathrm{m}^{3}$)	2	5	1
Number of samples of federal exceedances ($>150 \mu \mathrm{~g} / \mathrm{m}^{3}$)	0	0	0
Annual Geometric Mean (state standard $=30 \mu \mathrm{~g} / \mathrm{m}^{3}$)	28.6	NR	NR
Annual Arithmetic Mean (federal standard $=50 \mu \mathrm{~g} / \mathrm{m}^{3}$)	27.8	30.7	NR
Particulate Matter <2.5 microns, maximum 24-hour average concentration in $\mu \mathrm{g} / \mathrm{m}^{3}$	29.4	81.7	28.2
Number of samples of federal 24-hour average exceedances ($>65 \mu \mathrm{~g} / \mathrm{m}^{3}$)	0	1	0
98\% concentration, $\mu \mathrm{g} / \mathrm{m}^{3}$	27.9	28.7	NR
Annual Average (federal standard $=15$ $\mu \mathrm{g} / \mathrm{m}^{3}$)	13.0	11.8	NR
3 -year average of annual average	NR	NR	NR

NR = Not Reported
Source: ARB, Air Quality Data Statistics; available at http://www.arb.ca.gov/aqd/aqdpage.htm.

Table 4.3-3
Ambient Air Quality Data for the Emma Wood Monitoring Station

Pollutant	Air Pollution Data		
	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Ozone, ppm - maximum hourly concentration (ppm)	0.078	0.094	0.093
Number of days of state exceedances (>0.09 ppm)	0	3	1
Number of days of federal exceedances (>0.12 ppm)	0	0	0
Ozone, ppm - maximum 8-hour concentration (ppm)	0.069	0.078	0.082
Number of days of federal exceedances (>0.08 ppm)	0	0	1

Source: ARB, Air Quality Data Statistics; available at http://www.arb.ca.gov/aqd/aqdpage.htm.

Table 4.3-4
Ambient Air Quality Data for the Ojai Monitoring Station

Pollutant	Air Pollution Data		
	2002	2003	2004
Ozone, ppm - maximum hourly concentration (ppm)	0.132	0.130	0.113
Number of days of state exceedances (>0.09 ppm)	15	24	7
Number of days of federal exceedances (>0.12 ppm)	1	1	0
Ozone, ppm - maximum 8-hour concentration (ppm)	0.109	0.114	0.097
Number of days of federal exceedances ($>0.08 \mathrm{ppm}$)	12	22	13
Nitrogen Dioxide, ppm - Worst Hour	0.033	0.038	0.041
Number of days of state exceedances (>0.25 ppm)	0	0	0
Particulate Matter < 10 microns, maximum concentration in $\mu \mathrm{g} / \mathrm{m}^{3}$ (State/Fed)	$\begin{aligned} & 41.9 / \\ & 41.7 \end{aligned}$	$\begin{gathered} 56.5 / \\ 57.5 \end{gathered}$	$\begin{aligned} & 43.8 / \\ & 43.2 \end{aligned}$
Number of samples of state exceedances ($>50 \mu \mathrm{~g} / \mathrm{m}^{3}$)	0	2	0
Number of samples of federal exceedances ($>150 \mu \mathrm{~g} / \mathrm{m}^{3}$)	0	0	0

Source: ARB, Air Quality Data Statistics; available at http://www.arb.ca.gov/aqd/aqdpage.htm.
and Safety Code Section 40920. Health and Safety Code Section 40914(b)(2) requires a demonstration that the plan to attain the ozone standard is to provide for expeditious
implementation of "every feasible measure" to reduce ozone precursor emissions. Per the Triennial Plan Assessment and Update, VCAPCD staff examined 26 emission source categories with the "Most Stringent All Feasible Measures List" prepared by the California Air Pollution Control Officers Association Rules Subcommittee and determined that "all feasible measures" have been implemented for 13 of the source categories. The District has scheduled rule making from 2004-2006 for the other 13 emission source categories.
e. Sensitive Receptors. Ambient air quality standards have been established to represent the levels of air quality considered sufficient, with an adequate margin of safety, to protect public health and welfare. They are designed to protect that segment of the public most susceptible to respiratory distress, such as children under 14; the elderly over 65; persons engaged in strenuous work or exercise; and people with cardiovascular and chronic respiratory diseases. The majority of sensitive receptor locations are therefore schools and hospitals. School locations are identified in Section 4.11, Public Services.

4.3.2 Impact Analysis

a. Methodology and Significance Thresholds. The analysis of the proposed 2005 General Plan's air quality impacts follows the guidance and methodologies recommended in the Ventura County air Quality Assessment Guidelines (October 2003).

The VCAPCD recommends 25 pounds per day thresholds for ROC and NO_{x} emissions that apply to individual development projects within the Ventura growth area. For the Ojai Planning Area (which is adjacent to portions of the West Ventura area), the VCAPCD recommends thresholds of 5 pounds per day ROC and NO_{x} emissions. However, these thresholds do not apply to general plans, which could accommodate numerous individual projects. Significance thresholds for citywide planning programs, such as the 2005 General Plan, are based on whether the planning program exceeds regional growth forecasts thus delaying the attainment of regional air quality objectives. For the purposes of this analysis, long-term impacts to regional air quality are determined to be significant if growth accommodated under the 20005 General Plan would be inconsistent with adopted Air Quality Management Plan (AQMP) growth forecasts through 2025. The population projections in the AQMP are adopted from the Southern California Association of Governments (SCAG).

Projects and programs requiring an analysis of consistency with the AQMP include general plan updates and amendments, specific plans, area plans, large residential developments and large commercial/industrial developments. The consistency analysis evaluates the following questions:

- Are the population projections used in the plan or project equal to or less than those used in the most recent AQMP for the same area?
- Is the rate of increase in vehicle trips and miles traveled less than or equal to the rate of population growth for the same area?
- Have all applicable land use and transportation control measures from the AQMP been included in the plan or project to the maximum extent feasible?

If the answer to all of the above questions is yes, then the proposed project or plan is considered consistent with the AQMP. If the answer to any one of the questions is no, then General Plan buildout could potentially delay or preclude attainment of the state ozone standard. This would be considered inconsistent with the AQMP.

Long-term impacts are also considered potentially significant if the growth in traffic accommodated under the 2005 General Plan would have the potential to create CO "hot spots" where CO concentrations exceed state or federal standards. Such hot spots typically occur at severely congested intersections where a level of service (LOS) E or F is projected.

The VCAPCD has not adopted significance thresholds for construction-related emissions because of their temporary nature. In any event, construction-related emissions are not relevant at the General Plan level because such emissions are dependent on the characteristics of individual development projects. Nevertheless, because the region does not meet the federal or State standards for ozone or the State standard for PM_{10}, the City requires implementation of standard emission and dust control techniques for all construction.
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the six 2005 General Plan land use scenarios. A discussion of the impacts for each scenario follows.

Impact AQ-1	Anticipated growth under any of the six land use scenarios exceeds Ventura County Air Quality Management Plan population forecasts. This is largely because AQMP forecasts are outdated and the 2005 General Plan is not expected to
	hinder attainment of state or federal air quality standards. Nevertheless, the exceedance of population projections used for regional air quality planning represents a potential inconsistency with the AQMP. This is considered a Class I, unavoidably significant, impact of any of the six scenarios.

Impacts relating to consistency with the Ventura County AQMP are generally the same for the six land use scenarios. Therefore, the scenarios are not discussed individually.

Vehicle use, energy consumption, and associated air pollutant emissions are directly related to population growth. The population forecasts upon which the Ventura County AQMP is based are used to estimate future emissions and devise appropriate strategies to attain state and federal air quality standards. When population growth exceeds the forecasts upon which the AQMP is based, emission inventories could be surpassed, which could affect attainment of standards.

The Ventura County AQMP relies on the most recent population estimates developed by the Metropolitan Planning Organization (MPO). The Southern California Association of Governments (SCAG) acts as the MPO for Ventura County. According to SCAG's 2004 Regional Transportation Plan (RTP) population forecasts, the projected 2025 population for the City of Ventura is 123,645 . This represents an average annual growth rate of 0.78%.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
AQMP Consistency (Impact AQ-1)	Projected 2025 population of 126,153 exceeds AQMP projection by 2,508 persons. Though population growth is not expected to hinder progress toward state and federal standards, exceedance of the population projection is an unavoidably significant impact.	Projected 2025 population of 133,160 exceeds AQMP projection by 9,515 persons. Though population growth is not expected to hinder progress toward state and federal standards, exceedance of the population projection is an unavoidably significant impact.	Impacts similar to Scenario 2 and unavoidably significant.	Impacts similar to Scenario 2 and unavoidably significant.	Impacts similar to Scenario 2 and unavoidably significant.	Impacts similar to Scenario 2 and unavoidably significant.
Individual Future Developments (Impact AQ-2)	Most intensification/ reuse development would not exceed VCAPCD thresholds; developments on large agricultural parcels in Saticoy, Arundell, North Bank, and North Avenue areas may exceed thresholds, but implementation of current requirements and proposed policies reduces impacts to Class III, less than significant.	Intensification/ reuse impacts similar to Scenario 1. Development of Olivas and Serra expansion areas would exceed VCAPCD thresholds and North Avenue expansion area development could. Implementation of current requirements and proposed policies reduces impacts to Class III, less than significant.	Intensification/ reuse impacts similar to Scenario 1. Development of Olivas expansion area would exceed VCAPCD thresholds and North Avenue expansion area development could. Implementation of current requirements and proposed policies reduces impacts to Class III, less than significant.	Intensification/ reuse impacts similar to Scenario 1. Development of Serra expansion area would exceed VCAPCD thresholds and North Avenue expansion area development could. Implementation of current requirements and proposed policies reduces impacts to Class III, less than significant.	Intensification/ reuse impacts similar to Scenario 1. Development of Western Cañada Larga and North Avenue expansion area development would exceed VCACPD thresholds. Implementation of current requirements and proposed policies reduces impacts to Class III, less than significant.	Intensification/ reuse impacts similar to Scenario 1. Development of Poinsettia expansion area would exceed VCAPCD thresholds and North Avenue expansion area development could. Implementation of current requirements and proposed policies reduces impacts to Class III, less than significant.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Construction (Impact AQ-3)	An estimated 8,300 residences and 4.9 million square feet of non-residential development could be developed under this scenario through 2025. Impacts reduced to Class III, less than significant, through implementation of proposed policies, including VCAPCDrecommended emission and dust control techniques.	An estimated 11,000 residences and 6.3 million square feet of non-residential development could be developed under this scenario through 2025. Impacts reduced to Class III, less than significant, through implementation of proposed policies, including VCAPCDrecommended emission and dust control techniques.	Overall impacts similar to Scenario 2, but more construction would occur in the North Avenue and Olivas areas and no construction would occur in the Serra area. Impacts reduced to Class III, less than significant, through implementation of proposed policies, including VCAPCDrecommended emission and dust control techniques.	Overall impacts similar to Scenario 2, but more construction would occur in the North Avenue and Serra areas and no construction would occur in the Olivas area. Impacts reduced to Class III, less than significant, through implementation of proposed policies, including VCAPCDrecommended emission and dust control techniques.	Overall impacts similar to Scenario 2, but more construction activity would be focused in the North Ventura Avenue area. Impacts reduced to Class III, less than significant, through implementation of proposed policies, including VCAPCDrecommended emission and dust control techniques.	Overall impacts similar to Scenario 2, but construction would occur in the North Avenue and Poinsettia expansion areas. Impacts reduced to Class III, less than significant through implementation of proposed policies, including VCAPCDrecommended emission and dust control techniques.
Carbon Monoxide (Impact AQ-4)	Increased traffic levels would potentially increase CO concentrations; however, reductions in CO emission rates would more than offset effects of increased traffic congestion. Impacts are Class III, less than significant.	Increased growth as compared to Scenario 1 would incrementally increase traffic congestion and CO emissions. Nevertheless, impacts are similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.

Table 4.3-5 compares the 2025 population projections for the 2005 General Plan land use scenarios to the forecasts upon which the AQMP is based. As indicated, the projections for Scenarios 1-6 all exceed the AQMP forecasts. The projected 2025 population of 126,153 for Scenario 1 is 2% over the AQMP forecast, while the projected population of 133,160 for Scenarios 2-6 is about 8% over the AQMP forecast.

Table 4.3-5
Comparison of 2025 Population Projections

	Scenario 1	Scenarios 2-6
2005 General Plan 2025 Population Projection	126,153	133,160
Ventura AQMP 2025 Population Projection	123,645	
Persons Over AQMP Projection	2,508	9,515

Based on the projected average annual growth estimate for growth Scenario 1 (0.88%), the 2025 population projection for the City is 126,153 . This is 2,508 persons, or about 2%, greater than the AQMP population projection. The 1.14% average annual growth rate assumed for Scenarios 2-6 would result in a 2025 population estimated at 133,160. This exceeds the AQMP projection by 9,515 persons, or about 8%. Thus, any of the six scenarios could be considered inconsistent with the AQMP.

Although population growth associated with Scenarios 1-6 is projected to exceed forecasts upon which the AQMP is based, the 2005 General Plan includes goals, policies, and actions that would at least partially alleviate increases in traffic and energy consumption, and associated increases in air pollutant emissions. Development under Scenarios 1-6 would be subject to Policy 3C and Actions 3.14 and 3.16 of the 2005 General Plan, which promote intensification and reuse of existing lands within the existing City limits and SOI prior to expansion. In addition, Policy 4B directs the City to "[h]elp reduce dependence on the automobile," while Policy 4C directs the City to "[i]ncrease transit efficiency and options." Several 2005 General Plan actions support these policies. Among the actions are the development of trip reduction and transportation demand management incentives and programs (Actions 4.14, 4.19, 4.20, and 4.29), improvements to sidewalks (Actions 4.24 and 4.25), and citywide improvements to transit and alternative transportation mode facilities (Actions 4.16 and 4.28).

Recent research indicates that infill development reduces vehicle miles traveled (VMT) and associated air pollutant emissions as compared to development on sites at the periphery of metropolitan areas, also known as "greenfield" sites. For example, a 1999 simulation study conducted for the U.S. Environmental Protection Agency comparing infill development to greenfield development found that infill development results in substantially fewer VMT per capita and generates fewer emissions of most air pollutants and greenhouse gases (see Table 4.3-6). Similarly, a 1991 study presented to the California Energy Resources Conservation and Development Commission (Holtzclaw, 1991) found that a doubling of residential densities (as could occur with infill development under Scenarios 1-6) is associated with a $20-30 \%$ reduction in per capita VMT.

Table 4.3-6
Comparison of VMT and Emissions: Infill versus Greenfield Development

Case Study	Per Capita Daily VMT, Infill as a Percentage of Greenfield	Emissions, Infill as a Percentage of Greenfield	
San Diego, CA	52\%	CO NO_{x} SO_{x} PM CO_{2}	$\begin{aligned} & 88 \% \\ & 58 \% \\ & 51 \% \\ & 58 \% \\ & 55 \% \end{aligned}$
Montgomery County, MD	42\%	CO NO_{x} SO_{x} PM CO_{2}	$\begin{aligned} & 52 \% \\ & 69 \% \\ & 110 \% \\ & 50 \% \\ & 54 \% \end{aligned}$
West Palm Beach, FL	39\%	$\begin{aligned} & \mathrm{CO} \\ & \mathrm{NO}_{\mathrm{x}} \\ & \mathrm{SO}_{\mathrm{x}} \\ & \mathrm{PM}^{\mathrm{CO}} 2 \end{aligned}$	$\begin{aligned} & 75 \% \\ & 72 \% \\ & 94 \% \\ & 47 \% \\ & 50 \% \end{aligned}$

Source: Allen, E., Anderson, G., and Schroeer, W., "The Impacts of Infill vs. Greenfield Development: A Comparative Case Study Analysis," U.S. Environmental Protection Agency, Office of Policy, EPA Publication \#231-R-99-005, September 2, 1999.

Implementation of any of the land use scenarios under consideration for the 2005 General Plan would be expected to substantially increase overall residential densities in the community by emphasizing intensification and reuse of lands in already urbanized areas of the community. Table 4.3-7 compares the current number of persons per acre in Ventura to the projected number of persons per acre in 2025 under each of the six land use scenarios.

Table 4.3-7
Estimated Persons per Acre - 2004 and 2025

Scenario	Estimated SOI Acres $^{\text {a }}$	Estimated Population	Estimated Persons/Acre
Current (2004)	16,069	104,952	6.53
Scenario 1 (2025)	16,080	126,153	7.85
Scenario 2 (2025)	17,104	133,160	7.79
Scenario 3 (2025)	16,944	133,160	7.86
Scenario 4 (2025)	16,229	133,160	8.21
Scenario 5 (2025)	16,190	133,160	8.22
Scenario 6 (2025)	16,080	133,160	8.28

${ }^{a}$ Current (2004) SOI acres exclude the hillsides (i.e., same area as under Scenario 1). SOI acres for the 2005 General Plan scenarios add areas outside the current SOI that are proposed for inclusion in the scenario: (1) 11 acres for Scenarios 1 and 6; (2) 1,035 additional acres for Scenario 2; (3) 875 additional acres for Scenario 3; (4) 160 additional acres for Scenario 4; and (5) 110 acres for Scenario 5. Ventura County LAFCO approval of SOI
adjustments would be needed to accommodate development in areas outside the current SOI.
By increasing the overall population density of the community and encouraging mixed land uses, implementation of the 2005 General Plan would be expected to generally reduce per capita automobile trips and travel distances as compared to existing conditions or continued lower density development at the periphery of the Planning Area. This would generally reduce per capita air pollutant emissions associated with vehicle use. Based on the data in Table 4.3-7, the overall increase in persons/acre within the anticipated future SOI could range from about 19\% (for Scenario 2) to 27% (for Scenario 6). Assuming that a doubling of residential density would achieve at least a 20% reduction in per capita VMT (as discussed above), a $19-27 \%$ increase in residential density could be expected to reduce citywide per capita VMT by about $4-5 \%$. Thus, the rate of increase in vehicle trips and VMT is expected to be less than the population increase. Such a reduction would at least partially offset the exceedance of the 2025 population forecast upon which the AQMP is based. In addition, as discussed in Section 4.15, Population and Housing, any of the land use scenarios would be expected to provide for a balance of jobs and housing in the community, which would be expected to generally limit the need for area residents to travel long distances to jobs.

The Ventura County AQMP provides recommendations for reducing emissions from transportation-related sources by reducing vehicle use or improving traffic flow. These techniques are referred to as Transportation Control Measures (TCMs). Table 4.3-8 compares proposed 2005 General Plan policies and strategies to the AQMP TCMs. As indicated, the 2005 General Plan includes numerous policies that fulfill the intent of the VCAPCD transportation control measures. Thus, no inconsistency with these measures is anticipated for any scenario.

Table 4.3-8
2005 General Plan Consistency with VCAPCD Transportation Control Measures

Transportation Control Measure	2005 General Plan Policies
TCM A - Ridesharing Strategies	Action 4.14 - Provide development incentives to encourage projects that reduce vehicle trips. Action 4.19 - Adopt new development code provisions that establish vehicle trip reduction requirements for all development. Action 4.20 - Develop a transportation demand management program to shift travel behavior toward alternative modes and services.
TCM B - Nonmotorized Strategies	Action 4.12 - Refine level of service standards to encourage use of alternative modes of transportation while meeting state and regional mandates. Action 4.13 - Design roadway improvements and facility modifications to minimize the potential for conflict between pedestrians, bicycles, and automobiles. Action 4.16 - Install roadway, transit, and alternative transportation improvements along existing or planned multi-modal corridors, including primary bike and transit routes, and at land use intensity nodes. Action 4.17 - Prepare and periodically update a Mobility Plan that integrates a variety of travel alternatives to minimize reliance on any single mode. Action 4.18 - Promote the development and use of recreational trails as transportation routes to connect housing with services, entertainment, and employment. Action 4.21 - Require new development to provide

Table 4.3-8
2005 General Plan Consistency with VCAPCD Transportation Control Measures

Transportation Control Measure	2005 General Plan Policies
	pedestrian and bicycle access and facilities as appropriate, including connected paths along the shoreline and watercourses. Action 4.22 - Update the General Bikeway Plan as needed to encourage bicycle use as a viable transportation alternative to the automobile and include the bikeway plan as part of a new Mobility Plan. Action 4.24 - Require sidewalks wide enough to encourage walking that include ramps and other features needed to ensure access for mobility-impaired persons. Action 4.25 - Adopt new development code provisions that require the construction of sidewalks, where appropriate.
TCM C - Traffic Flow Improvement Strategy	Action 4.7 - Update the traffic mitigation fee program to fund necessary citywide circulation system and mobility improvements needed in conjunction with new development. Action 4.10 - Modify traffic signal timing to ensure safety and minimize delay for all users. Action 4.27 - Extend stubbed-end streets through future developments, where appropriate, to provide necessary circulation within a developing area and for adequate internal circulation within and between neighborhoods.
TCM D - Land Use Strategy	Action 3.8 - Adopt new development code provisions that designate neighborhood centers for a mixture of residences and small-scale, local-serving businesses. Action 3.9 - Adopt new development code provisions that designate commerce districts and corridors for mixeduse development that combines businesses with housing. Action 3.10 - Allow intensification of commercial areas through conversion of surface parking to building area under a districtwide parking management strategy in the Downtown Specific Plan. Action 3.11 - Expand the downtown redevelopment area to include parcels around future transit areas and along freeway frontage. Action 4.12 - Design roadway improvements and facility modifications to minimize the potential for conflict between pedestrians, bicycles, and automobiles.
TCM E - Transit Strategies	Action 4.28 - Require all new development to provide for citywide improvements to transit stops that have sufficient quality and amenities, including shelters and benches, to encourage ridership. Action 4.29 - Develop incentives to encourage City employees and local employers to use transit, rideshare, walk, or bike. Action 4.30 - Work with public transit agencies to provide information to riders at transit stops, libraries, lodging, and event facilities. Action 4.31 - Work with public and private transit providers to enhance public transit service. Action 4.32 - Coordinate with public transit systems for the provision of additional routes as demand and funding allow.

Table 4.3-8
2005 General Plan Consistency with VCAPCD Transportation Control Measures

Transportation Control Measure	2005 General Plan Policies
	Action 4.33-Work with Amtrak, Metrolink, and Union racific to maximize efficiency of passenger and freight to the City and to integrate and coordinate passenger rail service with other transportation modes. Action 4.34 - Lobby for additional transportation funding and changes to Federal, State, and regional transportation policy that support local decision-making.

In summary, the rate of increase in vehicle trips is expected to be less than the population growth rate for any of the 2005 General Plan land use scenarios. In addition, policies, actions, and land use strategies contained in the 2005 General Plan would incorporate AQMP transportation control measures to the extent feasible. Nevertheless, because the projected population growth under any of the six scenarios exceeds AQMP forecasts for the City, impacts associated with any of the scenarios are considered significant.

MITIGATION MEASURES

As discussed above, the 2005 General Plan includes various policies and actions that encourage mixed use and infill development. Implementation of these policies/actions would reduce air pollutant emissions to the maximum degree feasible given the amount of growth anticipated under the 2005 General Plan. However, outside of restricting population growth to be within SCAG and VCAPCD forecasts, the potential inconsistency with the AQMP cannot be avoided. Section 6.0, Alternatives, includes evaluation of an alternative with a 0.78% average annual growth rate. Under that alternative, the 2025 population would be within SCAG and VCAPCD forecasts.

SIGNIFICANCE AFTER MITIGATION

Outside of restricting population growth to be within SCAG and VCAPCD forecasts, the potential inconsistency with the AQMP is considered an unavoidably significant impact. It should again be noted, however, that the exceedance of AQMP population forecasts is largely a result of the current forecasts not reflecting current City planning policy. As discussed above, the emphasis on reuse of already developed lands and mixed use, pedestrian-oriented development is expected to reduce regional air pollutant emissions as compared to continued low density, automobile oriented development at the City's periphery.

Impact AQ-2 Individual projects accommodated under the proposed 2005 General Plan would generate air pollutant emissions. The significance of air quality impacts associated with individual projects would depend upon the characteristics of the projects and the availability of feasible mitigation measures. However, implementation of existing programs, in combination with proposed 2005 General Plan policies and actions, would reduce impacts associated with individual
development projects to a Class III, less than significant, level for all six scenarios.

Long-term emissions associated with growth accommodated under any of the 2005 General Plan scenarios are those associated with vehicle trips and stationary sources (electricity and natural gas). As noted under Impact AQ-1, growth that would be accommodated under any of the 2005 General Plan scenarios would be greater than anticipated under regional growth forecasts. It is also likely that some individual intensification/reuse projects would exceed project-specific thresholds established by the VCAPCD. Table 4.3-9 shows the size of projects that would be expected to exceed VCAPCD thresholds in 2005, 2010, 2015, 2020, and 2025. As indicated, it is anticipated that the size of projects that will exceed VCACPD thresholds will increase over time. This is because it is anticipated that emissions from individual vehicles and buildings will continue to decline as new technologies are introduced.

Table 4.3-9
Project Size That Will Exceed VCAPCD Significance Thresholds for Ozone Precursors (ROC and NO_{x})

Year	Residential Projects (units)			Non-Residential Projects (square feet)			
	Single Family Housing	Apartments	Condos/ Townhouses	Strip Mall (retail)	Home Improvement (retail)	Office Park	Industrial Park
2005	117	160	203	60,600	70,900	120,500	199,500
2010	173	236	255	88,000	99,900	191,700	366,500
2015	247	294	310	141,600	156,800	328,500	704,000
2020	284	331	345	202,000	220,500	475,000	$1,099,000$
2025	322	367	378	288,200	311,400	677,000	$1,705,000$

Source: Ventura County Air Pollution Control District, Ventura County Air Quality Assessment Guidelines, Appendix F, October 2003.

The overall cumulative impact would be greater under Scenarios 2-6 than under Scenario 1 because those scenarios would accommodate more overall new development (approximately 11,000 new residential units and about 33,000 new residents under Scenarios 2-6 as compared to 8,300 new units and about 26,000 new residents under Scenario 1). The 33% greater population increase anticipated for Scenarios 2-6 as compared to Scenario 1 would increase overall emissions of air pollutants commensurately, with greater overall impacts to regional air quality. However, it is important to note that these estimates of population growth are projections used for analytical purposes. The actual increase in population could be higher or lower for any of the scenarios. Moreover, it is not possible to predict how higher or lower population growth in Ventura may affect overall growth in neighboring communities (e.g., whether absorbing more growth in Ventura may result in lower growth in Oxnard or vice versa).

Individual future development projects under any of the 2005 General Plan land use scenarios would be required to include mitigation measures to address potential impacts. Specifically, the City's Air Quality Ordinance (Ordinance 93-37) requires developers of projects that generate emissions exceeding VCAPCD significance thresholds to pay air quality impact fees that are placed in a transportation demand management (TDM) fund that is used by the City to offset
project emissions through implementation of regional air quality programs. The fee is based on a formula developed by the VCAPCD and included in the District's Air Quality Assessment Guidelines (October 2003). Funds are used to implement such programs as enhanced public transit service, vanpool programs/subsidies, rideshare assistance programs, clean fuel programs, improved pedestrian and bicycle facilities, and park-and-ride facilities. Continued collection of fees on all projects that generate emissions over VCAPCD thresholds would reduce the impacts of individual developments to a less than significant level.

The potential for individual projects to generate emissions exceeding VCAPCD thresholds under each scenario is discussed below.

Scenario 1 - Intensification/Reuse Only

Many of the individual developments that would be anticipated under this scenario would likely be smaller than the project sizes listed in Table 4.3-9 and therefore would not trigger VCAPCD significance thresholds. Exceptions to this may include the development of larger parcels in the Saticoy area (which are designated for residential development), the McGrath property and other large vacant parcels in the Arundell and North Bank districts, and large industrial parcels in the North Avenue and Upper North Avenue districts. Whether or not individual projects would generate emissions exceeding VCAPCD thresholds would depend upon the size of the project and when it is proposed.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Impacts associated with intensification/reuse would be the same as described under Scenario 1. Among the three expansion areas included in this scenario (North Avenue, Olivas, and Serra), future development of the Olivas and Serra areas would be expected to involve development exceeding the project sizes listed in Table 4.3-9, regardless of when development occurs. As such, it is anticipated that development of these areas would generate emissions exceeding VCAPCD thresholds and trigger the need for contribution to a TDM fund as required by Ordinance 93-37. Future development of the North Avenue area may or may not exceed the project sizes listed in Table 4.3-9. For this scenario, it has been assumed that 176 residences and roughly 18,000 square feet of non-residential development would be accommodated in the North Avenue area. If such development were to occur prior to 2015, projected emissions would likely exceed VCAPCD thresholds; however, after 2015, the level of development assumed for the North Avenue expansion area would not be expected to exceed thresholds due to the projected reductions in emission rates from vehicles and buildings.

The Ojai Planning Area ROC and NO_{x} thresholds of five pounds per day do not apply to projects in Ventura and the actual impact of development in the West Ventura area upon air quality in the Ojai Valley cannot be predicted. However, it should be noted that development in the West Ventura area, including the North Avenue expansion area, would generate emissions that could potentially be transported to the Ojai air basin.

Scenario 3-Intensification/Reuse + North Avenue + Olivas

Impacts associated with intensification/reuse would be the same as described under Scenario 1. Future buildout of the Olivas expansion area would be expected to involve development
exceeding the project sizes listed in Table 4.3-9, regardless of when development occurs. Consequently, it is anticipated that development of this expansion area would generate emissions exceeding VCAPCD thresholds and trigger the need for contribution to a TDM fund as required by Ordinance 93-37. Future development of the North Avenue area may or may not exceed the project sizes listed in Table 4.3-9. For this scenario, it has been assumed that 322 residences and roughly 90,000 square feet of non-residential development would be accommodated in the North Avenue area. Whether or not such development would generate emissions exceeding VCAPCD thresholds would depend upon the mix of housing types and when development occurs.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated with intensification/reuse would be the same as described under Scenario 1. Future buildout of the Serra expansion area would be expected to involve development exceeding the project sizes listed in Table 4.3-9, regardless of when development occurs. Consequently, it is anticipated that development of this expansion area would generate emissions exceeding VCAPCD thresholds and trigger the need for contribution to a TDM fund as required by Ordinance 93-37. Future development of the North Avenue area may or may not exceed the project sizes listed in Table 4.3-7. Similar to Scenario 3, it is assumed that 322 residences and roughly 90,000 square feet of non-residential development would be accommodated in the North Avenue area under this scenario. Whether or not such development would generate emissions exceeding VCAPCD thresholds would depend upon the mix of housing types and when development occurs.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts associated with intensification/reuse would be the same as described under Scenario 1. The North Avenue expansion area would be developed more intensely under this scenario than under Scenarios 2-4 and 6. The two expansion areas included in this scenario could both accommodate development exceeding the project sizes listed in Table 4.3-9. As such, it is anticipated that development of these areas could generate emissions exceeding VCAPCD thresholds and trigger the need for contribution to a TDM fund as required by Ordinance 93-37.

As noted under Scenario 2, the Ojai Planning Area ROC and NO_{x} thresholds of five pounds per day do not apply to projects in Ventura and the actual impact of development in the West Ventura area upon air quality in the Ojai Valley cannot be predicted. However, it should be noted that development in the West Ventura area, including the North Avenue and Western Cañada Larga expansion areas, would generate emissions that could potentially be transported to the Ojai air basin. As compared to the other land use scenarios, Scenario 5 would accommodate substantially more development, including an estimated 2,700 expansion area residences, within the North Ventura Avenue area, with greater potential to adversely affect air quality in the Ojai Valley.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts associated with intensification/reuse would be the same as described under Scenario 1. Future buildout of the Poinsettia expansion area would be expected to involve development exceeding the project sizes listed in Table 4.3-9, regardless of when development occurs.

Consequently, it is anticipated that development of this expansion area would generate emissions exceeding VCAPCD thresholds and trigger the need for contribution to a TDM fund as required by Ordinance 93-37. Future development of the North Avenue area may or may not exceed the project sizes listed in Table 4.3-9. Similar to Scenario 3, it is assumed that 322 residences and roughly 90,000 square feet of non-residential development would be accommodated in the North Avenue area under this scenario. Whether or not such development would generate emissions exceeding VCAPCD thresholds would depend upon the mix of housing types and when development occurs.

MITIGATION MEASURES

Impacts associated with individual future developments could be reduced to a less than significant level through implementation of existing programs and proposed 2005 General Plan policies, actions, and land use strategies. Nevertheless, the following actions are recommended for inclusion in the 2005 General Plan.

AQ-2 Additional Air Quality Actions. The following actions should be added to the 2005 General Plan to address air quality impacts of future development on a case-by-case basis:

- Require air quality analysis of individual development projects in accordance with the most current version of the Ventura County Air Pollution Control District Air Quality Assessment Guidelines and, when significant impacts are identified, require implementation of air pollutant mitigation measures determined to be feasible at the time of project approval.
- In accordance with Ordinance 93-37, continue to require payment of fees to fund regional transportation demand management (TDM) programs for all projects generating emissions in excess of Ventura County APCD thresholds.

The following action should be added if a land use scenario that includes expansion areas is adopted in order to ensure that individual development projects within expansion areas contribute toward the City's TDM fund:

- Require the development of specific plans for expansion areas for which overall air pollutant emissions shall be estimated to establish a TDM fund as required under Ordinance 93-37. Require individual developers within expansion areas to contribute pro rata fees to the TDM fund.

SIGNIFICANCE AFTER MITIGATION

Impacts associated with individual development projects could be reduced to a less than significant level through implementation of mitigation measures on a case-by-case basis under any of the land use scenarios. The above recommended actions would help ensure that
appropriate analysis and mitigation measures are incorporated into future development projects.

> | Impact AQ-3 | Construction of individual projects accommodated under the |
| :--- | :--- |
| | 2005 General Plan would result in temporary emissions of air |
| pollutant emissions. The Ventura County APCD has not | |
| adopted significance thresholds for construction impacts | |
| because of their temporary nature; therefore, impacts would | |
| be Class III, less than significant, for all six scenarios. | |
| | Nevertheless, implementation of standard emission and dust |
| | control techniques will be required on all future development |
| regardless of the land use scenario selected. | |

Construction activity that would by accommodated over the next 20 years under any of the 2005 General Plan land use scenarios would cause temporary emissions of various air pollutants. Ozone precursors NO_{x} and CO would be emitted by the operation of construction equipment, while fugitive dust $\left(\mathrm{PM}_{10}\right)$ would be emitted by activities that disturb the soil, such as grading and excavation, road construction and building construction. Information regarding specific development projects, soil types, and the locations of receptors would be needed in order to quantify the level of impact associated with construction activity.

Impacts associated with individual construction projects are not generally considered significant because of their temporary nature. Nevertheless, given the amount of development that the 2005 General Plan would accommodate over the next 20 years, it is reasonable to conclude that some major construction activity could be occurring at any given time over the life of the 2005 General Plan. Impacts could also be complicated by the fact that multiple construction projects could occur simultaneously in any portion of the City.

Impacts from construction are directly associated with the amount of land disturbance and development that will take place. As shown in Tables 2-5 and 2-6 in Section 2.0, Project Description, Scenario 1 would accommodate an estimated 8,300 new residential units and 4.9 million square feet of non-residential development through 2025. Scenarios 2-6 would accommodate an estimated 11,000 new residential units and 6.3 million square feet of nonresidential development over the same time period.

Maximum daily emissions associated with individual construction projects would be similar under any of the scenarios. However, because the overall amount of development is expected to be greater under Scenarios 2-6, overall construction-related emissions over the 20-year period through 2025 would be greater than under Scenario 1. Scenarios 2-6 would all accommodate the development of agricultural lands in the expansion areas. Grading of these areas would be expected to generate temporary emissions of fugitive dust. The area of potential disturbance would be greatest under Scenario 2 (Intensification/Reuse + North Avenue + Olivas + Serra) since that scenario would make the largest amount of land available for future development. On the other hand, development accommodated under Scenarios 5 (Intensification/Reuse + North Avenue + Western Cañada Larga) and 6 (Intensification/Reuse + North Avenue + Poinsettia) may involve the greatest potential for large amounts of import or export of material since development of the Western Cañada Larga and Poinsettia areas would involve areas with relatively steep terrain as compared to the other expansion areas.

Any of the scenarios could accommodate the demolition of existing older structures that were constructed with asbestos containing materials (ACMs). Demolition activity that disturbs friable asbestos could potentially create health hazards for receptors in the vicinity of individual demolition sites. However, all demolition activity involving ACMs is required to be conducted in accordance with VCAPCD Rule 62.7, which requires VCAPCD notification and use of licensed asbestos contractors to remove all ACMs prior to demolition. Compliance with Rule 62.7 on all future construction activity would reduce impacts to a less than significant level.

The impact of construction-related emissions upon sensitive receptors such as residences, schools, and hospitals depends upon the location of individual construction projects relative to sensitive receptors. It is not possible to predict where all future development might occur, but virtually any new development within the Planning Area is likely to be adjacent to or near one or more sensitive receptors. All of the expansion areas other than the Western Cañada Larga area are near or adjacent to existing residences. The Serra and Poinsettia areas, in particular, are completely surrounded by residential development. The Poinsettia area is also immediately east of Balboa Middle School and Mound Elementary School.

As mentioned above, the VCAPCD has not adopted significance thresholds for constructionrelated emissions since such emissions are temporary. Nevertheless, the Ventura County Air Quality Assessment Guidelines (October 2003) recommend various techniques to reduce construction-related emissions associated with individual developments. These include techniques to limit emissions of both ozone precursors ($\mathrm{NO} \times$ and ROC) and fugitive dust $\left(\mathrm{PM}_{10}\right)$ and are identified below:

- Minimize equipment idling time.
- Maintain equipment engines in good condition and in proper tune as per manufacturers' specifications.
- Lengthen the construction period during smog season (May through October), to minimize the number of vehicles and equipment operating at the same time.
- Use alternatively fueled construction equipment, such as compressed natural gas (CNG), liquefied natural gas (LNG), or electric, if feasible.
- The area disturbed by clearing, grading, earth moving, or excavation operations shall be minimized to prevent excessive amounts of dust.
- Pre-grading/excavation activities shall include watering the area to be graded or excavated before commencement of grading or excavation operations. Application of water (preferably reclaimed, if available) should penetrate sufficiently to minimize fugitive dust during grading activities.
- Fugitive dust produced during grading, excavation, and construction activities shall be controlled by the following activities:
a) All trucks shall be required to cover their loads as required by California Vehicle Code §23114.
b) All graded and excavated material, exposed soil areas, and active portions of the construction site, including unpaved on-site roadways, shall be treated to prevent fugitive dust. Treatment shall include, but not necessarily be limited to, periodic watering, application of environmentally-safe soil stabilization materials, and/or roll-compaction as appropriate. Watering shall be done as often as necessary and reclaimed water shall be used whenever possible.

City of Ventura

- Graded and/or excavated inactive areas of the construction site shall be monitored by the City Building Inspector at least weekly for dust stabilization. Soil stabilization methods, such as water and roll-compaction, and environmentally-safe dust control materials, shall be periodically applied to portions of the construction site that are inactive for over four days. If no further grading or excavation operations are planned for the area, the area should be seeded and watered until grass growth is evident, or periodically treated with environmentally-safe dust suppressants, to prevent excessive fugitive dust.
- Signs shall be posted on-site limiting traffic to 15 miles per hour or less.
- During periods of high winds (i.e., wind speed sufficient to cause fugitive dust to impact adjacent properties), all clearing, grading, earth moving, and excavation operations shall be curtailed to the degree necessary to prevent fugitive dust created by on-site activities and operations from being a nuisance or hazard, either off-site or on-site. The site superintendent/supervisor shall use his/her discretion in conjunction with the APCD in determining when winds are excessive.
- Adjacent streets and roads shall be swept at least once per day, preferably at the end of the day, if visible soil material is carried over to adjacent streets and roads.
- Personnel involved in grading operations, including contractors and subcontractors, should be advised to wear respiratory protection in accordance with California Division of Occupational Safety and Health regulations.

MITIGATION MEASURES

Although construction-related impacts are not considered significant, the measure below is recommended to reduce construction-related emissions to the maximum degree feasible.

AQ-3 Construction Mitigation. The following action should be added to the 2005 General Plan to address air quality impacts of future construction projects on a case-by-case basis:

- Require individual construction contractors to implement the construction mitigation measures included in the most recent version of the Ventura County APCD's Ventura County Air Quality Assessment Guidelines.

SIGNIFICANCE AFTER MITIGATION

Construction impacts are not considered significant for any of the EIR land use scenarios. The above recommended mitigation measure would reduce construction-related air quality impacts to the maximum degree feasible.

Impact AQ-4 Increased traffic congestion associated with projected growth under any of the General Plan land use scenarios would potentially increase carbon monoxide (CO) concentrations at congested intersections. However, because of the low ambient CO concentrations and anticipated reduction in emissions associated with less polluting vehicles, exceedance of state and federal CO standards is not expected. Impacts relating to CO "hot spots" are therefore considered Class III, less than significant, for all six scenarios.

All of Ventura County is in attainment of state and federal CO standards and has been for several years. At the El Rio monitoring station, the maximum 8-hour CO level recorded from 2002-2004 is 3.5 parts per million (ppm), less than half of the 9 ppm state and federal 8 -hour standard. In addition, as shown on Figure 4.3-1, countywide CO emissions are projected to fall by about 38% by 2020, largely due to the use of cleaner operating vehicles.

Figure 4.3-1
Countywide Average CO Emissions

Source: California Air Resources Board, 2005 Almanac.
Although CO is not expected to be a major air quality concern in Ventura County over the planning horizon, elevated CO levels can occur at or near intersections that experience severe traffic congestion. A project's localized air quality impact is considered significant if the additional CO emissions resulting from the project create a "hot spot" where the 1-hour or 8hour standard is exceeded. This typically occurs at severely congested intersections. The Ventura County APCD's Air Quality Assessment Guidelines indicate that screening for possible elevated CO levels should be conducted for severely congested intersections experiencing level of service (LOS) E or F with project traffic where a significant project traffic impact may occur.

As discussed in Section 4.12, Transportation and Circulation, traffic growth accommodated under each of the six land use scenarios and resulting congestion would potentially result in LOS E or F at one or more Planning Area intersections. However, most of the intersections consist of freeway interchanges that are not adjacent to sensitive receptors such as residences or schools.

In addition, feasible improvements could be implemented to achieve acceptable service levels at affected intersections. Finally, as noted above, the Ventura County region does not experience any CO "hot spots" and CO concentrations are expected to drop substantially over the planning period as cleaner technologies become available. As such, it is not anticipated that violations of state or federal standards would occur under any scenario.

MITIGATION MEASURES

None required.

SIGNIFICANCE AFTER MITIGATION

Significant impacts associated with CO "hot spots" are not expected for any of the six land use scenarios. Implementation of recommended transportation improvements would be expected to ensure that CO concentrations remain within state and federal standards throughout the Planning Area.

4.4 BIOLOGICAL RESOURCES

This section evaluates potential impacts to biological resources within the Planning Area. Both direct and indirect impacts to the following special-status biological resources are discussed: regulated waterways, wetlands and open water areas; sensitive habitats and mature native trees; sensitive plants and animals; and wildlife movement corridors.

4.4.1 Setting

a. Planning Area Habitat Types. The rivers, barrancas, ocean, and hillsides in the Planning Area are home to a variety of important habitats and species of concern. Figure 4.4-1 shows the primary vegetation cover types and location of critical habitats. The major sensitive riparian areas within the Planning Area are the estuaries and upstream regions of the Ventura and Santa Clara Rivers; the Arundell, Harmon Canyon, Clark, Prince, Barlow, San Jon, Harrison, Sudden, Franklin, and Brown Barrancas; Weldon Canyon, Cañada Larga, Manuel Canyon, Cañada de las Encinas and School Canyon Creeks; the Alessandro freshwater marsh; and the coastline. The sewage treatment plant settling ponds south of the harbor at the Santa Clara River mouth are another habitat used by migratory birds. The following paragraphs describe important habitats in the Planning Area that contain significant biological resources.

Coastal Strand/Beach. Sandy beaches are usually not vegetated, and the organisms that inhibit these areas are characteristically mobile and respond quickly to changing sediment patterns. The intertidal area of the sandy beach is used by mole crabs, clams, and polychaete worms that bury themselves in the sand and between cobbles to feed on particles brought in on the waves. These latter species provide an important food resource for various shorebirds, especially during migratory periods. Beach hoppers and the common sand crab are locally abundant on the higher portions of the beach.

Cobble beach habitat is also found near the Ventura River mouth and in patches intermixed with sandy beach habitat. Littleneck and bean clams may be found buried next to cobbles used by gastropods such as the black turban snail. The cobble area also contains a few striped and yellow shore crabs. The listed western snowy plover forages in the beach habitat in the City and has been identified on the beach north of the Santa Clara River. The listed least tern also nests in sandy beach/coastal strand habitat north of the Santa Clara River mouth.

Discontinuous remnant coastal strand habitat exists in the loose sand and stabilized dunes landward of the intertidal and beach areas. The primary plant species are introduced ice plant and various non-native annual grasses. Native plants include silver beachbur, beach evening primrose, and sand verbena, which typically exhibit a low, matted appearance adapted to this harsh environment. The strand habitat has few resident vertebrate species. Typical vertebrates seen in this area include western fence lizard, Brewer's blackbird, house finch, and American pipit, as well as pocket gopher and ground squirrel where soils are more stable. The sensitive silvery legless lizard may also be found in coastal strand and dune habitat.

Limited rocky shore habitat is present along the beach due to man-made revetments at the Harbor, Fairgrounds, Beachfront Promenade, and sharp junctions along the beach. Species commonly found in this habitat include rock lice, striped shore crab, limpet, and acorn barnacles. A variety of shorebirds visit these habitats, as do near-shore fish that feed during
high tides. Sea and shore birds such as cormorants, brown pelicans, willets, and various gulls frequently can be seen roosting on breakwaters and revetments.

Estuaries/Salt and Fresh Water Marshes. Estuaries are partially enclosed coastal waters with a free connection to the sea. They are highly productive biological habitats, and many fish species and free-swimming invertebrates use estuaries as nursery grounds. Marshes form within and along the edges of estuaries and where standing water is present for sufficient periods.

The estuaries at the mouths of the Ventura and Santa Clara Rivers are used as resting and feeding areas for migratory and residential shorebirds and waterfowl, and to a lesser degree, by resident terrestrial species. Several state and federally listed (or candidate) endangered or threatened birds may use the estuaries. These include the listed brown pelican, California least tern, and the Belding's savannah sparrow (in pickleweed saltmarsh). Brown pelicans are commonly seen foraging offshore and at the river mouths, as is the least tern. Also of special interest are the cypress trees at the mouth of the Ventura River that were formerly used as over wintering sites for large aggregations of monarch butterflies. Two sensitive species of fish, the listed tidewater goby and the federally endangered steelhead, use the estuaries of the Ventura and Santa Clara Rivers. The sensitive southwestern pond turtle may also be found in freshwater portions of the Ventura and Santa Clara River estuaries. The sensitive southern tarplant was reported in the Ventura River estuary in 1992, while the listed Ventura marsh milkvetch was formerly found in local estuaries.

Alessandro Lagoon is a freshwater marsh located north of the U.S. 101, between Seaward Avenue and San Jon Road. It provides important migratory and nesting habitat for waterfowl, including mallard, ruddy duck, gadwall, pintail, and teal. Other birds such as marsh wren and red-winged blackbird nest in the marsh vegetation.

Coastal Sage Scrub. Coastal sage scrub is found intermixed with non-native annual grassland communities in the foothills above Ventura and in relatively undisturbed portions of the upland terraces along the Ventura and Santa Clara Rivers. This native plant community is characterized by the predominance of sub-shrubs, one to five feet in height with semi-woody stems growing from a woody base. Many of the species in the community display special adaptations to prevailing climatic conditions, such as winter rainfall and summer drought, by being drought-deciduous, having grayish-foliage with heavy pubescence on stems and leaves, or similar adaptations to arid conditions. Typical coastal sage scrub vegetation within the Planning Area includes coyote brush, California sagebrush, goldenbush, black sage, wild rye, and elderberry. Scattered mulefat, oak trees, and willows are also frequently observed.

This brushland habitat hosts a variety of animals, most of which are permanent residents. Amphibians such as the California slender salamander and the western toad are found in moist canyon areas. Reptiles such as the western fence lizard, side-blotched lizard, western whiptail, gopher snake, common kingsnake, and western rattlesnake also occupy this habitat. The sensitive coast horned lizard can be found in open areas within scrub and grassland areas where native harvester ants are present. Resident bird species include the Anna's hummingbird, California towhee, spotted towhee, wrentit, Bewick's wren, blue-gray gnatcatcher, California thrasher, mourning dove, and California quail. Coastal sage scrub provides the primary year-round hunting ground for many raptors, such as the turkey vulture

and red tail hawk, that forage in the adjacent grasslands during the spring. This plant community also provides the shelter necessary for nesting of many wildlife species. Typical mammals found in this habitat include ground squirrels, gophers, coyote, pocket mice, western harvest mouse, wood rat, cottontail rabbit, bobcat, opossum, raccoon, skunk, and deer.

Oak Woodland. Oak woodlands occur along with riparian woodlands and some dense groves of planted trees along developed and agricultural areas within the City. This designation refers to a closed- to partially-open canopy woodland dominated by the coast live oak. Oaks are relatively limited within the Planning Area, located only within major drainages such as Harmon, Long, and Sexton Canyons and hillside areas along the west side of Ventura Avenue. Oak trees significantly affect the micro-environment around them because their extensive shade produces significantly lowered temperatures than in the nearby scrub and grassland communities. This allows a variety of plants and animals to occur in areas where they otherwise would not be found. Oak trees also provide significant vertical diversity that is important to bird species.

Oak woodlands provide roosting and nesting sites for many birds, particularly raptors. Redtailed hawk, Cooper's hawk, sparrow hawk, and sharp-shinned hawk are all found in this community. Oak woodland also provides habitat for several species of woodpeckers, including red-shafted flicker, acorn woodpecker, Downey woodpecker, and Nutall's woodpecker. Titmouse, warblers, and flycatchers are also common. Amphibians present in sage scrub communities are also found here, along with reptiles and mammals common to several plant associations. Monarch butterflies are known to utilize woodland areas within the Planning Area.

Riparian Woodland and Thickets. Riparian woodland and thickets consist of scattered semi-aquatic trees, shrubs, and herbs along intermittent and perennial streams. Willows dominate the riparian areas within the City, along with coast live oaks in the adjacent oak woodlands. Wildlife in riparian woodlands is similar to that found in oak woodlands. Several sensitive bird species breed in riparian areas in the City, including the listed least Bell's vireo and willow flycatcher, and sensitive yellow warbler and yellow breasted chat (CSC).

Riparian habitats contain open water at least part of the year, typically during the winter and spring seasons and after rain events, and are an important part of many animals' habitats. Open water is heavily used by larval forms of several insect orders, and is the sole breeding ground for amphibians. Fish, limited to permanent water areas, found within the Ventura and Santa Clara Rivers include, bluegill, carp, green sunfish, mosquito fish, staghorn sculpin, the sensitive arroyo chub (CSC), and listed unarmored threespine stickleback. Steelhead and rainbow trout are known to occur in the Ventura River upstream of the City, and steelhead trout migrate along both the Ventura and Santa Clara Rivers through the City to the ocean.

Grasslands. Grasslands in the area are primarily composed of non-native introduced annuals and biennials used extensively for grazing. Some small pockets of native wildflowers, such as California poppy, blue-eyed grass, and lupines, are scattered throughout the grasslands in areas less exposed to grazing, primarily in grassy openings on upper slopes within the coastal sage scrub community.

The grassland areas provide habitat for grazers and seed eaters. Rodents, which characterize this area, include the ground squirrel, pocket gopher, and deer mice. Deer, coyote, and cottontail rabbits are also relatively common. Many reptiles occupy this habitat, especially where exposed rock or barren soil surfaces are present. Carnivores including the badger and coyote roam this area, though raptor birds such as the sparrow hawk (kestrel), red-tailed hawk, and white-tailed kites are the major dominants of the area. These birds play an important role in controlling rodent populations. Seed-eating bird species are also common constituents of grasslands. Species such as the savannah sparrow, mourning dove, and various finches are common. Grasslands are also the primary foraging grounds for swallows, swifts, and bats, which nest elsewhere.

Thickets and Windrows. Tree thickets and windrows are common within the Planning Area. Trees and windrows can provide habitat to nesting birds, their eggs, and young, which are protected under the Migratory Bird Treaty Act (MBTA) and California Fish and Game Code. The locally sensitive monarch butterfly can also utilize these areas as wintering sites and sensitive bats can utilize the areas as roosting site.
b. Special-Status Biological Resources. The term special-status biological resources includes those plants, animals, vegetation communities, jurisdictional drainages and other sensitive biological resources that are governed under federal, state, and local laws and regulations.

Listed Species. Federal, State, and local authorities under a variety of legislative acts share regulatory authority over biological resources. The California Department of Fish and Game (CDFG) has direct jurisdiction under law for biological resources through the state Fish and Game Code and under the California Endangered Species Act. The federal Endangered Species Act also provides direct regulatory authority over specially designated organisms and their habitats to the U.S. Fish and Wildlife Service (USFWS). These acts specifically regulate listed and candidate endangered and threatened species, which are defined as:

- Endangered Species: any species that is in danger of extinction throughout all or a significant portion of its range.
- Threatened Species: any species that is likely to become an endangered species within the foreseeable future throughout all or a significant part of its range.

Sensitive Plants. Special-status plant species are either listed as endangered or threatened under the federal or California Endangered Special Acts, or rare under the California Native Plant Protection Act, or considered to be rare (but not formally listed) by resource agencies, professional organizations (e.g., California Native Plant Society [CNPS]), and the scientific community. Table $4.4-1$ shows 13 special-status plant species that may occur within the Planning Area, two of which are considered endangered. Figure 4.4-2 identifies specialstatus species documented historically within the Planning Area by the CDFG California Natural Diversity Database (December 2004).

Sensitive Wildlife. Several amphibian, fish, reptile, bird, and mammal species of concern that are known or possibly found in the Planning Area are listed in Table 4.4-2. Documented species are shown on Figure 4.4-2. State or federally listed species are accorded the highest protection status. The two fish species and eight bird species that are federally

Sources: California Natural Diversity Database, December 2004, U.S. Bureau of the Census TIGER 2000 data, and ESRI, 2002. Note: Markers represent approximate locations where species may be found.

Legend

Project Location

Sensitive Elements Reported by the California Natural Diversity Database

Figure 4.4-2

Table 4.4-1
Sensitive Plant Species of the Ventura Planning Area

Common Name	Scientific Name	Agency Status (Federal/State/Other)
Aphanisma	Aphanisma blitoides	--/--/CNPS List 1B
Ventura marsh milk-vetch	Astragalus pycnostachuyus var. lanosissimus	FE/CE/CNPS 1B
Plummer's baccharis	Baccharis plummerae ssp plummerae	--/-//CNPS List 4
Brewer's calandrinia	Calandrinia breweri	--/--/CNPS List 4
Catalina mariposa lily	Calochortus catalinae	--/--/List 4
Plummer's mariposa lily	Calochortus plummerae	--/--/CNPS List 1B
Southern tarplant	Centromadia parryi ssp. australis	--/--/CNPS List 1B
Orcutt's pincushion	Chaenactis glabriuscula var. orcuttiana	--/--/CNPS List 1B
Prostrate spineflower	Chorizanthe procumbens	--/--/List 4
Salt marsh bird's-beak	Cordylanthus maritimus ssp. maritimus	SE/FE/CNPS 1B
Western dichondra	Dichondra occidentalis	--/--/List 4
Coulter's goldfields	Lasthenia glabrata ssp. coulteri	--/--/CNPS List 1B
California spineflower	Mucronea californica	--/--/List 4

Source: CDFG Special Plants (4/2004), California Natural Diversity Database (CNDDB), December 2004; Baseline Conditions Report (2002)
CNPS List 1B = California Native Plant Society List (CNPS) List 1B: Plants rare, threatened, or endangered in California and elsewhere; CNPS List 4: Plant's of limited distribution, a watch list; FE = Federal Endangered;
SE = State Endangered
Table 4.4-2
Sensitive Animals of the Ventura Planning Area

Common Name	Scientific Name	Agency Status (Federal/State/Other)
Arthropods		
Sandy beach tiger beetle	Cincindela hirticollis abrupta	--/--/SA
Monarch butterfly (wintering sites)	Danaus plexippus	--/--/SA
Amphibians		
Coast Range newt	Taricha torosa torosa	--/CSC/--
Western spadefoot toad	Spea (=Scaphiopus) hammondi	--/CSC/--
Fish		
Unarmored threespine stickleback.	Gastreosteus aculeatus williamsoni	FE/SE,CFP/--
Tidewater goby	Eucyclogobius newberryi	FE/CSC/---
Southern California steelhead trout (Southern California ESU)	Oncorhynchus mykiss	FE/CSC/--
Reptiles		
Coast horned lizard	Phrynosoma coronatum	--/CSC/--
Coastal western whiptail	Apsidoscelis tigris stejnegeri (=Cnemidophorus tigris multiscutatus)	--/SA/--
Silvery legless lizard	Aniella pulchra Pulchra	--/CSC/--

Table 4.4-2
Sensitive Animals of the Ventura Planning Area

Common Name	Scientific Name	Agency Status (Federal/State/Other)
Southwestern pond turtle	Emys (=Clemmys) marmorata pallida	--/CSC/--
Coastal patch-nosed snake	Salvadora hexalepis virgultea	--/CSC/--
Two-striped garter snake	Thamnophis hammondi	--/CSC/--
Birds		
Cooper's hawk (nesting)	Accipiter cooperii	--/CSC/--
Sharp-shinned hawk (nesting)	Accipiter striatus	--/CSC/--
White-tailed kite (nesting)	Elanus leucurus	--/CFP/--
Northern harrier (nesting)	Circus cyaneus	--/CSC/--
California brown pelican (nesting, communal colonies)	Pelecanus occidentalis califoricus	FE/SE,CFP/--
California least tern (nesting colony)	Sterna antillarum browni	FE/SE,CFP/--
Western yellow-billed cuckoo (nesting)	Coccyzus americanus occidentalis	FC/SE/--
Belding's savannah sparrow	Passerculus sandwichensis beldingi	--/SE/--
Western snowy plover (nesting, coastal population)	Charadrius alexandrinus nivosus	FT/CSC/--
Merlin	Falco columbarius	--/CSC/--
Ferruginous hawk (wintering)	Buteo regalis	--/CSC/--
Least Bell's vireo	Vireo belli pusillus	FE/SE/--
Willow flycatcher (nesting)	Empidonax traillii	FE (E. t. extimus only)/SE/--
Coastal cactus wren	Campylorhynchus brunneicapillus sandiegensis	--/--/LS
Bank swallow (nesting)	Riparia riparia	--/ST/--
Yellow warbler (nesting)	Dendroica petechia brewsteri	--/CSC/--
Loggerhead shrike (nesting)	Lanius ludovicianus	--/CSC/--
California horned lark	Eremophila alpestris actia	--/CSC/--
Bell's sage sparrow	Amphispiza bellii bellii	--/CSC/--
Southern California rufous-crowned sparrow	Aimophila ruficeps canescens	--/CSC/--
Mammals		
Pallid bat	Antrozous pallidus	--/CSC/--
Pale big-eared bat	Corynorhinus townsendii pallescens	--/CSC/--
California mastiff bat	Eumops perotis	--/CSC/--
San Diego desert woodrat	Neotoma lepida intermedia	--/CSC/--
San Diego black-tailed jackrabbit	Lepus californicus ssp. bennettii	--/CSC/--
American badger	Taxidea taxus	--/CSC/--

Source: CDFG, Special Animals List (8/2004) and CNDDB (12-/2004)
CE = California Endangered; CFP = California Fully Protected; CSC = California Species of Concern; ESU=Evolutionary Significant
Unit; Federal Candidate; FE = Federal Endangered; FT = Federal Threatened; LS=Locally Sensitive; and SA = CDFG California Special Animal
and/or State listed tend to inhabit the rivers and estuary habitats where development is unlikely to occur. Least bell's vireo is known to forage in scrub areas adjacent to the Santa Clara and Ventura Rivers.
c. Wildlife Corridors. Wildlife corridors are generally defined as connections between habitat patches that allow for physical and genetic exchange between otherwise isolated animal populations. Such linkages may serve a local purpose, such as between foraging and denning areas, or they may be regional in nature allowing movement across the landscape. Some habitat linkages may serve as migration corridors, wherein animals periodically move away from an area and then subsequently return.

The key wildlife corridors in the Planning Area include the Ventura River, which connects the Ventura Area to open space associated with the Los Padres National Forest, and the Santa Clara River, which provides linkage to the east to the Sespe area and the San Gabriel Mountains. Other important corridors in the Planning Area include the drainages (e.g., Weldon Canyon, Cañada Larga, Manuel Canyon, Cañada de las Encinas and School Canyon) and open space areas that connect the Ventura River to the hills overlooking Ventura to the north, and ultimately, the Sulphur Mountain area. Highly degraded corridors between the hillsides north of the City and the Santa Clara River within the Planning Area include the Harmon Canyon, Arundell, Franklin, and Brown Barrancas.
d. Special-Status Communities/Areas. Special-status communities and areas are those that are considered sensitive by federal, state, and local agencies due to their rarity or value in providing habitat for vegetation, fish, and wildlife. Identified special-status communities/areas present within the Planning Area include the following:

- Oak woodland
- Walnut woodland
- Native oak and sycamore trees
- Native bunchgrass grasslands
- Drainages, wetlands and associated riparian vegetation under the jurisdiction of CDFG as waters of the State or USACE as waters of the U.S; the City has also identified the Ventura and Santa Clara River as sensitive resources requiring preservation and possible restoration
- City Sensitive Habitat Areas (SHA): Alessandro Lagoon, Santa Clara River Mouth Area, Ventura River Mouth Area
- Coastal dunes
e. Regulatory Setting. The following is a summary of the regulatory context under which biological resources are managed at the federal, state, and local level. Agencies with responsibility for protection of biological resources within the Study Area include:
- Regional Water Quality Control Board (RWQCB)
- U. S. Army Corps of Engineers (USACE; wetlands and other waters of the United States)
- U.S. Fish and Wildlife Service (USFWS; federally listed species and migratory birds)
- National Marine Fisheries Service (NMFS; anadromous fish)
- California Department Fish and Game (CDFG; waters of the State, state listed and fully-protected species, and other protected plants and wildlife)
- State of California (Natural Communities Conservation Plan)
- City of Ventura (Proposed General Plan Goals, Policies, and Actions)
- California Coastal Commission (CCC, Coastal Areas)

A number of Federal and/or State statutes provide a regulatory structure that guides the protection of biological resources. The following discussion provides a summary of those laws that are most relevant to biological resources in the vicinity of the Planning Area.

Regional Water Quality Control Board. The protection of water quality in the watercourses of Ventura County is under the jurisdiction of the Los Angeles Regional Water Quality Control Board (LARWQCB). The Board establishes requirements prescribing discharge limits and establishes water quality objectives through the Ventura County Municipal Storm Water National Pollutant Discharge Elimination System (NPDES) Permit. The Storm Water Quality Urban Impact Mitigation Plan (SQUIMP), which is part of the NPDES Permit, addresses specific storm water pollution requirements for new developments such as the proposed project. As co-permittee, the City of Ventura is responsible for assuring that new developments are in compliance with the SQUIMP.

The SQUIMP requires that all development projects implement various control techniques (termed best management practices, or BMPs) to minimize the amount of pollutants entering surface waters. The following requirements apply to all new development:

- Control post-development peak stormwater runoff discharge rates to maintain or reduce pre-development downstream erosion and to protect stream habitat
- Conserve natural areas
- Minimize stormwater pollutants of concern
- Protect slopes and channels
- Provide storm drain system stenciling and signage
- Properly design outdoor material storage areas
- Properly design trash storage areas
- Provide proof of on-going best management practice (BMP) maintenance
- Implement structural or treatment BMPs that meet design standards
U.S. Army Corps of Engineers. Under Section 404 of the Clean Water Act and section 10 of the Rivers and Harbors Act, the USACE has authority to regulate activity that could discharge fill or dredge material or otherwise adversely modify wetlands or other waters of the United States. Perennial and intermittent creeks and adjacent wetlands are considered waters of the United States and are within the regulatory jurisdiction of the USACE. The USACE implements the federal policy embodied in Executive Order 11990, which, when implemented, is intended to result in no net loss of wetlands values or acres. In achieving the goals of the Clean Water Act, the Corps seeks to avoid adverse impacts and to offset unavoidable adverse impacts on existing aquatic resources. Any fill or adverse modification of waters of the U.S., wetlands may require a permit from the Corps prior to the start of work. Typically, permits issued by the Corps are a condition of a project as mitigation to offset unavoidable impacts on wetlands and other waters of the U.S. in a manner that achieves the goal of no net loss of wetland acres or values.
4.4-11
U.S. Fish and Wildlife Service. The U.S. Fish and Wildlife Service (USFWS) implements the Migratory Bird Treaty Act (16 USC Section 703-711), the Bald and Golden Eagle Protection Act (16 United States Code (USC) Section 668), Section 10 and the Federal Endangered Species Act (FESA; 16 USC $\$ 153$ et seq). Projects that would result in take of any federally listed threatened or endangered species are required to obtain permits from the USFWS through either Section 7 (interagency consultation with a federal nexus) or Section 10 (incidental take permit) of FESA, depending on the involvement by the federal government in permitting or funding the project. The permitting process is used to determine if a project would jeopardize the continued existence of a listed species and what mitigation measures would be required to avoid jeopardizing the species.

Take under federal definition means to harass, harm (which includes habitat modification), pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct. Proposed or candidate species do not have the full protection of FESA, however, the USFWS advises project applicants that they could be elevated to listed status at any time.

National Marine Fisheries Service. The National Marine Fisheries Service (NMFS) shares joint authorities with the USFWS under the FESA for administering the incidental take permit program. Generally, the USFWS is responsible for terrestrial and freshwater aquatic species while NMFS is responsible for listed marine mammals, anadromous fish, and other living marine resources. NMFS also permits for incidental taking of listed fish species during other activities such as state-run hatchery operations and commercial or recreational fisheries.

California Department of Fish and Game. The CDFG derives its authority from the Fish and Game Code of California Species listed under the California Endangered Species Act (CESA; Fish and Game Code Section 2050 et seq,) prohibits take of listed threatened or endangered species. Take under CESA is restricted to direct killing of a listed species and does not prohibit indirect harm by way of habitat modification.

California Fish and Game Code Sections 3503, 3503.5, and 3511 describe unlawful take, possession, or needless destruction of birds, nests, and eggs. Fully protected birds (Section 3511) may not be taken or possessed except under specific permit. Section 3503.5 of the Code protects all birds-of prey and their eggs and nests against take, possession, or destruction of nests or eggs.

Species of Special Concern (CSC) is a category used by CDFG for those species which are considered to be indicators of regional habitat changes or are considered to be potential future protected species. Species of Special Concern do not have any special legal status except that afforded by the Fish and Game Code. The CSC category is intended by the CDFG for use as a management tool to take these species into special consideration when decisions are made concerning the development of natural lands.

The CDFG also has authority to administer the Native Plant Protection Act (Fish and Game Code Section 1900 et seq). The Act requires CDFG to establish criteria for determining if a species, subspecies, or variety of native plant is endangered or rare. Under Section 1913(c) of the Act, the owner of land where a rare or endangered native plant is growing is required to notify the department at least 10 days in advance of changing the land use to allow for salvage of plant.

Perennial and intermittent streams also fall under the jurisdiction of the CDFG. Sections 16011603 of the Fish and Game Code (Streambed Alteration Agreements) gives the CDFG regulatory authority over work within the stream zone (which could extend to the 100-year flood plain) consisting of, but not limited to, the diversion or obstruction of the natural flow or changes in the channel, bed, or bank of any river, stream or lake.

State of California. The Natural Communities Conservation Planning Act of 1991 was established by the California Legislature, is directed by the Department of Fish and Game, and is being implemented by the state, and public and private partnerships to protect habitat in California. As opposed to the single species interpretation of the Endangered Species Act (ESA), this act aims at protecting many species using a regional approach to habitat preservation. A Natural Communities Conservation Plan (NCCP) identifies and provides for the regional or area wide protection of plants, animals, and their habitats, while allowing compatible and appropriate economic activity.

4.4.2 Impact Analysis

a. Methodology and Significance Thresholds. The impact analysis is based on available literature regarding the existing biological resources within the Planning Area, aerial photography, and field visits conducted on February 3, 5-6, 2005. Field investigations concentrated on potentially developable areas that contain sensitive biological resources. The majority of the surveys were conducted by car from roads surrounding the areas; however, some areas were surveyed on foot. Surveys were performed to verify habitat types against available background information and aerial photography. The following analysis determines the potential effects of development on biological resources of the Planning Area, especially within the developable areas.

Environmental impacts relative to biological resources may be assessed using impact significance criteria from federal, state, and local regulations. Project impacts to flora and fauna may be determined to be significant even if they do not directly affect rare, threatened, or endangered species.

Significant impacts to biological resources may occur if a project action would:

- Conflict with local or regional conservation plans or state goals
- Substantially affect rare, threatened or endangered species
- Interfere substantially with the movement of any resident or migratory fish or wildlife species
- Substantially diminish habitat for fish, wildlife or plants
- Involve the use, production or disposal of materials which pose a hazard to animal or plant populations in the area affected
- Have impacts that are individually limited, but cumulatively considerable; or involve the alteration or conversion of biological resources (locally important species or locally important communities) identified as significant within the county or region

When assessing or applying these threshold guidelines, plants and animals may be considered locally important if any of the following criteria are met:

- The species, subspecies or variety is limited in distribution in the county or region, and endemic (limited to a specific area) in the region.
- The species population is at the extreme limit of its overall distribution or is disjunct from the known overall range.
- The species potentially affected by project actions has habitat requirements or limitations which makes it susceptible to local extirpation as a consequence of those actions, the introduction of barriers or restrictions to movement, changes in ambient conditions, or increases in human activity.
- Populations exhibit unusual localized adaptations, or are high quality examples of the species overall.
- Species are considered special-status by recognized biological experts and monitoring groups, such as the California Native Plant Society (CNPS) and Audubon Society.

Plant communities or habitat types may be considered locally important if they are any of the following:

- Formations or habitat types of singular or limited occurrence within the jurisdictional boundaries
- Formations or habitat types that provide critical or essential support resources for rare, threatened or endangered or locally important species
- Formations, habitat types, or geographic areas that serve as wildlife movement routes or habitat linkages between substantial, intact open space areas
- Formations or habitat types that are recognized or designated as pristine or highest quality examples of a particular type within a jurisdiction
- Specific sites that are type localities for plant or animal species
- Formations or habitat types considered sensitive by recognized biological experts and monitoring groups, such as the CNPS, California Natural Diversity Data Base, The Nature Conservancy, or Department of Fish and Game
- Ephemeral or perennial wetlands that have been defined as areas which sporadically, seasonally or perennially serve to transmit, conduct or impound water, making it available for use by wildlife and/or facultatively dependent associations of plants and animals (such as vernal pools)
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of biological resource impacts for each of the scenarios under consideration. The discussion that follows is intended to describe the generalized effects of potential future development within the Planning Area and provide policy level mitigation appropriate for a General Plan analysis. Depending upon the nature and location of individual future development projects, information contained in this EIR regarding the potential occurrence and listing status of special-status species of plants and wildlife and plant communities of special concern may need to be updated at the time specific projects undergo environmental review.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Riparian, Wetlands, and Open Water Habitats (Impact BIO-1)	Development near the Santa Clara River, Ventura River, and barrancas in the North Avenue and Saticoy districts could adversely affect wetland habitats. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development near Manuel Canyon Creek ,Arundell Barranca, Harmon Canyon Barranca, and drainages near Olivas expansion area may result in adverse impacts to wetland habitats. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development near Manuel Canyon Creek, Arundell Barranca, and drainages near Olivas expansion area may result in adverse impacts to wetland habitats. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development near Manuel Canyon Creek, and Harmon Canyon Barranca may result in adverse impacts to wetland habitats. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development near Manuel Canyon Creek, Weldon Creek, and Cañada Larga Creek may result in adverse impacts to wetland habitats. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development near Manuel Canyon Creek and Harmon Canyon Barranca may result in adverse impacts to wetland habitats. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.
Sensitive Habitats and Native Trees (Impact BIO-2)	Development may adversely affect oak/ walnut woodlands in North Avenue/Upper North Avenue, dune habitat in Harbor district, bunchgrass grasslands, and mature landmark trees. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue expansion area may affect oak woodlands. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion impacts similar to Scenario 2. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion impacts similar to Scenario 2. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue expansion area may affect oak woodlands. Development in Canada Larga may affect oak/walnut woodlands, and native grasslands. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion impacts similar to Scenario 2. Compliance with Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Special-status Species (Impact BIO-3)	Possible elimination of native habitats including wetlands, dunes, scrub, woodland may affect special-status species. General Plan actions protect sensitive habitats and encourage preservation of mature trees and windrows. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue, Serra, and Olivas may affect species that inhabit mature trees, windrows, oak woodland, riparian, and scrub areas. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue and Olivas may affect species that inhabit mature trees and windrows, oak woodland, riparian, and scrub areas. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue and Serra may affect species that inhabit mature trees and windrows, oak woodland, riparian, and scrub areas. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue and W. Cañada Larga may affect species that inhabit mature trees and windrows, oak woodland, grassland, and scrub areas. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Development in North Avenue may affect species native to oak woodland, riparian, and scrub, mature trees and windrows. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.
Wildlife Corridors (Impact BIO-4)	Development near riparian areas, barrancas, and open space near Mariano Ranch may affect ecological connectivity through these corridors. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Development impacts similar to Scenario 1. Expansion into North Avenue area may affect the Manuel Creek corridor. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Development impacts similar to Scenario 1. Expansion into North Avenue area may affect the Manuel Creek corridor. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Development impacts similar to Scenario 1. Expansion into North Avenue area may affect the Manuel Creek corridor. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Development impacts similar to Scenario 1. Expansion into North Avenue area may affect the Manuel Creek corridor. Expansion into W. Cañada Larga may affect Cañada Larga and Weldon canyon Creek corridors. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.	Development impacts similar to Scenario 1. Expansion into North Avenue area may affect the Manuel Creek corridor. Proposed General Plan policies and actions reduce potential impacts to Class III, less than significant.

Impact BIO-1 All of the 2005 General Plan land use scenarios generally avoid direct impacts to riparian, wetland, and open water habitats. However, in certain areas, development could adversely affect the quality of riparian and wetland habitat. Implementation of proposed General Plan policies and actions, including Action 1.8 (which requires buffers from rivers, creeks, and barrancas), would reduce potential impacts to a Class III, less than significant, level for any of the six land use scenarios.

Each of the land use scenarios focus predominantly on intensification and reuse of already developed areas and limited expansion into agricultural and/or relatively undisturbed areas. As such, the scenarios would generally avoid direct impacts to riparian, wetland, and open water habitats. In addition, the removal of the hillside areas above the City from the Sphere of Influence, as is anticipated to occur under any of the scenarios, would avoid the potential for impacts to riparian and wetland resources in the hillside areas.

The 2005 General Plan includes the following actions aimed at the protection of riparian areas from the impacts of future development:

$$
\begin{array}{ll}
\text { Action 1.8 } \quad \begin{array}{l}
\text { Buffer barrancas and creeks that retain natural soil slopes from } \\
\text { development according to State and Federal guidelines. }
\end{array}
\end{array}
$$

Action 1.9 Prohibit placement of material in watercourses other than native plants and required flood control structures, and remove debris periodically.

Action 1.10 Remove concrete channel structures as funding allows, and where doing so will fit the context of the surrounding area and not create unacceptable flood or erosion potential.

Action 1.11 Require that sensitive wetland and coastal areas be preserved as undeveloped open space wherever feasible and that future developments result in no net loss of wetlands or "natural" coastal areas.

Action 1.17 Require development to mitigate its impacts on wildlife through the development review process.

Action 1.18 Require new development adjacent to rivers, creeks, and barrancas to use native or non-invasive plant species, preferably drought tolerant, for landscaping.

Action 1.19 Require projects near watercourses and shoreline areas to include surveys for State and/or federally listed sensitive species and to provide appropriate buffers and other mitigation necessary to protect habitat for listed species.

Action 1.21 Work with State Parks on restoring the Alessandro Lagoon and pursue funding cooperatively.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes the intensification of development in already developed or disturbed areas. As a result, the extent of riparian and wetland resources affected under this scenario is generally limited. In addition, most of the resources have been modified from their natural state. Examples include the concrete channelized Arundell Barranca, which crosses through the Harbor and Arundell districts, the Barlow Barranca that intersects the Telegraph Road corridor, and the Brown Barranca in the Wells Road corridor and Saticoy district. See Photo 1 on Figure 4.4-3 for a view of Brown Barranca.

Implementation of standard Best Management Practices (BMPS) during construction and receipt and implementation of permits would be required to address potential impacts and modification to jurisdictional drainages. Potential permits that could be required include the USACE Section 404 permit, CDFG Streambed Alteration Agreement, RWQCB Section 401 Certification, and for projects with greater than one acre of ground disturbance, a State Water Resources Control Board (SWRCB) Stormwater Pollution Prevention Plan (SWPPP). Intensification would likely improve the value of some of these areas through future drainage improvements required during development and the requirements of resource agency permits.

The Upper North Avenue, North Avenue, and Saticoy districts have more sensitive riparian and wetland resources than the other areas proposed for intensification and reuse because of their proximity to the Ventura and Santa Clara Rivers. The following partially natural drainages are also present in these areas:

Upper North Avenue

- Cañada Larga Creek - A natural channel of sand and cobble with dense patches of willow for areas west of Ventura Avenue; and a concrete box devoid of vegetation to the east of Ventura Avenue.
- Manuel Canyon Creek - East of Ventura Avenue it is a natural-bottomed channel, scoured of vegetation. West of Ventura Avenue the drainage is partially channelized, but has dense patches of native vegetation.
- Cañada de las Encinas - A primarily channelized drainage passing through and under developed areas.

North Avenue

- School Canyon Creek - A natural-bottom channel with patches of willow and nonnative vegetation. This drainage is undergrounded west of Ventura Avenue.

Saticoy

- Brown Barranca - A concrete rip-rapped channel devoid of vegetation.
- Franklin Barranca - A concrete channel that changes to a natural channel with dense native vegetation near the Santa Clara River.

Photo 1 View of concreted rip-rap that lines the banks of Brown Barranca in the Saticoy District.

Photo 3 Cañada Larga Creek, west of Ventura Avenue, is in a relatively natural state.

Photo 2 Riparian habitat within Manuel Canyon Creek, a natural drainage west of Ventura Avenue.

Photo 4 East of Ventura Avenue, Cañada Larga Creek has been channelized with concrete banks.

The western portions of these areas, closest to the Ventura River, have a scattering of riparian vegetation in highly disturbed ruderal fields. The Saticoy area has patches of dense riparian and ruderal vegetation along the Santa Clara River. Least bell's vireo is known to be present along the reach of the Ventura River in the Planning Area and other listed or sensitive species could potentially utilize these areas (e.g. Coulter's goldfields and native oaks and sycamores). Wetlands may also be present is the western portions of the North Avenue and Upper North Avenue districts, as suggested by wet cracked soils observed during the field visits.

Implementation of Action 1.8, requiring buffers from the Ventura and Santa Clara Rivers, would minimize potential impacts to riparian and ruderal vegetation near these rivers to a less than significant level. Action 1.9 would require the use of native landscaping adjacent to rivers, creeks, and barrancas, which would address potential indirect adverse effects to downstream fish, wildlife, and vegetation as a result of water quality degradation associated with increased human activity. In addition, Action 1.10 would restore channelized barrancas and creeks to a quasi-natural condition to the extent feasible.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Scenario 2 would meet projected growth by focusing development on a combination of intensification and reuse of the existing urban area and three expansion areas: North Avenue, Olivas, and Serra. Additional impacts associated with expansion into the North Avenue, Olivas, and Serra expansion areas include potential direct impacts to riparian and wetland resources and jurisdictional areas, reduction and degradation of available wildlife habitat, and indirect impacts to downstream areas via degradation of water quality. With implementation of 2005 General Plan Actions 1.8 and 1.9, these impacts would be reduced to a less than significant level. Specific impacts associated with each expansion area are discussed below.

North Avenue. Development of this area could result in the degradation of riparian habitat associated with additional reaches of Manuel Canyon Creek, a natural channel that is a tributary to the Ventura River, due to increased human activity. See Photo 2 on Figure 4.4-3 for a view of riparian habitat within Manuel Canyon Creek. Wetlands are potentially present within the creek and could also be affected. Downstream water quality could also be affected from erosion. This drainage and its water resources are under the jurisdiction of the USACE, CDFG, and RWQCB.

Olivas. Development of this area could result in impacts to wetland habitat and associated wildlife located within a natural bottomed roadside drainage channel along Olivas Park Drive and scattered patches of riparian vegetation onsite. Despite the adjacent traffic, wildlife utilizes this area, as noted by the egrets and mallards observed within the drainage. Future development of this expansion area could result in a net loss of wetlands and riparian habitat onsite. Indirect water quality impacts to downstream areas could also occur. Like the Arundell Barranca onsite, the drainage may also be under the jurisdiction of USACE, CDFG, and RWQCB. Arundell Barranca would not be adversely affected by future development as it is channelized and supports no significant riparian or other biological resources. See Photo 6 on Figure 4.13 in Section 4.1, Aesthetics, for a view of Arundell Barranca. To the contrary, development of this expansion area could potentially provide an opportunity for restoration of the Arundell Barranca to a more natural condition.

Serra. Development of this area could adversely affect the least Bell's vireo and steelhead trout and other special-status species, if present, along the banks and channel Santa Clara River. Indirect water quality impacts to the Santa Clara River via the armored Harmon Canyon Barranca and the protected species that travel along it (e.g. steelhead trout, tidewater goby) could also occur, as discussed above.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Scenario 3 includes intensification and reuse of lands as discussed under Scenario 1, as well as the North Avenue and Olivas expansion areas as discussed under Scenario 2. This scenario would be similar to the Scenario 2 in that riparian and wetland resources associated with four natural drainages (Cañada Larga, Manuel Canyon, Cañada de las Encinas and School Canyon Creeks) and the adjacent Ventura and Santa Clara Rivers could be potentially affected. Riparian and wetland habitat associated with Manuel Canyon Creek, the roadside drainage along Olivas Drive, and Arundell Barranca could also be adversely affected under this scenario. With implementation of General Plan Actions 1.8 and 1.9, these impacts would be reduced to a less than significant level.

Scenario 4-Intensification/Reuse + North Avenue + Serra

Scenario 4 includes intensification and reuse of lands as discussed under Scenario 1, as well as the North Avenue and Serra expansion areas as discussed under Scenario 2. Potential impacts associated with this scenario would be similar to those of Scenario 2 except for the following: (1) no impacts to wetland habitat and associated wildlife located within a natural bottomed roadside drainage channel along Olivas Park Drive would occur; and (2) there would be no opportunity for restoration of Arundell Barranca. With implementation of General Plan Actions 1.8 and 1.9, impacts would be reduced to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Scenario 5 includes intensification and reuse of lands as discussed under Scenario 1, as well as the North Avenue expansion area as discussed under Scenario 2. This scenario also includes the Western Cañada Larga expansion area. Riparian and wetland resources associated with four natural drainages (Cañada Larga, Manuel Canyon, Cañada de las Encinas and School Canyon Creeks) and the adjacent Ventura and Santa Clara Rivers could be potentially affected as could riparian and wetland habitat associated with the upper reaches of Manuel Canyon Creek in the North Ventura area. In addition, the lower reaches of Cañada Larga and Weldon Canyon Creeks near State Route 33, which are in a relatively natural state, could potentially be affected. It is useful to note the difference between Canada Larga Creek west and east of Ventura Avenue (see Photos 3 and 4 on Figure 4.4-3). General Plan Action 1.8 would provide unchannelized creeks with buffers from development, and Action 1.9 would require the use of native landscaping in riparian areas, and Action 1.10 would aim to restore channelized barrancas to a quasi-natural condition. Implementation of these actions would reduce potential impacts to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Scenario 6 includes intensification and reuse of lands as discussed under Scenario 1, as well as the North Avenue expansion area as discussed under Scenario 2. This scenario also includes the Poinsettia expansion area. Riparian and wetland resources associated with four natural drainages (Cañada Larga, Manuel Canyon, Cañada de las Encinas and School Canyon Creeks) and the adjacent Ventura and Santa Clara Rivers could be potentially affected, as could riparian and wetland habitat associated with upstream reaches of Manuel Canyon Creek in the North Ventura Avenue area. Development of the Poinsettia expansion area could further degrade the Harmon Canyon Barranca. As this natural bottomed channel is surrounded by dense vegetation dominated by non-native eucalyptus and tree-tobacco with some scattered native scrub species, the impact to riparian and wetland resources is not anticipated to be significant for this area with use of standard BMPs during construction to protect water quality. With implementation of 2005 General Plan Actions 1.8 and 1.9, potential impacts to riparian and wetland habitats would be reduced to a less than significant level.

MITIGATION MEASURES

Implementation of 2005 General Plan Actions 1.8 and 1.9 would reduce potential impacts to wetland and riparian habitats to a less than significant level. No additional mitigation measures are required.

SIGNIFICANCE AFTER MITIGATION

Implementation of proposed 2005 General Plan actions would reduce impacts to riparian, wetland, and aquatic resources to a less than significant level for any of the six scenarios.

$$
\begin{array}{ll}
\text { Impact BIO-2 } \quad \begin{array}{l}
\text { All of the General Plan land use scenarios would largely } \\
\text { avoid impacts to sensitive habitats and mature native trees } \\
\text { by emphasizing intensification/reuse of urbanized areas. }
\end{array} \\
& \text { Implementation of General Plan policies and actions that } \\
\text { aim to protect sensitive habitats and mature trees would } \\
\text { reduce potential impacts to a Class III, less than significant, } \\
\text { level for all six scenarios. }
\end{array}
$$

All of the General Plan land use scenarios focus predominantly on intensification of existing developed areas and limited expansion into agricultural and/or relatively disturbed areas. As such, sensitive habitats and mature trees are limited in the Planning Area and consist primarily of jurisdictional waters and wetlands. Limited oak woodlands, mature oak trees, and dune habitat are present, and walnut woodland, native bunchgrass grasslands, and mature sycamores and other native trees are anticipated to be present in limited quantities and in a relatively disturbed state. It should also be noted that removal of the hillside areas above the City from the Sphere of Influence, as is anticipated to occur under any of the six land use scenarios, would avoid the potential for impacts to sensitive habitats and mature native trees in the hillside areas.

The 2005 General Plan includes the following policy and actions aimed at the protection of sensitive habitats from the impacts of future development:

Policy 1C Improve protection for plants and animals.
Action 1.18 Require new development adjacent to rivers, creeks, barrancas, and other sensitive habitat areas to use native or non-invasive plant species, preferably drought tolerant, for landscaping.

> Action 1.19 Require projects near watercourses, shoreline areas, and other sensitive habitat areas to include surveys for State and/or federally listed sensitive species and to provide appropriate buffers and other mitigation necessary to protect habitat for listed species.

Action 1.22 Adopt development code provisions to protect mature trees on public and private property.

Action 1.23 Require, where appropriate, the preservation of healthy tree windrows associated with current and former agricultural uses, and incorporate trees into the design of new developments.

Action 1.24 Require new development to maintain all indigenous tree species or provide adequately sized replacement native trees on a 3:1 basis.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes the intensification of development in already developed or disturbed areas. Sensitive habitat types are therefore limited within the intensification areas.
Development of the Upper North Avenue, North Avenue, Arundell, and Saticoy districts could affect jurisdictional waters and wetlands as discussed above under Impact BIO-1. See Photo 1 on Figure 4.4-4 for a view of ruderal and riparian vegetation near the Upper North Avenue district. A small area of dune habitat along the western edge of Spinnaker Drive would be restored as part of the Harbor district development. Dredging or similar activities within the open waters of the Ventura Harbor could occur with development of the Harbor district; however, these activities are ongoing and would continue to be regulated by permits from the USACE, CCC, and other entities. Oak and/ or walnut woodlands are located along the western edge of the Upper North Avenue district and the eastern edge of the North Avenue district. These areas could be potentially affected by proposed intensification through direct removal of habitat or indirect degradation via non-native plant introduction and increased human usage. There is also some potential for native bunchgrass grasslands or other sensitive habitats to be adversely affected in these areas as well as the Mariano Ranch area above Foothill Road, which could potentially accommodate residential development under the 2005 General Plan. However, provided that Actions 1.8, 1.18, 1.19, and 1.22 are implemented, impacts would be reduced to a less than significant level.

Photo 1 Ruderal areas with scattered riparian vegetation near the Upper North Avenue district.

Photo 3 Coastal sage scrub and grasses cover the hillsides within the Western Cañada Larga expansion area.

Photo 2 Native coastal sage scrub can be seen on the hillsides adjacent to the North Avenue expansion area. Much of this area is actively farmed with citrus orchards (foreground).

Photo 4 Dense nonnative vegetation (eucalyptus) with some native scrub components dominates Harmon Barranca along the eastern edge of the Poinsettia expansion area.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Scenario 2 would meet projected growth by focusing development on a combination of intensification and reuse of the existing urban area and three expansion areas: North Avenue, Olivas, and Serra. Future development of the North Avenue expansion area could affect jurisdictional waters and wetlands potentially present in the upper reaches of Manuel Canyon Creek and disturbed oak woodland south of the creek via direct removal sensitive habitat areas, introduction of incompatible landscape species, and increased human intrusion. In addition, native habitats including coastal sage scrub, grasslands, and oak woodlands occur naturally on the hillsides within the North Avenue expansion area (see Photo 2 on Figure 4.4-4). Sensitive habitats potentially affected by development of the Olivas and Serra areas are limited to the potential jurisdictional waters and wetlands onsite and, for the Serra area, the adjacent Santa Clara River bed, banks, and channel. Several locations within the Planning Area, including the Olivas area, contain rows of eucalyptus trees (windrows) that provide a distinct visual character as well as providing habitat for many species. Please refer to Photo 5 in Section 4.1, Aesthetics, for a view of eucalyptus windrows located within the Olivas expansion area. Implementation of General Plan Action 1.8 would require a buffer from the top of bank of the Santa Clara River bed and Action 1.22 directs the City to adopt development code provisions to protect mature trees. Action 1.23 directs the preservation of windrows and Action 1.24 requires the preservation or $3: 1$ replacement of indigenous tree species. Implementation of these actions would reduce potential impacts to a less than significant level.

Scenario 3-Intensification/Reuse + North Avenue + Olivas

Scenario 3 includes the same intensification potential as described for Scenario 1, as well as the potential future development of the North Avenue and Olivas expansion areas. As discussed under Scenario 2, sensitive habitats within the North Avenue area include jurisdictional waters and wetlands associated with upper reaches of Manuel Canyon Creek and oak woodland. Habitat impacts could occur via direct removal, introduction of incompatible landscape species, and increased human intrusion. Sensitive habitats present in the Olivas area are limited to the wetland areas onsite. As discussed under Scenario 2, implementation of proposed 2005 General Plan actions would reduce impacts to a less than significant level.

Scenario 4-Intensification/Reuse + North Avenue + Serra

Scenario 4 includes the same intensification potential as described for Scenario 1, as well as the potential future development of the North Avenue and Serra expansion areas. As discussed under Scenario 2, sensitive habitats within the North Avenue area include jurisdictional waters and wetlands associated with Manuel Canyon Creek, oak woodland, walnut woodland, and bunchgrass grasslands. Habitat impacts could occur via direct removal, introduction of incompatible landscape species, and increased human intrusion. Impacts to the sensitive riparian habitats associated with the Santa Clara River could occur with development of the Serra area. As discussed under Scenario 2, implementation of proposed 2005 General Plan actions would reduce impacts to a less than significant level.

$\underline{\text { Scenario } 5 \text { - Intensification/Reuse + North Avenue + Western Cañada Larga }}$

Scenario 5 includes the same intensification potential as described for Scenario 1, as well as the potential future development of the North Avenue and Western Cañada Larga expansion areas. As discussed under Scenario 2, sensitive habitats within the North Avenue area include jurisdictional waters and wetlands associated with Manuel Canyon Creek, oak woodland, walnut woodland, and bunchgrass grasslands. Impacts could occur via direct removal, introduction of incompatible landscape species, and increased human intrusion. The Western Cañada Larga area is the least disturbed of the expansion areas and has the greatest likelihood for sensitive upland habitats (e.g., coastal sage scrub, native bunchgrass grassland, oak woodland) to be present, as seen in Photo 3 on Figure 4.4-4. Proposed General Plan Action 1.19 would update the existing tree protection guidelines to include mature trees on public and private property. Implementation of General Plan Action 1.8 would require a buffer from the top of bank of the Ventura River bed, and would reduce potential impacts to a less than significant level. Action 1.19 would require the protection of sensitive habitats from the impacts of urban development. Implementation of these proposed General Plan actions would reduce impacts to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Scenario 6 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue and Poinsettia expansion areas. As discussed under Scenario 2, sensitive habitats within the North Avenue area could include jurisdictional waters and wetlands associated with the upper reaches of Manuel Canyon Creek, oak woodland, walnut woodland, and bunchgrass grasslands. Habitat impacts could occur via direct removal, introduction of incompatible landscape species, and increased human intrusion. Sensitive habitat areas that could be affected by development of the Poinsettia area are limited to the jurisdictional Harmon Canyon Barranca, as seen in Photo 4 on Figure 4.4-4.
Implementation of General Plan Action 1.8 would require a buffer from the top of bank of the Santa Clara River bed, and would reduce potential impacts to a less than significant level. The Poinsettia area also includes several windows of poplars that could potentially be affected by development of that area. However, General Plan Action 1.23 calls for the preservation of windrows. Implementation of these actions would reduce impacts to a less than significant level.

MITIGATION MEASURES

Compliance with proposed 2005 General Plan actions would reduce potential impacts to sensitive habitats to a less than significant level. No additional mitigation measures are required.

SIGNIFICANCE AFTER MITIGATION

Implementation of proposed 2005 General Plan policies and actions would reduce impacts to sensitive habitats, including mature trees, to a less than significant level for any of the six scenarios.

Impact BIO-3 All of the General Plan land use scenarios would largely avoid impacts to special-status plant and animal species by emphasizing intensification/reuse of already urbanized areas rather than developing greenfields at the City's periphery. Potential impacts could occur in certain locations, but would be addressed through implementation of proposed General Plan policies and actions. Impacts are considered Class III, less than significant, for all six scenarios.

Each of the land use scenarios focuses predominantly on intensification of existing developed areas, with some potential for development in agricultural and/or relatively disturbed areas. As such, the potential for special-status species impacts is limited due to the extent of habitats that can support these resources in the Planning Area. When present, special-status species are most likely to be associated with the Ventura and Santa Clara Rivers (e.g. least Bell's vireo, steelhead trout, southwestern pond turtle), and trees or windrows (nesting birds, monarch butterfly, sensitive bats). Special-status species could also occur in the small areas of oak woodland, riparian, wetland, and other native habitats that are present in the Planning Area.

It should also be noted that removal of the hillside areas above the City from the Sphere of Influence, as is anticipated to occur under any of the six land use scenarios, would avoid the potential for impacts to special-status species in that portion of the Planning Area.

General Plan Action 1.19, listed under Impact BIO-2, requires projects near sensitive habitat areas to include surveys for listed sensitive species and to provide appropriate buffers and other mitigation necessary to protect habitat for listed species. Action 1.22 requires the City to update its tree protection guidelines to protect mature trees on public and private property. Action 1.23 requires the preservation of healthy tree windrows associated with current and former agricultural uses. Action 1.24 requires the preservation or 3:1 replacement of indigenous tree species.

Scenario 1 - Intensification/Reuse Only

Scenario 1 generally involves the intensification of development in already developed or disturbed areas. Special-status species are therefore limited within the intensification areas. Development of the Upper North Avenue, North Avenue, and Saticoy districts could affect special-status species offsite and downstream along the Santa Clara and Ventura Rivers (e.g. least Bell's vireo, arroyo chub, steelhead trout, southwestern pond turtle, two-striped garter snake) via water quality impacts (erosion and spills), reduction of vegetation buffers and increased human intrusion. Areas of native vegetation or natural drainages associated with the Upper North Avenue and North Avenue districts and the Mariano Ranch area in the hillsides above Foothill Road could also support special-status species (e.g. coast horned lizard, silvery legless lizard, burrowing owl, and sensitive plants) and could be affected by removal of native vegetation. Although the dune habitat west of Spinnaker Drive in the Harbor District would be restored as part of future development, short-term impacts to sensitive plants and animals (e.g. Western snowy plover and sensitive plants) could occur during construction. Impacts to special-status species in these areas would be reduced to less than significant with the
implementation of Action 1.19, which requires project proponents to conduct surveys for listed species and provide buffers and other mitigation as necessary.

Trees and windrows could be used for nesting (e.g. raptors, nesting birds) or wintering (e.g. monarch butterfly) by special-status species. Several sensitive bats could also utilize these areas, but would not be significantly affected by development, as they are highly mobile, relatively adapted to human environments, and have adjacent open space areas available to them. Notable areas with large trees or windrows that could be affected by development include the Upper North Avenue, North Avenue, Arundell, and Saticoy districts, and other agricultural lands within the SOI that are slated for residential development (including the agricultural area near the 101/126 interchange and several agricultural properties in the Saticoy area). Actions 1.22, 1.23, and 1.24 require the preservation of mature tree, including windrows. Implementation of these actions, in combination with the requirements of Action 1.19, would reduce impacts to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Scenario 2 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue, Olivas, and Serra expansion areas.
Development of the North Avenue expansion area could affect special-status species associated with oak woodland, coastal sage scrub and Manuel Canyon Creek (e.g. burrowing owl, San Diego woodrat, coastal western whiptail, patch-nosed snake, nesting birds, oak trees, etc.). Special-status species potentially associated with the Olivas and Serra areas are anticipated to be limited to species associated with trees and windrows (e.g. nesting birds, monarch butterfly wintering areas). Species associated with the Santa Clara River area (e.g. least Bell's vireo, steelhead trout, southwester pond turtle) could also be adversely affected with development of the Serra area. General Plan Action 1.19 requires proponents of projects near sensitive habitat areas to conduct special-status species and mitigate impacts as necessary. Actions 1.22, 1.23, and 1.24 require the protection of mature trees, including windrows. Implementation of these actions would reduce impacts to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Scenario 3 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue and Olivas expansion areas. As discussed under Scenario 2, development of the North Avenue area could affect special-status species associated with the oak woodland, coastal sage scrub, and Manuel Canyon Creek onsite (e.g. burrowing owl, San Diego woodrat, coastal western whiptail, patch-nosed snake, nesting birds, oak trees, etc.). Special-status species potentially associated with the Olivas area are anticipated to be limited to species associated with trees and windrows (e.g. nesting birds, and monarch butterfly wintering areas), although sensitive birds may use the wetland areas onsite for foraging. As discussed under Scenario 2, implementation of proposed 2005 General Plan actions would reduce impacts to a less than significant level.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Scenario 4 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue and Serra expansion areas. As discussed
under Scenario 2, development of the North Avenue area could affect special-status species associated with oak woodland, coastal sage scrub, and Manuel Canyon Creek onsite (e.g. burrowing owl, San Diego woodrat, coastal western whiptail, patch-nosed snake, nesting birds, oak trees, etc.). Special-status species potentially associated with the Serra area are anticipated to be limited to species associated with trees and windrows (e.g. nesting birds, and monarch butterfly wintering areas) and species associated with the Santa Clara River area (e.g. least Bell's vireo, steelhead trout). As discussed under Scenario 2, implementation of proposed 2005 General Plan actions would reduce impacts to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Scenario 5 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue and Western Cañada Larga areas. As discussed under Scenario 2, development of the North Avenue area could affect special-status species associated with the oak woodland, coastal sage scrub, and Manuel Canyon Creek onsite (e.g. burrowing owl, San Diego woodrat, coastal western whiptail, patch-nosed snake, nesting birds, oak trees, etc.). Although relatively small in size, the Western Cañada Larga area could include special-status species associated with oak woodlands, scrub, grasslands, and riparian areas present onsite and connected to more extensive open space areas to the north. Specialstatus species associated with the segment of the Ventura River floodplain onsite and downstream open water areas (e.g. least Bell's vireo, steelhead trout, southwestern pond turtle) could also be affected. Trees and windrows in these areas could support nesting birds and Monarch butterfly wintering areas. As discussed under Scenario 2, implementation of proposed 2005 General Plan actions would reduce impacts to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Scenario 6 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue and Poinsettia expansion areas. Development of the North Avenue area could affect special-status species associated with the oak woodland, coastal sage scrub, and Manuel Canyon Creek onsite (e.g. burrowing owl, San Diego woodrat, coastal western whiptail, patch-nosed snake, nesting birds, oak trees, etc.). Special-status species potentially associated with the Poinsettia area are anticipated to be limited to species associated with trees and windrows (e.g. nesting birds, and monarch butterfly wintering areas). As discussed under Scenario 2, implementation of proposed 2005 General Plan actions would reduce impacts to a less than significant level.

MITIGATION MEASURES

Implementation of 2005 General Plan Action 1.19 would require protect state and federally listed species and buffer such species from urban uses. Actions 1.22, 1.23, and 1.24 would preserve existing mature trees, including windrows. Additional mitigation is not needed.

SIGNIFICANCE AFTER MITIGATION

Implementation of proposed 2005 General Plan policies would reduce impacts to special-status plant and animal species to a less than significant level for any of the six scenarios.

$$
\begin{array}{ll}
\text { Impact BIO-4 } & \begin{array}{l}
\text { All of the General Plan land use scenarios would largely } \\
\text { avoid impacts to wildlife movement corridors by } \\
\text { emphasizing intensification/reuse of existing urbanized } \\
\text { areas. Implementation of General Plan Actions 1.8, 1.9, and }
\end{array} \\
& \text { 1.10 would maintain ecological connectivity corridors } \\
\text { through urban spaces and potentially enhance connectivity } \\
\text { in some locations. Therefore, impacts to wildlife movement } \\
& \text { are considered Class III, less than significant, for all six } \\
\text { scenarios. }
\end{array}
$$

The proposed scenarios for growth focus predominantly on intensification of existing developed areas and limited expansion into agricultural and/or relatively disturbed areas. As such, the potential for impacts to wildlife corridors is limited and is primarily associated with the semi-natural drainages located in the western and southern portions of the Planning Area (Ventura and Santa Clara Rivers, and Weldon Canyon, Cañada Larga, Manuel Canyon, Cañada de las Encinas and School Canyon Creeks). It should also be noted that removal of the hillside areas above the City from the Sphere of Influence, as is anticipated to occur under any of the six land use scenarios, would limit the potential for impacts to wildlife corridors in that portion of the Planning Area.

As noted under Impact BIO-1, proposed General Plan Action 1.8 requires buffers between barrancas and creeks that retain natural soil slopes and new development. Action 1.9 prohibits the placement of material in watercourses other than native plants and required flood control structures, and Action 1.10 requires the removal of concrete channel structures as funding allows, and where doing so will fit the context of the surrounding area and not create unacceptable flood or erosion potential.

Scenario 1 - Intensification/Reuse Only

Scenario 1 generally emphasizes the intensification of development in already developed or disturbed areas. Wildlife movement corridors are therefore limited only to those portions of the plan that have open space areas, or drainages that connect open space areas. Development of the Upper North Avenue, North Avenue, and Saticoy districts, and other areas such as Mariano Ranch (undeveloped area within the existing City limits above Foothill Road) could potentially affect animal movement, especially along the existing creeks/barrancas and the Ventura and Santa Clara Rivers. However, implementation of the buffer requirement of Action 1.8 and restoration of these drainages as part of Action 1.10 could have a beneficial effect to wildlife movement. Impacts to wildlife corridors under this scenario are therefore considered less than significant.

$\underline{\text { Scenario } 2 \text { - Intensification/Reuse + North Avenue + Olivas + Serra }}$

Scenario 2 includes the same intensification potential as described for Scenario 1, as well as the possible future development of the North Avenue, Olivas, and Serra expansion areas. Manuel Canyon Creek, which crosses through the North Avenue expansion area, is considered a significant wildlife corridor between the Ventura River area and hillsides to the east and could potentially be adversely affected by development of that area. Arundell and Harmon Canyon

Barrancas, which are associated with the Olivas and Serra areas respectively, are not anticipated to be significant corridors due to their high level of disturbance and lack of native vegetation. It should be noted that improvements to these drainages during future development could improve the quality of these areas for wildlife movement. Development along the banks of the Santa Clara River as part of the development of the Serra area could adversely affect fish and wildlife movement along the River. Implementation of General Plan Action 1.8, which would require a buffer of natural vegetation, would reduce potential impacts to less than significant. Implementation of Action 1.10 on Arundell Barranca through the Olivas area could restore wildlife movement values to some degree along that concrete channel.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Scenario 3 includes the same intensification potential as described for Scenario 1, as well as the North Avenue, and Olivas areas. Manuel Canyon Creek is considered a significant wildlife corridor within the North Avenue expansion area and could be adversely affected by development. Arundell Barranca, which is associated with the Olivas area, is not a significant corridor due to its channelized nature and lack of vegetation. As discussed under Scenario 2, implementation of proposed General Plan actions would reduce impacts to a less than significant level.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Scenario 4 includes the same intensification potential as described for Scenario 1, as well as the North Avenue, and Serra areas. Manuel Canyon Creek is considered a significant wildlife corridor within the North Avenue expansion area and could be adversely affected by development. Harman Canyon Barranca, which is associated with the Serra area, is not a significant wildlife corridor due to its high level of disturbance and areas lacking vegetation. As discussed under Scenario 2, implementation of proposed General Plan actions would reduce impacts to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Scenario 5 includes the same intensification potential as described for Scenario 1, as well as the North Avenue, and Western Cañada Larga areas. Manuel Canyon Creek is considered a significant wildlife corridor within the North Avenue expansion area and could be adversely affected by development. Cañada Larga and Weldon Canyon Creeks associated with the Western Cañada Larga area are considered significant wildlife corridors between the Ventura River area and hillsides to the east and northeast, and could also be adversely affected by development of that area. However, implementation of Action 1.8, which would require a buffer of natural vegetation, would reduce potential impacts to a less than significant level.

$\underline{\text { Scenario } 6 \text { - Intensification/Reuse + North Avenue + Poinsettia }}$

Scenario 6 includes the same intensification potential as described for Scenario 1, as well as the North Avenue, and Poinsettia areas. Manuel Canyon Creek is considered a significant wildlife corridor within the North Avenue expansion area and could be adversely affected by development. However, implementation of General Plan Action 1.8, which would require a
buffer of natural vegetation, would reduce potential impacts to a less than significant level. Harmon Canyon Barranca, which is the eastern boundary of the Poinsettia area, is not anticipated to be a significant corridor due to its high level of disturbance and areas lacking vegetation. Restoration of the barranca as part of the development of the Poinsettia in accordance with Action 1.10 would have a beneficial effect to wildlife movement.

MITIGATION MEASURES

Compliance with proposed General Plan policies and actions would reduce potential impacts to wildlife corridors to a less than significant level. No additional mitigation measures are required.

SIGNIFICANCE AFTER MITIGATION

Implementation of General Plan Actions 1.8, 1.9, and 1.10 would reduce impacts to wildlife corridors to a less than significant level for any of the six scenarios.

4.5 CULTURAL and HISTORIC RESOURCES

This section analyzes the impacts of the 2005 General Plan on cultural and historic resources. Impacts to both pre-historic archaeological resources and historic resources are addressed.

4.5.1 Setting

Cultural resources include pre-historic resources, historic resources, and Native American resources. Pre-historic resources represent the remains of human occupation prior to European settlement. Historic resources represent remains after European settlement and may be part of a "built environment," including man-made structures used for habitation, work, recreation, education and religious worship. Historic resources may also include natural features, sites, or areas having historical, archaeological, cultural, or aesthetic significance. Native American resources include cultural elements pertaining to Native American issues and values.

The Ventura Planning Area is rich in cultural and historic resources. In addition to numerous pre-historic sites in the vicinity, about 100 sites (primarily in the Downtown area) and four neighborhood districts have been designated as historic. Figure $4.5-1$ shows the locations of these districts and sites.
a. Pre-historic Resources. The diversity of natural resources, the temperate climate that allows for long growing seasons, proximity to the coast, and abundant natural materials available for tool manufacturing all combined to produce an archaeological record in Ventura of almost the entire chronological and cultural span of human activity in southern California.

Significant Recorded Pre-historic Sites. For the 1989 Comprehensive Plan Master EIR, an inventory of recorded archaeological sites was compiled from the files of the State Information Center, Institute of Archaeology, University of California at Los Angeles, site records, excavation reports, and relevant literature. This information has been updated for the 2005 General Plan with materials obtained from the City, local museums, Native American organizations, and historical groups.

Within the Planning Area, there are 25 recorded archaeological sites and 96 historic landmarks or points of interest, at least 43 of which may also contain subsurface cultural resources. Prehistoric sites generally involve at least one of the following resources: middens, milling stone sites, large villages, cemeteries, hilltop bead shrines, flake scatters and camp workshops. Key areas include: Shisholop Village, the San Buenaventura Mission, and village sites in the North Avenue community, Saticoy, and Taylor Ranch. Drainages, especially the Ventura River, are also important archaeological locations. Some of the major resources are described below.

Shisholop Village. Also known as Historic Landmark 18, this site, located at the foot of Figueroa Street in Downtown Ventura, once contained a Chumash village believed to have been a Chumash provincial capital. One portion of the village has been excavated. Additional remains may exist.

Mission Area. Village sites exist on both the north and south sides of Main Street in downtown Ventura. Important structures associated with the Mission have also been
documented. The Mission Aqueduct, which is fragmented, lies in sections as it heads north and south from the Mission property.

North Avenue Community. Two different parts of a major Chumash village have been excavated in one area. In another location, excavation revealed "dark mound soil" which contrasted to the light claylike surrounding soils. This location has been covered by a dwelling, roads, gardens, and orchards. The owner of the property collected mortars, pestles, milling stones, and projectile points, as well as branding irons, spurs, and knives. A segment of the Mission aqueduct runs along the base of a hill east and south of the site. Since the original recording of the site, the construction of State Route 33 may have affected part of the front yard. The owner has since died; the whereabouts of his collection are unknown.

Saticoy Community. Included in this area is a village site, most likely Chumash, covering an area that is 300 by 1,000 feet, containing projectile points, scrapers, blades, drills, manos, milling stones, and trading beads. A cemetery, potentially Chumash, is also located in Saticoy.

Taylor Ranch. A major village has been excavated at Taylor Ranch, which is located west of the Ventura River. This site has been deemed the "most prominent cultural resource within the area" (Singer and Atwood, 1987). Estimated to be from the Oak Grove (Milling Stone) period, the site measures 500 by 1,000 feet, and includes the following artifacts: milling stones, hammerstones, and various flakes.
b. Historic Resources. There are a total of 96 designated historic sites/points of interest and four historic districts within the Planning Area. These include local, County, State, and National Register landmarks, landmark districts, and points of interest. The City owns several historic properties operated as sites open to the public and run by the Parks and Recreation Department. These include the Olivas Adobe, Ortega Adobe, Albinger Archaeological Museum, and other recorded archaeological sites in the Downtown area.

Historic sites include the Mission and its facilities, the Ortega adobe and the Olivas adobe, the Santa Gertrudis Chapel and San Miguel Chapels, and Chinatown. Historical landmarks that may also contain significant archaeological resources are mainly the nineteenth and early twentieth century residences of Ventura citizens, or early commercial buildings such as the Ferraud and Peirano stores downtown or the Bard Hospital on North Fir Street.

In 1982, the City received a grant from the State Office of Historic Preservation to conduct a comprehensive survey of the Downtown and Ventura Avenue areas. This study, combined with the Historical Architectural Survey completed in 1980 as part of the Downtown San Buenaventura Redevelopment Study Area, created a list of potential landmark sites in the downtown and Avenue areas of the City. Many of these proposed landmarks have since been designated.

The identification and designation of landmarks and points of interest outside City limits is the responsibility of the Ventura County Cultural Heritage Board. Landmarks include structures, natural features, sites, or areas having historical, archaeological, cultural, or aesthetic significance. The Ventura County Cultural Heritage Board also has designated a number points of interest, which include: sites of historical events; sites of historical resources or

Source: City of San Buenaventura and Rincon Consultants, Inc., 2005.
structures that no longer exist; and, natural features or areas having historical significance. Ventura County landmarks and points of interests that are located within the Planning Area include "Five Trees," the Saticoy Walnut Growers Association Warehouse, the Saticoy Bean Warehouse, and the Farmers and Merchants Bank of Santa Paula.

In addition to the properties identified through the Cultural Heritage Survey, the Ventura Historic Preservation Committee is continually considering other sites eligible for landmark status. After recommendation from the Historic Preservation Committee, the Ventura Planning Commission holds a public hearing and sends the subject application to the City Council. If the proposed landmark meets the applicable standards set forth in the Ventura City Code 1971, Section 3.310.170, then the Council may vote to adopt a resolution approving a landmark or point of interest and refer such recommendation to the County Clerk's office.

Appendix D includes a complete list of designated historic sites, points of interest, and historic districts within the Planning Area.
c. Regulatory Setting. A property may be designated as historic by National, State, or local authorities. In order for a building to qualify for listing in the National Register of Historic Places, the California Register of Historical Resources, or as a locally significant property in the City of Ventura, it must meet one or more identified criteria of significance. If the designation is for a building, the structure should also retain sufficient architectural integrity to continue to evoke the sense of place and time with which it is historically associated. An explanation of these designations follows.

National Register of Historic Places. The National Register of Historic Places (NRHP), which is administered by the National Park Service, is "an authoritative guide to be used by federal, state, and local governments, private groups, and citizens to identify the nation's cultural resources and to indicate what properties should be considered for protection from destruction or impairment." However, the federal regulations explicitly provide that National Register listing of private property "does not prohibit under federal law or regulation any actions which may otherwise be taken by the property owner with respect to the property."

Listing in the National Register assists in preservation of historic properties through the following actions: recognition that a property is of significance to the nation, the state, or the community; consideration in planning for Federal or federally assisted projects; eligibility for Federal tax benefits; consideration in the decision to issue a federal permit; and qualification for Federal assistance for historic preservation grants, when funds are available. Properties may qualify for NRHP listing if they:
A. Are associated with events that have made a significant contribution to the broad patterns of our history
B. Are associated with the lives of persons significant in our past
C. Embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction
D. Have yielded, or may be likely to yield, information important in prehistory or history

According to the NRHP guidelines, the essential physical features of a property must be present for it to be considered significant. Further, in order to qualify for the NRHP, a resource must retain its integrity, or the "ability to convey its significance." The seven aspects of integrity are:

1. Location (the place where the historic property was constructed or the place where the historic event occurred);
2. Design (the combination of elements that create the form, plan, space, structure, and style of a property);
3. Setting (the physical environment of a historic property);
4. Materials (the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property);
5. Workmanship (the physical evidence of the crafts of a particular culture or people during any given period of history or prehistory);
6. Feeling (a property's expression of the aesthetic or historic sense of a particular period of time); and
7. Association (the direct link between an important historic event or person and a historic property).

The relevant aspects of integrity depend upon the NRHP criteria applied to the property. For example, a property nominated under the location criterion would be likely to convey its significance primarily through integrity of location, setting, and association. A property nominated solely under the design criterion would usually rely primarily on integrity of design, materials, and workmanship. The California Register procedures include similar language with regard to integrity.

California Register of Historic Resources. The California Register of Historic Resources is an authoritative guide in California used by State and local agencies, private groups, and citizens to identify the State's historical resources and to indicate which properties are to be protected, to the extent prudent and feasible, from substantial adverse change. A resource is eligible for listing on the California Register if it meets any of the following criteria for listing:
A. It is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage;
B. It is associated with the lives of persons important in our past;
C. It embodies the distinctive work of an important creative individual, or possesses high artistic values; or
D. It has yielded, or may be likely to yield, information important in prehistory or history.

The California Register may also include properties listed in "local registers" of historic properties. A "local register of historic resources" is broadly defined in Public Resources Code Section $5020.1(\mathrm{k})$ as "a list of properties officially designated or recognized as historically significant by a local government pursuant to a local ordinance or resolution." Local registers of historic properties come in two forms: (1) surveys of historic resources conducted by a local agency in accordance with Office of Historic Preservation procedures and standards, adopted by the local agency and maintained as current; and (2) landmarks designated under local ordinances or resolutions (Public Resources Code Sections 5024.1, 21804.1, 15064.5).
4.5-6

City of Ventura

By definition, the California Register of Historic Resources also includes all "properties formally determined eligible for, or listed in, the National Register of Historic Places," (NRHP) and certain specified State Historical Landmarks. The majority of formal determinations of NRHP eligibility occur when properties are evaluated by the State Office of Historic Preservation in connection with federal environmental review procedures (Section 106 of the Historic Preservation Act of 1966). Formal determinations of eligibility also occur when properties are nominated to the NRHP, but are not listed due to owner objection. The minimum age criterion for the NRHP and the California Register is 50 years. Properties less than 50 years old may be eligible for listing on the NRHP if they can be regarded as "exceptional", as defined by the NRHP procedures, or in terms of the California Register, if "it can be demonstrated that sufficient time has passed to understand its historical importance."

City of Ventura Criteria. The City of Ventura Municipal Code, Chapter 24.455, Historic Preservation Regulations, establishes the procedures for identifying, designating, and preserving historic landmarks or points of interest. Pursuant to $\$ 24.455 .120 .2$, a building, structure, archaeological excavation, or object that is unique or significant because of its location, design, setting, materials, workmanship, or aesthetic feeling may qualify as a landmark if it is marked by any of the following:
A. Events that have made a meaningful contribution to the nation, state, or community
B. Lives of persons who made a meaningful contribution to national, state, or local history
C. Embodying the distinctive characteristics of a type, period, or method of construction
D. Reflecting or exemplifying a particular period of the national, state, or local history
E. The work of one or more master builders, designers, artists, or architects whose talents influenced their historical period, or work that otherwise possesses high artistic value
F. Representing a significant and distinguishable entity whose components may lack individual distinction
G. Yielding or likely to yield, information important to national, state, or local history or prehistory

Pursuant to $\$ 24.455 .120 .3$, any real property or object may qualify as a point of interest if:
A. It is the site of a building, structure, or object that no longer exists but was associated with historic events, important persons, or embodied a distinctive character of architectural style.
B. It has historic significance, but was altered to the extent that the integrity of the original workmanship, materials, or style is substantially compromised.
C. It is the site of a historic event which has no distinguishable characteristics other than that a historic event occurred there and the historic significance is sufficient to justify the establishment of a historic landmark.

Potential landmarks or points of interests are first considered by the Historic Preservation Committee at a noticed public hearing and with the property owner's permission. The Historic Preservation Committee then makes a recommendation to the Planning Commission. After consideration of the Historic Preservation Committee's recommendation, the Planning Commission is responsible for making a recommendation to the City Council, which, after consideration at a noticed public hearing, has sole authority to designate landmarks or points of interest.

City of Ventura

In addition to the designation of individual historical landmarks and points of interest, the Historic Preservation Committee, Planning Commission, and, ultimately, the City Council may designate certain areas of the City as Historic District (HD) Overlay Zones, pursuant to the City of Ventura Municipal Code, Chapter 23.340 and $\$ 24.455 .310$. The purpose of the HD Overlay Zone is to regulate a landmark, point of interest, or any combination thereof in order to:
A. Protect against destruction or encroachment upon such areas and structures
B. Encourage uses which promote the preservation, maintenance, or improvement of landmarks and points of interest
C. Assure that new structures and uses within such areas will be in keeping with the character to be preserved or enhanced
D. Promote the educational and economic interests of the entire City
E. Prevent creation of environmental influences adverse to such purposes

The procedure for establishing an HD Overlay Zone is similar to that required for designating a historical landmark or point of interest and includes recommendations by the Historic Preservation Committee and Planning Commission to the City Council for consideration at noticed public hearings. After designation as a historical landmark, point of interest, or Historic District, future development that might have an impact on designated buildings, structures, or areas is subject to design review for compliance with any architectural and development guidelines that the City Council has adopted as a part of the designation process.

The City has adopted the Mills Act, a state law that grants local governments the authority to directly implement a historic preservation program to encourage the preservation and restoration of designated Historic Landmarks. In exchange for property tax relief, property owners agree to maintain and preserve the exterior of their properties according to the Secretary of the Interior's Standards for the Treatment of Historical Properties guidelines

4.5.2 Impact Analysis

a. Methodology and Significance Thresholds. Evaluation of significance under the California Environmental Quality Act is based on eligibility for listing on the National Register of Historic Places (NRHP) or the California Register of Historical Resources. The NRHP is an effective planning tool for both long- and short-term cultural resource management considerations. An evaluation of significance in pre-historic and historic sites is usually measured by a number of variables, which reflect their applicability to present and future research questions posed by scientists in describing and explaining culture change.

Comprehensively, a project that follows the Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings (1992) or the Secretary of the Interior's Standards for Rehabilitation and Guidelines for Rehabilitating Historic Buildings (1995), shall be considered as mitigated to a level of less than significant impact on the historical resource.

Archaeological materials are extremely fragile and non-renewable. Thus, any activity that alters the surface of the land, inducing archaeological pursuits, can affect these resources. The cultural resource evaluation process requires that a resource, or the information it represents, be
related to some framework held in common by all archaeologists, and thus provide a measure of reference for determining the potential significance of similar resources. This framework usually addresses research orientation, and geographic, cultural, and temporal questions within the context of significance.

The fact that a resource is not listed in, or determined to be eligible for listing in the California Register of Historical Resources, not included in a local register of historical resources [pursuant to section 5020.1(k) of the Public Resources Code], or identified in an historical resources survey [meeting the criteria in section $5024.1(\mathrm{~g})$ of the Public Resources Code] does not preclude a lead agency from determining that the resource may be an historical resource as defined in Public Resources Code sections 5020.1(j) or 5024.1.

If development conducted pursuant to the 2005 General Plan could potentially cause damage to a significant archaeological resource, implementation of the General Plan may have a significant effect on the environment. Section 15064.5 of CEQA pertains to the determination of the significance of impacts to archaeological and historic resources. CEQA $\S 15126.4(\mathrm{~b})$ provides guidelines that assist in determining appropriate mitigation measures when it is determined that a project has the potential to create a significant impact on archaeological resources. Achieving CEQA compliance with regard to treatment of impacts to significant cultural resources requires that a mitigation plan be developed for the resource(s). Preservation in place is the preferred manner of mitigating impacts to significant archaeological resources.

Direct impacts may occur by:

- Physically damaging, destroying, or altering all or part of the resource
- Altering characteristics of the surrounding environment that contribute to the resource's significance
- Neglecting the resource to the extent that it deteriorates or is destroyed. Indirect impacts primarily result from the effects of project-induced population growth. Such growth can result in increased construction as well as increased recreational activities that can disturb or destroy cultural resources
- The incidental discovery of cultural resources without proper notification

Direct impacts can be assessed by identifying the types and locations of proposed development, determining the exact locations of cultural resources, assessing the potential significance of the resources that may be affected, and determining the appropriate mitigation.

Indirect impacts primarily result from the effects of growth accommodated under the General Plan. Such growth can result in increased construction as well as increased recreational activities that can disturb or destroy cultural resources. Due to their nature, indirect impacts are much harder to assess and quantify.
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts to cultural and historic resources for each of the scenarios under consideration. A discussion of the impacts follows.

Impact CR-1 Growth accommodated under any of the six scenarios could adversely affect previously identified and unidentified prehistoric archaeological resources. However, implementation of policies and actions included in the 2005 General Plan would reduce impacts to a Class III, less than significant, level for any of six land use scenarios.

A number of archaeological resource areas have been identified within the Planning Area. Notable sites include the Shisholop Village at the foot of Figueroa Street, the Mission area, two different parts of a Chumash Village in the North Avenue area, a village site and cemetery in Saticoy, and a village on Taylor Ranch. In general, the areas where future development intensification and reuse are likely to occur would not affect these known sites. Although there is the possibility that as yet undiscovered resources could be present at any location, based on the fact that most of the intensification/reuse sites have been previously graded, the likelihood of finding intact resources is considered low. Areas with the greatest potential for intact resources that could potentially be disturbed include portions of the North Avenue area (e.g., the area south of the Brooks Institute that is not developed), portions of the Downtown neighborhood, and Saticoy.

None of the potential expansion areas have been formally surveyed for archaeological resources. No known archaeological resources are present in any of the expansion areas and all of the areas have been substantially disturbed by past grading and agricultural activities. Therefore, the likelihood that significant archaeological resources are present is not considered high. Nevertheless, the Serra and Poinsettia areas are located within the vicinity of archaeologically sensitive areas, as resources have been identified on other sites in the East Ventura area, particularly near Saticoy. In addition, the Mission Aqueduct, which stretched from Cañada Larga to the San Buenaventura Mission and south through the Downtown area, is thought to cross through the western portion of the North Ventura Avenue expansion area, though it is not known whether any trace of that resource remains. Although archaeological resources are not expected to be a major constraint to possible future development in any of the expansion areas, archaeological investigations would be needed on a case-by-case basis for any of the areas in order to confirm the presence or absence of archaeological remains.

The 2005 General Plan includes the following policy and actions that address potential impacts to archaeological resources:

Policy 9D Ensure proper treatment of archaeological and historic resources.
Action 9.14 Require archaeological assessment for projects proposed in the Coastal Zone and other areas where cultural resources are likely to be located.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Archaeological Resources (Impact CR-1)	Future development could potentially disturb previously unknown archaeological resources. However, implementation of policies and actions in the 2005 General Plan would reduce impacts to Class III, less than significant.	Impacts similar to Scenario 1. North Avenue and Serra expansion areas are in areas of archaeological significance. Impacts are Class III, less than significant, with implementation of 2005 General Plan policies and actions.	Impacts similar to Scenario 1. North Avenue expansion area is in an area of archaeological significance. Impacts are Class III, less than significant, with implementation of 2005 General Plan policies and actions.	Impacts similar to Scenario 1. North Avenue and Serra expansion areas are in areas of archaeological significance. Impacts are Class III, less than significant, with implementation of 2005 General Plan policies and actions.	Impacts similar to Scenario 1. North Avenue and Western Cañada Larga expansion areas are in an area of archaeological significance. Impacts are Class III, less than significant, with implementation of 2005 General Plan policies and actions.	Impacts similar to Scenario 1. North Avenue expansion area is in an area of archaeological significance. Impacts are Class III, less than significant, with implementation of 2005 General Plan policies and actions.
Historic Resources (Impact CR-2)	Possible impacts to existing Historical Districts and historical landmarks due to intensification and reuse. However, implementation of proposed 2005 General Plan policies and actions would reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Possible impacts relating to future demolition of farmhouses and ancillary structures in North Avenue, Olivas, and Serra expansion areas. North Avenue area potentially includes remnants of the Mission Aqueduct. Implementation of General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Possible impacts relating to future demolition of farmhouses and ancillary structures in North Avenue and Olivas expansion areas. North Avenue area potentially includes remnants of the Mission Aqueduct. Implementation of General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Possible impacts relating to future demolition of farmhouses and ancillary structures in North Avenue and Serra expansion areas. North Avenue area potentially includes remnants of the Mission Aqueduct. Implementation of General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Possible impacts relating to future demolition of farmhouses and ancillary structures in North Avenue expansion area. North Avenue and Western Cañada Larga areas potentially include remnants of the Mission Aqueduct. Implementation of General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Possible impacts relating to future demolition of farmhouses and ancillary structures in North Avenue expansion area. North Avenue area potentially includes remnants of the Mission Aqueduct. Implementation of General Plan policies and actions reduces impacts to Class III, less than significant.

Abstract

Action 9.15 Suspend development activity when archaeological resources are discovered, and require the developer to retain a qualified archaeologist to oversee handling of the resources in coordination with the Ventura County Archaeological Society and local Native American organizations as appropriate.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes intensification and reuse of areas within the existing SOI that are already urbanized or designated for urban uses, and does not include expansion areas. Due to the extensive ground disturbance associated with urbanization and agricultural activity that has occurred throughout most of the SOI, it is unlikely that development that would be accommodated under this scenario would disturb any known significant archaeological resources. However, as discussed above, development could occur within the vicinity of known archaeological sites, particularly within the North Avenue, Downtown, and Saticoy districts. As such, grading and trenching activities associated with new development that would occur under Scenario 1 have the potential to disturb previously unknown archaeological resources. Potentially significant impacts would be mitigated through implementation of 2005 General Plan Actions 9.14 and 9.15.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas. The Serra and North Avenue expansion areas are located within the vicinity of known archaeological resources in the east Ventura/Saticoy and North Avenue areas, respectively. The Olivas expansion area consists primarily of agricultural lands that have experienced ground disturbance activities and is in an area that is not known to be of archaeological significance; nevertheless, the potential remains for previously unknown archaeological resources to be present within the Olivas area. Development under Scenario 2 has the potential to disturb previously unknown archaeological resources. Potentially significant impacts would be mitigated through implementation of 2005 General Plan Actions 9.14 and 9.15.

Scenario 3-Intensification/Reuse + North Avenue + Olivas

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue and Olivas expansion areas. As discussed above under Scenarios 1 and 2, known resources are present in portions of the City, notably the North Avenue, Downtown, and Saticoy districts. No known archaeological deposits are present in the North Avenue or Olivas expansion areas, though the North Avenue expansion area is within an area of archaeological significance. Development accommodated under this scenario has the potential to disturb previously unknown archaeological resources. Potentially significant impacts would be mitigated through implementation of 2005 General Plan Actions 9.14 and 9.15.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 4 would accommodate the possible future development of the North Avenue and Serra expansion areas. As discussed above under Scenarios 1 and 2, known resources are present in portions of the City, notably the North Avenue, Downtown, and Saticoy districts. No known archaeological deposits are present in the North Avenue or Serra expansion areas; however, both of these expansion areas are within portions of the Planning Area that are known to be of archaeological significance. Development accommodated under this scenario has the potential to disturb previously unknown archaeological resources. Potentially significant impacts would be mitigated through implementation of 2005 General Plan Actions 9.14 and 9.15.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 5 would accommodate the possible future development of the North Avenue and Western Cañada Larga expansion areas. As discussed above under Scenarios 1 and 2, known resources are present in portions of the City, notably the North Avenue, Downtown, and Saticoy districts. No known archaeological deposits are present in the North Avenue or Western Cañada Larga expansion areas, though both areas are within a general area that is known to be of archaeological significance. Development accommodated under Scenario 5 has the potential to disturb previously unknown archaeological resources. Potentially significant impacts would be mitigated through implementation of 2005 General Plan Actions 9.14 and 9.15.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 6 would accommodate the possible future development of the North Avenue and Poinsettia expansion areas. As discussed above under Scenarios 1 and 2, known resources are present in portions of the City, notably the North Avenue, Downtown, and Saticoy districts. No known archaeological deposits are present in the North Avenue or Poinsettia expansion areas, though the North Avenue expansion area is within a general area that is known to be of archaeological significance. Development accommodated under Scenario 6 has the potential to disturb previously unknown archaeological resources. Potentially significant impacts would be mitigated through implementation of 2005 General Plan Actions 9.14 and 9.15.

MITIGATION MEASURES

Implementation of Policy 9D and Actions 9.14 and 9.15 would reduce potential archaeological resource impacts to a less than significant level for all six land use scenarios. Mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Implementation of policies and actions included in the 2005 General Plan would reduce the potential for impacts to archaeological resources to a less than significant level for any of the six land use scenarios.

$$
\begin{array}{ll}
\text { Impact CR-2 } & \begin{array}{l}
\text { Several of the growth districts and corridors include identified } \\
\text { historic resources, as does the Western Cañada Larga expansion } \\
\text { area. The other expansion areas also include structures that } \\
\text { meet the minimum age criterion for eligibility for the National } \\
\text { and California Registers of Historic Places. However, } \\
\text { implementation of proposed } 2005 \text { General Plan policies and } \\
\text { actions, in combination with existing regulatory requirements, } \\
\text { would reduce impacts to a Class II, less than significant, level for } \\
\text { Scenarios 1-6. }
\end{array} .
\end{array}
$$

There are 96 designated historic resources within the current SOI. Among the notable historic resources are San Buenaventura Mission, the Ortega and Olivas Adobes, and the Santa Gertrudis and San Miguel chapels. (See Appendix D for a complete list and description of historic resources within the Planning Area.)

Four historic districts have also been established in the City. These include the Mission District, the Mitchell Block District (south of Thompson Boulevard and East of California Street), the Selwyn Shaw District (north of Poli Street between Ann Street and Hemlock Street), and the Simpson Tract District (west of Ventura Avenue and between Ramona Street and Center Street). Several of the designated Growth Districts and Corridors, where intensification and reuse would occur, contain identified historic resources.

A portion of the Mission Aqueduct, a designated County historic landmark, is located within the Western Cañada Larga expansion area. As the Mission Aqueduct at one time extended from the Mission Historic District north along the eastern foothills of the Ventura Avenue corridor approximately eight miles to the north, it is possible that portions of the Mission Aqueduct might remain within these areas. In addition, although it has not been formally designated as a historic landmark, the Fraser House is located adjacent to the North Avenue expansion area and meets at least three criteria for designation as a County historic landmark (Westside Elementary School Final EIR, 2002). There are no designated historic sites in the Olivas, Poinsettia, and Serra expansion areas; however, all of these areas include older farmhouses and other buildings that likely meet the minimum age criterion to qualify for the National Register of Historic Places. Meeting the minimum age criterion does not necessarily mean that the structures are eligible for listing on the National Register and, based on preliminary observations, it is not likely that structures would meet the other criteria for eligibility. However, analysis of the historic significance of the structures would be warranted in the event that development is proposed within any of these areas.

The 2005 General Plan includes the following actions that would help reduce the potential for impacts to cultural and historic resources throughout the City under Scenarios 1-6:

Action 9.16 Pursue funding to preserve historic resources.
Action 9.17 Provide incentives to owners of eligible structures to seek historic landmark status and invest in restoration efforts.
Action 9.18 Require that modifications to historically-designated buildings maintain their character.
Action 9.19 For any project in a historic district or that would affect any potential historic resource or structure more than 40 years old, require an assessment of eligibility for State and federal register and landmark status and appropriate mitigation to protect the resource.
Action 9.20 Seek input from the City's Historic Preservation Commission on any proposed development that may affect any designated or potential landmark.

Action 9.21 Update the inventory of historic properties.
Action 9.22 Create a set of guidelines and/or policies directing staff, private property owners, developers, and the public regarding treatment of historic resources that will be readily available at the counter.
Action 9.23 Complete and maintain historic resource surveys containing all the present and future components of the historic fabric within the built, natural, and cultural environments.
Action 9.24 Create a historic preservation element.
Implementation of the City of Ventura Historic Preservation Regulations and HD Overlay Zone regulations described in the Setting would also reduce impacts to historical resources within designated Historic Districts under Scenarios 1-6.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes intensification and reuse of properties within the existing SOI that are either urbanized or designated for urban uses, and does not include expansion areas.
Development under Scenario 1 would most likely result in development on, or adjacent to, several of the designated Historic Districts and landmarks that are located throughout the City - especially within the Downtown district, which includes the Mission, Selwyn Shaw, and Mitchell Block Historic Districts. Although impacts to historic buildings and districts could be avoided, growth accommodated under Scenario 1 would have the potential to adversely affect historic buildings and districts through either direct removal of structures or by changing the historic setting of the communities/neighborhoods in which historic buildings and other resources are located. Potentially significant impacts could be mitigated through implementation of 2005 General Plan Action 9.19.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas. The North Avenue expansion area could include vestiges of the Mission Aqueduct, a designated historic landmark. In addition, all three

Photo 1 - Farmhouse fronting Ventura Avenue in the North Avenue expansion area.

Photo 2 - Farmhouse and ancillary structures fronting Telephone Road in the Serra expansion area.

Farmhouses in the
expansion areas either have, or are located adjacent to, farmhouses and other structures that likely meet the minimum age criterion to qualify for the National Register of Historic Places. Figure $4.5-2$ shows onsite structures in the North Avenue and Serra areas. Although no structures in any of these areas have been determined to be eligible for the National or California Registers, analysis of the historic significance of the North Avenue, Olivas, and Serra areas would be warranted at such time as any development of the areas is proposed. Potentially significant impacts could be mitigated through implementation of 2005 General Plan Action 9.19.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 3 would accommodate the possible future development of the North Avenue and Olivas expansion areas. As discussed under Scenario 2, the North Avenue area could include vestiges of the Mission Aqueduct and both expansion areas either have, or are located adjacent to, farmhouses and other buildings that likely meet the minimum age criterion to qualify for the National Register of Historic Places. Although no structures in any of these areas have been determined to be eligible for the National or California Registers, analysis of the historic significance of the North Avenue, Olivas, and Serra areas would be warranted at such time as any development of the areas is proposed. Potentially significant impacts could be mitigated through implementation of 2005 General Plan Action 9.19.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 4 would accommodate the possible future development of the North Avenue and Serra expansion areas. As discussed under Scenario 2, the North Avenue area could include vestiges of the Mission Aqueduct and both expansion areas either have, or are located adjacent to, farmhouses and other buildings that likely meet the minimum age criterion to qualify for the National and California Registers of Historic Places. Although no structures in any of these areas have been determined to be eligible for the National or California Registers, analysis of the historic significance of the North Avenue and Serra areas would be warranted at such time as any development of the areas is proposed. Potentially significant impacts could be mitigated through implementation of 2005 General Plan Action 9.19.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 5 would accommodate the possible future development of the North Avenue and Western Cañada Larga expansion areas. A portion of the Mission Aqueduct is located in the vicinity of the Western Cañada Larga expansion area. The North Avenue expansion area could include vestiges of the Mission Aqueduct and includes buildings that likely meet the minimum age criteria to qualify for the National and California Registers of Historic Places. Although no structures have been determined to be eligible for the National or California Registers, analysis of the historic significance of the North Avenue and Western Cañada Larga areas would be warranted at such time as any development of the areas is
proposed. Potentially significant impacts could be mitigated through implementation of 2005 General Plan Action 9.19.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 6 would accommodate the possible future development of the North Avenue and Poinsettia expansion areas. As discussed under Scenario 2, the North Avenue expansion area could include vestiges of the Mission Aqueduct, a designated historic landmark and also includes buildings that likely meet the minimum age criterion to qualify for the National Register of Historic Places. The Poinsettia area does not appear to contain any buildings or other resources that meet eligibility criteria for federal or state register consideration. Potentially significant impacts could be mitigated through implementation of 2005 General Plan Action 9.19.

MITIGATION MEASURES

Implementation of the City of Ventura Historic Preservation Regulations and HD Overlay Zone regulations would reduce impacts to historical resources within designated Historic Districts under Scenarios 1-6. These existing requirements, in combination with the policies included in the 2005 General Plan, would reduce historic resource impacts to a less than significant level. Mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Implementation of the policies and actions included in the 2005 General Plan, in combination with the Historic Preservation Regulations and HD Overlay Zone regulations, would reduce potential impacts to historic resources to a less than significant level for Scenarios 1-6.

4.6 GEOLOGIC HAZARDS

This section discusses potential seismic and geologic hazards in the Ventura Planning Area.

4.6.1 Setting

a. Seismic Hazards. Ventura lies in a highly active earthquake region of southern California and thus is subject to various seismic and geologic hazards, including ground shaking, surface rupture, and landslides. Each potential geological hazard is described below.

Seismically Induced Ground Shaking. Faults produce comprehensive damage in two ways: ground shaking and surface rupture. Seismically induced ground shaking covers a wide area and is greatly influenced by the distance of the site to the seismic source, soil conditions, and depth to groundwater. Surface rupture is limited to very near the fault. Other hazards associated with seismically induced ground shaking include earthquake-triggered landslides and liquefaction.

Alquist-Priolo (A-P) Earthquake Fault Zones encompass surface traces of active faults that have potential for future surface fault rupture. A-P Fault Zones are designated within 500 feet from a known fault trace. Per the Alquist-Priolo legislation, no structure for human occupancy is permitted on the trace of an active fault. The term "structure for human occupancy" is defined as any structure used or intended for supporting or sheltering any use or occupancy, which is expected to have a human occupancy rate of more than 2,000 person-hours per year. If development is proposed within an A-P Fault Zone, a geologic study must be conducted for developments of four units or more to determine the location of the fault trace. Based on the findings in the geologic study, all structures for human occupancy must be set back a minimum of 50 feet from the fault trace because, unless proven otherwise, an area within 50 feet of an active fault is presumed to be underlain by active traces of the fault.

The U.S. Geological Survey defines active faults as those that have had surface displacement within Holocene time (about the last 11,000 years). Holocene surface displacement can be recognized by the existence of cliffs in alluvium, terraces, offset stream courses, fault troughs and aligned saddles, sag ponds, and the existence of steep mountain fronts. Potentially active faults are those that have had surface displacement during Quaternary time, within the last 1.6 million years. Inactive faults have not had surface displacement within the last 1.6 million years. A fault is a plane or surface in the earth along which failure has occurred and materials on opposite sides have moved relative to one another in response to the accumulation and release of stress. Faults that are known to have moved in recent history (the last 200 years) are considered historically active. Faults that have exhibited signs of activity during the last 11,000 years are considered active, and faults that have exhibited signs of activity within 11,000 years to 2 to 3 million years ago are considered potentially active. Ground surface displacement along a fault, although more limited in area than the ground shaking associated with it, can have disastrous consequences when structures are located across or near the fault zone.

Amounts of movement during an earthquake can range up to tens of feet. Fault displacement may also occur gradually, not as a result of earthquakes, but as the nearly imperceptible
continual movement known as creep. Creep can produce the rupture or bending of buildings, fences, railroads, streets, pipelines, curbs, and other linear structures.

Faults in the Planning Area. Areas on or around active and potentially active fault traces are potentially subject to surface rupture. Major faults in the Planning Area that may produce damaging ground shaking in the City are shown on Figure 4.6-1. They include the Ventura-Foothill, Oak Ridge/McGrath, Red Mountain, and Country Club Faults.

The Ventura-Foothill Fault zone is considered active and was designated as an Alquist-Priolo Earthquake Fault Zone by the State Geologist in 1978. This designation requires a geological investigation to determine if a site is threatened by surface displacement from future fault movement prior to the approval of a development permit. The Ventura-Foothill Fault trends east-west across the northern section of the City near the base of the foothills. Properties along this fault trace have the greatest potential for surface rupture in the City.

The Country Club Fault is a northwest-southeast trending zone in the eastern portion of the City between Kimball Road and Wells Road to the west and east, and Telegraph and Telephone Roads to the north and south. This fault is considered potentially active but was evaluated in 1976 and not designated as an Alquist-Priolo Special Studies Zone.

The Oak Ridge and McGrath Faults comprise a zone that trends northeast-southwest and across the southern portion of the City. The fault has thousands of feet of subsurface displacement but is poorly defined at the surface. This fault zone is considered at least potentially active and probably active.

The Red Mountain Fault Zone lies north of and adjacent to the City water filtration plant on North Ventura Avenue. This fault is considered active and portions outside the Planning Area are Alquist-Priolo Earthquake Fault Zones.

Effects of Seismicity. Table $4.6-1$ shows the estimated maximum earthquake that may occur due to activity along the most significant faults that could affect the Planning Area. It includes active regional faults such as the San Andreas and the Anacapa that are known to produce tremors sufficient in magnitude to affect large areas.

In the event of a strong earthquake (magnitude 6.0 to 7.5) originating in southern Ventura County, or a major earthquake (8.0 magnitude) along the San Andreas Fault, damage to many existing structures could be severe and some loss of life could occur.
b. Landslides. A landslide is the perceptible downslope movement of earth mass. It is part of the continuous, natural, gravity-induced movement of soil, rock and debris. Landsliding can range from downslope creep of soil and rock material to sudden failure of entire hillsides. Landslides include rockfalls, slumps, block glides, mudslides, debris flows, and mud flows. Landsliding or slope instability may be caused by natural factors such as fractured or weak bedrock, heavy rainfall, erosion, earthquake activity, and fire, as well as by human alteration of topography and water content in the soil.

Table 4.6-1
Significant Faults and Estimated Maximum Earthquake Size

Fault Name	Estimated Maximum Credible Earthquake
Ventura-Pitas Point	6.9
Red Mountain	7.0
Oak Ridge	7.0
Simi-Santa Rosa	7.0
San Cayetano	7.0
Arroyo Parida-More Ranch	7.2
Mid Channel	6.6
Santa Ynez (East)	7.1
Malibu Coast	
Anacapa	6.7
San Andreas (Mojave)	7.5
Source: Cao, T, Bryant, W.A., Rowshandel, B., Branum, D., and	
Wills, C. (2003).	

The hillsides north of Poli Street/Foothill Road and east of Ventura Avenue and Cedar Street contain a number of existing landslides and are likely to experience future landslide activity. Although landslides generally occur on slopes 30% or steeper, they may also occur on slopes that are less steep. Slope stability conditions vary locally in the hillside area based on soil and rock type and groundwater depth. Figure 4.6-2 depicts existing areas with landslide morphology in the Planning Area.

Figure $4.6-3$ shows the area addressed in the City Hillside Management Program, which ties the amount, distribution, and quality of future development to topographical, geological, and hydrological constraints in an effort to retain natural and scenic character and to minimize the danger to life and property from landsliding, erosion, fire, flooding, and water pollution.
c. Secondary Seismic and Soil Related Hazards. Secondary seismic and soil related hazards include liquefaction, expansive soils, settlement, subsidence, and hydrocompaction. These types of hazards, and the areas within the City and/or expansion areas that have the potential for such failure, are discussed as follows.

Liquefaction. Liquefaction is a temporary, but substantial, loss of shear strength in granular solids, such as sand, silt, and gravel, usually occurring during or after a major earthquake. This occurs when the seismic waves, from an earthquake of sufficient magnitude and duration, shear a soil deposit that has a tendency to decrease in volume. If drainage cannot occur, this reduction in soil volume will increase the pressure exerted on the water contained in
the soil. This process can transform stable granular material into a fluid-like state. The potential for liquefaction to occur is greatest in areas with loose, granular, low-density soil, where the water table is within the upper 40 to 50 feet of the ground surface. Liquefaction can result in slope and/or foundation failure, and also post-liquefaction settlement. Liquefaction hazards are present in large portions of the Planning Area, primarily in coastal areas and along rivers. Areas classified by the State of California as being subject to liquefaction are depicted on Figure 4.6-4.

Expansive Soil. Expansive soils are generally clayey and swell when wetted and shrink when dried. Wetting can occur naturally in a number of ways, (e.g., absorption from the air, rainfall, groundwater fluctuations, lawn watering and broken water or sewer lines). In hillside areas, as expansive soils expand and contract, gradual downslope creep may occur, eventually causing landsliding. Clay soils also retain water and may act as lubricated slippage planes between other soil/rock strata, also producing landslides, often during earthquakes or by unusually moist conditions.

Expansive soils are also often prone to erosion. Foundations of structures placed on expansive soils may rise during the wet season and fall during the succeeding dry season. Zones of highly expansive soils occur in the hillsides and located west of the intersection of Harbor Boulevard and Olivas Park Drive and around the intersection of Victoria Avenue and Olivas Park Drive. Figure 4.6-5 shows expansive soil zones in the Planning Area.

Settlement, Lateral Spreading, Subsidence, and Hydroconsolidation. Extreme settling or ground subsidence may result from post-liquefaction reconsolidation. Ground settlement often occurs differentially because liquefiable deposits and ground water elevations are seldom distributed evenly over broad areas. If the ground surface slopes even gently, liquefaction may lead to lateral spreading or low angle landsliding of soft saturated soils. This can result in the rapid or gradual loss of strength in the foundation materials, so that structures built upon them settle or break up as the foundation soils flow out from beneath them.

Subsidence may be caused by post-liquefaction reconsolidation. It may also be caused by groundwater withdrawal, oil or gas withdrawal, and hydroconsolidation. Groundwater withdrawal subsidence generally occurs in valley areas underlain by alluvium. This type of subsidence results from extraction of a large quantity of water from an unconsolidated aquifer. As water is removed from the aquifer, the total weight of the overburden, which the water had helped support, is placed on the alluvial structure and it is compressed. If fine-grained silts and clays make up portions of the aquifer, the additional load can squeeze the water out of these layers and into the coarser-grained portions of the aquifer. All of this compaction produces a net loss in volume and hence a subsidence of the land surface. A very similar sequence of events leads to subsidence with the oil and gas withdrawals. Hydroconsolidation subsidence can occur in dry, unconsolidated, porous, semi-arid and arid deposits that, when wetted, lose their strength and develop spontaneous settling, slumping, or cracking.

Source: State of Califormia Department of Mines and Geology, June 1972, City of San Buenaventura, 2005, and Rincoon Consultants, Inc., 2005.

Source: City of San Buenaventura Water Resources Public Works Agency, 1976, City of San Buenaventura, 2005, and Rincoon Consultants, Inc., 2005.

Source: City of San Buenaventura and Rincon Consultants, Inc, 2005 , Ventura Soil Survey (Cañada Larga area), and SSURGO Data, 2002.

Damage caused by subsidence generally is not immediate or violent in nature. The consolidation of alluvium and settling of the land surface is a process that tends to take many years, except when prompted by seismic shaking or wetting of highly collapsible soils. However, subsidence that results from groundwater or oil and gas withdrawal can be responsible for numerous structural effects. Most seriously affected are long surface infrastructure facilities that are sensitive to slight changes in gradient, such as wells, sewers, and other underground utility lines. Hydroconsolidation is one of the most destructive forms of subsidence because it can cause severe damage to pipelines, roads, buildings, and other structures over shorter time periods. Hydroconsolidation has been known to occur in and around the Ventura College vicinity (Ventura Comprehensive Plan Update Background Report, 2002).

Gradual inundation by surface water is a potentially serious secondary effect of subsidence in the City as both the ocean and the Santa Clara River could flow into depressed areas. In the case of the coastal portion of Ventura, beach erosion may extend inland due to the loss of elevation caused by subsidence. Any area where probable subsidence is on the order of 0.05 feet/year is considered highly susceptible. In Ventura, this category extends along the coast roughly from Pierpont to the intersection of Highway 101 with the Santa Clara River (Ventura Comprehensive Plan Update Background Report, 2002).

Tsunamis and Seiche. Tsunamis are large ocean surges that are generated by submarine landslides, volcanic eruptions, or earthquakes. Tsunamis originate in deep water and have a long wavelength (distance from the crest of one wave to the crest of the succeeding wave), normally over 100 miles, and a very low amplitude (height from crest to trough). As these waves approach shallow water, the speed decreases from a deep water speed of over 600 mph to less than 30 mph , as they move across the beach. The wave energy is transferred from wave speed (velocity) to wave height (amplitude) and waves as high as 100 feet can be formed. Although the arrival time of a wave generated far out at sea can be predicted quite accurately, the intensity of the wave when it reaches the shore is difficult to predict. The duration of a tsunami threat can sometimes last up to ten to twelve hours.

The tsunami threat is mainly confined to immediate beach areas and river channels. See Figure 4.6-6 for the areas within the City of Ventura that would be the most susceptible to a tsunami threat. Beach areas have historically been affected up to a mile or more inland in very flat areas. Tsunamis can also travel considerable distances inland on waterways, particularly those with shallow gradients. The effects of the tsunami are most noticeable on manmade features, but the waves can also change river channels and modify coastal landforms.

A seiche is a wave, or series of waves, set up in an enclosed or partially enclosed body of water by wind, earthquake, or landslide. Earthquakes are the most common cause of most seiches in lakes and bays, either directly or indirectly. Seiches are similar to tsunamis, but the waves are generally smaller and of lower energy. The extent of most seiches is small, usually no more than 10 to 20 feet above water level, and the duration is short, usually only a few minutes. The threat to the City from seiches is considered remote. Only facilities in or very near enclosed bodies of water could be immediately affected.

This page intentionally left blank.

Source: City of San Buenaventura and Rincon Consultants, Inc., 2005.

Legend

Tsunami Risk Areas

Barrancas

Rivers
Freeway
Major Road
Corridors, Districts, Neighborhood Centers (NC)
Potential Expansion Areas
City Limits
Planning Area
Tsunami Risk Areas

Districts

2. North Avenue
3. Downtown
4. Pacific View Mall
5. Harbor
6. Arundell

Corridors

A. Ventura Avenue
B. Main Street
C. Thompson Boulevard
D. Loma Vista Road
E. Telegraph Road

4.6.2 Impact Analysis

a. Methodology and Significance Thresholds. The General Plan Update would result in potentially significant impacts if development under the General Plan through the year 2025 would result in substantial adverse physical impacts associated with any of the following conditions:

- Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, strong seismic ground shaking, seismic-related ground failure, including liquefaction, or landslides, or seismic-related inundation from tsunami or seiche
- Result on substantial soil erosion or the loss of topsoil
- Result in the loss of a unique geologic feature
- Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse
- Be located on expansive soil, creating substantial risks to life or property
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of geologic hazard impacts for each of the scenarios under consideration. A discussion of the impacts follows. When appropriate, the differing impacts of the six scenarios are discussed individually. However, for certain issues (landsliding and tsunami), impacts are the same for all scenarios.

The 2005 General Plan includes the following policy and actions relating to minimizing geologic and seismic hazards:

Policy 7B Minimize risks from geologic and flood hazards.
Action 7.6 Adopt updated editions of the California Construction Codes and International Codes as published by the State of California and the International Code Council respectively.

Action 7.7 Require project proponents to perform geotechnical evaluations and implement mitigation prior to development of any site:

- With slopes greater than 10% or that otherwise have potential for landsliding
- Along bluffs, dunes, beaches, or other coastal features
- In an Alquist-Priolo earthquake fault zone or within 100 feet of an identified active or potentially active fault
- In areas mapped as having moderate or high risk of liquefaction, subsidence, or expansive soils
- In areas within 100-year flood zones, in conformance with all Federal Emergency Management Agency regulations.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Ground Shaking/ Surface Rupture (Impact GEO-1)	Ventura-Foothill Alquist-Priolo fault zone may affect development within Downtown and Arundell. Compliance with General Plan Action 7.7, CBC, and A-P requirements reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Oak Ridge Fault may affect Olivas and Serra expansion areas. McGrath fault may affect Serra area. Compliance with General Plan policies and CBC requirements reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Oak Ridge Fault may affect Olivas expansion area. Compliance with General Plan policies and CBC requirements reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Oak Ridge and McGrath Faults may affect Serra expansion area. Compliance with General Plan policies and CBC requirements reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Red Mountain Fault may affect Western Cañada Larga expansion area. Compliance with General Plan policies and CBC requirements reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Ventura-Foothill Alquist-Priolo fault zone may also affect Poinsettia expansion area. Compliance with General Plan policies and CBC requirements reduce impacts to Class III, less than significant.
Landslide (Impact GEO-2)	No potential landslide areas in designated growth districts or corridors; landslide potential in limited to small area above Foothill. Landslide impacts are Class III, less than significant.	No landslide potential in North Avenue, Olivas, or Serra expansion areas. Impacts similar to Scenario 1 and Class III, less than significant.	No landslide potential in North Avenue or Olivas expansion areas. Impacts similar to Scenario 1 and Class III, less than significant.	No landslide potential in North Avenue or Serra expansion areas. Impacts similar to Scenario 1 and Class III, less than significant.	No landslide potential in North Avenue expansion area; minor landslide potential in Western Cañada Larga. Impacts similar to Scenario 1 and Class III, less than significant.	No landslide potential in North Avenue or Poinsettia expansion areas. Impacts similar to Scenario 1 and Class III, less than significant.
Liquefaction (Impact GEO-3)	Liquefaction hazards present in the Ventura Avenue, Saticoy, and Harbor Districts. Compliance with General Plan Action 7.7 pertaining to high-risk liquefaction areas reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Portions of North Avenue, Olivas, and Serra expansion areas subject to moderate to high liquefaction risk. Compliance with City policies and CBC reduce impacts	Intensification/reuse impacts similar to Scenario 1. Portions of North Avenue and nearly all of Olivas expansion area subject to moderate to high liquefaction risk. Compliance with City policies and $C B C$ reduce	Intensification/reuse impacts similar to Scenario 1. Portions of North Avenue and Serra expansion areas subject to moderate to high liquefaction risk. Compliance with City policies and CBC reduce impacts to Class III,	Intensification/reuse impacts similar to Scenario 1. Moderate liquefaction risk in portions of North Avenue and Western Cañada Larga expansion areas. Compliance with City policies and CBC reduce	Intensification/reuse impacts similar to Scenario 1. Portions of North Avenue expansion area subject to moderate liquefaction risk; no liquefaction hazard in Poinsettia area. Compliance with City policies and

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
		to Class III, less than significant.	impacts to Class III, less than significant.	less than significant.	impacts to Class III, less than significant.	CBC reduce impacts to Class III, less than significant.
Expansive Soil (Impact GEO-4)	High expansive soil hazards present within portions of the North Avenue, North Bank, and Montalvo districts and possible hillside development area above Foothill (Mariano Ranch). Harbor district is susceptible to subsidence. With implementation of CBC and General Plan policies, impacts are Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. Highrisk expansive soils present in portions of Olivas and Serra expansion areas. With implementation of CBC and General Plan policies, impacts are Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. Highrisk expansive soils present in portions of Olivas expansion area. With implementation of CBC and General Plan policies, impacts are Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. Highrisk expansive soils present in portions of Serra expansion area. With implementation of CBC and General Plan policies, impacts are Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. Western Cañada Larga expansion area contains pockets of highly expansive soil potential along Ventura Avenue and near Cañada Larga Road. With implementation of CBC and General Plan policies, impacts are Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. No expansive soil conditions in North Avenue or Poinsettia expansion areas. With implementation of CBC and General Plan policies, impacts are Class III, less than significant.
Tsunami (Impact GEO-5)	Development along the coast and near rivers may be susceptible to inundation from a tsunami, particularly the Harbor and parts of Downtown. Continued participation in the SSWWS and SEMS Multihazard Response Plan reduces impacts to Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.

Action 7.8 To the extent feasible, require new critical facilities (hospital, police, fire, and emergency service facilities, and utility "lifeline" facilities) to be located outside of fault and tsunami hazard zones, and require critical facilities within hazard zones to incorporate construction principles that resist damage and facilitate evacuation on short notice.

Action 7.9 Maintain and implement the Standardized Emergency Management System (SEMS) Multihazard Functional Response Plan.

Impact GEO-1

> Future seismic events could produce groundshaking throughout the Planning Area as well as surface rupture in some areas where future development could be accommodated. Groundshaking and surface rupture could damage structures and/or create adverse safety effects. However, compliance with City policies, in combination with the requirements of the CBC and the Alquist-Priolo legislation, would reduce the risk associated with groundshaking and surface rupture to a Class III, less than significant, level for all six scenarios.

The entire Planning Area is subject to severe groundshaking from any of a number of faults in the region. As shown in Table 4.6-1 in the Setting, the largest ground-shaking event in Planning Area would occur from a maximum earthquake on the Arroyo Parida-More Ranch, Mid Channel, Santa Ynez (East), and Malibu Coast Faults. The Ventura-Foothill Fault, which generally runs along Foothill Road, is the only fault within the Planning Area that the State of California has officially designated as "active" (i.e., one having ruptured within the last 11,000 years). Other potentially active faults in the Planning Area include the Oak Ridge, McGrath, Red Mountain, and Country Club faults. Surface rupture could potentially occur along these fault lines.

All new development within the City would conform to the California Building Code (CBC) (as amended at the time of permit approval), as required by law. This addresses potential impacts relating to ground shaking. In addition, the 2005 General Plan contains policies that address risks from fault rupture. Action 7.7 requires geotechnical evaluation and mitigation prior to development of any site within an Alquist-Priolo earthquake fault zone or within 100 feet of a potentially active fault. Action 7.8 require new critical facilities (hospital, police, fire, and emergency service facilities, and utility "lifeline" facilities) to be located outside of fault zones.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes intensification and reuse of properties within the existing developed City and does not include expansion areas. All future development within the Planning Area would potentially be subject to severe groundshaking. Although nothing can ensure that structures do not fail under seismic stress, proper engineering, including compliance with the CBC, can
minimize the risk to life and property, resulting in a less than significant impact to new development from ground shaking.

Several possible development areas are potentially subject to surface rupture due to the presence of active or potentially active faults. The Ventura-Foothill Fault Alquist-Priolo Hazard Zone runs along the Foothill Road corridor, through the northern section of the Downtown district, the western end of the Main Street corridor, and the northern portion of the Loma Vista corridor. Per the Alquist-Priolo legislation, a geologic study would be needed for any development of four or more residential units proposed within this zone to determine the location of the fault trace. All structures for human occupancy would have to be set back a minimum of 50 feet from the fault trace unless it can be shown that no trace is present. Compliance with the Alquist-Priolo legislation requirements would reduce ground-rupture impacts associated with the Ventura-Foothill Fault to a less than significant level.

The Oak Ridge, McGrath, and Country Club faults also cross through the Planning Area. The Oak Ridge fault crosses the Arundell district (including the northern portion of the McGrath property) and the Victoria Avenue corridor. The McGrath fault crosses the North Bank district and the Johnson Drive corridor. Traces of the Country Club fault cross portions of the Saticoy area, including a neighborhood center on Telephone Road. Impacts in these areas are considered potentially significant. However, implementation of the General Plan policies discussed above would reduce ground-rupture impacts to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas. The potentially active Oak Ridge Fault, with an estimated maximum earthquake of magnitude of 7.2, bisects the Olivas expansion area and is in the northern section of the Serra expansion area. The potentially active McGrath Fault is located along the southern boundary of the Serra expansion area, near the Santa Clara River. Impacts in these areas are considered potentially significant. However, General Plan policies that address compliance with the CBC and that require fault studies for development projects on or adjacent to active and potentially active faults would reduce risk from ground shaking and surface rupture to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 3 would accommodate the possible future development of the North Avenue and Olivas expansion areas. As mentioned under Scenario 2, the potentially active Oak Ridge Fault bisects the Olivas expansion area and is in the northern section of the Serra expansion area. Impacts in this area are considered potentially significant. However, General Plan policies that address compliance with the CBC and that require fault studies for development projects on or adjacent to active and potentially active faults would reduce risk from ground shaking and surface rupture to a less than significant level.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 4 would also accommodate the possible future development of the North Avenue and Serra expansion areas. The potentially active Oak Ridge Fault crosses the northern section of the Serra expansion area. In addition, the potentially active McGrath Fault is located along the southern boundary of the Serra expansion area. Impacts in these areas are considered potentially significant. However, General Plan policies that address compliance with the CBC and that require fault studies for development projects on or adjacent to active and potentially active faults would reduce risk from ground shaking and surface rupture to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 5 would also accommodate the possible future development of the North Avenue and Western Cañada Larga expansion areas. The Red Mountain Fault, which is an active fault with an estimated maximum credible earthquake of 7.3 , crosses through the northern portion of the Western Cañada Larga expansion area. Impacts in this area are considered potentially significant. However, General Plan policies that address compliance with the CBC and that require fault studies for development projects on or adjacent to active and potentially active faults would reduce risk from ground shaking and surface rupture to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 5 would also accommodate the possible future development of the North Avenue and Poinsettia expansion areas. The active Ventura-Foothill Fault runs through the Poinsettia expansion area, which poses an additional ground-shaking hazard to future development. Impacts associated with this fault are considered potentially significant. However, General Plan policies that address compliance with the CBC and that require fault studies for development projects on or adjacent to active and potentially active faults would reduce risk from ground shaking and surface rupture to a less than significant level.

MITIGATION MEASURES

Compliance with the California Building Code and General Plan Action 7.7 would reduce impacts to a less than significant level. No mitigation measures are required in addition to proposed General Plan Update policies.

SIGNIFICANCE AFTER MITIGATION

Implementation of State requirements and proposed General Plan policies on all new development would reduce impacts associated with ground shaking and fault rupture to a less than significant level for any of the six land use scenarios.

$$
\begin{array}{ll}
\text { Impact GEO-2 } & \text { The Planning Area contains several steep slopes that present a } \\
\text { potential slope stability hazards. However, none of the } \\
& \text { General Plan land use scenarios encourage substantial new } \\
\text { development in areas of high landslide risk. In addition, } \\
\text { General Plan actions require geotechnical analysis and case- } \\
\text { by-case mitigation for any development in an area with a high } \\
\text { potential for landslides. Therefore, impacts due to landslide } \\
& \text { risk are considered Class III, less than significant, for all } \\
\text { scenarios. }
\end{array}
$$

The Planning Area contains several steep slopes, which present a moderate slope stability hazard, as seen in Figure 4.6-2. Slope instability may result in landslides, mudslides, or debris flows that can cause substantial damage to structures, roadways, and other improvements as well as to deflect and block drainage channels, causing further damage and erosion. Soil slumping can damage or destroy structures and lead to erosion problems.

The hillside areas located north of Poli Street/ Foothill Road and east of Ventura Avenue and Cedar Street contain existing landslides and are likely to experience future landslide activity. The major concentration of existing landslides occurs within the northern portions of the Hall and Barlow Canyon drainage areas. Other landslide areas are scattered throughout the hillside areas and generally occur on hillsides with slopes of 30% or greater, although slides may occur in areas less steep. The areas within the City Hillside Management Program, as shown on Figure 4.6-3, would require detailed studies that would apply to any potential future development on local hillside areas. The 2005 General Plan contains a policy that would reduce the risk from landslides. Action 7.7 requires geotechnical analysis and mitigation prior to development of any site within an area with slopes greater than 10% or with the potential for landsliding.

The majority of potential landslide areas are in the hills outside the City limits, but within the Planning Area. It is anticipated that the hillside areas outside the City limits would be removed from the City's Sphere of Influence under any of the six land use scenarios, suggesting that the City does not intend to extend services to those areas. In practical terms, this means that these areas likely will not be developed. Though the Western Cañada Larga area includes steeper topography than the other expansion areas, none of the five expansion areas includes any land with high landslide potential.

Limited additional hillside development could occur in areas within the City limits, notably within the upper portion of the Downtown District, north of Poli Street, known as Mariano Ranch. However, these areas are within the Hillside Management Program Area. Any development proposed within that area would require a detailed geologic study prior to development. Implementation of existing requirements for any new development in the hillsides would reduce landslide impacts to a less than significant level.

MITIGATION MEASURES

Compliance with applicable General Plan policies/actions and the City Hillside Management Program would reduce potential impacts from development in hillside areas to a less than significant level. No mitigation would be required.

SIGNIFICANCE AFTER MITIGATION

Implementation of State requirements and proposed General Plan policies on all new development would reduce impacts associated with landsliding to a less than significant level for any of the six land use scenarios.

$$
\begin{array}{ll}
\text { Impact GEO-3 } & \begin{array}{l}
\text { Future seismic events could result in liquefaction of soils in } \\
\text { portions of the Planning Area. Development in certain areas } \\
\text { within the City could be subject to liquefaction hazards under } \\
\text { any of the } 2005 \text { General Plan land use scenarios. However, }
\end{array} \\
& \begin{array}{l}
\text { compliance with City General Plan policies would reduce } \\
\text { potential impacts to Class III, less than significant, for all six } \\
\text { scenarios. }
\end{array}
\end{array}
$$

Liquefaction, a process in which soils liquefy during ground shaking, is of greatest concern in areas with high water tables. As shown on Figure 4.6-4, areas along and adjacent to the Ventura and Santa Clara Rivers, barrancas, and along the coast are subject to liquefaction hazards. Intensification/reuse areas with relatively high liquefaction potential include much of West Ventura Avenue (Ventura Avenue corridor and the North Avenue and Upper North Avenue districts), Downtown, Midtown (Main Street and Thompson Boulevard corridors), Saticoy, the Harbor, the North Bank and Montalvo districts, and the Johnson Drive corridor. Much of the southern portion of the Serra expansion area also has a high water table and relatively high potential for liquefaction. The southwest area of the Olivas potential expansion area is also within a high water table area while the remainder of the site is in a moderate water table area. Although engineering solutions (most commonly, densification of site soils) typically can adequately reduce liquefaction hazards to acceptable levels, liquefaction hazards would warrant further investigation for development proposals in areas with high water tables.

The 2005 General Plan contains an action that would reduce the risks from liquefaction. Action 7.7 requires a geotechnical analysis and mitigation prior to development of any site within an area mapped as having high or moderate risk for liquefaction.

Scenario 1 - Intensification/Reuse Only

This land use scenario emphasizes intensification and reuse of properties within the existing developed City and does not include expansion areas. Liquefaction hazards are present primarily in areas adjacent to the Ventura and Santa Clara Rivers. All of Downtown, Midtown, and Ventura Harbor are in an area of liquefaction risk, as is most of West Ventura, including the North Avenue and Upper North Avenue districts and the Ventura Avenue corridor. Portions of the Arundell, North Bank, Montalvo, and Saticoy districts and the Johnson Drive corridor are
also at liquefaction risk. New development in areas at liquefaction risk would be subject to City policy requirements for geotechnical evaluation. Provided that any pending development complies with the requirements of General Plan Action 7.7, impacts would be reduced to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Liquefaction impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas. The southwest corner of the North Avenue area, the northwestern portion of the Olivas area, and the southeastern portion of the Serra area are within the liquefaction hazard zone. New development within the liquefaction hazard zone would be subject to Action 7.7, which requires a geotechnical analysis and mitigation. Compliance with this action would reduce impacts to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Liquefaction impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 3 would accommodate the possible future development of the North Avenue and Olivas expansion areas. As discussed under Scenario 2, the southwest corner of the North Avenue area and the northwestern portion of the Olivas area are within the liquefaction hazard zone. New development within the liquefaction hazard zone would be subject to Action 7.7, which requires a geotechnical analysis and mitigation. Compliance with this action would reduce impacts to a less than significant level.

Scenario 4- Intensification/Reuse + North Avenue + Serra

Liquefaction impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 4 would accommodate the possible future development of the North Avenue and Serra expansion areas. As discussed under Scenario 2, the southwest corner of the North Avenue area and the southeastern portion of the Serra area are within the liquefaction hazard zone. New development within the liquefaction hazard zone would be subject to Action 7.7, which requires a geotechnical analysis and mitigation. Compliance with this action would reduce impacts to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Liquefaction impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 5 would accommodate the possible future development of the North Avenue and Western Cañada Larga expansion areas. The southwest corner of the North Avenue area and the western portion of the Western Cañada Larga area are within the liquefaction hazard zone. New development within the liquefaction hazard zone would be subject to Action 7.7, which requires a geotechnical analysis and mitigation. Compliance with this action would reduce impacts to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Liquefaction impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 6 would accommodate the possible future development of the North Avenue and Poinsettia expansion areas. The southwest corner of the North Avenue area and the eastern edge of the Poinsettia area are within the liquefaction hazard zone. New development within the liquefaction hazard zone would be subject to Action 7.7, which requires a geotechnical analysis and mitigation. Compliance with this action would reduce impacts to a less than significant level.

MITIGATION MEASURES

Compliance with the California Building Code and implementation of General Plan Action 7.7 would reduce impacts due to liquefaction risk to a less than significant level. Additional mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Implementation of State requirements and proposed General Plan policies/actions on all new development would reduce impacts associated with ground shaking and fault rupture to a less than significant level for any of the six land use scenarios.

$$
\begin{array}{ll}
\text { Impact GEO-4 } & \begin{array}{l}
\text { Expansive soil or other soil conditions leading to subsidence } \\
\text { could result in foundation and building distress problems and } \\
\text { cracking of concrete slabs. Areas that could accommodate } \\
\text { development could be subject to subsidence hazards under } \\
\text { any of the six land use scenarios. However, compliance with }
\end{array} \\
& \text { 2005 General Plan policies would reduce potential impacts to } \\
& \text { Class III, less than significant, for all six scenarios. }
\end{array}
$$

Expansive soil or other conditions that could lead to subsidence or settlement may result in loss of strength in foundation materials, such that structures built upon them gradually settle or break up. Expansive soils may contribute to downslope creep, landslides, and erosion. The seasonal expansion and contraction of soils may cause foundations, walls, and ceilings to crack and various structural portions of building to warp and distort. Expansive soils are generally clayey and swell when wetted and shrink when dried. Several zones of highly expansive soils are in the hillsides of the Planning Area. Two other significant areas of high shrink-swell potential are located west of the intersection of Harbor Boulevard and Olivas Park Drive and near the Victoria Avenue/Highway 101 intersection. Figure 4.6-5 depicts high, moderate, and low expansive soil zones in the Planning Area.

Subsidence may be caused by post-liquefaction reconsolidation, groundwater/oil/gas withdrawal, or hydroconsolidation. Groundwater withdrawal subsidence generally occurs in areas underlain by alluvium deposits. Subsidence issues generally exist along the coast and adjacent to the Santa Clara River. If extraction of fluids from this general area is increased, subsidence rates could possibly increase. Damage caused by subsidence occurs over a long
period of time except when prompted by seismic shaking or wetting of highly collapsible soils. The most severe subsidence zone extends roughly from the Pierpont area on the west to the intersection of U.S. 101 with the Santa Clara River. Probable subsidence in this zone is on the order of 0.05 feet/year (Ventura Comprehensive Plan Update Background Report, 2002). Gradual inundation of depressed areas by the ocean and the Santa Clara River could occur only as a secondary effect of subsidence, possibly the result of flooding.
Detailed geotechnical studies at a site-specific level would be necessary prior to development to evaluate the potential for geologic and soil hazards, including expansive soils, for these conditions to be minimized or corrected during construction. Large-scale settlement problems would not be significant provided that adequate soil and foundation studies are performed prior to construction and that CBC guidelines and appropriate site-specific mitigation are followed.

Scenario 1 - Intensification/Reuse Only.

Scenario 1 emphasizes intensification and reuse of properties within the existing developed City and does not include expansion areas. Most of the Planning Area has moderately expansive soils. There are several pockets of high-risk expansive soil within the North Avenue and Upper North Avenue, North Bank, and Montalvo districts, as well as in a hillside area known as Mariano Ranch where limited hillside development could occur. The Harbor growth district is also highly susceptible to subsidence hazards. The risk to development in these areas would be reduced to a less than significant level through compliance with CBC standards and implementation of General Plan Action 7.7, which requires geotechnical analysis and mitigation for developments within high-risk expansive soil areas or other areas prone to subsidence.

$\underline{\text { Scenario } 2 \text { - Intensification/Reuse + North Avenue + Olivas + Serra }}$

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas. High-risk expansive soils are present in portions of the Serra and Olivas expansion areas. In addition, any development within the Olivas expansion area may be susceptible to subsidence hazards. The risk to property in these areas would be reduce to a less than significant level through compliance with CBC standards and implementation of General Plan Action 7.7, which requires geotechnical analysis and mitigation for developments within high-risk expansive soil areas or other areas prone to subsidence.

Scenario 3 - Intensification/Reuse + North Avenue+ Olivas

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 3 would also accommodate the possible future development of the North Avenue and Olivas expansion areas. High-risk expansive soils are present in portions of the Olivas area. In addition, any development within the Olivas expansion area may be susceptible to subsidence hazards. The risk to property in these areas would be reduced to a less than significant level through compliance with CBC standards and implementation of General Plan Action 7.7, which requires geotechnical analysis and mitigation for developments within highrisk expansive soil areas or other areas prone to subsidence.

Scenario 4 - Intensification/Reuse + North Avenue+ Serra

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 4 would also accommodate the possible future development of the North Avenue and Serra expansion areas. High-risk expansive soils are present in portions of the Serra area. The risk to property in these areas would be reduced to a less than significant level through compliance with CBC standards and implementation of General Plan Action 7.7, which requires geotechnical analysis and mitigation for developments within high-risk expansive soil areas or other areas prone to subsidence.

Scenario 5 - Intensification/Reuse + North Avenue+ Western Cañada Larga

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 5 would also accommodate the possible future development of the North Avenue and Western Cañada Larga expansion areas. The North Avenue expansion area contains low and moderate expansive soil potential, but no areas of high risk. The Western Cañada Larga expansion area contains pockets of high expansive soil potential along Ventura Avenue and near Cañada Larga Road. The risk to property in these areas would be reduced to a less than significant level through compliance with CBC standards and implementation of General Plan Action 7.7, which requires geotechnical analysis and mitigation for developments within high-risk expansive soil areas or other areas prone to subsidence.

Scenario 6 - Intensification/Reuse + North Avenue+ Poinsettia

Impacts associated with intensification and reuse would be the same as those identified for Scenario 1. Scenario 6 would also accommodate the possible future development of the North Avenue and Poinsettia expansion areas. The North Avenue expansion area contains moderate expansive soil potential, but no areas of high risk. The Poinsettia area has low to moderate expansive soil hazards. The risk to property is considered potentially significant, but can be minimized through compliance with CBC standards and the requirement that the recommendations of detailed soil and foundation studies for projects within high-risk expansive soil areas are implemented.

MITIGATION MEASURES

Compliance with the California Building Code and implementation of General Plan Action 7.7 would reduce impacts due to expansive soils to a less than significant level. Additional mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Impacts related to expansive soils or soils prone to settlement would be reduced to a less than significant level for any of the six land use scenarios with implementation of CBC requirements and proposed General Plan policies.

$$
\begin{array}{ll}
\text { Impact GEO-5 } & \begin{array}{l}
\text { Development along the coast and near rivers may be } \\
\text { susceptible to inundation from tsunamis. However, } \\
\text { provided that the City continues its participation in the }
\end{array} \\
\text { Seismic Sea Wave Warning System and the SEMS } \\
\text { Multihazard Functional Response Plan, impacts would be } \\
\text { Class III, less than significant, for all six scenarios. }
\end{array}
$$

All of the coastal areas in the City, including areas near the mouth of the Ventura River, are susceptible to tsunamis. A tsunami from the north Pacific could move down the Santa Barbara Channel and affect the northerly coastal areas. A tsunami originating from the South Pacific or from South America could strike the coastal areas from the south to southwest. A Santa Barbara Channel tsunami could affect much of the mainland coastal areas, because the Channel Islands would not provide any protection for the mainland (City of Ventura, 1989).

The worst recorded tsunami to hit California was in 1812. An earthquake occurred in the Santa Barbara Channel, and the resulting waves are reported by some sources to have been up to 15 feet above sea level in Ventura (SEMS Multihazard Functional Response Plan, 1999). The historic record indicates that there is a small probability of occurrence of a major tsunami in Ventura County. The recurrence interval for large tsunamis in California is approximately 100 years (USGS, 1985). This historical record is not extensive enough to develop recurrence predictions for the City.

The Seismic Sea Wave Warning System (SSWWS), directed by the U.S. Coast and Geodetic Survey, is the primary source of tsunami detection. This system has been in operation since 1948. The SSWWS and other cooperating countries operate a system of seismographs and tide stations. The purpose of this system is to provide early warning to low lying areas of the approach of tsunamis. In addition to the SSWWS, the Ventura County Sheriff's department has the responsibility to alert coastal areas, and work with local police departments should an evacuation be necessary.

The Ventura Fire Department has devised and maintains a comprehensive Standardized Emergency Management System (SEMS) Multihazard Functional Response Plan (1999) that addresses the City's planned response to extraordinary emergency situations associated with natural disasters, including tsunamis. The plan provides operational concepts, identifies sources of outside support that would be provided through mutual aid agreements, State and Federal agencies, and the private sector.

All of the coastal areas in Ventura County are susceptible to tsunamis. Within the City of Ventura, the most threatened areas would be along the coast and rivers, as shown in Figure 4.66. In particular, the Harbor and parts of the Downtown district are within the Tsunami Hazard Zone. New development in these areas would be subject to tsunami-related damage.

Due to its proximity to the coast and relatively low elevation, the Olivas expansion area would appear to be the most susceptible to tsunami hazards among the five potential expansion areas. However, none of the potential expansion areas under consideration are within the designated

Tsunami Hazard Zone. Therefore, each scenario would essentially be equally susceptible to tsunami inundation. General Plan Action 7.8 would require new critical facilities (hospital, police, fire, and emergency service facilities, and utility "lifeline" facilities) to be located outside of tsunami hazard zones. Action 7.9 requires the City to continue to maintain and implement the SEMS Multihazard Functional Response Plan. In addition, it is anticipated that the City will continues its participation in the Seismic Sea Wave Warning System. Thus, area residents should have ample warning about pending tsunamis and impacts related to tsunami risk would be less than significant.

MITIGATION MEASURES

Continuing participation in the Seismic Sea Wave Warning System and maintenance of the SEMS Multihazard Functional Response Plan would reduce impacts related to tsunami risk to less than significant. No additional mitigation would be required.

SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant with continued implementation of current warning programs, though the emphasis on development in coastal areas such as the Harbor and Downtown would place additional buildings and infrastructure at risk of tsunami-related damage.

4.7 HAZARDS and HAZARDOUS MATERIALS

This section analyzes the impacts associated with exposure to hazards and hazardous materials. Impacts relating to hazardous materials use, transportation, and development on brownfield sites are addressed. Potential hazards associated with wildland fires are discussed in Section 4.11, Public Services.

4.7.1 Setting

a. Regulatory Setting. The federal government defines a hazardous material as a substance that is toxic, flammable/ignitable, reactive, or corrosive. Extremely hazardous materials are substances that show high or chronic toxicity, carcinogenic, bioaccumulative properties, persistence in the environment, or that are water reactive.

Use, Storage, and Handling of Hazardous Materials. Numerous federal, state, and local regulations regarding use, storage, transportation, handling, processing and disposal of hazardous materials and waste have been adopted since the passage of the federal Resource Conservation and Recovery Act (RCRA) of 1976. The goal of RCRA is to assure adequate tracking of hazardous materials from generation to proper disposal. California Fire Codes (CFC) Articles 79, 80 et al., which augment RCRA, are the primary regulatory guidelines used by the City to govern the storage and use of hazardous materials. The CFC also serves as the principal enforcement document from which corresponding violations are written.

Pursuant to SB 1082 (1993), the State of California has adopted regulations to consolidate six hazardous materials management programs under a single, local agency, known as the Certified Unified Program Agency (CUPA). In 1997, the Ventura County Hazardous Materials Program was approved by the California Environmental Protection Agency (EPA) to be a Certified Unified Program Agency (CUPA). The CUPA provides regulatory oversight for the following program elements:

- Hazardous Materials Reporting and Response Planning Program
- Uniform Fire Code Business Plan
- Hazardous Waste Generator Program
- Accidental Release Prevention
- Underground Storage Tanks
- Aboveground Storage Tanks

In addition to conducting annual facility inspections, the Hazardous Materials Program is involved with hazardous materials emergency response, investigation of the illegal disposal of hazardous waste, public complaints, and stormwater illicit discharge inspections. The City Fire Department has been designated as the administering agency for CUPA. Accordingly, the City Fire Department compiles and maintains a list of businesses that meet the threshold criteria for use, storage, or disposal of hazardous materials, compressed gases and/or hazardous waste. Threshold quantities are defined as hazardous materials equal to or exceeding 55 gallons or 500 pounds, 200 cubic feet of compressed gas, and/or hazardous waste in any amount.

Soil Contamination. Regulatory agencies such as the United States Environmental Protection Agency (EPA) set forth guidelines that list at what point concentrations of certain contaminants pose a risk to human health. The EPA combines current toxicity values of contaminants with exposure factors to estimate what the maximum concentration of a contaminant can be in environmental media before it is a risk to human health. These concentrations set forth by the EPA are termed Preliminary Remediation Goals (PRGs) for various pollutants in soil, air, and tap water (USEPA Region IX, Preliminary Remediation Goals Tables, 2002). PRG concentrations can be used to screen pollutants in environmental media, trigger further investigation, and provide an initial cleanup goal.

The Los Angeles Regional Water Quality Control Board (RWQCB) has developed an interim guidance document that contains numerical site screening levels to determine the need for remediation of gasoline and volatile organic compound (VOC) contaminated soils (Los Angeles RWQCB, 1996). The guidance document has been used to determine when a site may require remedial action or to establish an acceptable clean up standard for a particular constituent.

Groundwater Contamination. Both the EPA and the California Department of Health Services (DHS) regulate the concentration of various chemicals in drinking water. The DHS thresholds are generally stricter than the EPA thresholds. Primary maximum contaminant levels (MCLs) are established for a number of chemical and radioactive contaminants (Title 22, Division 4, Chapter 15 California Code of Regulations). MCLs are often used by regulatory agencies to determine cleanup standards when groundwater is affected with contaminants.

Large-Scale Hazardous Material Upset. The Ventura Fire Department has devised and maintains a comprehensive Standardized Emergency Management System (SEMS) Multihazard Functional Response Plan (1999) that addresses the city's planned response to extraordinary emergency situations associated with natural disasters, technological incidents, or national security emergencies, including incidents involving major hazardous material upset. The plan provides operational concepts, identifies sources of outside support that would be provided through mutual aid agreements, State and Federal agencies, and the private sector.

Hazardous material incidents differ from other emergency response situations because of the wide diversity of causative factors and the pervasiveness of the potential threat. Circumstances such as the prevailing wind and geographic features in the vicinity of emergency incidents are relevant factors that may greatly increase the hazardous chemical dangers. Incidents may occur at fixed facilities where, most likely, the occupants have filed site-specific emergency response contingency and evacuation plans. However, incidents may also occur at any place along any land, water, or air transportation routes, and may occur in unpredictable areas, relatively inaccessible by ground transportation.

The Ventura City Fire Department responds to all hazardous materials calls within the City of Ventura. The city maintains a hazardous materials (HAZMAT) team at Fire Station 6, located at 10979 Darling Road. The HAZMAT team is specially trained and equipped to respond to emergencies involving potentially hazardous materials. As partners to a region wide Hazardous Materials Response Plan, additional fire protection equipment and staffing specifically designed for hazardous materials incidents is available from the City of Oxnard, the

Ventura County Fire Protection District and the U.S. Naval Construction Battalion Center in Port Hueneme.
b. Hazardous Materials. Improper use, storage, transport, and disposal of hazardous materials and waste may result in harm to humans, surface and groundwater degradation, air pollution, fire, and explosion. The risk of hazardous material exposure can come from a range of sources; these may include household uses, agricultural/commercial/industrial uses, transportation of hazardous materials, and abandoned industrial sites known as brownfields.

Household Products. By far the most common hazardous materials are those found or used in the home. Waste oil is a common hazardous material that is often improperly disposed of and can contaminate surface water through runoff. Other household hazardous wastes (used paint, pesticides, cleaning products and other chemicals) are common and often improperly stored in garages and homes throughout the community. Because of their prevalence and proximity to residents, household products constitute the most pervasive health hazard facing residents of the community.

Commercial and Industrial Uses. The City and County of Ventura (per CUPA) regulate several hundred facilities in the planning area that meet specified threshold quantities for hazardous materials. Under Chapter 6.95, Section 25503 of the California Health and Safety Code, Business Plans are required from California businesses that handle a hazardous material. As part of the Business Plan, emergency response plans must be developed and training sessions provided to employees. Businesses are routinely inspected by the Ventura County Environmental Health Division to ensure that handling, storage, and waste disposal practices conform to appropriate laws and regulations.

Larger users of hazardous materials include commercial manufacturing, petroleum exploration, industrial fabrication, biotechnology, and agribusinesses. These businesses are confined primarily to the Ventura Avenue area from Thompson Avenue to Stanley Avenue, the North Avenue area, and the Arundell district. Potentially hazardous materials used by businesses in these areas include petroleum based fuels, chlorinated solvents, acrylic coatings, corrosive or caustic additives, and to a lesser extent, chemical fertilizers, pesticides and herbicides.

Agricultural Pesticide Use. Scattered agricultural operations are located throughout the East Ventura and portions of West Ventura. Orchards in particular are often sprayed with various pesticides, which can contaminate the soils. In general, pesticide use can result in health impacts to those who come in contact with such chemicals and are unprotected. The County of Ventura requires that pesticides be applied so as to prevent substantial pesticide drift onto nearby properties. The Ventura County Agricultural Commissioner's office retains a registry of pesticides used on individual agricultural parcels in the County. Please refer to Section 4.1, Agriculture, for further discussion of potential conflicts between agricultural and potential new development.

Major Rail and Truck Transportation Corridors. The most likely cause of a major hazardous materials (HAZMAT) incident is a transportation accident involving a vehicle carrying hazardous materials. Historically, HAZMAT incidents frequently occur on the heaviest traveled streets, freeway interchanges, and railroad crossings. Although the odds of occurrence are less for a railroad HAZMAT incident, the severity is potentially greater because of the
numerous rail tanker cars involved and the potential for chemicals and explosive substances being mixed together. Hazardous materials are also transported by vessel. Vessels transporting hazardous materials are confined to the ocean and harbor areas of the city.

The main arteries in the City utilized by transporters of hazardous materials and waste are State Route 33, U.S. 101, State Route 126, and the Union Pacific Railroad (see Figure 4.7-1). The City does not currently restrict travel ways for hazardous materials transportation. Trains and trucks commonly carry a variety of hazardous materials, including gasoline and various crude oil derivatives, and other chemicals known to cause human health problems. When properly contained, these materials present no hazard to the community. But in the event of an accident or derailment, such materials may be released, either in liquid or gas form. In the case of some chemicals (such as chlorine), highly toxic fumes may be carried far from the accident site.

Pipelines. Underground pipelines are located throughout the City. Natural gas, crude oil, and refined petroleum products are transported in these lines. The failure of these pipelines can expose the adjacent population and improvements to the dangers of potential fire and explosion from the ignition of materials release. Pipelines are inspected on a regular basis per state and federal requirements, and normally present no hazard to the community.

Brownfield Sites. "Brownfield" sites are areas with actual or perceived contamination and that may have potential for redevelopment or reuse. Brownfields are often former industrial facilities that were once the source of jobs and economic benefits to the community, but lie abandoned due to fears about contamination and potential liability. Table 4.7-1 lists potential contaminants that may exist in brownfield areas. The United States Environmental Protection Agency (EPA) has selected the Ventura Westside neighborhood as part of a two-year Brownfield Assessment Demonstration Pilot Program (see Figure 4.7-2). The program calls for environmental assessments on former industrial properties to leverage their cleanup and redevelopment, make the sites more attractive to prospective developers, and generate employment and tax revenue. A 2001 study by West Coast Environmental Engineering identified properties potentially eligible for funding for site assessments (if the property owner is willing to participate in the pilot program.

The EPA granted the City $\$ 200,000$ in 1999 for the pilot program that can be used for Phase I and Phase II site assessments, but may not be used for remediation. It is difficult to locate property owners interested in participating in the program, possibly due to concerns regarding liability for site remediation under the federal Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).

CERCLA was amended in January of 2002 with passage of the Small Business Liability Relief and Brownfields Revitalization Act. This Act provides some relief for small businesses from liability under CERCLA. It authorizes $\$ 200$ million per fiscal year through 2006 to provide financial assistance for brownfield revitalization. While some exclusions exist (such as for facilities at which there has been a release of PCBs), there are essentially four distinct funding opportunities available to the City under this Act beginning in fall 2002: (1) up to $\$ 350,000$ for site characterization; (2) \$200,000 for remediation of a brownfield site; (3) $\$ 200,000$ for environmental employment and training for residents impacted by brownfields; and (4) $\$ 1,000,000$ in revolving loan funds for remediation.

Source: City of Ventura Fire Department, 2002, City of San Buenaventura and Rincon Consultants, Inc., 2005.

Source: City of Ventura Fire Department, 2002, City of San Buenaventura and Rincon Consultants, Inc., 2005,
and West Coast Environmental and Engineering, 2001.

Areas Within Brownfield Assessment

Demonstration Pilot Program Figure 4.7-2

Table 4.7-1
Potential Environmental Contaminants by Industry

Industry Type	Typical Operations	Potential Contaminants
Oilfield and Oilfield Service	Oil production and handling, oil tool, welding, and machine shops, vacuum truck services, equipment storage yards, waste disposal, wireline, perforation	Toxic metals, petroleum solvents, chlorinated solvents, semivolatile hydrocarbons, polychlorinated biphenyls (PCBs)
Scrap Metal and Salvage Yards	Metal recycling, equipment scrapping, waste disposal, auto salvage, vehicle scrapping	Toxic metals, petroleum solvents, chlorinated solvents, semivolatile hydrocarbons, PCBs
Chemical Facilities	Chemical supply, refineries, natural gas processing/compression plants, bulk fuel storage/sales	Toxic metals, petroleum solvents, chlorinated solvents, semivolatile hydrocarbons, caustics and acids, PCBs
Quarry Sites	Rock quarries, mining, processing, mixing	Toxic metals, petroleum solvents, chlorinated solvents, semivolatile hydrocarbons, explosive charges

Source: West Coast Environmental and Engineering, 2001.
Although the funding already granted to the City is restricted to sites not contaminated by petroleum, it can still be used for Phase I (and possibly part of Phase II) activities, as it may not be readily apparent that petroleum contamination exists at a particular site, and commingling of substances may allow for the funding to be utilized at certain sites. The 2002 legislation allows greater flexibility in the use of future funds. Other potential federal funding sources include:

- The Department of Housing and Urban Development Empowerment Zone/Enterprise Community program
- The Department of Transportation Livable Communities program
- The Department of Commerce Economic Development Administration
- Various Department of the Interior programs
- The State Department of Toxic Substances Control Cleanup Loans and Environmental Assistance to Neighborhoods (CLEAN) Brownfield Loan Program

The CLEAN Program (enacted in 2000) establishes financial incentives to encourage property owners, developers, community groups and local governments to redevelop abandoned and underutilized urban properties in California. Initially $\$ 85$ million was available through this program; however, only $\$ 6$ million is currently available in revolving loan funds. Some restrictions on the use of this funding exist (e.g., the property may not be previously owned by the government).

4.7.2 Impact Analysis

a. Methodology and Thresholds of Significance. For the purpose of this analysis, a significant impact would occur if the project would:

- Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials
- Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment
- Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances or waste within one-quarter mile of an existing or proposed school
- Be located on a site included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, would create a significant hazard to the public or the environment
- Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of hazardous material impacts for each of the scenarios under consideration. A discussion of the impacts follows.

The 2005 General Plan includes the following policy and actions intended to minimize human exposure to hazardous substances:

Policy 7D Minimize exposure to air pollution and hazardous substances.
Action 7.20 Require air pollution point sources to be located safe distances from sensitive sites such as homes and schools.

Action 7.24 Only approve projects involving sensitive land uses (such as residences, schools, daycare centers, playgrounds, medical facilities) within or adjacent to industrially designated areas if an analysis provided by the proponent demonstrates that the health risk will not be significant.

Action 7.25 Adopt new development code provisions that ensure uses in mixed-use projects do not pose significant health effects.

Action 7.26 Seek funding for cleanup of sites within the Brownfield Assessment Demonstration Pilot Program and other contaminated areas in West Ventura.

Action 7.27 Require proponents of projects on or immediately adjacent to lands in industrial, commercial, or agricultural use to perform soil and groundwater contamination assessments in accordance with American Society for Testing and Materials standards, and if contamination exceeds regulatory action levels, require the proponent to undertake remediation procedures prior to grading and development under the

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Hazardous Material Use and Storage (Impact HAZ-1)	The Ventura Avenue corridor, the western portion of the Downtown district, the Arundell district, and the northwest portion of the North Bank districts contain relatively high concentrations of hazardous material users. Compliance with General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. All expansion areas under this scenario include agricultural activity and associated pesticide/herbicide use and storage. Compliance with General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Potential expansion impacts similar to Scenario 2. Compliance with General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Potential expansion impacts similar to Scenario 2. Compliance with General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Potential expansion impacts similar to Scenario 2, though the Western Cañada Larga area is primarily open land. Compliance with General Plan policies and actions reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Potential expansion impacts similar to Scenario 2. Compliance with General Plan policies and actions reduces impacts to Class III, less than significant.
Transportation of Hazardous Materials (Impact HAZ-2)	Development adjacent to major transportation corridors may be at risk of exposure to hazardous materials in the event of an accident on these routes. Continued participation in the SEMS Multihazard Functional Response Plan reduces impacts to Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. The North Avenue, Olivas, and Serra expansion areas are adjacent to U.S. 101, SR 33, and/or the railroad. Continued participation in the SEMS Multihazard Functional Response Plan reduces impacts to Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. The North Avenue expansion area is adjacent to SR 33, and the railroad is adjacent to the Olivas expansion area. Continued participation in the SEMS Multihazard Functional Response Plan reduces impacts to Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. The North Avenue expansion area is adjacent to SR 33, and the railroad bisects the Serra expansion area. Continued participation in the SEMS Multihazard Functional Response Plan reduces impacts to Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. The North Avenue and Western Cañada Larga expansion areas are adjacent to $\operatorname{SR} 33$, which is a major truck transportation corridor. Continued participation in the SEMS Multihazard Functional Response Plan reduces impacts to Class III, less than significant.	Intensification/reuse hazards similar to Scenario 1. The North Avenue expansion area is adjacent to SR 33, and SR 126 forms the southern boundary of the Poinsettia expansion area. Continued participation in the SEMS Multihazard Functional Response Plan reduces impacts to Class III, less than significant.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Brownfield Sites (Impact HAZ-3)	Future development on brownfields and other sites with a potential for contamination, particularly in the Ventura Avenue corridor could create a public safety hazard. Compliance with General Plan Action 7.22, which requires soil and groundwater assessment, would reduce impacts to Class III, less than significant.	Intensification/reuse hazards similar to Alternative 1. No identified brownfield sites in North Avenue, Olivas, or Serra expansion areas. Compliance with General Plan Action 7.22 would reduce impacts to Class III, less than significant.	Intensification/reuse hazards similar to Alternative 1. No identified brownfield sites in North Avenue or Olivas expansion areas. Compliance with General Plan Action 7.22 would reduce impacts to Class III, less than significant.	Intensification/reuse hazards similar to Alternative 1. No identified brownfield sites in North Avenue or Serra expansion areas. Compliance with General Plan Action 7.22 would reduce impacts to Class III, less than significant.	Intensification/reuse hazards similar to Alternative 1. No identified brownfield sites in North Avenue or Western Cañada Larga expansion areas. Compliance with General Plan Action 7.22 would reduce impacts to Class III, less than significant.	Intensification/reuse hazards similar to Alternative 1. No identified brownfield sites in North Avenue or Poinsettia expansion areas. Compliance with General Plan Action 7.22 would reduce impacts to Class III, less than significant.

supervision of the County Environmental Health Division, County Department of Toxic Substances Control, or Regional Water Quality Control Board (depending upon the nature of any identified contamination).

Action 7.28 Educate residents and businesses about how to reduce or eliminate the use of hazardous materials, including by using safer non-toxic equivalents.

Action 7.29 Require non-agricultural development to provide buffers of 50 feet or more from agricultural operations to minimize the potential for pesticide drift.

Action 7.30 Require all users, producers, and transporters of hazardous materials and wastes to clearly identify the materials that they store, use, or transport, and to notify the appropriate City, County, State and Federal agencies in the event of a violation.

Action 7.31 Work toward voluntary reduction or elimination of aerial and synthetic chemical application in cooperation with local agricultural interests and the Ventura County agricultural commissioner.

$$
\begin{array}{ll}
\text { Impact HAZ-1 } & \begin{array}{l}
\text { Some industrial and agricultural operations within the } \\
\text { Planning Area use hazardous materials to which current and } \\
\text { future residents could be exposed. Potential development } \\
\text { near hazardous material users could expose individuals to } \\
\\
\text { health risks due to soil/groundwater contamination or } \\
\text { emission of hazardous materials into the air. However, } \\
\text { compliance with proposed General Plan policies and } \\
\\
\\
\\
\text { actions, in combination with existing regulations, would } \\
\text { reduce potential impacts associated with hazardous material } \\
\\
\\
\\
\text { use to a Class III, less than significant, level for any of the six } \\
\text { land use scenarios. }
\end{array}
\end{array}
$$

The development of residential uses in proximity to commercial and industrial uses that use or store hazardous materials increases the risk of exposure to deleterious health effects. Areas where users of large quantities of hazardous materials are located are confined primarily to industrial areas along Ventura Avenue from Thompson Avenue to Stanley Avenue, in the North Avenue area, and in the Arundell district, and in agricultural lands in and around the Planning Area. Development or redevelopment in these areas would have the potential for exposure of hazardous materials to the public. The magnitude of hazards for individual projects would depend upon the location, type, and size of development and the specific hazards associated with individual sites.

There are numerous federal, state, and local regulations regarding use, storage, transportation, and disposal of hazardous materials and waste. In addition, the 2005 General Plan contains policies that aim to minimize adverse impacts to health and quality of life associated with
exposure to hazardous materials. Action 7.24 allows projects involving sensitive land uses only if a health risk analysis indicates that the health risk would not be significant. Action 7.27 requires proponents of projects on or immediately adjacent to lands in industrial, commercial or agricultural use to undertake soil and groundwater contamination assessment in accordance with ATSM standards, and requires remediation if necessary. Action 7.25 states that the updated development code should specify that mixed use projects may not include uses that pose significant health effects.

Scenario 1 - Intensification/Reuse Only

This land use scenario emphasizes intensification and reuse of properties within the urbanized areas of the City. By adding mixed use and residential development in areas where there are users of hazardous materials, the potential for exposure may increase due to: (1) potential soil/groundwater contamination due to past practices; and (2) the proximity of new residential development to ongoing activity involving the use of hazardous materials. Areas that would be most affected are the Upper North Avenue, North Avenue, Downtown (western part), and Arundell districts, and the Ventura Avenue corridor. Other areas of possible concern due to possible soil or groundwater contamination are the agricultural lands in the Saticoy, Thille, and Arundell areas that could be developed under this scenario.

Residential development within the Upper North Avenue, North Avenue, and Arundell districts would largely be limited to live/work or work/live housing and the number of new residences in these areas is not expected to be substantial. The Downtown district and the Ventura Avenue corridor are expected to accommodate larger numbers of housing units, which may be located adjacent to or near existing industrial facilities. The introduction of residential components in these areas of the City could potentially increase exposure to hazardous materials. However, the policies described above would require appropriate evaluation and, if necessary, remediation of significant health risks. Implementation of proposed 2005 General Plan policies and actions on all new development would reduce health and safety risks to a less than significant level.

Development on agricultural lands could potentially expose construction workers and area residents to agricultural chemicals that could be present in site soils. However, implementation of the requirements of Action 7.27 would reduce such impacts to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Intensification/reuse impacts under this scenario would be similar to those of Scenario 1. In addition, each of the expansion areas included in this scenario is currently used for agriculture, which likely involves the use of various pesticides and herbicides. However, as noted above, 2005 General Plan Action 7.27 requires proponents of projects on or adjacent to agricultural lands to perform soil and groundwater assessments and, if necessary, remediation. Compliance with these requirements would reduce impacts to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts associated with this scenario would be similar to those of Scenario 2. Compliance with proposed 2005 General Plan policies and actions would reduce impacts to a less than significant level.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated with this scenario would be similar to those of Scenario 2. Compliance with proposed 2005 General Plan policies and actions would reduce impacts to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Intensification/reuse impacts under this scenario would be similar to those of Scenario 1. In addition, the North Avenue expansion area is primarily used for agricultural purposes as is a small portion of the Western Cañada Larga expansion area. These agricultural activities likely involve the use of various pesticides and herbicides. As noted above, 2005 General Plan Action 7.27 requires proponents of projects on or adjacent to agricultural lands to perform soil and groundwater assessments and, if necessary, remediation. Compliance with these requirements would reduce impacts to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts associated with this scenario would be similar to those of Scenario 2. Compliance with proposed 2005 General Plan policies and actions would reduce impacts to a less than significant level.

MITIGATION MEASURES

Compliance with federal, state, and local regulations, in combination with the proposed 2005 General Plan policies and actions, would reduce impacts to a less than significant level. No mitigation is required.

SIGNIFICANCE AFTER MITIGATION

Compliance with existing regulations and proposed General Plan policies and actions would reduce potential impacts associated with risk through the use, storage, or disposal of hazardous materials to a less than significant level for any of the six land use scenarios.

Impact HAZ-2 The transportation of hazardous materials could potentially create a public safety hazard for new development that could be accommodated along major transportation corridors under the General Plan Update. Provided that the City continues its participation in the SEMS Multihazard Functional Response Plan, impacts would be Class III, less than significant, for any of the six land use scenarios.

While incidents related to hazardous materials spills are infrequent, accidents along major transportation corridors are a possibility. Hazardous materials are transported along U.S. 101, SR 126, and / or SR 33, as well as the railroad lines throughout the City (see Figure 4.7-1). Although the odds of occurrence are less for a hazardous materials incident along a railroad, the severity is potentially greater because of the numerous rail tanker cars involved and the potential for chemicals and explosive substances being mixed together. When properly contained, these materials present no hazard to the community. However, in the event of an accident or derailment, such materials may be released, either in liquid or gas form.

The Ventura Fire Department has devised and maintains a comprehensive Standardized Emergency Management System (SEMS) Multihazard Functional Response Plan that addresses the city's planned response to extraordinary emergency situations including incidents involving major hazardous material upset. The plan provides operational concepts, identifies sources of outside support that would be provided through mutual aid agreements, State and Federal agencies, and the private sector.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes development within districts and corridors that are already urbanized, some of which are adjacent to major transportation corridors that may be used to transport hazardous materials. U.S. 101 bisects the Downtown district and is adjacent to the Pacific View Mall district, Victoria Avenue corridor, North Bank district, Montalvo district, and Johnson Drive corridor. SR 126 is adjacent to the Victoria Avenue and Wells Road corridors. SR 33 bisects the Downtown and Upper North Avenue districts and is adjacent to the Ventura Avenue corridor and North Avenue district. The railroad bisects the Downtown, North Bank, Montalvo, and Saticoy districts and is adjacent to the Arundell district. By increasing the density of development in these areas, more people would be at risk of exposure to hazardous materials in the event of an accident on these routes. However, provided that the City continues implementation of the SEMS Multihazard Functional Response Plan, impacts related to risk of upset along major transportation corridors would not be significant.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Intensification/reuse impacts would be similar to those of Scenario 1. New development within the potential expansion areas could also put more people at risk. U.S. 101 crosses the Olivas expansion area and SR 33 is adjacent to the North Avenue potential expansion areas. The railroad bisects the Serra area and forms the northeast boundary of the Olivas expansion area.

Although the line that crosses through the Serra area is not currently in use, the line adjacent to the Olivas area carries both passenger and freight traffic. As with Scenario 1, additional risks associated with intensification and reuse could potentially expose more people to hazardous materials in the event of a major upset along these transportation routes. However, provided that the City continues implementation of the SEMS Multihazard Functional Response Plan and maintains a regional hazmat response program that meets State and Federal requirements, impacts related to risk of upset along major transportation corridors would be mitigated.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Intensification/reuse impacts would be similar to those of Scenario 1. New development within the potential expansion areas could also put more people at risk. U.S. 101 crosses the Olivas expansion area and SR 33 is adjacent to the North Avenue potential expansion areas. The railroad forms the northeast boundary of the Olivas expansion area. As with Scenario 1, additional risks associated with intensification and reuse could potentially expose more people to hazardous materials in the event of a major upset along these transportation routes. However, provided that the City continues implementation of the SEMS Multihazard Functional Response Plan, impacts related to risk of upset along major transportation corridors would not be significant.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Intensification/reuse impacts would be similar to those of Scenario 1. New development within the potential expansion areas could also put more people at risk. U.S. 101 crosses the Olivas expansion area and SR 33 is adjacent to the North Avenue potential expansion areas. The railroad bisects the Serra area and forms the northeast boundary of the Olivas expansion area. Although the line that crosses through the Serra area is not currently in use, it potentially could be used at some point in the future. As with Scenario 1, additional risks associated with intensification and reuse could potentially expose more people to hazardous materials in the event of a major upset along these transportation routes. However, provided that the City continues implementation of the SEMS Multihazard Functional Response Plan, impacts related to risk of upset along major transportation corridors would not be significant.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Intensification/reuse impacts would be similar to those of Scenario 1. New development within the potential expansion areas could also put more people at risk. Both the North Avenue and Western Cañada Larga potential expansion areas are adjacent to SR 33, which is a major truck transportation corridor. As with Scenario 1, additional risks associated with intensification and reuse could potentially expose more people to hazardous materials in the event of a major upset along these transportation routes. However, provided that the City continues implementation of the SEMS Multihazard Functional Response Plan, impacts related to risk of upset along major transportation corridors would not be significant.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Intensification/reuse impacts would be similar to those of Scenario 1. New development within the potential expansion areas could also put more people at risk. The North Avenue expansion
area is adjacent to SR 33 and SR 126 forms the southern boundary of the Poinsettia expansion area. In addition to the potential impacts discussed under Scenario 1, new development in these areas would be subject to risk of hazardous materials exposure if an accident were to occur on these routes. Compliance with hazardous materials transport regulations and the SEMS Multihazard Functional Response Plan would reduce the risk to less than significant.

MITIGATION MEASURES

Compliance with existing hazardous materials transportation regulations as well as continuing participation and maintenance of the SEMS Multihazard Functional Response Plan would reduce impacts related to hazardous material upset risk to a less than significant level. No mitigation would be required.

SIGNIFICANCE AFTER MITIGATION

With implementation of the SEMS and 2005 General Plan policies and actions, impacts would be less than significant for any of the six land use scenarios.

$$
\begin{array}{ll}
\text { Impact HAZ-3 } & \begin{array}{l}
\text { Future development on brownfields and other sites with } \\
\text { potential soil or groundwater contamination could create a } \\
\text { public safety hazard. However, compliance with City } \\
\text { policies requiring soil and groundwater assessments on } \\
\text { these sites would reduce impacts to Class III, less than } \\
\text { significant, for any of the six land use scenarios. }
\end{array}
\end{array}
$$

Any developed property has the potential for soil contamination due to operation of motor vehicles and use of solvents and other materials that could have been spilled over the years. Generally speaking, the risk of significant contamination requiring remedial action is low through most of the Planning Area. However, portions of West Ventura have been identified as brownfields with a high likelihood of significant contamination issues. Generally speaking, soil contamination does not pose an unmitigable obstacle to development or redevelopment insofar as proper treatment or removal of contaminated soils can usually mitigate potential health hazards. Testing of site soils, and removal of any contaminated soils, would be warranted prior to grading or development in these areas.

The 1.7-square mile Westside neighborhood is believed to contain approximately 30 brownfield sites, many of which have unknown levels of contamination. There are approximately 19 potential hazardous waste sites per square mile in the Westside, compared to just one per square mile in the rest of the City. The sites include an ammonia nitrate plant, a large salvage and metal recycling operation, an abandoned rocklite mine, and various heavy commercial and industrial operations, and oil industry facilities. Some of the brownfield parcels are adjacent to residential neighborhoods, a school, parks and open space, and the Ventura River.

The northern section of the study area has historically been dominated by oil production and the businesses that support this industry. Currently, this area consists of a mix of land use dominated to some degree by industrial uses. Figure 4.7-2 highlights the parcels most likely to
contain brownfield sites in this area (where previous businesses were clustered): the north side of Stanley Avenue, along Ventura Avenue near the intersection of Franklin Lane, and west of Ventura Avenue north of Barry Lane.

Businesses in the central section included a refinery in the northwest portion of this area, rock quarries at the end of Rocklite Road and at the west end of Stanley Avenue in the Ventura River bottom, and an oil tool/machine shop in the area of Kellogg Street that eventually converted to a steel company. These businesses are clustered along the south side of Stanley Avenue, both sides of Rocklite Road, between Olive Street and State Route 33 (north of West Lewis Street), and at various locations along Ventura Avenue.

The southern section included oilfield service companies (wireline, perforating and well workovers), chemical suppliers, bulk fuel storage and sales, commercial laundries, auto salvage yards, and metal fabrication. These businesses were centered on the north Main Street along Julian and Peking Streets, along West Park Row and Dubbers Street, along Olive Street immediately north and south of Main Street, and along Ventura Avenue north of Thompson Boulevard.

The EPA granted the City $\$ 200,000$ in 1999 for the pilot program that can be used for Phase I and Phase II site assessments, but may not be used for remediation. It is difficult to locate property owners interested in participating in the program, possibly due to concerns regarding liability for site remediation under the federal Comprehensive Environmental Response, Compensation and Liability Act (CERCLA).

CERCLA was amended in January of 2002 with passage of the Small Business Liability Relief and Brownfields Revitalization Act. This Act provides some relief for small businesses from liability under CERCLA. It authorizes $\$ 200$ million per fiscal year through 2006 to provide financial assistance for brownfield revitalization. While some exclusions exist (such as for facilities at which there has been a release of PCBs), there are essentially four distinct funding opportunities available to the City under this Act beginning in fall 2002: (1) up to $\$ 350,000$ for site characterization; (2) \$200,000 for remediation of a brownfield site; (3) $\$ 200,000$ for environmental employment and training for residents impacted by brownfields; and (4) $\$ 1,000,000$ in revolving loan funds for remediation.

Although the funding already granted to the City is restricted to sites not contaminated by petroleum, it can still be used for Phase I (and possibly part of Phase II) activities, as it may not be readily apparent that petroleum contamination exists at a particular site, and commingling of substances may allow for the funding to be utilized at certain sites. The 2002 legislation allows greater flexibility in the use of future funds. Other potential federal funding sources include:

[^3]
Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes intensification and reuse of already urbanized areas. As discussed above, some of these areas, particularly West Ventura, have been used for industrial operations in the past and contamination associated with those uses may pose a threat to future users of the site. Potential brownfield sites are concentrated in the area around Ventura Avenue. Specifically, parcels in the Downtown district and the Ventura Avenue corridor are within the Brownfield Assessment Demonstration Pilot Program and include parcels that are likely to contain brownfields. Development that involves intensification and reuse of land in this area would require testing and possibly soil remediation actions. Impacts in these areas are considered potentially significant. However, Action 7.27 requires soil and groundwater sampling and, if necessary, remediation under the appropriate oversight agency to reduce risk from possible contamination. In addition, under Action 7.26, the City would continue to seek funding for cleanup of potentially contaminated sites in the West Ventura area. Compliance with 2005 General Plan policies and actions would reduce impacts associated with brownfield redevelopment to a less than significant level. In the long term, remediation of brownfield sites would be expected to improve environmental conditions in the West Ventura area.

Scenarios 2 through 6

Impacts relating to intensification and reuse would be similar to those of Scenario 1. None of the expansion areas included in Scenarios 2-6 are identified as potential brownfield sites. As with Scenario 1, impacts associated with brownfield redevelopment could be reduced to a less than significant level with implementation of proposed 2005 General Plan policies and actions and would be beneficial in the long term.

MITIGATION MEASURES

Compliance with General Plan Action 7.27 would reduce impacts to a less than significant level. No mitigation measures are required.

SIGNIFICANCE AFTER MITIGATION

Implementation of proposed 2005 General Plan policies and actions would reduce impacts associated with brownfield redevelopment to a less than significant level for any of the six land use scenarios.

4.8 HYDROLOGY AND WATER QUALITY

This section addresses impacts to the City's drainage infrastructure as well as surface water quality impacts.

4.8.1 Setting

a. Watershed Hydrology. Drainage patterns within the Planning Area generally begin in the hills north of the City and terminate in the Ventura River, Santa Clara River or the Pacific Ocean. The Ventura County Watershed Protection District (VCWPD) has jurisdiction over and/or maintains about 20 natural and concrete-lined barrancas that serve as major drainage courses in the Planning Area. Watercourses under VCWPD control are listed below by major tributary:

Discharging to the Santa Clara River

- Franklin Barranca is a concrete channel from SR 126 south to the Santa Clara River. Above SR 126, the barranca is a channelized earth ditch, with erosion stabilization.
- Brown Barranca is, for the most part, a stabilized earthen ditch. One segment, from Telegraph Road to SR 126, is partially unstabilized and subject to severe erosion. The sections from SR 126 to the Santa Clara River also have severe bank erosion.
- Sudden and Clark Barrancas are mostly concrete lined channels. Sudden Barranca has an unlined portion between Telegraph Road and SR 126.
- Harmon and Ondulando Barrancas are primarily natural channels. A portion of Ondulando is a box culvert and Harmon is natural to Telegraph Road then box culvert, dirt, natural, and rip-rap sides as it proceeds downstream.
- Moon Ditch is a concrete channel and culvert system.

Discharging to the Pacific Ocean

- Arundell Barranca is a stabilized natural channel above U.S. 101, with the exception of channelized portions south of Foothill Road to Telegraph Road and in the Hidden Valley subdivision above Foothill Road.
- Barlow and Reservoir Barrancas are concrete-lined south of Foothill Road.
- Prince and San Jon Barrancas are concrete-lined above Poli Street to the Pacific Ocean, with the exception of a small segment of San Jon Barranca from Main Street to Poli Street.

Discharging to the Ventura River

- Dent Drain is a pipe culvert system.
- School House Canyon is a natural channel.
- Cańada De San Joaquin is a natural channel east of Ventura Avenue, and is a concrete-lined channel for a short segment west of the Avenue.
- Los Encinas Barranca is a natural channel east of Ventura Avenue, and a concrete channel to the west.
- Cañada Larga Creek is a natural channel east of SR 33.

VCWPD has permit authority for construction of drainage systems that connect to these barrancas and watercourses, and is responsible for providing adequate hydraulic capacity. VCWPD watercourses are designed to have capacity to safely carry the runoff from a 100-year storm (which has a 1% probability of occurring each year). The barrancas in the City are identified on Figure 4.8-1 (with the exception of Ondulando, Moon Ditch, and the creeks draining to the Ventura River).

The Ventura Vision states that the City should work with county, state, and federal agencies and the VCWPD to maintain the remaining unlined barrancas as natural flood channels and seasonal recreational trails. Concrete-lined barrancas should be restored to their natural conditions where feasible and safe. Where feasible, natural drainage and flood control systems (e.g., wildlife ponds and wetlands) should be utilized over cement retention basins and lined channels.

The City owns and/or maintains local drainage facilities in the City as well as portions of Brown and Clark Barrancas, including approximately 20 miles of major facilities with a diameter equal to or greater than 48 inches. City drainage facilities range from 6 to 96 inches in diameter. The remaining City drainage system connects to these major facilities. Most City facilities are designed to convey the runoff generated from a 10-year storm event within the storm drain, while city streets convey flows above the 10-year storm.

The 1971 Drainage Master Plan notes that many of the tributaries to the major existing storm drains lacked adequate inlet capacity and are undersized. A 1996 deficiency study identified public improvements needed in the Franklin and Brown Barrancas to support future development in the Wells and Saticoy neighborhoods.

Figure 4.8-1 shows major City drainage facilities, and Figure 4.8-2 identifies deficiencies in major drainage facilities (greater than $48^{\prime \prime}$). Correction of these deficiencies ranges in complexity from minor maintenance improvements to major capital improvements. Most of the City's trunk drainage system is adequately sized. The Ventura Avenue neighborhood has the majority (75%) of undersized or inadequate facilities in the City. The Downtown area also has a number of deficiencies that are currently being studied and addressed as part of the Downtown Specific Plan. Figure 4.8-3 compares the linear feet of major storm drains with the linear feet of deficiencies by neighborhood, as reported in the 2003 Master Drainage Needs Assessment Study. Neighborhoods not listed have no documented deficiencies.

As noted on Figure 4.8-2, approximately 50 deficiencies that pertain to drainage facilities 48inches in diameter or larger are identified in the Draft Master Drainage Needs Assessment Study. These deficiencies include street and private property flooding, corrugated metal storm drain pipes that need replacement, undersized storm drains, and mud/debris problems in agricultural and hillside areas.

There are four lift station facilities in the storm drain system:

- Dover Lift Station
- Weymouth Lift Station

Existing Major Drainage Facilities by Facility Size

Source: City of San Buenaventura, Department of Public Works and Psomas, 2002

This map is a product of the City of San Buenaventura, aliforria and Psomas. It was created for illustration

Figure 4.8-3
Relative Trunk Deficiencies by Neighborhood

- Johnson Lift Station
- San Jon \& Prince Barranca Lift Station

The San Jon Lift Station contributes to flooding that sometimes occurs on Harbor Boulevard, primarily because tidal action blocks drainage from the outlet. Structural improvements have been completed on two of the four lift stations - Weymouth and Dover Lift Stations. Johnson Lift Station is newly online and sufficient. Deferred maintenance has become an issue in the City due to aging drainage facilities. Corrugated metal pipe drains in the older parts of the City are older than 50 years and need to be replaced.
b. Flood Hazards. A flood is a temporary rise in stream flow that results in water overtopping stream banks and inundating adjacent areas not normally covered with water. The floodplain is the relatively flat or lowland area adjoining a stream that is subject to periodic inundation by floodwater. Flooding is a naturally occurring event with some long-range beneficial effects, such as the replenishment of beach sand and nutrients to agricultural lands and the ocean. However, flooding creates a hazard when structures are placed in the floodplain. The Federal Emergency Management Agency (FEMA) describes floods in terms of their frequency of occurrence. For example, the 100-year flood is the flood magnitude that has a one-percent chance of being equaled or exceeded in any given year. This type of designation is based on probability. According to statistical averages, a 25-year flood should occur an average of once every 25 years, but two 25 -year floods could conceivably occur in any one-year period. For planning purposes, the 100-year flood is most often used to delineate flood plain boundaries.

Flooding is basically a direct response to the amount, distribution and intensity of precipitation. Most storms are relatively small and do not create flooding. The magnitude and frequency of flood events can be influenced by many factors, including alterations to the characteristics of a drainage basin or a floodplain. Such changes include growth of brush and trees in the flood plain, denudation of vegetation (including by fire), construction of impervious surfaces, channelization, and installation bridges and other stream crossings.

The extent of damage caused by any flood depends on many factors including: topography of the area flooded; depth, duration and velocity of the floodwaters; extent and type of development in the floodplain; and effectiveness of forecasting, warning and emergency operations.

The largest and most damaging recorded natural floods in the Ventura and Santa Clara River watersheds occurred in 1969, with 100-year peak discharges being exceeded in both river channels. Property damage was estimated at $\$ 60$ million and 13 people were killed. The City wastewater treatment facility was severely damaged, resulting in the discharge of raw sewage onto local beaches. The floods also caused sediment to flow into Ventura Harbor, which had to be dredged to restore use of the waterways. After the 1969 floods, the sediment from the harbor was moved to the Olivas Park golf course, which elevated the golf course enough to act as a dam, narrowing the extent of the Santa Clara River floodplain. Flood events in 1992, 1995 and 1998 along the Ventura River resulted in closure of SR 33 and rescue of persons from the river. The 1992 flood washed out an RV Park south of U.S. 101 and resulted in substantial loss of property. Flood damage also occurred during the severe winter storms of 2004-05.

Figure $4.8-4$ shows areas in the City subject to inundation by the 100 -year and 500 -year floods. FEMA requires that owners of property located in the 100-year flood inundation area maintain flood protection insurance. The 100-year flood hazard area for the Ventura River is relatively small due to construction of a levee along the east bank of the river by the U.S. Army Corps of Engineers in 1948. A 100-year flood along the Santa Clara River would affect a fairly limited area of the City just north of the river near the Olivas Park and Buenaventura golf courses. Other areas that could potentially experience flooding impacts as a result of a 100-year event include land adjacent to the Arundell, Harmon, and Brown Barrancas.

Dam Inundation. Table 4.8-1 lists the six dams that could flood portions of the Planning Area if they failed. All of these dams meet applicable safety requirements and, with the exception of Casitas Dam (which is regulated by the Bureau of Reclamation), are inspected by the Division of Dam Safety, California Department of Water Resources, twice per year to ensure they meet all safety requirements and that necessary maintenance is performed. The Bureau of Reclamation has stated that Casitas Dam is in satisfactory condition for normal operations and a safety evaluation is ongoing. Matilija Dam is in the process of being decommissioned. Figure 4.8-5 shows areas that would be inundated in the event of dam failure. The Casitas Dam inundation area includes most of the Ventura River Valley and portions of Downtown. The Castaic and Pyramid Dam inundation area lies north of Olivas Park Drive and south of U.S. 101 and SR 126.

A proposal is currently under review to construct a new debris basin and dam in Lake Canyon that would alleviate flooding problems along the Arundell Barranca. Geotechnical design parameters are intended to ensure that the dam is not likely to fail, and the State Division of

Iorce: Federal Emergency Management Agency, Flood Insurance Rate Map, 1985, City of San Buenaventura and Rincon Consultants, Inc., 2005.

Source: County of Ventura, Resource Management Agency, 2002, City of San Buenaventura and Rincon Consultants, Inc., 2005.

Table 4.8-1
Existing Dams with Potential to Affect the Planning Area

Dam	Location	Construction Material	Capacity (Acre Feet)
Matilija	West fork of Matilija Creek above Matilija Hot Springs	Concrete	1,800
Casitas Dam	Coyote Creek west of Casitas Springs	Earth Fill	250,000
Bouquet Dam (two			
dams)	Adjacent to Bouquet Canyon Road about 17 miles north of the Santa Clarita Sheriff's Station (Valencia)	Earth Fill	36,505
Castaic Dam	Castaic Creek one mile northeast of town of Castaic	Earth Fill	325,000
Pyramid Dam	Piru Creek 15 miles north of Castaic	Earth and Rock Fill	179,000
Santa Felicia (Piru) Dam	Piru Creek 5 miles north of the town of Piru	Earth Fill	100,000

Source: McClelland Consultants (West), Inc. Environmental Services, 1989.

Safety of Dams will conduct a technical review of the final design. Division engineers and geologists will perform inspections throughout the construction period to verify design assumptions and ensure adherence to the plans and specifications.

In the event of a dam failure or other flood event, the County would follow an emergency response and evacuation plan set forth in the Multi-hazard Functional Plan managed by the Ventura County Sheriff's Office of Emergency Services. The County bilingual alert system includes mobile emergency vehicle sirens and loudspeakers, and door-to-door notification. The City flood emergency warning systems also includes public alerts by television service providers.
c. Surface Water Quality. As noted in Ventura Vision, siltation in the Keys is a problem. The Arundell Barranca carries sediment to the Pierpont Keys area. This results in the need to dredge the Keys approximately every seven to ten years. Ventura Vision recommends the City work with the Watershed Protection District to continue to mitigate silt and drainage problems in the Keys.

With regard to the increase in erosion potential, the 2000 Ventura Countywide Stormwater Quality Urban Impact Mitigation Plan (SQUIMP) requires proposed developments to "control the post-development peak storm water runoff discharge rates to maintain or reduce predevelopment downstream erosion and to protect stream habitat." This affects both large and small storm water flows. Storm water quality requirements, as well as downstream erosion impacts, rather than drainage facility capacity, however, may be the controlling factor for future developments in the City.
The City, County, Watershed Protection District, and nine other local cities are co-permittees on National Pollutant Discharge Elimination System (NPDES) Permit No. CAS004002 issued by the

Regional Water Quality Control Board in 2000. NPDES is a Federal Environmental Protection Agency (EPA) program administered by the states to control water pollution by regulating point sources. In California, the State Water Quality Control Board is responsible for ensuring compliance with the provisions of the Federal Clean Water Act and the State Water Quality Control Act. The Los Angeles Regional Water Quality Control Board ensures local compliance with the countywide NPDES permit. The Ventura County SQUIMP is included as an attachment to the permit. The two primary municipal permit objectives are to:

1. Effectively prohibit non-storm water discharges; and
2. Reduce the discharge of pollutants from storm water conveyance systems to the maximum extent practicable.

The SQUIMP addresses storm water pollution from new development and redevelopment by the private sector, and contains a list of the minimum required Best Management Practices (BMPs) required for a designated project. A BMP is defined as any program, technology, process, siting criteria, operating method, measure, or device that controls, prevents, removes, or reduces pollution. Per the SQUIMP, BMPs can be used for minimizing the introduction of pollutants of concern that may result in significant impacts to the storm water conveyance system from site runoff. Treatment Control BMPs are required for eight categories of development. Additional BMPs may be required by ordinance or code adopted by the City and applied generally or on a case-by-case basis. The City is required to implement the requirements of the SQUIMP, and developers are required to comply with those provisions.

Table 4.8-2 lists the pollutants of concern for the two rivers that run through the City, per the 2003 California 303(d) List for Ventura and Santa Clara Rivers. Water quality is subject to seasonal variation. Sources of water quality degradation in the region include surface runoff from oil fields, agricultural areas, urban land uses and natural sedimentation. Pollutant loads are expected to correspond to tributary land uses. BMPs must be selected consistent with both anticipated pollutant loads and water quality objectives (pollutants of concern).

The primary sources of pollution to surface and groundwater resources include stormwater runoff from paved areas, which can contain hydrocarbons, sediments, pesticides, herbicides, toxic metals, and coliform bacteria. Seepage from sewage treatment lagoons can further contribute to degraded water quality in the form of elevated nitrate levels. Improperly placed septic tank leach fields can cause similar types of contamination. Illegal waste dumping can introduce contaminants such as gasoline, pesticides, herbicides and other harmful chemicals. Septic tanks are also a source of pollution to some wells in both alluvial and granitic rocks. Septic tanks discharging into alluvium have a high potential to pollute wells producing from the same deposit because of high permeability and low gradient. In the winter, the rains raise the water table in these areas, which can exacerbate possible contamination.
d. Regulatory Framework. Development in the Planning Area is subject to various local, state, and federal regulations and permits regarding the use of water resources. The Ventura County Watershed Protection District, the California Department of Water Resources, and the Los Angeles Regional Water Quality Control Board are the primary agencies responsible for the protection of watersheds, floodplains, and water quality. The Ventura County Department of Health is the primary agency responsible for establishing design

Table 4.8-2
Water Quality Issues of Concern

Name	Pollutant/Stressor	TMDL Priority	Estimated Size Affected
Ventura Harbor (Ventura Keys)	High Coliform Count	Medium	179 acres
Ventura River Estuary (Stables \& horse property may be the sources) (Stables \& horse property may be the sources)	Algae Eutrophic Fecal Coliform Total Coliform Trash	Low Low Low Low Medium	0.2 miles 0.2 miles 0.2 miles 0.2 miles 0.2 miles
Ventura River Bach 1 and 2 (Estuary to Weldon Canyon)	Algae	Medium	4.5 miles
Surfers Point at Seaside (area affected is the end of access path via a wooden gate)	Bacteria Indicators	Low	0.53 miles
Santa Clara River Estuary	ChemA High Coliform Count Toxaphene	Medium Medium Medium	49 acres 49 acres 49 acres
Santa Clara River Reach 3 (Freeman Diversion to A Street)	Ammonia Chloride	High High	31 miles 31 miles
San Buenaventura Beach (area affected is south of drain at Kalorama Street, and south of drain at Sanjon Road)	Bacteria Indicators	Low	0.3 miles
Promenade Park Beach (area affected is at Oak Street, Redwood Apartments, and south of drain at California Street)	Bacteria Indicators	Low	0.37 miles
Cañada Larga - Ventura River	Fecal Coliform	Low	8 miles
(horse stables, land use, cattle, and wildlife may be the sources)	Low Dissolved Oxygen	Low	8 miles
Brown Barranca/Long Canyon	Nitrate and Nitrite	High	2.6 miles

Source: Los Angeles Regional Water Quality Control Board, 2002 Clean Water Act Section 303(d) List of Water Quality Limited Segments.
standards and permitting of septic tanks and wells. The federal government administers the National Pollutant Discharge Elimination System (NPDES) permit program, which regulates discharges into surface waters. Section 404 of the Clean Water Act prohibits the discharge of dredged or fill materials into Waters of the United States or adjacent wetlands without a permit from the U.S. Army Corps of Engineers. As discussed above under the subheading, "Flood Hazards", the Federal Emergency Management Agency (FEMA) establishes base flood heights for the 100 -year and 500-year flood zones.

The primary regulatory control relevant to the protection of water quality is the Federal National Pollution Discharge Elimination System (NPDES) permit administered by the State Water Resources Control Board. This board establishes requirements prescribing the quality of point sources of discharge and establishes water quality objectives. These objectives are
established based on the designated beneficial uses (e.g., water supply, recreation, and habitat) for a particular surface water or groundwater. The NPDES permits are issued to point source dischargers of pollutants to surface waters and are issued pursuant to Water Code Chapter 5.5 that implements the Federal Clean Water Act. Examples include, but are not limited to, public wastewater treatment facilities, industries, power plants, and groundwater cleanup programs discharging to surface waters (State Water Resources Control Board, Title 23, Chapter 9, Section 2200). Discharge limits, under the NPDES permits, for minerals and pollutants are established and regulated by the California Regional Water Quality Control Board.

4.8.2 Impact Analysis

a. Methodology and Significance Thresholds. Impacts would be considered significant if development under the 2005 General Plan through the year 2025 would:

- Potentially degrade surface or groundwater quality below standards established by the Regional Water Quality Control Board (these standards are usually in accordance with the California EPA's maximum contaminant levels (MCLs) for drinking water)
- Substantially interfere with groundwater recharge
- Substantially alter the existing drainage pattern of the area such that substantial erosion or siltation occurs
- Substantially alter the existing drainage pattern or substantially increase the rate or amount of surface runoff in a manner which results in flooding
- Substantially add additional sources of polluted runoff to a water body
- Place housing within a 100-year floodplain
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the six 2005 General Plan land use scenarios. A discussion of the impacts for each scenario follows.

$$
\begin{array}{ll}
\text { Impact HWQ-1 } & \begin{array}{l}
\text { Most of the areas within the Planning Area that could } \\
\text { accommodate new development are outside the 100-year } \\
\text { flood zone. Limited portions of the Planning Area that } \\
\text { could accommodate new development under any of the six }
\end{array} \\
\text { land use scenarios are within the 100-year flood zones. } \\
\text { However, compliance with the City Flood Plain Ordinance } \\
\text { and proposed General Plan actions would reduce impacts to } \\
\text { a Class III, less than significant, level for any of the six land } \\
\text { use scenarios. }
\end{array}
$$

The primary effect of flooding, where urban encroachment on flood plains has occurred, is the threat to life and property. Floods may also create health and safety hazards and disruption of vital public services. Economic costs may include a variety of flood relief expenses, as well as investment in flood control facilities to protect endangered development. The extent of damage caused by any flood depends on the topography of the area flooded; depth, duration, and velocity of floodwaters; the extent of development in the floodplain; and the effectiveness of

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
100-Year Flood Zone (Impact HWQ-1)	Portions of the North Avenue, Upper North Avenue, Arundell, and Auto Center districts are within the 100-year flood zone. Compliance with the existing Flood Plain Ordinance and proposed General Plan actions reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Portions of the Olivas expansion area (along Arundell Barranca) also fall within the 100-year flood zone. Compliance with the existing Flood Plain Ordinance and proposed General Plan actions reduce impacts to Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are outside the 100-year flood zone. Impacts are Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Portions of the Western Cañada Larga expansion area west of SR 33 also fall within the 100-year flood zone. Compliance with the existing Flood Plain Ordinance and proposed General Plan actions reduce impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are outside the 100-year flood zone. Impacts are Class III, less than significant.
Storm Water Runoff/ Hydrological Changes (Impact HWQ-2)	Increased stormwater generated by new development can be addressed through implementation of existing regulations. The General Plan does not address existing storm drain system deficiencies. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 1. Expansion area impacts address through existing regulations, but existing system deficiencies not addressed. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 1. Expansion area impacts address through existing regulations, but existing system deficiencies not addressed. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 1. Expansion area impacts address through existing regulations, but existing system deficiencies not addressed. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 1. Expansion area impacts address through existing regulations, but existing system deficiencies not addressed. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 1. Expansion area impacts address through existing regulations, but existing system deficiencies not addressed. Impacts are Class II, significant but mitigable.
Surface and Ground Water Quality (Impact HWQ-3)	Implementation of Ventura County SQUIMP requirements on all new development address water quality. Impacts are Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant. Development of expansion areas offers opportunities to improve surface water quality.	Impacts similar to Scenario 1 and Class III, less than significant. Development of expansion areas offers opportunities to improve surface water quality.	Impacts similar to Scenario 1 and Class III, less than significant. Development of expansion areas offers opportunities to improve surface water quality.	Impacts similar to Scenario 1 and Class III, less than significant. Development of expansion areas offers opportunities to improve surface water quality.	Impacts similar to Scenario 1 and Class III, less than significant. Development of expansion areas offers opportunities to improve surface water quality.

forecasting, warnings, and emergency operations. Encroachment onto floodplains, such as artificial fills and structures, reduces the capacity of the flood plain and increases the height of floodwater upstream of the obstructions. Impacts associated with each General Plan land use scenario are discussed below. The 2005 General Plan includes the following actions relating to flood hazards:

Action 7.7 | Require project proponents to perform geotechnical evaluations and |
| :--- |
| implement mitigation prior to development of any site: |

- With slopes greater than 10 percent or that otherwise have potential
- for landsliding,

Scenario 1 - Intensification/Reuse Only

Most of the infill/intensification areas under this scenario are outside the 100- flood zone. However, portions of the North Avenue, Upper North Avenue, Arundell, and Auto Center districts are within the 100-year flood zone. General Plan Action 7.10 require proponents of any new developments within the 100-year floodplain to implement measures, as identified in the Flood Plain Ordinance, to protect structures from 100-year flood hazards. As required by the Flood Plain Ordinance, any future development within the 100-year flood zone would require a hydrologic/hydraulic analysis to show that they are protected from flood flows and a Letter of Map Revision (LOMR) filed and approved by FEMA prior to development approval. Compliance with these requirements would reduce flooding impacts to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Intensification/reuse impacts would be the same as those of Scenario 1. In addition, portions of the Olivas expansion area (along Arundell Barranca) fall within the 100-year flood zone. The Serra area is adjacent to, but outside, the 100-year flood zone associated with the Santa Clara River. If future developers elect to pursue development within the designated flood zone, further analysis would be needed in order to demonstrate that any future development is outside the flood plain and a Letter of Map Revision (LOMR) may need to be filed and approved by FEMA prior to development approval. However, these expansion areas should have adequate land to provide retention on-site to limit any increase in peak drainage discharge to the design capacity of the downstream facility and/or should have the financial capacity to provide mitigation by improving downstream infrastructure capacity. No portion of the North

City of Ventura

Avenue expansion area is within the 100-year flood zone. Compliance with existing requirements and proposed 2005 General Plan actions would reduce flooding impacts to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Intensification/reuse impacts would be the same as those of Scenario 1. As noted under Scenario 2, portions of the Olivas expansion area adjacent to Arundell Barranca are within the 100-year flood zone. However, this area should have adequate land to provide retention on-site to limit any increase in peak drainage discharge to the design capacity of the downstream facility and/or should have the financial capacity to provide mitigation by improving downstream infrastructure capacity. Compliance with existing requirements and proposed 2005 General Plan actions would reduce flooding impacts to a less than significant level.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Intensification/reuse impacts would be the same as those of Scenario 1. As noted under Scenario 2, portions of the Serra expansion area are adjacent to, but outside of the Santa Clara River 100-year flood zone. This area should have adequate land to provide retention on-site to limit any increase in peak drainage discharge to the design capacity of the downstream facility and/or should have the financial capacity to provide mitigation by improving downstream infrastructure capacity. Compliance with existing requirements and proposed 2005 General Plan actions would reduce flooding impacts to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Intensification/reuse impacts would be the same as those of Scenario 1. In addition, much of the area west of SR 33 within the Western Cañada Larga expansion area is within the 100-year flood zone, as is a small area east of SR 33 adjacent to Cañada Larga Creek. Compliance with existing requirements and proposed 2005 General Plan actions would reduce flooding impacts to a less than significant level, though available land to provide on-site retention is more limited than for the other scenarios that include expansion areas.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Intensification/reuse impacts would be the same as those of Scenario 1. No portion of the North Avenue or Poinsettia expansion areas is within the 100-year flood zone. Compliance with existing requirements and proposed 2005 General Plan actions would reduce flooding impacts to a less than significant level.

MITIGATION MEASURES

As noted above, proposed 2005 General Plan actions require continued compliance with the City's Flood Plain Ordinance and other applicable requirements. Additional mitigation is not needed.

SIGNIFICANCE AFTER MITIGATION

Compliance with the City Flood Plain Ordinance and the proposed 2005 General Plan actions would reduce flooding impacts to a less than significant level for any of the six land use scenarios.

$$
\begin{array}{ll}
\text { Impact HWQ-2 } & \begin{array}{l}
\text { Development accommodated through the year } 2025 \text { under } \\
\text { any of the land use scenarios under consideration for the } \\
\text { } \\
\text { } 2005 \text { General Plan would increase the amount of impervious } \\
\text { surfaces within the Planning Area, potentially increasing } \\
\text { surface runoff in areas where existing storm drain systems } \\
\text { are deficient. This is considered a Class II, significant but } \\
\text { mitigable, impact for all scenarios. }
\end{array}
\end{array}
$$

The 2005 General Plan includes the following actions aimed at minimizing impacts to the local storm drain system and surface and groundwater quality. As discussion of the impacts of each land use scenario follows.

Action 1.16	Comply with directives from regulatory authorities to update and enforce stormwater quality and watershed protection measures that limit impacts to aquatic ecosystems and that preserve and restore the beneficial uses of natural watercourses and wetlands in the city.
Action 5.2 \quadUse natural features such as bioswales, wildlife ponds, and wetlands for flood control and water quality treatment when feasible.	

Scenario 1 - Intensification/Reuse Only

This scenario would have the least impact on existing drainage facilities insofar as much of the development would not increase the amount of impervious surface over existing conditions. The larger vacant and agricultural parcels that could be converted under this scenario (primarily in the North Avenue, Saticoy, and Arundell districts) include sufficient acreage to provide onsite detention or retention facilities. Where infill of vacant parcels occurs, localized runoff could increase incrementally. However, such increases can be addressed on a case-bycase basis and individual developers will be required to implement solutions to address their projects' impacts. Even with limited acreage, on-site solutions could be employed to minimize runoff such as detention facilities constructed under parking lots and/or utilization of impervious paving methods. In the event that on-site solutions are unavailable, individual developers may contribute to the funding of regional-type solutions downstream, such as offsite detention basins and/or drainage facility capacity enhancement projects. It is anticipated that potential cumulative impacts to the local drainage system can be reduced to a less than significant level through implementation of applicable City and Watershed Protection District regulations on a case-by-case basis. Implementation of the applicable regulatory requirements, in combination with the proposed 2005 General Plan actions, would be expected to reduce potential impacts to groundwater recharge to a less than significant level and, in some instances, may improve recharge as compared to current conditions.

As discussed in the Setting, several areas of the Planning Area currently have drainage system deficiencies. The Ventura Avenue neighborhood has the majority (75%) of undersized or inadequate facilities in the City, though various system deficiencies have been identified in the Downtown area as well. The storm drain system in the Downtown area is being addressed in detail in conjunction with the Downtown Specific Plan. Deferred maintenance is also an issue throughout the older parts of the City due to aging drainage facilities. Corrugated metal pipe drains in older areas such as Downtown, the Ventura Avenue corridor, and Midtown are generally more than 50 years old and need replacement. Therefore, although the impacts of individual developments can be addressed on a case-by-case basis, the lack of a mechanism to address existing City storm drain deficiencies is considered a potentially significant impact under any land use scenario.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Intensification/reuse impacts would be similar to those of Scenario 1. The impacts of new development can be addressed on a case-by-case basis, but the lack of a mechanism to address existing storm drain system deficiencies is considered a potentially significant impact.

This scenario also includes the possible future development of the North Avenue, Olivas, and Serra expansion areas. The North Avenue expansion area discharges eventually to the Ventura River and detention/water quality basins could be incorporated in the development of this area. These basins would not only maintain current levels of runoff to the downstream facilities but also could also reduce silt and sediment transport and contribute to improving water quality in the Ventura River and eventually the ocean.

The Olivas expansion area drains to the Harbor and the development of this area offers significant potential for improving localized drainage facilities as well as water quality in the Harbor. Due to the significant size of the area, there is the potential for setting up a fee program or other funding mechanism to improve some local drainage deficiencies, such as the existing Harbor/Olivas storm drain. This area includes sufficient land to accommodate the construction of combination detention/desilting/ water quality basins that would not offer the ability to contain peak discharges, improve runoff water quality, and reduce siltation problems in the Ventura Keys.

The Serra expansion area drains to the Santa Clara River and like the North Avenue area should incorporate detention/water quality basins within the proposed development to maintain current drainage discharge levels and also reduce sediment transport and improve water quality from existing and proposed urbanized areas and existing agricultural runoff to the river and eventually the ocean.

Future development within any of the expansion areas would be subject to local regulatory requirements, as described under Scenario 1. In its drainage requirements, the Watershed Protection District requires that "the outlet discharge should not cause any increase of flood flow for any frequency flow rate less than the peak design flow rate." Therefore, peak flow runoff from proposed developments must not exceed the design flows of the existing system. Compliance with these requirements in any future expansion area development would address any potential increase in surface runoff or reduction in groundwater percolation.

Scenario 3-Intensification/Reuse + North Avenue + Olivas

Intensification/reuse impacts would be similar to those of Scenario 1. This scenario also includes the possible future development of the North Avenue and Olivas expansion areas, but with more intense development than in Scenario 2. Higher densities could equate to slightly higher runoff volumes if impervious surfaces are increased, but detention basins could be sized to mitigate these slightly higher runoff volumes in these two areas. Therefore, the only difference would be that the opportunities that go along with the development of the Serra expansion area discussed above would not occur.

As discussed under Scenario 2, compliance with Watershed Protection District requirements in any future expansion area development would address any potential increase in surface runoff or reduction in groundwater percolation.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Intensification/reuse impacts would be similar to those of Scenario 1. This scenario also includes the possible future development of the North Avenue and Serra expansion areas, but with more intense development than in Scenario 2. As discussed above, slightly higher runoff volumes could result from these higher densities, but detention basins could be sized to mitigate this. Without the development of the Olivas area, the opportunity to mitigate existing drainage deficiencies in the Harbor area or mitigate water quality and siltation in the Keys would not occur.

As discussed under Scenario 2, compliance with Watershed Protection District requirements in any future expansion area development would address any potential increase in surface runoff or reduction in groundwater percolation.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Intensification/reuse impacts would be similar to those of Scenario 1. This scenario also includes the possible future development of the North Avenue and Western Cañada Larga expansion areas with more intense development in the North Avenue area (higher densities plus additional commercial development) than under Scenarios 3 and 4. The Western Cañada Larga expansion area discharges to the Ventura River and detention/water quality basins should be incorporated in the development of this area. As discussed above, detention basins in the North Avenue area would need to be sized appropriately to handle any increased runoff volumes over and above the other scenarios.

As discussed under Scenario 2, compliance with Watershed Protection District requirements in any future expansion area development would address any potential increase in surface runoff or reduction in groundwater percolation.

$\underline{\text { Scenario } 6 \text { - Intensification/Reuse + North Avenue + Poinsettia }}$

Intensification/reuse impacts would be similar to those of Scenario 1. This scenario also includes the possible future development of the North Avenue and Poinsettia expansion areas, but with more intense development than in Scenario 2. The North Avenue area is expected to
be developed to the same intensity as in Scenarios 3 and 4 so impacts would be identical to those scenarios. The Poinsettia area drains to the County's reinforced box culvert in Telephone Road that has been shown to have capacity deficiencies and then eventually to the Harbor. Development of the Poinsettia area, which is currently in agriculture, would provide the opportunity to make improvements to this facility. In addition, as with the other expansion areas, combination detention/ siltation/ water quality basins could be constructed in this area. These basins would not only mitigate development impacts, but would also improve existing water quality and siltation issues in the Ventura Keys.

As discussed under Scenario 2, compliance with Watershed Protection District requirements in any future expansion area development would address any potential increase in surface runoff or reduction in groundwater percolation.

MITIGATION MEASURES

Although the 2005 General Plan includes several policies and actions that address storm runoff and water quality, the following additional actions are needed to address existing system deficiencies.

HWQ-2 Additional Drainage Actions. The following actions shall be added to the 2005 General Plan to address existing storm drain system deficiencies:

- Develop a financing program for the replacement of failing corrugated metal storm drain pipes in the City.
- Adopt assessment districts or other financing mechanisms to address storm drain system deficiencies in areas where new development is anticipated and deficiencies exist (e.g., Downtown district, Ventura Avenue corridor, and Harbor district).

The following actions are recommended to minimize the impact of future development on the local storm drain system and implement City goals regarding sustainable infrastructure:

- As feasible, require new developments to incorporate stormwater treatment practices that allow percolation to the underlying aquifer and minimize offsite surface runoff. Such methods may include, but are not limited to, (1) the use of pervious paving material within parking lots and other paved areas to facilitate rainwater percolation; and (2) construction of retention/detention basins to limit runoff to pre-development levels and to encourage infiltration into the groundwater basin.
- Where deemed appropriate, require new developments adjacent to Ventura County Watershed Protection District channels to dedicate necessary right-of-way to meet future District needs.

SIGNIFICANCE AFTER MITIGATION

With implementation of the proposed 2005 General Plan policies and action items, and above mitigation measures, impacts to the area storm drain system would be reduced to a less than significant level. It is anticipated that implementation of storm drain system improvements in accordance with current requirements would not have significant secondary environmental effects and would generally reduce pollutants in storm runoff.

> | Impact HWQ-3 | $\begin{array}{l}\text { Development accommodated under any of the General Plan } \\ \text { land use scenarios would incrementally increase the } \\ \text { generation of urban pollutants in surface runoff. Point and } \\ \text { non-point sources of contamination could affect water }\end{array}$ |
| :--- | :--- |
| | quality in the Ventura and Santa Clara Rivers, the Pacific |
| Ocean, and groundwater. However, implementation of | |
| existing regulatory requirements and proposed General Plan | |
| policies and actions would reduce impacts to a Class III, less | |
| than significant, level for all scenarios. | |

Water quality impacts from new development are directly related to specific site drainage patterns and stormwater runoff. Development within the City and expansion areas would increase the amount of impermeable surface over current conditions. Most areas proposed for new development are largely comprised of impervious surfaces. Development of these areas would place impervious surfaces, such as commercial and residential structures, parking lots, walkways, roadways, and other paved areas within these areas. These surfaces would increase the amount of runoff following storm events. As rainwater passes overland, contaminants become suspended within the flow. In particular, stormwater runoff from landscaped areas, roadways and parking lots contains various pollutants associated with motor vehicles, including petroleum compounds, heavy metals, asbestos, and rubber, as well as, fertilizers and pesticides from landscaped areas. During storm events, these pollutants are transported into drainage systems by surface runoff. The pavement of individual sites reduces the amount of exposed, erodable dirt, resulting in a reduction in sediment loading. With no prior treatment of stormwater runoff, any pollutants retained from the impervious roadway surfaces would directly enter the surface water bodies in and near the City.

Construction activities could result in the pollution of natural watercourses or underground aquifers. The types of pollutant discharges that could occur as a result of construction include accidental spillage of fuel and lubricants, discharge of excess concrete, and an increase in sediment runoff.

It should be noted that agricultural uses within the expansion areas and within the City limits may involve the application of pesticides and other chemicals. Storm runoff from these agricultural fields recharges groundwater and also discharges into local water bodies. The replacement of agricultural land with urban uses could result in the reduction in discharge of agriculturally-related pollutants, including pesticide runoff, into nearby surface water-bodies and the placement of impervious surfaces at the sites would reduce the amount of sediment
conveyed to surface water through stormwater runoff.
Discharge of pollutants from any point source is prohibited unless it is in compliance with a National Pollutant Discharge Elimination System (NPDES) Permit issued by the Regional Water Quality Control Board. Point sources of pollutants of greatest concern include nutrients (ammonia and nitrate), heavy metals, toxic chemicals, chlorine, and salts.

Non-point sources of pollutants, which are also regulated under NPDES permits, include both construction-related runoff and operational runoff associated with urban uses. Surface runoff from individual sites is carried to City storm drains and/or natural drainages.

Regulations under the federal Clean Water Act require that a NPDES general construction storm water permit be obtained for projects that would disturb greater than one acre during construction. Acquisition of a NPDES permit is dependent on the preparation of a Storm Water Pollution Prevention Plan (SWPPP) that contains specific actions, termed Best Management Practices (BMPs), to control the discharge of pollutants, including sediment, into the local surface water drainages. In the State of California, Regional Water Quality Control Boards administer the NPDES permit process.

As discussed in the Setting, the Ventura County SQUIMP applies to the operational runoff and requires new developments and redevelopment projects to implement various BMPs to minimize the amount of pollutants entering surface waters. All projects that fall into one of eight categories are identified in the Ventura Countywide Municipal Permit as requiring SQUIMPs. These categories include: (1) single family hillside residences; (2) 100,000 square foot commercial developments; (3) automotive repair shops; (4) retail gasoline outlets; (5) restaurants; (6) home subdivisions with 10 or more housing units; (7) location within or directly adjacent to or discharging directly to an environmentally sensitive area; and (8) parking lots with 5,000 square foot or more impervious parking or access surfaces with 25 or more parking spaces and potentially exposed to stormwater runoff.

Future developments with the Planning Area that fall into any of these categories would be subject to SQUIMP requirements for implementing stormwater BMPs. Per the SQUIMP, structural or treatment control BMPs must meet the following design standards:

- Volume based post-construction structural or treatment control BMPs shall be designed to mitigate (infiltrate or treat) storm water runoff from the volume of annual runoff to achieve 80% volume capture (Ventura County Land Development Guidelines); or
- Flow-based post-construction structural or treatment control BMPs shall be sized to handle the flow generated from 10\% of the 50-year design flow rate.

Implementation of these standards on future development and redevelopment projects within the Planning Area would address impacts on a project-by-project basis, thus reducing surface water quality impacts to a less than significant level.

In addition these standards, the 2005 General Plan includes the actions described under Impact HWQ-2, as well as the following actions aimed at preservation of riparian habitat and improvement of water quality.

Action 1.8 Buffer barrancas and creeks that retain natural soil slopes from development according to State and Federal guidelines.

Action 1.9 Prohibit placement of material in watercourses other than native plants and required flood control structures, and remove debris periodically.
Action 1.10 Remove concrete channel structures as funding allows, and where doing so will fit the context of the surrounding area and not create unacceptable flood or erosion potential.

The above actions as they relate to impacts to biological resources are discussed in detail in Section 4.4, Biological Resources.

Scenario 1 - Intensification/Reuse Only

This scenario would have relatively little impact on water quality because it would emphasize intensification and reuse of already urbanized areas. In many instances, replacement of older development with new development built in accordance with current runoff and water quality control standards may reduce contaminants entering surface water and groundwater. Several large agricultural parcels in the Saticoy area, the McGrath property, and other isolated agricultural lands could be developed under this scenario. Development of these properties would be expected to reduce erosion and sedimentation, but may incrementally reduce percolation and increase urban pollutants. Installation of water quality BMPs in conjunction with new development, as required by the Ventura County SQUIMP (as discussed above), would mitigate potential urban runoff pollutants with this scenario.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Intensification/reuse impacts would be similar to those described for Scenario 1 and could be reduced to a less than significant level with implementation of Ventura County SQUIMP requirements. This scenario would also accommodate the future development of the North Avenue, Olivas, and Serra expansion areas.

The North Avenue expansion area discharges eventually to the Ventura River and detention/water quality basins could be incorporated in the development of this area. These basins would reduce silt and sediment transport and contribute to improving water quality in the Ventura River and eventually the ocean.

The Olivas expansion area drains to the Harbor and the development of this area offers significant potential for improving localized drainage facilities as well as water quality in the Harbor. This area would offer the ability to construct combination detention/desilting/water quality basins that would improve runoff water quality and significantly reduce siltation problems in the Keys.

The Serra expansion area drains to the Santa Clara River and like the North Avenue area should incorporate detention/water quality basins within the proposed development to reduce sediment transport and improve water quality from existing and proposed urbanized areas and existing agricultural runoff to the River and eventually the ocean.

Ventura County SQUIMP requirements and standards would apply to any future development within any of the expansion areas and General Plan Action 1.16 directs the City to comply with directives from regulatory authorities to update and enforce stormwater quality and watershed protection measures. Implementation of existing water quality regulations and proposed General Plan actions would reduce potential impacts to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

This scenario is similar to Scenario 2 without the development of the Serra expansion area but with more intense development (higher densities) in the North Avenue and Olivas areas. A slightly higher level of water quality BMPs should go along with these higher densities. Otherwise, the only difference would be that the opportunities that go along with the development of the Serra expansion area discussed above would not occur.

As discussed under Scenario 2, any expansion area development would be required to comply with the Ventura County SQUIMP. Implementation of these existing regulations, in combination with proposed 2005 General Plan actions, would reduce potential impacts to a less than significant level.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

This scenario is similar to Scenario 2 without the development of the Olivas expansion area but with more intense development in the North Avenue and Serra areas. As discussed above, a slightly higher level of water quality BMPs should go along with these higher densities. Without the development of the Olivas area, the opportunity to mitigate water quality and siltation in the Keys would not occur.

As discussed under Scenario 2, any expansion area development would be required to comply with the Ventura County SQUIMP. Implementation of these existing regulations, in combination with proposed 2005 General Plan actions, would reduce potential impacts to a less than significant level.

$\underline{\text { Scenario } 5 \text { - Intensification/Reuse + North Avenue + Western Cañada Larga }}$

This scenario is similar to Scenario 2 without the development of the Olivas or Serra expansion areas but with the development of the Western Cañada Larga area and with more intense development in the North Avenue area (higher densities plus additional commercial development than with Scenarios 3 and 4). The Western Cañada Larga expansion area discharges to the Ventura River and detention/water quality basins could be incorporated in the development of this area.

As discussed under Scenario 2, any expansion area development would be required to comply with the Ventura County SQUIMP. Implementation of these existing regulations, in
combination with proposed 2005 General Plan actions, would reduce potential impacts to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

This scenario is similar to Scenario 2 except with only the development of the North Avenue and Poinsettia expansion areas. The North Avenue area is anticipated to be developed to the same intensity as in Scenario 3 and 4 so impacts would be identical to those scenarios. As with the other expansion areas, combination detention/siltation/water quality basins could be constructed in the Poinsettia area. Such facilities could improve existing water quality and siltation issues in the Keys.

As discussed under Scenario 2, any expansion area development would be required to comply with the Ventura County SQUIMP. Implementation of these existing regulations, in combination with proposed 2005 General Plan actions, would reduce potential impacts to a less than significant level.

MITIGATION MEASURES

Implementation of the requirements of the Ventura County SQUIMP, in combination with proposed 2005 General Plan policies and actions, would reduce water quality impacts to a less than significant level.

SIGNIFICANCE AFTER MITIGATION

The impacts of future development on water quality would be less than significant given compliance with State and local regulations and proposed 2005 General Plan actions.

4.9 MINERAL RESOURCES

This section addresses potential impacts to mineral resources. Both direct impacts to mineral resource production and indirect land use compatibility impacts are discussed.

4.9.1 Setting

Mineral resources are usually mineral derivatives but can include geothermal and natural gas deposits. Because mineral resources can take millions of years to replenish naturally after extraction, they are considered "nonrenewable" resources. The two principal mineral resources within the Planning Area are aggregate and petroleum resources, each of which is discussed below.
a. Aggregate. Aggregate resources comprise the basic ingredients for a large variety of rock products including fill, construction-grade concrete, and riprap. Aggregate resources include sand, gravel, and rock material.

The Planning Area is located in the Western Ventura production-consumption region (PCR), as designated by the California Geological Survey (CGS). Aggregate mining sites located within the vicinity of the Planning Area existed along the Santa Clara River, and consisted primarily of the extraction of Portland cement concrete (PCC)-grade aggregate (which has a high enough quality for use in Portland cement concrete). However, currently there are no active aggregate mining activities within this area; "red line" restrictions imposed by a joint resolution of the Ventura County Board of Supervisors has removed the portion of the Santa Clara River downstream of Highway 118 from consideration as an area for possible future mining activities (AMEC Earth and Environmental, January 2004).
b. Petroleum. Oil production has played an integral role in the development of the west Ventura area, where oil was discovered in 1885 during the drilling of a water well. By the late 1920s, a total of 113 wells were in place in west Ventura, producing approximately 57,000 barrels of oil and 213 million cubic feet of gas per day. By the 1930s, the population of the west Ventura area had doubled and the neighborhood became home to industries that supported oil production. By the 1980s, a drop in local oil production rates and a general decline in the oil production industry resulted in a substantial reduction in oil field related activity.

The only remaining petroleum fields in the Planning Area are in the foothills and the Ventura Avenue Corridor (see Figure 4.9-1). These areas are currently within the County's jurisdiction.
c. Regulatory Framework. Surface mines are regulated by the state of California in accordance with the Surface Mining and Reclamation Act (SMARA), PRC § 2710 et seq., and through the County's land use permitting processes. Adopted in 1975, SMARA has two basic objectives: (1) to safeguard access to mineral resources of regional and statewide significance in the face of competing land uses and urban expansion; and, (2) to ensure the proper reclamation of surface mining operation. Pursuant to SMARA, the California State Mining and Geology Board oversees the Mineral Resource Zone (MRZ) classification system. The MRZ system characterizes both the location and known/ presumed economic value of underlying mineral resources. Typically, the lead agency under SMARA is the city or county within which the
mining operation is located; however, the State Mining and Geology Board (SMGB) assumed "lead agency" status from the County on June 14, 2001, pursuant to SMARA §2774.4. The assumption of SMARA powers does not include the County's authority to review and revise, issue, enforce, and revoke mining permits. The SMGB retains the authority to review and approve reclamation plans, review and approve financial assurances, conduct annual mine inspections, and enforce compliance with SMARA regulations.

Mineral resource areas are shown on Figure 4.9-2. Areas designated as MRZ-3, or areas containing mineral deposits the significance of which cannot be determined, are located within the foothills located to the north of the City, the Serra PEA, and the Saticoy District. Areas designated as MRZ-3a, or areas with higher potential for aggregate resources than other deposits classified as MRZ-3, are located along the northern City limits and south of the Ventura Harbor. Finally, areas designated as MRZ-2, or areas designated by the state which have regional or statewide significance, are located along the Santa Clara River floodplain.

Mining operations in the County jurisdiction are regulated through the County's permitting process. Unless a mine operates as a vested operation (having been initiated before the County requirement to obtain a permit to operate), a conditional use permit must be obtained before mining operations begin. SMARA encourages consideration of values relating to recreation, watershed, wildlife, range and forage, and aesthetics in the production and conservation of minerals [\$2712(b)]; and requires elimination of hazards to the public health and safety [82712(c)]. As discussed above, there are no active conditional use permits for aggregate mining activities within areas under consideration for the 2005 General Plan Update.

CCR Title 14, Division 2, Chapter 8, Subchapter 1 implements portions of SMARA, particularly in relation to reclamation plans, mineral resource management, and financial assurances. CCR $\S 3502$ (b) specifies required components of the reclamation plan beyond PRC $\S 2772$. Section 3503 defines the minimum acceptable practices to be followed in surface mining operations related to erosion control, water quality and watershed control, protection of fish and wildlife habitat, disposal of mine waste rock and overburden, erosion and drainage, resoiling, and revegetation. Sections 3504 (b) and 3702 both require that financial assurances be provided by mining/reclamation proponents to ensure that reclamation is "... performed in accordance with the approved reclamation plan ..." Sections 3703-3713 provide performance standards for wildlife habitat; backfilling, re-grading, slope stability, and re-contouring; re-vegetation; drainage, diversion structures, waterways, and erosion control; prime agricultural land reclamation; other agricultural land; building structure, and equipment removal; stream protection, including surface and groundwater; topsoil salvage, maintenance, and redistribution; tailing and mine waste management; and, closure of surface openings.

Sections 3800-3806.2 specify the process and types of financial assurances that must be provided for reclamation. CCR $\S 3675$ defines land uses that are compatible and incompatible with mining areas. Compatible land uses are defined as those that are"... inherently compatible with mining and/or that require a minimum public or private investment in structures, land improvements, and which may allow mining because of the relative economic value of the land and its improvements." Examples of compatible land uses include very low-density residential, recreational, agricultural, and grazing uses. Incompatible uses are defined as "inherently incompatible with mining and/or require public or private investment in structures, land

Petroleum Resources

improvements, and landscaping and that may prevent mining because of the greater economic value of the land and its improvements." These include high-density residential uses, public facilities, and other uses.

CCR $\$ 3676$ specifies the content of mineral resource policies adopted by lead agencies pursuant to PRC $\$ 2762$. Specifically, lead agencies' mineral resource policies must contain at least the following:

- A summary of mineral resource information in relation to state policies
- Statements of policy in accordance with any state-classified mineral resource area
- Implementation measures that identify mineral deposit areas and areas targeted for conservation and possible future extraction, and General Plan policies related to those areas

No state conservation program equivalent to SMARA exists for petroleum resources.

4.8.2 Impact Analysis

a. Methodology and Significance Thresholds. Potential impacts were assessed by comparing the land uses for each of the General Plan scenarios to the locations of existing mineral resource extraction areas. Impacts would be considered significant if development under the 2005 General Plan through the year 2025 would result in either of the following:

- The loss of availability of a known mineral resource that would be of value to the region and the residents of the state
- Land use conflicts between mining operations and other land uses
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of mineral resource impacts for each of the scenarios under consideration. A discussion of the impacts follows.

Impact M-1 None of the 2005 General Plan land use scenarios would significantly reduce access to mineral resources. Impacts under Scenarios 1-6 are considered to be Class III, less than significant.

The Planning Area currently does not have active aggregate mining operations. The Ventura County Board of Supervisors removed areas along the Santa Clara River that have been subject to aggregate mining operations from consideration for future mining activities.

Petroleum fields in the Planning Area are in the foothills and located in the North Avenue district. An existing, inoperative oil refinery is located west of the North Avenue expansion area on the west side of SR 33. All of the oil wells and facilities are currently located within the County's jurisdiction.

Summary Comparison of Impacts for EIR Scenarios

| | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Scenario 1 - Intensification/Reuse Only

This land use scenario focuses on intensification and reuse of properties within the existing Sphere of Influence (SOI) and does not include expansion areas. Development under Scenario 1 involves intensification of land uses and creation of a more densely settled, urban landscape. It is anticipated that areas designated as MRZ-3a within the foothills north of the City would be removed from the SOI under Scenario 1. As this area is currently designated as Hillside Planned Residential, aggregate mining activities are not currently allowed; therefore, removal of this area from the SOI would not provide new restrictions on access to aggregate resources that might be located within this area. Similarly, MRZ-3a areas south of the Ventura Harbor would continue to have a Parks and Recreation land use designation under Scenario 1 and, therefore, the 2005 General Plan would not impose new restrictions on access to aggregate resources that might be located within this area.

Future development within the North Avenue and Upper North Avenue districts could occur within the vicinity of existing oil wells within these areas. However, as discussed in the Setting, oil production in the North Ventura Avenue area has dropped dramatically since its peak production several decades ago and only a limited number of oil wells remain within these growth districts. It is anticipated that the limited remaining wells could continue to produce as long as they are financially viable and would be replaced by new industrial development only as they are tapped out. Therefore, impacts relating to the accessibility of mineral resources are not considered significant.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Impacts associated within intensification/reuse would be the same as those identified for Scenario 1. In addition, Scenario 2 would accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas. As discussed under Scenario 1, intensification and reuse of land would not reduce access to existing oil resources. The North Avenue, Olivas, and Serra expansion areas are currently in agriculture use and have no identified mineral resources onsite. The North Avenue expansion area is located approximately one mile north/northeast of existing oil wells in the North Avenue area, but would not obstruct access to the existing oil well sites. Therefore, impacts relating to the accessibility of mineral resources under Scenario 2 are considered to be less than significant.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts associated within intensification/reuse would be the same as those identified for Scenario 1. In addition, Scenario 3 would accommodate the possible future development of the North Avenue and Olivas expansion areas. As discussed under Scenarios 1 and 2, future development within these areas would not restrict access to mineral resources. No significant impacts would occur.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated within intensification/reuse would be the same as those identified for Scenario 1. In addition, Scenario 4 would accommodate the possible future development of the North Avenue and Serra expansion areas. As discussed under Scenarios 1 and 2, future
development within these areas would not restrict access to mineral resources. No significant impacts would occur.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts associated within intensification/reuse would be the same as those identified for Scenario 1. In addition, Scenario 5 would accommodate the possible future development of the North Avenue and Western Cañada Larga expansion areas. As discussed under Scenarios 1 and 2, future development within the growth districts and corridors and the North Avenue expansion area would not restrict access to mineral resources. The 110-acre Western Cañada Larga expansion area is currently used for grazing and no identified mineral resources are present within the area. Moreover, the Western Cañada Larga area is located more than a mile to the north of existing oil wells within the North Avenue area. At this distance, development would not restrict access to operating oil wells. No significant impacts would occur.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts associated within intensification/reuse would be the same as those identified for Scenario 1. In addition, Scenario 6 would accommodate the possible future development of the North Avenue and Poinsettia expansion areas. As discussed under Scenarios 1 and 2, future development within the growth districts and corridors and the North Avenue expansion area would not restrict access to mineral resources. The 418 -acre Poinsettia expansion area is currently used for agriculture. No identified mineral resources are located on, or in the vicinity of, this site. No significant impacts would occur.

MITIGATION MEASURES

Scenarios 1-6 would not reduce access to mineral resources; therefore, mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Significant impacts are not anticipated for any of the six 2005 General Plan land use scenarios.

$$
\begin{array}{ll}
\text { Impact M-2 } & \begin{array}{l}
\text { Scenarios 1-6 could introduce new development that is located } \\
\text { adjacent to, and potentially incompatible with, existing oil } \\
\\
\text { production activity in the North Avenue and Upper North }
\end{array} \\
\text { Avenue districts. However, policies and actions included in the } \\
\text { 2005 General Plan would address potential incompatibilities. } \\
& \text { Impacts would be Class III, significant but mitigable, for any of } \\
\text { the six land use scenarios. }
\end{array}
$$

As there are no active aggregate mining operations within the areas under consideration for each scenario, land use incompatibilities could only occur adjacent to the limited number of oil facilities. Consequently, future development within the Planning Area would generally create minimal conflicts with such operations. However, any of the land use scenarios under
consideration could introduce potentially incompatible land uses adjacent to oil wells within the Upper North Avenue and North Avenue districts. Noise and health and safety issues associated with oil facilities could create conflicts for new residential or commercial uses that are introduced within the vicinity of such sites.

The 2005 General Plan includes the following policies and actions that are relevant to compatibility between residential uses and oil production:

$$
\begin{aligned}
& \text { Action } 7.24 \begin{array}{l}
\text { Only approve projects involving sensitive land uses (such as residences, } \\
\text { schools, daycare centers, playgrounds, medical facilities) within or } \\
\text { adjacent to industrially designated areas if an analysis provided by the } \\
\text { proponent demonstrates that the health risk will not be significant. }
\end{array} .
\end{aligned}
$$

Action 7.32 Require acoustical analyses for new residential developments within the mapped 60 decibel (dBA) CNEL contour, or within any area designated for commercial or industrial use, and require mitigation necessary to ensure that:

- Exterior noise in exterior spaces of new residences and other noise sensitive uses that are used for recreation (such as patios and gardens) does not exceed 65 dBA CNEL, and
- Interior noise in habitable rooms of new residences does not exceed 45 dBA CNEL with all windows closed.

An analysis of the impacts of each land use scenario follows.

Scenario 1 - Intensification/Reuse Only

Scenario 1 includes intensification and reuse of properties within the existing SOI and does not include any expansion areas. The Upper North Avenue and North Avenue districts include a limited number of oil wells. The Upper North Avenue district also includes the closed Petrochem refinery. These districts are primarily designated for industrial uses, which generally would not conflict with oil or aggregate operations. However, it is anticipated that limited live-work or work-live residential development could be components of future industrial development. Depending upon the proximity of residential components to mineral resource extraction activities, the introduction of residential uses could pose significant compatibility conflicts relating to noise and health and safety. However, as noted above, the 2005 General Plan includes specific actions requiring analysis, and mitigation as necessary, of noise and health/safety issues for any project involving a sensitive land use within industriallydesignated areas. Implementation of these actions and application of appropriate mitigation measures on a case-by-case basis would reduce compatibility conflicts to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Compatibility impacts associated within intensification/reuse would be the same as those identified for Scenario 1 and would be reduced to a less than significant level with implementation of actions included in the 2005 General Plan. In addition, this scenario would
accommodate the possible future development of the North Avenue, Olivas, and Serra expansion areas.

All three expansion areas are currently in agricultural use and none include or are adjacent to any mineral resource extraction activities. The North Avenue expansion area is located approximately one mile north of the oil wells located in the North Avenue district. Therefore, development within the North Avenue, Olivas, and Serra expansion areas would not create any compatibility conflicts with mineral resource extraction operations.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Compatibility impacts associated within intensification/reuse would be the same as those identified for Scenario 1 and would be reduced to a less than significant level with implementation of actions included in the 2005 General Plan. As discussed under Scenario 2, neither the North Avenue expansion area nor the Olivas expansion area poses any potential compatibility conflicts with mineral resource extraction operations.

$\underline{\text { Scenario } 4 \text { - Intensification/Reuse + North Avenue + Serra }}$

Compatibility impacts associated within intensification/reuse would be the same as those identified for Scenario 1 and would be reduced to a less than significant level with implementation of actions included in the 2005 General Plan. As discussed under Scenario 2, neither the North Avenue expansion area nor the Olivas expansion area poses any potential compatibility conflicts with mineral resource extraction operations.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Compatibility impacts associated within intensification/reuse would be the same as those identified for Scenario 1 and would be reduced to a less than significant level with implementation of actions included in the 2005 General Plan. As discussed under Scenario 2, the North Avenue expansion area does not pose any potential compatibility conflicts with mineral resource extraction operations. No mineral resource extraction operations are located on or adjacent to the Western Cañada Larga expansion area. Therefore, development within that area would not pose the potential for significant compatibility impacts with mineral resource extraction activities.

$\underline{\text { Scenario } 6 \text { - Intensification/Reuse + North Avenue + Poinsettia }}$

Compatibility impacts associated within intensification/reuse would be the same as those identified for Scenario 1 and would be reduced to a less than significant level with implementation of actions included in the 2005 General Plan. As discussed under Scenario 2, the North Avenue expansion area does not pose any potential compatibility conflicts with mineral resource extraction operations. No mineral resource extraction operations are located on or adjacent to the Poinsettia expansion area. Therefore, development within that area would not pose the potential for significant compatibility impacts with mineral resource extraction activities.

City of Ventura

MITIGATION MEASURES

Actions included in the 2005 General Plan would reduce compatibility conflicts between residential uses and mineral extraction activity to a less than significant level. Mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Future project- and site-specific environmental review and mitigation for individual development projects that present potential incompatibility issues, as required by 2005 General Plan policies and actions, would reduce potential compatibility impacts between residential uses and mineral resource extraction activities to a less than significant level for any of the six land use scenarios.

4.10 NOISE

This section analyzes the impacts associated with exposure to noise. Impacts relating to noise from traffic, railroad activity, industrial and agricultural uses, and recreational uses are addressed.

4.10.1 Setting

a. Regulatory Setting. Guidelines for noise compatible land use, based upon the California Office of Planning and Research (OPR) Noise Element Guidelines, are shown on Figure 4.10-1. The objective of noise compatibility guidelines is to provide the community with a means of judging the noise environment that it deems to be generally acceptable.

Denotation of a land use as "clearly acceptable" implies that the highest noise level in that band is the maximum desirable for existing or conventional construction that does not incorporate any special acoustical treatment. In general, evaluation of land use that fall into the "normally acceptable," "conditionally acceptable," or "normally unacceptable" noise environments should analyze other potential factors that would affect the noise environment. These include consideration of the type of noise source, the sensitivity of the noise receptor, the noise reduction likely to be provided by structures, and the degree to which the noise source ay interfere with speech, sleep, or to other activities characteristic of the land use.

Ventura Noise Ordinance. The City of Ventura Noise Ordinance (Municipal Code § 10.650) prohibits unnecessary, excessive, or annoying noise in the City. The Ordinance does not control traffic noise, but applies to all noise sources located on private property including traffic noise. As part of this ordinance, properties within the City are assigned a noise zone based on their corresponding land use. "Noise-sensitive" properties are designated as Noise Zone I; residential properties are designated Noise Zone II; commercial properties are included in Noise Zone III, and industrial/agricultural districts are designated as Noise Zone IV. The Ordinance also limits the amount of noise generated by uses during normal operation that may affect the surrounding areas. Table 4.10-1 shows the allowable noise levels and corresponding times of day for each of the identified noise zones.

Table 4.10-1
Exterior Noise Levels

Time Period	ZONE I	ZONE II	ZONE III	ZONE IV
7 A.M. to 10 P.M.	50 dBA	50 dBA	60 dBA	70 dBA
10 P.M. to 7 A.M.	45 dBA	45 dBA	55 dBA	70 dBA

Source: City of Ventura Municipal Code § 10.650.130B.

The noise standards shown in Table 4.10-1 apply to any noise-generating activity that exceeds the applicable level for a cumulative period of more than 30 minutes in any hour. For noise levels that last less than 30 minutes, the following standards apply: maximum noise levels equal to the value of the noise standard plus 5 dBA for a cumulative period of no more than 15 minutes in any hour, 10 dBA for a cumulative period of no more than 5 minutes in any hour, 15

LAND USE CATEGORY	COMMUNITY NOISE EXPOSURE Ldn or CNEL, dBA						
	55	60	65	70	75	80	85
RESIDENTIAL - LOW DENSITY SINGLE FAMILY, DUPLEX, MOBILE HOMES			$3 \neq \mathscr{Z O} \neq \boldsymbol{Z}$	$\mathscr{O C O W}$	\cdots		
RESIDENTIAL - MULTI-FAMILY				$\not \equiv \not Z Z Z A$			
TRANSIENT LODGING - MOTELS, HOTELS			$\nexists Z W Z Z Z$	$\mathscr{O} / \boldsymbol{Z} / \mathbf{Z}$	\% x^{6}	rese	
SCHOOLS, LIBRARIES, CHURCHES, HOSPITALS, NURSING HOMES				$\mathscr{O} / \boldsymbol{Z} / \boldsymbol{Z}$	$\cdots \cdots$	8 mem	
AUDITORIUMS, CONCERT HALLS, AMPHITHEATRES	$\not \mathscr{Z} \mathscr{O} \mathscr{Z}$	$\mathscr{W} \mathscr{O} \mathscr{Z}$	$\mathscr{W} / 2 W \boldsymbol{O}$	$\mathscr{W} \boldsymbol{O} \boldsymbol{O} \boldsymbol{O} \boldsymbol{Z}$	P\%	$\cdots \%$	\%
SPORTS ARENA, OUTDOOR SPECTATOR SPORTS	$\mathscr{W} \mathscr{W} \mathscr{W} \not \subset$			$\mathscr{O} / \boldsymbol{Z} / \boldsymbol{Z}$	\ddot{m}	ramers	Rex
PLAYGROUNDS, NEIGHBORHOOD PARKS							
GOLF COURSES, RIDING STABLES, WATER RECREATION, CEMETERIES			Fिج				
OFFICE BUILDINGS, BUSINESS COMMERCIAL AND PROFESSIONAL			\%	$\mathscr{O} \boldsymbol{O}$	$\mathscr{O W} / 2$	$\mathscr{O} \mathscr{O}$	$\cdots \infty$
INDUSTRIAL, MANUFACTURING, UTILITIES, AGRICULTURE						$\mathscr{O C O W}$	\%ax

Wr-

NORMALLY ACCEPTABLE
Specified land use is satisfactory, based upon the assumption that any buildings involved are of normal conventional construction, without any special noise insulation requirements.

$W_{Z} \mathbf{Z} Z$

CONDITIONALLY ACCEPTABLE
New construction or development should be undertaken only after a detailed analysis of the noise reduction requirements is made and needed noise insulation features included in the design. Conventional construction, but with closed windows and fresh air supply systems or air conditioning will normally suffice.

resers

NORMALLY UNACCEPTABLE
New construction or development should generally be discouraged. If new construction or development does proceed, a detailed analysis of the noise reduction requirements must be made and needed noise insulation features included in the design

CLEARLY UNACCEPTABLE
New construction or development should generally not be undertaken.

Source: Guidelines for the Preparation and Content of Noise Elements of the General Plan, California Office of Planning and Research, 1998.
dBA for a cumulative period of no more than 1 minute in any hour, or 20 dBA for any period of time. If the ambient sound level exceeds the allowable exterior standard, the ambient levels become the standard.

The following noise standards for interior noise levels apply for all multifamily residential units within Zones I or II. Daytime (7 a.m. -10 p.m.) noise levels shall not exceed 45 dBA and nighttime (10pm-7am) shall not exceed 40 dBA (Section 10.650.130 C.1).

Section 10.650.150 of the Ordinance exempts construction activities from the above standards, provided that they are conducted between 7 A.M. and 8 P.M. Construction activity is permitted between the hours of 8 pm and 7 am , provided that the noise levels do not exceed the standards specified in Table 4.10-1.
b. Overview of Sound Measurement. Noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA). The A-weighting scale is an adjustment to the actual sound power levels to be consistent with that of human hearing response, which is most sensitive to frequencies around 4,000 Hertz (about the highest note on a piano) and less sensitive to low frequencies (below 100 Hertz). In addition to the actual instantaneous measurement of sound levels, the duration of sound is important since sounds that occur over a long period of time are more likely to be an annoyance or cause direct physical damage or environmental stress. One of the most frequently used noise metrics that considers both duration and sound power level is the equivalent noise level (Leq). The Leq is defined as the single steady A-weighted level that is equivalent to the same amount of energy as that contained in the actual fluctuating levels over a period of time. Typically, Leq is summed over a one-hour period.

The sound pressure level is measured on a logarithmic scale with the 0 dB level based on the lowest detectable sound pressure level that people can perceive (an audible sound that is not zero sound pressure level). Decibels cannot be added arithmetically, but rather are added on a logarithmic basis. Based on the logarithmic scale, a doubling of sound energy is equivalent to an increase of 3 dB . Because of the nature of the human ear, a sound must be about 10 dB greater than the reference sound to be judged as twice as loud. In general, a 3 dB change in community noise levels is noticeable, while 1-2 dB changes generally are not perceived. Quiet suburban areas typically have noise levels in the range of $40-50 \mathrm{dBA}$, while those along arterial streets are in the 50-60+ dBA ranges. Normal conversational levels are in the 60-65 dBA range, and ambient noise levels greater than that can interrupt conversations.

Noise levels typically attenuate at a rate of 6 dBA per doubling of distance from point sources such as industrial machinery. For example, a person standing 25 feet from an industrial machine may experience noise levels of 75 dBA , while a person standing 50 feet from the same noise source would experience noise levels of 69 dBA , and a person standing 100 feet from the source would experience noise levels of 63 dBA . Noise from lightly traveled roads typically attenuates at a rate of about 4.5 dBA per doubling of distance. Noise from heavily traveled roads typically attenuates at about 3 dBA per doubling of distance.

The actual time period in which noise occurs is also important since noise that occurs at night tends to be more disturbing than that which occurs during the daytime. The Day-Night average level (L_{DN}) recognizes this characteristic by weighting the hourly Leqs over a 24 -hour
period. The weighting involves the addition of 10 dBA to actual nighttime (10 PM to 7 AM) noise levels, accounting for the greater amount of disturbance associated with noise during that time period. The Community Noise Equivalent Level (CNEL) is also commonly used to specify noise standards. The CNEL is identical to the L_{DN} except that it also adds 5 dB to sound levels occurring from 7 p.m. to 10 pm . The two measures of noise exposure, Ldn and CNEL, are basically equivalent; there is generally less than 1 dBA difference between their values.
c. Existing Noise Environment. The City of Ventura is affected by several different sources of noise, including automobile traffic, agricultural or industrial activity, the Ventura County Fairgrounds, and periodic nuisances such as construction, loud parties, and other events. The major sources of noise in Ventura include the following:

- Highway Traffic on Interstate 101, State Routes 33 and 126
- Traffic Along Major Arterials
- Union Pacific Railroad
- Ventura County Fairgrounds
- Ventura Shooting Range
- Ventura Raceway at Seaside Park

Various locations within Ventura were surveyed from October 2001 to April 2002 to establish existing levels of noise. These measurement sites were selected to determine the impact from major sources of noise within the City. A total of 34 measurements were taken, which provide a basis for understanding the overall existing noise environment of the city. Table 4.10-2 summarizes the noise monitoring results at each of the 34 locations. The $\mathrm{L}_{\text {eq }}$ values for each location are shown on Figure 4.10-2. It should be noted that the sound level at any location fluctuates during the day. Therefore, the results of the measurements are not necessarily indicative of long-term average daily noise exposures at the measurement positions.

Roadway Noise. Vehicle traffic on local freeways and major roads is by far the greatest generator of noise throughout the planning area. Major road noise sources include three freeways (U.S. 101, SR 126, and SR 33) and several major arterial streets with high levels of traffic (Victoria Avenue, Main Street, Telephone Road, Telegraph Road). Four measurement locations (Sites 2, 3, 16, and 23) were subject primarily to noise originating from freeway traffic. The Leq value for these sites ranged from 63.7 to 72.6 dBA . Site 3 had a significantly lower Leq than the other three, most likely because of the existence of a sound barrier protecting that location from freeway noise. Four measurement sites (Sites 4, 9, 13, and 19) correspond to principal arterials. Noise levels (Leq) for these roadways ranged from 62.3 to 72.6 dBA .

A study completed in 2000 assessed noise levels in Ventura County and provided recommendations for noise barrier locations along Highways 101, 33, and 126. Based upon these measurements, using either 66 or 67 dBA Peak Hour Leq as the threshold (depending on activity land use category), and considerations such as the potential effectiveness of a noise barrier in the proposed project areas, specific areas were recommended for further consideration of noise barriers. Those areas with the highest Peak Hour dBA (exceeding 70 dBA) where noise barriers were recommended for further consideration are summarized in Table 4.10-3.

Table 4.10-2
Noise Survey Results

Site \#	Measured Noise Level (dBA)				Measurement Location
	Leq	Lmax	L(10)	L(90)	
1	69.7	83.4	73.2	55.8	Telegraph Rd/Nevada - 35 ft from Telegraph centerline
2	69.9	85.1	73.2	62.4	SR 126/Henderson and Jasper - 45 ft from elevated freeway, 20 feet from centerline of Henderson
3	63.7	78.1	66.5	57.7	SR 126/Hayes and Eisenhower - 100 ft from freeway
4	68.1	84.4	72.4	56.6	Telephone/Petit - 30 ft from centerline of Telephone Road
5	60	83.7	62.2	47.5	Channel Drive/Borchard - 25 ft from centerline of Channel Drive (includes train pass-by, 75 feet to train tracks)
6	70	83.5	74.7	50.8	Foothill/Skyline - 35 ft from Foothill centerline
7	58.6	76.9	61.6	41.3	Via Arroyo/Vio Posito - 15 ft from Via Arroyo centerline
8	53.7	76	53.7	41.5	Antelope Avenue - 25 ft from Antelope Ave centerline
9	72.6	86.8	75.6	64.5	Victoria/Thille - 60 ft from Victoria centerline
10	64.8	82.8	68.5	51.6	Peacock/Nightingale - 25 ft from Nightingale centerline
11	69.2	87.1	72.5	56.9	Victoria Ave/Loma Vista - 40 ft from Victoria centerline
12	64.8	82.8	68.5	51.6	Aurora/Bryn Mawr - 15 ft from Aurora centerline
13	69.8	88.4	74.2	54.9	Telephone/Chalmette - 30 ft from Telephone Road centerline
14	73.6	86.1	77.6	59.1	Telegraph Road/Ventura College - 40 ft from Telegraph Road centerline
15	67.7	90.7	68.5	55.1	College Drive - 20 ft from College Drive centerline
16	69	84.6	71.6	64	Highway 101/Main St and Arundell - 60 ft from freeway, 16 ft from Arundell centerline
17	68.1	88	72.2	50.2	Poli Street/Brent Street - 40 ft from Poli centerline
18	71.9	92.3	73.8	59.1	Loma Vista/Brent Street - 25 ft from Loma Vista centerline
19	62.3	80.3	65.5	54.9	California Street/Main Street - 22 ft from California St centerline
20	64.5	89.1	64.7	52.1	Channel Drive/Jones Street - 22 ft from Channel Drive centerline
21	60.9	75.5	65.1	50.8	Catalina Street/Evans Street - 25 ft from Catalina centerline
22	51.7	65.3	54	47.2	Marina Park/Pierpont
23	72.6	84	75.7	67.3	Harbor Blvd/Peninsula - 80 ft from freeway, 36 feet to Harbor centerline
24	52.3	81.2	53.3	44.1	Church Street/Aliso - 20 ft from Church St centerline
25	72.5	89.6	76.2	61.5	Thompson Blvd./Hemlock Street - 30 ft from Thompson centerline

Table 4.10-2
Noise Survey Results

Site \#	Measured Noise Level (dBA)			Measurement Location	
	Leq	Lmax	L(10)	L(90)	
26	61.2	79.4	61.8	57.1	Seaside Park - approximately 1,000 from freeway and train tracks
27	68	82.1	71.8	56.8	Olive Street/Prospect Drive - 11 feet from Olive centerline
28	74.4	85.3	77.8	66.5	Stanley Avenue/Olive Street - 20 ft from Stanley Ave centerline
29	72	89.5	75.2	58.2	Ventura Ave/Seneca Street - 30 ft from Ventura Ave centerline
30	58.1	76.3	62.1	46.4	Kalorama Street/Poli Street - 20 feet from Kalorama centerline
31	45.6	57	$*$	$*$	Tioga/Caliente - east of Grant Park (firing range audible)
32	62.7	77.7	$*$	$*$	Cedar Street/E. Simpson Street - west of Grant Park (firing range inaudible)
33	47.2	63.1	$*$	$*$	Cedar Street/Cedar Place - west of Grant Park (firing range inaudible)
34	62.8	80.1	65.2	56.6	South Figueroa near Seaside Park - between apartments and parking lot (auto racing at Fairgrounds in progress)

*Data unavailable
Source: Rincon Consultants, October 2001 - April 2002. Each measurement was 20 minutes in duration.
$L_{\text {eq }}=$ energy equivalent sound level. This value is representative of the long-term annoyance potential as well as other effects of the noise.
$L_{\max }=$ the maximum sound level during the measurement period.
$L_{10}=$ the near maximum sound level. This value is exceeded 10% of the time during the measurement period.
$L_{90}=$ the near minimum sound level. This value is exceeded 90% of the time during the measurement period.

Table 4.10-3
Highway Traffic Noise Barrier Study Findings (dBA)

Highway	Project Location	10 Min. Leq	Peak Hour Noise Level (dBA)	Barrier Noise Level Reduction (dBA)
101	Northbound: 0.25 mile west of Lemon Grove Ave. to Main Street	68	71	5
126	Eastbound: 0.48 mile east of Kimball Rd. to Wells Rd.	72	74	7
$101 / 126$	Northbound: Telephone Rd. to SR 126, westbound	71	73	5
126	Westbound: Victoria Ave. to Hill Rd.	70	72	6

Source: Illingworth \& Rodkin, Inc., Acoustics/Air Quality, Noise Readings, Planning and Cost Estimates for the Development of Noise Barriers in Ventura County, 2000.

Railroad Operations. The Union Pacific Railroad (UPRR) operates one rail line through the City. The UPRR corridor runs parallel to Highway 101 crossing over the highway in the northern portion of the City. The eastern spur of the railroad line that runs from Ventura east towards Fillmore where the tracks diverge near Highway 101 is no longer actively used for freight or passenger transport. Train pass-bys can be disturbing to nearby receivers, particularly at night, as evidenced by the maximum sound level (Lmax) of 83.7 dBA measured at Site 5. Trains also generate ground-borne vibration and noise, which varies depending on the type of train, weight of load haulage, track conditions, and other factors.

Rail transit service is provided by Metrolink and AMTRAK. Metrolink provides rail service between Ventura and Union Station in Los Angeles on the Ventura County line. Presently, two trains in both the daytime and evening operate the entire length of the route between Ventura and Union Station. Rail service is also provided by AMTRAK via the Pacific Surfliner, which runs between San Luispo to the north and San Diego to the south. Four trains operate daily, with one additional train on the weekends and one additional train during the weekdays.

Commercial, Industrial and Agricultural Operations. Commercial and industrial activity can produce noise from heavy traffic, deliveries, and machinery. While industrial activity primarily occurs along Ventura Avenue and parts of the Arundell District, commercial activity occurs throughout the City, particularly along major roadways. Measurements near commercial and industrial activity include Sites $25,27,28,29$, and 30 . Noise levels at these sites ranged from 58 to 74 dBA, although higher noise levels were mainly a result of heavy traffic.

Agricultural operations produce noise associated with equipment such as diesel engines, aerial application aircrafts (crop dusters), bird frightening devices, and tractors. Many of these noise sources are related to seasonal operations.

Recreational Activity. Certain recreational activities that occur within the City may be considered substantial noise generators. Noise-generating events occur periodically, but may produce high levels of noise that are audible at nearby locations. Three main sources of recreational nuisance noise include the Ventura Shooting Range, the Ventura Raceway at Seaside Park, and the Ventura County Fairgrounds.

The outdoor Ventura Shooting Range in the northern part of Grant Park has been the source of occasional noise complaints in the Downtown and West Ventura areas. In response, the City Parks Department completed a study in 1998 that measured noise levels generated by various ammunition types. Table 4.10-4 describes the highest sound levels measured at four sites.

Measurements recorded during the community noise survey in West Ventura (Sites 31, 32, and 33) while the shooting range was open indicated firing range could be heard only from Site 33. This may be due to installation of sound barriers on the north side of the range since the 1998 study; however, the 1998 measurements were obtained at locations slightly farther north, where the range may still be audible. The range will be closed to the public in January 2006, but will continue to be used by the Ventura Police Department.

The Ventura Raceway at Seaside Park hosts auto races on Saturday evenings. A measurement taken near the end of S. Figueroa Street (Site 34) during a race registered maximum noise levels of

Table 4.10-4
Noise from the Ventura Shooting Range

Site	Wind Speed	Ammunition Type	dBA
348 Carr Drive	$0-3$.45 caliber pistol (one pistol), 5 rounds/ 5 seconds	72
254 Carr Drive	$2-4$.45 and .40 caliber pistols (one of each), 5 rounds/ 10 seconds	74
$258 / 265$ Barnett Street	$4-6$.45 caliber pistol (one pistol), 5 rounds/5 seconds	71
173 Barnett Street	$0-2$.45 and .40 caliber pistol (one of each), 5 rounds $/ 5$ seconds	71

Source: City of Ventura, Pistol Range Sound Test, 1998.
80.1 dBA. The Ventura County Fairgrounds holds events, such as music concerts, fireworks, and other events that create noise audible to residential areas.
d. Noise Sensitive Uses. Noise-sensitive locations include areas where an excessive amount of noise would interfere with normal operations or activities and where a high degree of noise control may be necessary. Examples include schools, hospitals, and residential areas. Recreational areas may be considered noise-sensitive where quiet and solitude may be an important aspect of the specific recreational experience (such as a garden or campground). In most instances, recreational areas are tolerant of higher noise levels.

A number of residential areas in Ventura are located adjacent to freeways or along major arterials. The community noise survey included measurements at eight residential sites ($1,6,7$, 10, 12, 17, 20, and 24). Residential areas experienced sound levels ranging from 52.3 to 70.0 dBA. The highest measured residential noise levels were along Telegraph Road, though levels exceeding 60 dBA were also measured along Poli Street, Channel Drive, Aurora Drive, and Nightingale Street.
Many schools in the Planning Area are located adjacent to major roads, with resultant elevated noise levels. In particular, Buena High School and Mound Elementary School are located directly adjacent to SR 126, while Sheridan Way Elementary is located adjacent to SR 33. Several other area schools are located on major arterials with relatively high noise levels. The community noise survey included measurements at four schools (sites $11,14,15$, and 21), with sound level measurements ranging from 60.9 to 73.6 dBA .

The two hospitals in Ventura (Community Memorial and the County Medical Center) are both located on Loma Vista Road, a relatively highly traveled arterial. However, with the exception of the road frontage, the hospital sites are relatively quiet due to shielding by onsite structures, and interior noise levels are not known to exceed acceptable levels at either facility. The community noise survey included a measurement at Community Memorial Hospital (site 18).

4.10.2 Impact Analysis

a. Methodology and Thresholds of Significance. The analysis of noise impacts focuses upon the project's impact to surrounding noise-sensitive land uses and the impact of existing noise sources upon residents of the Planning Area.

The roadway noise contours were calculated using the Federal Highway Administration's Highway Traffic Noise Prediction Model, U.S. Department of Transportation (1998). Model input data included existing and projected average daily traffic levels, day/evening/night percentages of automobiles, medium and heavy trucks, vehicle speeds; evening peak hour traffic levels, and roadway widths. A general estimation of freeway height with respect to adjacent land (elevated, level or depressed) is also considered. The average daily traffic assumptions and distances to the roadway $60,65,70$, and 75 dBA CNEL contours are provided in the Appendix.

For the purpose of this analysis, a significant impact would occur if growth accommodated under the 2005 General Plan would result in any of the following conditions:

- Exposure of persons to or generation of noise levels in excess of standards established in the General plan or noise ordinance
- Exposure of persons to or generation of excessive ground-borne noise levels
- A substantial permanent increase in ambient noise levels above levels existing without the project
- A substantial temporary or periodic increase in ambient noise levels above levels existing without the project

For purposes of defining a "substantial" increase in traffic noise, the Federal Interagency Committee on Noise (FICON) recommendations were used. These are as follows:

Significance of Changes in Operational Roadway Noise Exposure

Ambient Noise Level (CNEL)	Significant Impact
$<60 \mathrm{~dB}$	+5.0 dB or more
$60-65 \mathrm{~dB}$	+3.0 dB or more
$>65 \mathrm{~dB}$	+1.5 dB or more

Temporary or periodic noise increases associated with General Plan implementation would primarily result from future construction activity. A temporary increase in noise is considered "substantial" if it would be in conflict with the City Noise Ordinance, which allows noisegenerating construction activity between the hours of 7 AM and 8 PM .
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of noise impacts for each of the scenarios under consideration. A discussion of project impacts follows.

$$
\begin{array}{ll}
\text { Impact N-1 } & \begin{array}{l}
\text { Growth accommodated through } 2025 \text { under any of the six } \\
\text { land use scenarios would incrementally increase noise along } \\
\text { area roadways and potentially expose new noise sensitive } \\
\text { uses to noise exceeding City standards. Implementation of } \\
\text { proposed General Plan policies would address potential } \\
\text { exposure to excessive noise for new development. Noise } \\
\\
\\
\\
\\
\text { levels would generally increase for existing uses adjacent to } \\
\text { not be significant, but a potentially significant noise would } \\
\text { increase could occur along North Ventura Avenue under any } \\
\\
\text { scenario and along Johnson Drive under Scenario 6. Impacts } \\
\\
\\
\\
\text { are therefore considered Class II, significant but mitigable, } \\
\text { for all six scenarios. }
\end{array} .
\end{array}
$$

Noise contours for major transportation sources in Ventura have been generated for current and future conditions. The noise contours represent bands of equal noise exposure. They are used to provide a general visualization of sound levels, not absolute lines of demarcation. For example, a 65 dBA CNEL level describes an area as having a time-average constant sound level of roughly 65 dBA even though the area would experience individual sound events with higher and lower sound levels. Noise contours present a worst-case scenario in which no structures, sound walls, or other barriers intervene between the source and receiver; actual noise levels may be considerably lower than indicated. Figure $4.10-3$ shows noise contours that were developed using existing daily traffic data.

In order to generate noise contours for 2025 conditions, data from the traffic analysis described in Section 4.12, Transportation and Circulation, was used to represent the most intensification, and therefore the most conservative estimate of future noise levels. The future noise contour map is shown on Figure 4.10-4. The map shows several possible roadway extensions that could be constructed if either the Olivas expansion area or Serra expansion area is developed at some point in the future. Contours generated from estimated traffic levels on these roadways would only apply if the roadway were constructed.

As seen on the existing noise contour map, areas near freeways and major arterials are routinely exposed to noise levels that exceed 60 dBA CNEL. In 2025, expected increases in traffic levels would result in a greater overall area (about half of the entire city) within the 60 dBA contour, as compared to existing conditions. In particular, the increased traffic levels on SR 126 expected in 2025 would extend the 60 dBA contour to include almost the entire area between Telegraph Road and Telephone Road. Traffic increases on Wells Road, Olivas Park Drive, and Foothill Road also result in extending the boundaries of the 60 dBA contour along those roads. It should be noted that these contours do not account for the presence of sounds walls and other barriers, which are present in many locations. The purpose of the contour map

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Traffic Noise Impacts on Existing and Proposed Noise-sensitive Development (Impact N -1)	Projected traffic growth would increase noise along all major transportation corridors. Compliance with Action 7.32 reduces impacts to future development to less than significant. Impacts to existing development generally are not significant, but could be significant along N . Ventura Avenue. Impacts are considered Class II, significant but mitigable.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are exposed to noise from various road sources (SR 33, U.S. 101, Olivas Park Drive, Telephone Road). Action 7.32 addresses possible impacts to new development. Impacts to sensitive uses along North Ventura Avenue are Class II, significant but mitigable.	Impacts similar to Scenario 2 except no development would occur in the Serra expansion area and traffic noise would be incrementally greater in and adjacent to the Olivas expansion area. Action 7.32 addresses possible impacts to new development. Impacts to sensitive uses along North Ventura Avenue are Class II, significant but mitigable.	Impacts similar to Scenario 2 except no development would occur in the Olivas expansion area and traffic noise would be incrementally greater in and adjacent to the Serra expansion area. Action 7.32 addresses possible impacts to new development. Impacts to sensitive uses along North Ventura Avenue are Class II, significant but mitigable.	Intensification/reuse impacts would be similar to Scenario 1. Action 7.32 addresses possible impacts to new development. Traffic generation along North Ventura Avenue would be greater than under the other scenarios. Impacts to sensitive uses along North Ventura Avenue are Class II, significant but mitigable.	Impacts similar to Scenario 2 except noise increases would be greater along portions of Victoria Avenue and Johnson Drive. Action 7.32 addresses possible impacts to new development. Impacts to sensitive uses along North Ventura Avenue and Johnson Drive are Class II, significant but mitigable.
Construction Noise Impacts on Noisesensitive Uses (Impact N-2)	Construction of individual projects in the Planning Area could intermittently generate high noise levels. Compliance with Noise Ordinance restrictions on construction timing reduce this impact to Class III, less than significant.	Impacts similar to Scenario 1. Compliance with Noise Ordinance restrictions on construction timing reduce this impact to Class III, less than significant.	Impacts similar to Scenario 1. Compliance with Noise Ordinance restrictions on construction timing reduce this impact to Class III, less than significant.	Impacts similar to Scenario 1. Compliance with Noise Ordinance restrictions on construction timing reduce this impact to Class III, less than significant.	Impacts similar to Scenario 1. Compliance with Noise Ordinance restrictions on construction timing reduce this impact to Class III, less than significant.	Impacts similar to Scenario 1. Compliance with Noise Ordinance restrictions on construction timing reduce this impact to Class III, less than significant.
Industrial Noise (Impact N-3)	Mixed use development near Industrial and commercial uses could expose noise	Intensification/reuse impacts similar to Scenario 1. Conversion of agricultural lands in	Impacts similar to Scenario 2 except the elimination of potential conflicts in the Serra area would	Impacts similar to Scenario 2 except the elimination of potential conflicts in the Olivas area would	Intensification/reuse impacts similar to Scenario 1. Residences in the western portion of the	Intensification/reuse impacts similar to Scenario 1. Conversion of agricultural lands in

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
	sensitive uses to excessive noise. Impacts are Class II, significant but mitigable.	expansion areas reduces the potential for noise conflicts. Impacts are Class II, significant but mitigable.	not occur. Impacts are Class II, significant but mitigable.	not occur. Impacts are Class II, significant but mitigable.	Western Cañada Larga expansion areas could be exposed to industrial noise. Impacts are Class II, significant but mitigable.	expansion areas reduces the potential for noise conflicts. Impacts are Class II, significant but mitigable.
Rail Noise (Impact N-4)	Development of noise-sensitive land uses near the UPRR corridor may result in noise impacts. Compliance with Action 7.32 reduces noise impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. The UPRR railroad may affect sensitive uses in the Olivas expansion area. Compliance with Action 7.32 reduces impacts to Class III, less than significant.	Impacts similar to Scenario 2. Compliance with Action 7.32 reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas would not be exposed to railroad noise. Compliance with Action 7.32 reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas would not be exposed to railroad noise. Compliance with Action 7.32 reduces impacts to Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas would not be exposed to railroad noise. Compliance with Action 7.32 reduces impacts to Class III, less than significant.
Noise-generating Recreational Uses (Impact N-5)	Continued operation of the Ventura Shooting Range and the Ventura Raceway may be audible at some residential locations. However, because noise levels are within thresholds, impacts are considered Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are not subject to recreational noise sources. Impacts are Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are not subject to recreational noise sources. Impacts are Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are not subject to recreational noise sources. Impacts are Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are not subject to recreational noise sources. Impacts are Class III, less than significant.	Intensification/reuse impacts similar to Scenario 1. Expansion areas are not subject to recreational noise sources. Impacts are Class III, less than significant.

60dBA Contour - Schools
65dBA Contour - Government
70dBA Contour + Hospital

- Recreational Centers
— Major Road
- Road

\square Road	Rail Line
Barrancas	
Rivers	0
\square City Limits	0.5 Miles
\square Planning Area	

is to identify areas where noise is a potential concern. In many instances, actual sound levels may be lower than shown on Figure 4.10-4 and mitigation may not be required in all cases.

The 2005 General Plan would accommodate development of new residential uses (and other sensitive receptors) in areas exceeding the 60 dBA CNEL noise standard. In addition, projected traffic growth would increase noise levels along area roadways.

General Plan Action 7.32 requires an acoustical analysis and mitigation prior to development of any residential development within the 60 dBA CNEL contour, as shown on Figure 4.10-4, and incorporation of appropriate mitigation to reduce exterior noise at residences to 65 dBA CNEL or lower and reduce interior noise levels at residences to 45 dBA CNEL or lower. In addition, Action 7.33 calls for the construction of sound walls along U.S. 101, SR 126, and SR 33 in areas where existing residences are exposed to exterior noise exceeding 65 dBA CNEL, as funding becomes available.

Scenario 1 - Intensification/Reuse Only

As discussed in Section 4.12, Transportation and Circulation, overall citywide growth in average daily traffic (ADT) through 2025 is estimated at 18.7% under this scenario. Traffic growth would be somewhat higher or lower on certain roadways, but most of the roadways in the Planning Area are projected to experience traffic growth of 25% or less. A large portion of the Planning Area is already within the 60 dBA CNEL contour, and in the 2025 scenario, a larger portion of the Planning Area would potentially be exposed to noise levels of 60 dBA CNEL or higher. Noise levels are and would remain highest along portions of U.S. 101, SR 126, and SR 33 that lack sound walls.

For areas where noise levels already exceed the City's 65 dBA CNEL exterior standard for residential uses, growth accommodated under Scenario 1 would further this exceedance. However, the increase in noise associated with traffic increases of 25% or less would be less than 1 dBA , an increase that would not be audible to most listeners and is less than the FICON standards described above (3 dBA increase if ambient noise is 60-65 dBA CNEL and 1.5 dBA increase if ambient noise exceeds 65 dBA CNEL). The possible extensions of roadways such as Floral Drive, Cedar Street, and North Bank Drive would create a new noise source for adjacent residences; however, the relatively low traffic volumes anticipated for these road extensions would not be expected to generate noise exceeding City standards. Thus, although traffic growth would increase overall noise exposure in the community, increased exposure to noise generally is not considered a significant impact of growth accommodated under this scenario. The possible exception is North Ventura Avenue, which could potentially experience noise level increases of over 1.5 dBA . Such increases would affect relatively few sensitive receivers; nevertheless, this is considered a potentially significant impact.

Much of the future development that could be accommodated within districts, corridors, and neighborhood centers would be located along main travel corridors with relatively high noise levels. With the exception of portions of the Arundell district, all residential development within districts and corridors would potentially be exposed to noise exceeding 60 dBA CNEL. Noise levels in portions of the Downtown, North Avenue, Upper North Avenue, Arundell, North Bank, and Montalvo districts are projected to exceed 65 dBA CNEL. Noise levels along portions of the Main Street, Thompson Boulevard, Telegraph Road, Victoria Avenue, Johnson

City of Ventura

Drive, and Wells Road corridors may also exceed 65 dBA CNEL. Redesignation of industrial properties adjacent to SR 33 in West Ventura for residential use could also expose residences to noise over 65 dBA CNEL. Exposure to excessive noise levels in these areas would be addressed through Action 7.32, which requires acoustical analysis for projects within areas exposed to noise levels exceeding 60 dBA CNEL and implementation of appropriate mitigation to reduce exterior noise levels to below 65 dBA CNEL and interior levels to below 45 dBA CNEL. Depending upon the project and location, mitigation could consist of site design to shield exterior areas, construction of sound walls or other barriers, and/or incorporation of building features (double paned windows, solid core doors, special building materials) that reduce interior noise. Compliance with this action would reduce noise impacts for future developments to a less than significant level.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Traffic noise impacts to existing uses would be similar to those described under Scenario 1. Overall citywide growth in average daily traffic (ADT) through 2025 is estimated at 22.5\% under this scenario. Traffic growth would be somewhat higher or lower on certain roadways, but most of the roadways in the Planning Area are projected to experience traffic growth of 25% or less. Certain areas of the City - notably, areas adjacent to U.S 101, SR 126, and SR 33 that lack sound walls - will continue to be exposed to noise exceeding 65 dBA CNEL. However, the increase in noise associated with future traffic increases is generally expected to be less than 1 dBA, which is less than the FICON standards described above. Noise sensitive uses are not located adjacent to most of the roads projected to experience higher increases in traffic and associated noise, such as Olivas Park Drive, Wells Road, Stanley Avenue, Mills Road south of Telegraph Road, and Victoria Avenue south of U.S. 101. Thus, although noise levels may audibly increase on these roads, such increases would not substantially affect noise sensitive uses.

An approximately 50% increase in traffic is projected on the segment of Kimball Road between SR 126 and Telephone Road as the extension of Kimball Road that would accompany Serra area development attracts traffic to that roadway. This could generate noise level increases of over 1.5 dBA ; however, the only noise-sensitive uses along that road segment (single family residences along the east side of Kimball Road) are protected by a sound wall. A relatively high increase in traffic - approximately 44% - is also projected along Harbor Boulevard south of Seaward Avenue (which is fronted by residential uses). However, the noise level increase associated with such an increase is estimated at 1.2 dBA , which is less than the 1.5 dBA threshold that would apply along that roadway.

Although traffic growth would increase overall noise exposure in the community, increased exposure to noise generally is not considered a significant impact of growth accommodated under this scenario. As with Scenario 1, the potential exception is North Ventura Avenue. Noise level increases of more than 1.5 dBA could occur along that roadway, which is a potentially significant impact. Implementation of 2005 General Plan Action 7.33 could potentially address exposure of existing residences to freeway noise through construction of sound walls along U.S. 101, SR 126, and SR 33 where residences are exposed to noise exceeding 65 dBA CNEL.

Similar to Scenario 1, much of the future development that could be accommodated within districts, corridors, and neighborhood centers under this scenario would be located along main travel corridors with relatively high noise levels. In addition, as shown on Figure 4.10-4, portions of the North Avenue, Olivas, and Serra expansion areas would also be exposed to noise in excess of 60 dBA CNEL. The westernmost portion of the North Avenue expansion area and the northernmost portion of the Olivas expansion area would potentially be exposed to noise in excess of 65 dBA CNEL. Exposure to excessive noise levels would be addressed through the General Plan Action 7.32, which requires acoustical analysis for projects within areas exposed to noise levels exceeding 60 dBA CNEL and implementation of appropriate mitigation to reduce exterior noise levels to below 65 dBA CNEL and interior levels to below 45 dBA CNEL. Compliance with this action would reduce noise impacts for future developments to a less than significant level.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts to existing uses related to traffic growth would be similar to those described under Scenario 1. Overall citywide growth in average daily traffic (ADT) through 2025 is estimated at 21.9% under this scenario. Traffic growth would be somewhat higher or lower on certain roadways, but most of the roadways in the Planning Area are projected to experience traffic growth of 25% or less. Certain areas of the City - notably, areas adjacent to U.S 101, SR 126, and SR 33 that lack sound walls - will continue to be exposed to noise exceeding 65 dBA CNEL. However, the increase in noise associated with future traffic increases is generally expected to be less than 1 dBA , which is less than the FICON standards described above. As with Scenario 2, a relatively high increase in traffic - approximately 52% - is projected along Harbor Boulevard south of Seaward Avenue (which is fronted by residential uses). However, the noise level increase associated with such an increase is estimated at 1.3 dBA , which is less than the 1.5 dBA threshold that would apply along that roadway.

Traffic growth would increase overall noise exposure in the community, but increased exposure to noise generally is not considered a significant impact of growth accommodated under this scenario. As with Scenarios 1 and 2, the potential exception is North Ventura Avenue. Noise level increases of more than 1.5 dBA could occur along that roadway, which is a potentially significant impact. Implementation of General Plan Action 7.33 could address exposure of existing residences to freeway noise through construction of sound walls along U.S. 101, SR 126, and SR 33 where residences are exposed to noise exceeding 65 dBA CNEL.

Similar to Scenario 1, much of the future development that could be accommodated within districts, corridors, and neighborhood centers under this scenario would be located along main travel corridors with relatively high noise levels. In addition, as shown on Figure 4.10-4, portions of the North Avenue and Olivas expansion areas would also be exposed to noise in excess of 60 dBA CNEL. The westernmost portion of the North Avenue expansion area and the northernmost portion of the Olivas expansion area would potentially be exposed to noise in excess of 65 dBA CNEL. Exposure to excessive noise levels would be addressed through the General Plan Action 7.32, which requires acoustical analysis for projects within areas exposed to noise levels exceeding 60 dBA CNEL and implementation of appropriate mitigation to reduce exterior noise levels to below 65 dBA CNEL and interior levels to below 45 dBA CNEL. Compliance with this action would reduce noise impacts for future developments to a less than significant level.
4.10-21

City of Ventura

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts to existing uses related to traffic growth would be similar to those described under Scenario 1. Overall citywide growth in average daily traffic (ADT) through 2025 is estimated at 21.7% under this scenario. Traffic growth would be somewhat higher or lower on certain roadways, but most of the roadways in the Planning Area are projected to experience traffic growth of 25% or less. Certain areas of the City - notably, areas adjacent to U.S 101, SR 126, and SR 33 that lack sound walls - will continue to be exposed to noise exceeding 65 dBA CNEL. However, the increase in noise associated with future traffic increases is generally expected to be less than 1 dBA , which is less than the FICON standards described above. Noise sensitive uses are not located adjacent to most of the roads projected to experience higher increases in traffic and associated noise, such as Olivas Park Drive, Wells Road, Stanley Avenue, and Victoria Avenue south of U.S. 101. Noise levels may audibly increase on these roads, but such increases would not substantially affect noise sensitive uses. Similar to Scenario 2, Kimball Road between SR 126 and Telephone Road would experience an approximately 50% increase in traffic under this scenario. This could generate noise level increases of over 1.5 dBA ; however, the only noise-sensitive uses along that road segment (single family residences along the east side of Kimball Road) are protected by a sound wall.

Traffic growth would increase overall noise exposure in the community, but increased exposure to noise generally is not considered a significant impact of growth accommodated under this scenario. As with Scenarios 1-3, the potential exception is North Ventura Avenue. Noise level increases of more than 1.5 dBA could occur along that roadway, which is a potentially significant impact. Implementation of 2005 General Plan Action 7.33 could address exposure of existing residences to freeway noise through construction of sound walls along U.S. 101, SR 126, and SR 33 where residences are exposed to noise exceeding 65 dBA CNEL.

Similar to Scenario 1, much of the future development that could be accommodated within districts, corridors, and neighborhood centers under this scenario would be located along main travel corridors with relatively high noise levels. In addition, as shown on Figure 4.10-4, portions of the North Avenue and Serra expansion areas would be exposed to noise in excess of 60 dBA CNEL. The westernmost portion of the North Avenue expansion area would potentially be exposed to noise in excess of 65 dBA CNEL. Exposure to excessive noise levels would be addressed through the 2005 General Plan Action 7.32, which requires acoustical analysis for projects within areas exposed to noise levels exceeding 60 dBA CNEL and implementation of appropriate mitigation to reduce exterior noise levels to below 65 dBA CNEL and interior levels to below 45 dBA CNEL. Compliance with this action would reduce noise impacts for future developments to a less than significant level.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts to existing uses related to traffic growth would be similar to those described under Scenario 1. Overall citywide growth in average daily traffic (ADT) through 2025 is estimated at 20.6% under this scenario. Traffic growth would be somewhat higher or lower on certain roadways, but most of the roadways in the Planning Area are projected to experience traffic growth of 25% or less. Certain areas of the City - notably, areas adjacent to U.S 101, SR 126, and SR 33 that lack sound walls - will continue to be exposed to noise exceeding 65 dBA CNEL. However, the increase in noise associated with future traffic increases is generally expected to
be less than 1 dBA , which is less than the FICON standards described above. Noise sensitive uses are not located adjacent to most of the roads projected to experience higher increases in traffic and associated noise, such as Olivas Park Drive, Wells Road, Stanley Avenue, and Victoria Avenue south of U.S. 101. Although noise levels may audibly increase on these roads, such increases would not substantially affect noise sensitive uses. Traffic levels are projected to more than double along Ventura Avenue north of Shell Road under this scenario, from about 6,000 ADT to 15,000 ADT. This would increase noise along that road segment by more than 3 dBA, which is a potentially audible increase. Although the number of sensitive uses along that roadway is limited, residential development fronting Ventura Avenue would potentially be exposed to noise exceeding the 1.5 dBA threshold. Implementation of General Plan Action 7.33 could reduce overall noise exposure of existing residences in the North Avenue area through construction of a sound wall along SR 33; however, because there is no assurance that funding would be available for a sound wall, impacts associated with this scenario are considered significant.

Similar to Scenario 1, much of the future development that could be accommodated within districts, corridors, and neighborhood centers under this scenario would be located along main travel corridors with relatively high noise levels. In addition, as shown on Figure 4.10-4, most of the North Avenue and Western Cañada Larga expansion areas would be exposed to noise in excess of 60 dBA CNEL and portions of both expansion areas would potentially be exposed to noise in excess of 65 dBA CNEL. Exposure to excessive noise levels would be addressed through the 2005 General Plan Action 7.32, which requires acoustical analysis for projects within areas exposed to noise levels exceeding 60 dBA CNEL and implementation of appropriate mitigation to reduce exterior noise levels to below 65 dBA CNEL and interior levels to below 45 dBA CNEL. Compliance with this action would reduce noise impacts for future developments to a less than significant level.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts to existing uses related to traffic growth would be similar to those described under Scenario 1. Overall citywide growth in average daily traffic (ADT) through 2025 is estimated at 21.7% under this scenario. Traffic growth would be somewhat higher or lower on certain roadways, but most of the roadways in the Planning Area are projected to experience traffic growth of 25% or less. Certain areas of the City - notably, areas adjacent to U.S 101, SR 126, and SR 33 that lack sound walls - will continue to be exposed to noise exceeding 65 dBA CNEL. However, the increase in noise associated with future traffic increases is generally expected to be less than 1 dBA , which is less than the FICON standards described above. Noise sensitive uses are not located adjacent to most of the roads projected to experience higher increases in traffic and associated noise, such as Olivas Park Drive, Wells Road, Stanley Avenue, and Victoria Avenue south of U.S. 101. Although noise levels may audibly increase on these roads, such increases would not substantially affect noise sensitive uses. Victoria Avenue would experience a substantially greater increase in traffic and related noise under this scenario than the other scenarios, with overall projected traffic increases of more than 40% on some segments. This would increase noise exposure as compared to the other scenarios; however, the increase would still be about 1 dBA , which is less than the 1.5 dBA threshold.

Impacts associated with traffic noise increases generally would not be significant under this scenario. As with the other scenarios, one potential exception is North Ventura Avenue. Noise
level increases of more than 1.5 dBA could occur along that roadway, which is a potentially significant impact. In addition, it is assumed that Johnson Drive would be extended across SR 126 to Foothill Road under this scenario. This road extension would be expected to substantially increase traffic levels along the length of Johnson Drive as that roadway would provide a direct link between SR 126 and U.S. 101. The new segment north of Telephone Road would handle a projected 32,000 ADT in 2025, while the traffic level is projected to more than double (from 10,000 ADT existing to $26,000 \mathrm{ADT}$ in 2025) under this scenario. It is anticipated that sound walls would be constructed along new segments, but noise levels would increase by more than 3 dBA along the existing segments of Johnson Drive, portions of which are fronted by single and multiple family residences. This is a significant impact. It should be noted that the extended Johnson Drive anticipated under this scenario would be expected to divert traffic from portions of Foothill Road and Kimball Road, thus reducing noise levels along those roadways.

Similar to Scenario 1, much of the future development that could be accommodated within districts, corridors, and neighborhood centers under this scenario would be located along main travel corridors with relatively high noise levels. In addition, as shown on Figure 4.10-4, portions of the North Avenue and Poinsettia expansion areas would be exposed to noise in excess of 60 dBA CNEL. The westernmost portion of the North Avenue expansion area would potentially be exposed to noise in excess of 65 dBA CNEL. The southernmost portion of the Poinsettia expansion area adjacent to SR 126 would also be exposed to noise exceeding 65 dBA CNEL. Exposure to excessive noise levels would be addressed through 2005 General Plan Action 7.32, which requires acoustical analysis for projects within areas exposed to noise levels exceeding 60 dBA CNEL and implementation of appropriate mitigation to reduce exterior noise levels to below 65 dBA CNEL and interior levels to below 45 dBA CNEL. Compliance with this action would reduce noise impacts for future developments to a less than significant level.

MITIGATION MEASURES

Compliance with existing regulations and proposed 2005 General Plan policies and actions would reduce potential noise impacts in most locations to a less than significant level. Construction of a sound wall along SR 33 as indicated under General Plan Action 7.33 could address noise exposure along North Ventura Avenue by reducing noise from the nearby SR 33. However, because funding and construction of a sound wall cannot be assured and such mitigation is not available for the potential significant impact along Johnson Drive under Scenario 6, the following measure is recommended.

N-1 Rubberized Asphalt. The following action shall be added to the 2005 General Plan to reduce general traffic noise:

- As feasible, use rubberized asphalt or other sound reducing material for paving and re-paving of City streets.

Studies have indicated that rubberized asphalt can reduce overall roadway noise by 3-5 dBA as compared to conventional asphalt.

SIGNIFICANCE AFTER MITIGATION

Roadway noise levels would generally rise as traffic levels increase under any of the General Plan land use scenarios. However, implementation of proposed policies and actions, in combination with the additional action recommended above, would reduce impacts associated with projected development to a less than significant level for any of the six land use scenarios. It is presumed that use of rubberized asphalt or other noise attenuation methods would be feasible for Ventura Avenue (which could experience a significant noise increase under any scenario) and Johnson Drive (which could experience a significant noise increase under Scenario 6).

$$
\begin{array}{ll}
\text { Impact N-2 } & \begin{array}{l}
\text { Construction of individual projects throughout the Planning } \\
\text { Area could intermittently generate high noise levels under } \\
\text { any of the land use scenarios. This may affect sensitive } \\
\text { receptors near construction sites. However, compliance with }
\end{array} \\
& \begin{array}{l}
\text { Noise Ordinance restrictions on construction timing would } \\
\text { reduce this impact to a Class III, less than significant level. }
\end{array}
\end{array}
$$

Construction noise from individual projects through 2025 could have noise impacts on adjacent noise-sensitive land uses. Since there are no specific plans or time scales for individual development projects, it is not possible to determine exact noise levels, locations, or time period for construction.

As shown in Table 4.10-5, the noise level associated with heavy equipment typically ranges from about 78 to 88 dBA at 50 feet from the source. Such noise levels can be disturbing, particularly to noise-sensitive uses such as residences, schools, and hospitals. The grading/excavation phase of project construction tends to create the highest construction noise levels because of the operation of heavy equipment.

Noise levels similar to those shown in Table 4.10-5 would be expected to occur with individual development projects under any of the land use scenarios. Impacts related to intensification/ reuse would be essentially the same under any of the six scenarios and could occur throughout the Planning Area. Noise levels due to construction activity in expansion areas would also be similar. Development of the Serra and Poinsettia expansion areas would have the highest likelihood of creating noise disturbance because of their proximity to noise-sensitive uses (residences for Serra, residences and schools for Poinsettia).

Section 10.650.150 of the Ventura Noise Ordinance exempts construction activities from the standards shown in Table 4.10-1 in the Setting, provided that they are conducted between 7 A.M. and 8 P.M. Assuming compliance with these timing restrictions, noise associated with construction of individual projects would not be significant.

MITIGATION MEASURES

Compliance with the Ventura Noise Ordinance would reduce temporary impacts associated with construction noise to less than significant.

Table 4.10-5
Typical Noise Levels at Construction Sites

Construction Phase	Average Noise Level at 50 Feet	
	Minimum Required Equipment On-Site	All Pertinent Equipment On-Site
Clearing	84 dBA	84 dBA
Excavation	78 dBA	88 dBA
Foundation/Conditioning	88 dBA	88 dBA
Laying Subbase, Paving	78 dBA	79 dBA
Finishing and Cleanup	84 dBA	84 dBA

Source: Bolt, Beranek and Newman, "Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances," prepared for the U.S. Environmental Protection Agency, 1971.

SIGNIFICANCE AFTER MITIGATION

Any of the scenarios would accommodate construction activity that would potentially create temporary noise disturbance to uses adjacent to individual construction sites. However, assuming compliance with the City Noise Ordinance, impacts would be less than significant for any of the six scenarios.

$$
\begin{array}{ll}
\text { Impact N-3 } & \text { The placement of residential and other noise-sensitive uses } \\
\text { in proximity to industrial and commercial uses could } \\
\text { potentially expose such uses to high noise levels. The City } \\
\text { Noise Ordinance restrictions do not apply to noise-sensitive } \\
\text { uses within commercial or industrial zones. Therefore, } \\
\text { impacts would be Class II, significant but mitigable, for any } \\
\text { of the six land use scenarios. }
\end{array}
$$

Commercial and industrial activity can produce noise from heavy traffic, deliveries, and machinery. While industrial activity primarily occurs along Ventura Avenue and parts of the Arundell District, commercial activity occurs throughout the City, particularly along major roadways. Agricultural operations produce noise associated with equipment such as aerial application aircrafts (crop dusters), diesel engines, and tractors. Many of these noise sources are related to seasonal operations. Development of residential uses adjacent to or near industrial, commercial, or agricultural uses could result in potential impacts due to noise from these operations.

The City of Ventura Noise Ordinance (Municipal Code § 10.650) prohibits unnecessary, excessive, or annoying noise in the City. As part of this ordinance, properties within the City are assigned a noise zone based on their corresponding land use. Properties zoned for residential and other noise-sensitive uses have an exterior noise limit of 50 dBA , commercially zoned properties have an exterior noise limit of 60 dBA , and industrially/agriculturally zoned properties have an exterior noise limit of 70 dBA .

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes intensification and reuse of properties within the existing developed City. Mixed use development accommodated under this scenario could involve the development of residential uses in proximity to industrial and commercial uses, particularly along the Ventura Avenue, Thompson Boulevard, and Main Street corridor, within the Downtown District, and near the Pacific View Mall District. As noted above, the City Noise Ordinance has exterior noise limits of 50 dBA for residential zones, but allows noise of up to 60 dBA and 70 dBA for industrial zones. As such, residential projects or residential components of mixed use projects within commercial or industrial zones could be exposed to exterior noise exceeding residential limits. This is a potentially significant impact.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Intensification/reuse impacts would be similar to those described for Scenario 1 and are considered potentially significant. In addition, this scenario includes three expansion areas: North Avenue, Olivas, and Serra. Development of these expansion areas with urban uses would reduce conflicts associated with the agricultural/residential interface, though development of the Olivas expansion area could add noise sensitive uses adjacent to remaining agricultural activity to the east and south. None of the expansion areas are anticipated to include industrial uses; however, each of the areas, if developed in the future, is expected to include a mix of residential and commercial uses. The placement of residential uses adjacent to commercial uses could potentially create noise conflicts relating to commercial operations (loading docks, parking lots, evening activity). However, provided that the City Noise Ordinance continues to be enforced, noise impacts would not be significant.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts associated with this scenario would be similar to those described for Scenario 2 except that agricultural operations in the Serra area would remain. Noise impacts are considered potentially significant.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Impacts associated with this scenario would be similar to those described for Scenario 2 except that agricultural operations in the Olivas area would remain. Noise impacts are considered potentially significant.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Intensification/reuse impacts would be similar to those described for Scenario 1 and are considered potentially significant. Under Scenario 5, mixed residential and commercial development could occur within North Avenue and Western Cañada Larga expansion areas. While this may result in reduced potential conflict between the agricultural/residential interface, impacts may still occur if residential development is proposed near industrial or commercial operations. In the portion of the Western Cañada Larga expansion area west of SR 33, residential development could potentially be affected by industrial activity within the adjacent Upper North Avenue district.

$\underline{\text { Scenario } 6 \text { - Intensification/Reuse + North Avenue + Poinsettia }}$

Intensification/reuse impacts would be similar to those described for Scenario 1 and are considered potentially significant. Development of the North Avenue and Poinsettia expansion areas with urban uses would reduce conflicts associated with the agricultural/residential interface. Neither of the expansion areas are anticipated to include industrial uses; however, each of the areas, if developed in the future, is expected to include a mix of residential and commercial uses. The placement of residential uses adjacent to commercial uses could potentially create noise conflicts relating to commercial operations (loading docks, parking lots, evening activity).

MITIGATION MEASURES

The following measure is required for any of the six land use scenarios.
N-3 Noise Ordinance Update. The following action shall be added to the 2005 General Plan:

- Update the Noise Ordinance in conjunction with the new development code to provide noise standards for residential projects and residential components of mixed use projects within commercial and industrial zones.

SIGNIFICANCE AFTER MITIGATION

Update of the Noise Ordinance and enforcement of new standards for residential projects within commercial and industrial zones would reduce impacts to a less than significant level.

$$
\begin{array}{ll}
\text { Impact N-4 } & \begin{array}{l}
\text { Noise-sensitive land uses near the UPRR corridor may be } \\
\text { exposed to noise exceeding City noise standards. However, } \\
\text { proposed General Plan actions require acoustical analysis for } \\
\text { any development in an area with a built within the } 60 \text { dBA }
\end{array} \\
& \text { CNEL contour. Therefore, impacts due to railroad noise are } \\
\text { considered Class III, less than significant, for all six scenarios. }
\end{array}
$$

The use of the corridor for rail traffic causes high noise levels intermittently as trains pass through the City. Freight trains can be louder than passenger trains because they typically use more engines and contain more rail cars. Residences and other sensitive land uses already located along the rail line would experience high noise levels from train traffic. Noise contours for the Union Pacific Railroad are shown on Figure 4.10-4. Generally, areas within about 240 feet of the railroad tracks are within the 60 dBA CNEL contour.

The 2005 General Plan contains a policy that would reduce excessive noise exposure to existing and proposed residential uses. Action 7.32 requires an acoustical analysis and mitigation prior to development of any residential development within the 60 dBA contour, as shown on Figure 4.10-4.

Scenario 1 - Intensification/Reuse Only

Scenario 1 emphasizes intensification and reuse of properties within the existing developed City and does not include expansion areas. The UPRR railroad corridor generally follows the same area as the 60 dBA contour generated from U.S. 101 traffic. Any proposed residential development within the 60 dBA railroad corridor, where the alignment follows U.S. 101 would be subject to noise from the railroad. Districts and corridors that are potentially subject to railroad noise include Downtown, Thompson Boulevard, Arundell, North Bank, Montalvo, and Johnson Drive. Noise from individual trains may be disturbed to noise-sensitive receivers. However, compliance with the requirements for acoustical analysis and mitigation in Action 7.32 would reduce noise impacts to a less than significant level.

$\underline{\text { Scenarios } 2 \text { and } 3}$

Intensification/reuse impacts would be similar to those described for Scenario 1. Potential development in either the North Avenue or Serra expansion areas would not be affected by railroad noise. However, either of these scenarios would accommodate development in the Olivas expansion area. The UPRR railroad is adjacent to the eastern boundary of the Olivas expansion area, and noise-sensitive development proposed within the 60 dBA contour of the railroad may incur impacts due to railroad noise. However, compliance with Action 7.32 would reduce noise impacts to a less than significant level.

Scenarios 4, 5, and 6

Intensification/reuse impacts would be similar to those described for Scenario 1. The North Avenue, Western Cañada Larga, and Poinsettia expansion areas are not subject to railroad noise. Compliance with Action 7.32 would reduce noise impacts to a less than significant level.

MITIGATION MEASURES

None required assuming implementation of 2005 General Plan Action 7.32.

SIGNIFICANCE AFTER MITIGATION

Implementation of 2005 General Plan Action 7.32 would reduce impacts to a less than significant level for any of the six scenarios.

$$
\begin{array}{ll}
\text { Impact N-5 } & \begin{array}{l}
\text { Operation of recreational uses, including the Ventura } \\
\text { County Fairgrounds, Ventura Shooting Range, and the } \\
\text { Ventura Raceway could continue to create noise disturbance } \\
\text { for existing and planned noise-sensitive uses. City policies } \\
\text { pursue termination, relocation, or restriction of these noise- } \\
\text { generating activities. Impacts due to recreational uses are } \\
\text { considered Class III, less than significant. }
\end{array}
\end{array}
$$

The Ventura Raceway at Seaside Park hosts auto races on Saturday evenings. Engine sounds can be heard through much of Downtown, Midtown, and West Ventura, and residents have expressed
a high level of annoyance. A measurement taken near the end of S. Figueroa Street (Site 34) during a race registered maximum noise levels of 80.1 dBA . Noise levels associated with racing do not exceed community standards based on the CNEL, but are a source of noise disturbance to some residents in nearby neighborhoods.

The outdoor Ventura Shooting Range in the northern part of Grant Park has been the source of occasional noise complaints. As discussed in the Setting, noise from the Ventura Shooting Range resulted in noise levels that varied from 71-74 dBA during the Pistol Range Sound Test in 1998. Noise readings from the community noise survey, however, resulted in noise levels ranging from 45.6 dBA to 62.7 dBA at nearby locations. The lower noise levels are likely the result of noise walls that were built since the Pistol Sound Test was conducted. Nevertheless, the Shooting Range is a source of disturbance to some residents in the Westside and Downtown areas.

The 2005 General Plan includes actions to address noise from the Fairgrounds. Action 7.34 requests that the $31^{\text {st }}$ Agricultural District limit sound levels associated with concerts to 70 dBA at the eastern edge of the Ventura County Fairgrounds. Action 7.35 requests that auto racing be discontinued at the Fairgrounds.

Scenario 1 - Intensification/Reuse Only

Portions of the Downtown District and the Ventura Avenue corridor are within areas where noise emanating from the Ventura Shooting Range, located in Grant Park is audible.
Southwestern areas within the Downtown District are exposed to noise from the Ventura County Fairgrounds and the Ventura Raceway at Seaside Park. Therefore, new residential development that could be accommodated in the Ventura Avenue corridor and the Downtown district may be subject to noise associated with these activities.

The maximum noise levels for the Shooting Range and the Ventura Raceway described in the Setting may cause periodic disturbance to sensitive receivers. However, such noise events occur only periodically and do not exceed community standards based upon the CNEL (a timeweighted 24 -hour average sound level). Therefore, impacts associated with the Shooting Range and the Ventura Raceway are not considered significant. Nevertheless, as discussed above, the 2005 General Plan includes actions requesting the termination of auto racing at the Fairgrounds and requesting sound limitations on Fairgrounds concerts. As discussed in the Setting, the Shooting Range will be closed to the public in January 2006. Although the Shooting Range will continue to be used by the Ventura Police Department, it is anticipated that the frequency of noise events will decline after that time.

Scenarios 2 through 6

Intensification/reuse impacts would be similar to those of Scenario 1 and are not considered significant. None of the expansion areas are subject to noise impacts from either the Ventura Shooting Range or the Fairgrounds.

MITIGATION MEASURES

Impacts are not significant for any scenario. Therefore, mitigation is not required.

Implementation of proposed 2005 General Plan policies may eliminate and/or reduce noise associated with activities at the Ventura Fairgrounds.

SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant for any of the six land use scenarios. Implementation of proposed actions could reduce potential noise disturbance associated with activities at the Ventura Fairgrounds.

4.11 PUBLIC SERVICES

This section assesses potential impacts to public services, including fire and police protection, public schools, libraries, parks, and solid waste collection and disposal. Impacts to water and wastewater infrastructure are discussed in Section 4.13, Utilities and Service Systems.

4.11.1 Setting

a. Fire Protection and Emergency Medical Service.

Personnel, Facilities, and Equipment. The City of Ventura Fire Department (VFD) provides fire protection services to areas within the City's corporate boundary. The VFD responds to fire, rescue, medical, and hazardous materials emergencies. The VFD operates six fire stations in Ventura, with administrative offices at 1425 Dowell Drive. Figure 4.11-1 shows the locations of fire stations serving the City.

The VFD is comprised of three Divisions - Operations, Administration, and Inspection Services. The Operations Division is responsible for activities and emergency responses of the Department's firefighting force. Station 5, the most centrally located (near the intersection of U.S. 101 and SR 126), has a truck company and engine company. In addition, there is one battalion chief on duty at a time (assigned as the shift manager). The shift manager's quarters are adjacent to Station 2. The VFD plans to relocate Fire Station \#4 from its current location at 8303 Telephone Road to the Community Park property located at the corner of Telephone Road and Kimball Road.

Fire Administration is made up of the Fire Chief and his support staff. Their offices are located in the Police/Fire Headquarters, located at 1425 Dowell Drive, Ventura, CA 93003. Their primary responsibility is to oversee all aspects of the delivery of services and ensure the smooth function of the Fire Department.

Inspection Services consists of the Construction Services and Preservation Services Divisions. The Inspection Services Division oversees all phases of new building construction, performs a variety of inspections, and provides code enforcement. Construction Services provides building permit plan check, permit issuance, and inspection services for new buildings, additions, and tenant improvements. Preservation Services is responsible for: code enforcement to support the enforcement of policies and programs within the Public Works, Community Development, Fire and Administrative Services Departments; fire prevention services to provide fire alarm and fire sprinkler plan review, permitting, and inspection; annual State Fire Marshal inspections of high-rise, institutional, and educational occupancies; facilitation of a complete weed abatement program; and, coordinating the City's hazardous materials enforcement program. The City's Building Official/Fire Marshal is the manager of the Inspection Services Division and reports directly to the Fire Chief. The Inspection Services Division is staffed with non-sworn, civilian personnel. When needed, Ventura residents obtain fire permits and hazardous materials permits through the Fire Department.

The VFD maintains a hazardous materials response team (haz-mat team), which is handled as a collateral assignment by one of VFD's engine companies. The haz-mat team is specially trained
to respond to hazardous materials incidents with the requisite equipment, monitoring devices, and personal protection.

The VFD is staffed by 105.5 full-time employees, including 73 sworn firefighters, 3 support staff, and 29.5 employees in the Inspection Services Division. Of the 29.5 Inspection Services employees, 12 are primarily responsible for enforcing the Fire Code. The remaining 17.5 are primarily responsible for enforcing the Building Code.

The VFD has not officially adopted a standard for firefighter staffing levels; however, for jurisdictions that are comparable in size and population to the City of Ventura, staffing levels are typically about 0.98 fire fighters per 1,000 residents (Chief Mike Lavery, January 2005). The VFD is currently operating at approximately 0.69 firefighters per 1,000 residents. ${ }^{1}$ Currently, staffing levels are stretched to provide fire protection services for today's population. Growth within the City will require additional personnel in order to meet future fire service demands (Chief Mike Lavery, January 2005).

Emergency Response. Response times vary (at least in part) according to fire personnel staffing levels, the placement of fire stations in relation to service areas, and the density/layout of land uses and development within a service area. The VFD has a response time goal of four minutes (for at least 90% of its responses); however, response times in certain areas of the City currently exceed four minutes. The Ventura Harbor area and surrounding neighborhoods, the Montalvo area, Johnson Drive/101, and the Auto Center currently do not meet VFD standards. For example, response times from Station \#2 can be 10 minutes or more, especially for emergencies located at the end of Spinnaker Drive. In addition, response times from Fire Station \#1 typically exceed four minutes for areas located north/northeast of the North Ventura Avenue and Seneca Drive intersection (Chief Mike Lavery, January 2005). The VFD has tentative plans to build a new fire station to serve the Ventura Harbor area. If annexation or significant development occurs North of Seneca Drive, evaluation of those development impacts on fire services will need to be undertaken.

Potential wild fire hazard areas present additional challenges to the VFD. Grass and brush, with scattered oak at lower elevations, are located on the Ventura hillsides and extend down into barrancas within the City. The general lack of rain from May to November causes this vegetation to become very dry, creating high fire hazards in the hillsides (see Figure 4.11-2). The California Department of Forestry has indicated this rating should be considered an average for the area, rather than a delineation of exact conditions. Variations in slope, weather, fuel load, aspect, elevation, and air movement may influence hazard conditions in a specific location. Risk to any individual structure also depends on factors such as access, water supply, clearance, and structural characteristics.

A number of residential areas in Ventura are located in, and adjacent to, the hazardous wildfire area. These include the residential developments located on and adjacent to hillsides in the Poinsettia, Arroyo Verde, Catalina, Downtown, and Ventura Avenue communities. Historical fires in the hills directly north of the City include: the 1956 Sexton Canyon Fire and the 1970

[^4]

Surce: City of San Buenaventura and Rincon Consultants, Inc., 2005.

Foothill Fire, which burned homes in Ventura; the 1992 Seneca Fire that originated near a west Ventura apartment complex and reached the edge of Hall Canyon, burning 529 acres; and the 1996 Poli Fire that originated near Grant Park and burned 362 acres. If a fire requires more than City resources to suppress, mutual aid agreements in effect with neighboring cities, counties, and State and Federal agencies call for additional assistance from the nearest facilities of these entities. For additional emergency response assistance, the VFD has Automatic Aid Agreements with the Ventura County Fire Protection District (VCFPD) and the Oxnard Fire Department. The VCFPD has two fire stations close to the City limits and other stations located throughout the County. The Automatic Aid Agreement, which specifies that whichever station or engine (City or County) is closest to the emergency is the first to respond, is intended to ensure that Ventura residents receive the most immediate response possible in emergency situations.

The VFD participates in the County Emergency Services Special Operations component, which is responsible for countywide response to emergencies requiring technically skilled operations. Some of the specialized emergency services provided include swift water rescue and confined space rescue (as might arise from collapsed buildings, caves, trench cave-ins, etc.).

The VFD follows several safety standards and safety programs. The City Standardized Emergency Management System Multi-hazard Functional Response Plan outlines City procedure in the event of a major catastrophe, while the Hazardous Materials Response Plan sets forth the protocol for handling hazardous waste spills. The Department's Weed Abatement Program aims to reduce the risk of wildfire in vegetated hillsides and canyon areas, especially the areas north of Poli Street / Foothill Road and east of Ventura Avenue.
b. Police Protection. The City of Ventura Police Department (VPD) provides law enforcement services in the incorporated City. VPD headquarters is located at 1425 Dowell Drive. The Department also has storefronts Downtown, on the West Side, at the Ventura Mall, and in Montalvo. Although these storefronts are not staffed with dedicated police department personnel, they provide an important Community Resource through the use of community volunteers. Figure 4.11-1 shows existing police facilities in the City.

The VPD is currently budgeted for 127 sworn officers and when fully staffed, this results in an allocated level of service of about 1.21 sworn officers per 1,000 residents based on the current population of about 105,000. The Department also employs 52 civilians as support personnel. Although the existing police station is large enough to accommodate the current police force, existing facilities are operating at maximum capacity. Therefore, any significant increase in staffing levels would eventually require facility expansion (Quinn Fenwick, March 2005).

The City has not adopted a specific standard for staffing levels; however, Table 4.11-1 compares police staffing levels in Ventura to those of the cities of Santa Barbara and Oxnard for comparative purposes. As indicated, the City's ratio of police officers to population is lower than that of Santa Barbara and Oxnard.

VPD is separated into two divisions: Operations and Services. The Operations Division is comprised of patrol officers, specialty assignment officers, and Police Service Officers (PSOs), as well as a traffic division, gang enforcement unit, and school liaison office. The Services Division

Table 4.11-1
Police Officers to Population Ratios (2004)

City	Number of Officers per $\mathbf{1 , 0 0 0}$ residents
Ventura	1.21
Santa Barbara	1.55
Oxnard	1.40

Sources: Population--California Department of Finance, City/County Population and Housing Estimates, 1/1/2004. Police officers for Ventura-Wayne Lewis, VPD Business Services Officer (March 1, 2005). Police officers for Santa Barbara-Officer Charles McChesney (February 3, 2005). Police officers for Oxnard-Lynn Hutton, Human Resources Manager (February 3, 2005).
consists of a Detective Bureau, an Information and Technology Bureau, and a Professional Standards Bureau.

The Department is equipped with 32 patrol cars, several unmarked sedans, six motorcycles, and four K-9 units. Most police cars are outfitted with mobile data computers, cell phones, and other technological tools to assist in responding to calls for service. Response time to Class I calls (crimes in progress or alarm soundings) averages less than 6 minutes. Response times for all other calls average less than 20 minutes.

The City is divided into four geographic beats, which are created based on the number of crimes reported and calls for service within the City of Ventura. Beat 1 includes the Ventura Avenue area extending down to California Street. Beat 2 generally includes the area between California Street and Mills Road. Beat 3 generally includes the area between Mills Road and Victoria Avenue. Finally, Beat 4 generally includes the area between Victoria Avenue and the eastern city limits.

Crime Rates. Crime statistics are reported to the Federal Bureau of Investigation on a regular basis so that comparisons can be made between cities with similar characteristics. Table 4.11-2 compares Ventura's crime rate from FBI files to that of other regional cities of similar size as well as to state and national averages.

In 2003, Ventura had a crime rate of 40.3 crimes per 1,000 persons. The crime rate for the City is roughly equivalent to the City of Santa Barbara, state, and national rates, but higher than that of the City of Oxnard.
c. Public Schools. The Ventura Unified School District (VUSD) provides public educational services throughout the Ventura planning area. Figure 4.11-3 shows the locations of school facilities in the Planning Area that are operated by the VUSD. Additional educational facilities include private schools and institutions of higher learning.

Source: City of San Buenaventura and Rincon Consultants, Inc., 2005.

Table 4.11-2
Crime Rates for Various Jurisdictions

Jurisdiction	Number of Crimes per $\mathbf{1 , 0 0 0}$ residents
City of Ventura	40.3
City of Santa Barbara	41.2
City of Oxnard	30.7
State of California	40.0
United States	40.7

Source: FBI, Uniform Crime Reports, 2003. Crimes reported are limited to violent crimes (murder, rape, robbery, and aggravated assault) and property crimes (burglary, larceny, theft, and motor vehicle theft). White collar crimes such as forgery and identity theft are not included in the FBI Uniform Crime Reports, but are a source of crime in the City of Ventura.

VUSD boundaries extend from the Santa Clara River west to include the entire City of Ventura, north along Highway 33 to include most of the Oak View community, and west to the Santa Barbara County line. District schools are organized as kindergarten through fifth grade elementary schools, sixth through eighth grade middle schools, and ninth through twelfth grade high schools. The VUSD manages 16 elementary schools in the City (and one elementary school in Oak View), four middle schools, three high schools, one continuation high school, Opportunity and Independent Study programs, and an adult education program.

The District has divided the City into four geographic attendance areas to direct a student's progression from elementary to high school: West Side, Midtown, Montalvo, and East End. All elementary schools except one serve a specific attendance area of one or more neighborhoods; the exception is Mound School, which is a District-wide math magnet school.

Current enrollment at VUSD elementary schools is 7,729 students. The total maximum capacity of the 17 elementary schools is 8,277 students. Thus, currently Ventura's elementary schools are operating at approximately 93% capacity. Table 4.11-3 shows the enrollment statistics for each of the VUSD elementary schools.

Elementary schools in the Planning Area range in size from fewer than 300 to more approximately 600 students, and populations of elementary-aged students in neighborhoods vary. Two elementary schools - Mound and Portola - are operating above planned enrollment capacity and several schools are operating at close to full capacity. The VUSD has purchased property for a proposed West End Elementary school site at 4584 North Ventura.

The District operates four middle schools in the City. Current enrollment for the four middle schools was 4,201 students, or 86% of the total capacity of 4,858 students. Table $4.11-4$ shows enrollment figures for each VUSD middle school. One of the goals in the VUSD master plan is the construction of a new middle school in the Wells Road area.

Table 4.11-3
Current VUSD Elementary School Enrollment

School	Student Enrollment	Student Capacity	Utilization
B. Reynolds	447	539	83%
Citrus Glen	546	567	96%
Elmhurst	582	590	99%
E.P. Foster	507	514	99%
Juanamaria	477	514	93%
Lincoln	265	276	96%
Loma Vista	369	404	91%
Montalvo	428	448	96%
Mound	574	585	102%
Pierpont	263	267	99%
Poinsettia	509	522	98%
Portola	534	550	103%
Saticoy	423	466	91%
Junipero Serra	538	592	91%
Sheridan Way	522	572	91%
Sunset	301	394	76%
Will Rogers	444	477	93%
Total	7,729	$\mathbf{8 , 2 7 7}$	93%

Source: VUSD, "Room Use Analysis" Statistics (2005).

Table 4.11-4

Current VUSD Middle School Enrollment

School	Student Enrollment	Student Capacity	Utilization
Anacapa	1,079	1,090	99%
Balboa	1,380	1,582	87%
Cabrillo	1,026	1,246	82%
De Anza	716	940	76%
Total	$\mathbf{4 , 2 0 1}$	$\mathbf{4 , 8 5 8}$	$\mathbf{8 6 \%}$

Source: VUSD, "Room Use Analysis" Statistics (2005).

Unlike the elementary schools, the West Ventura middle school (De Anza) currently has sufficient space, but there is a need for a fifth middle school to serve other portions of the City. At the time it was built, Balboa was near the eastern edge of the City. However, the construction of new housing east of the school has led to high enrollment and a very large attendance area. Some students living close to Balboa are bused to Anacapa, which in turn results in some students living close to Anacapa being bused to Cabrillo. A cap of 1,000 students for a middle school has been recommended and endorsed by the Long Range Plan Committee, with a preferred size of 850-900 students. According to the District, a new middle school in eastern Ventura would balance enrollment geographically and eliminate some lengthy bus rides for students.

The VUSD manages three non-continuation high schools in Ventura. Enrollment for the 2004 school year was 5,267 students for the three high schools, or 94% of total capacity (5,586 students). Table 4.11-5 shows enrollment figures for each VUSD high school. Foothill Technology High School, which opened in 2001 to emphasize development of technology and health related skills, has eased crowding at Buena and Ventura High Schools.

Table 4.11-5
Current VUSD High School Enrollment

School	Student Enrollment	Student Capacity	Utilization
Buena	2,245	2,275	99%
Foothill Technology	924	884	$96 \%^{\mathrm{a}}$
Ventura	2,098	2,427	$86 \%^{\mathrm{a}}$
Total	$\mathbf{5 , 2 6 7}$	$\mathbf{5 , 5 8 6}$	$\mathbf{9 4 \%}$

Source: VUSD, "Room Use Analysis" Statistics (2005).
${ }^{\text {a }}$ Maximum potential capacity at 110% of target.
The VUSD offers several special programs. Pacific Continuation High School occupies a former elementary school in central Ventura at 501 College Drive. Pacific Continuation had a 2004 school year enrollment of 218 students, or 77% of its 282 student capacity. Secondary alternative schools at Buena and Ventura High Schools, as well as the Opportunity Program and the Independent Study Program at the Pacific Continuation High School, enable students to make up units, get extra help, and transfer back to the mainstream schools. The current enrollment at the Adult Education Facility at the intersection of Valentine Road and Sperry Avenue is 3,160 students (Jorge Gutierrez, March 2005).
d. Community Libraries. The Ventura County Library Services Agency is currently organized as a special district county library. Revenue from the property tax supplies the majority of the income for the County Library. In addition, a portion of the City's general fund is contributed to the County Library Services Agency and is used to finance improvements to library facilities and services.

Three public libraries are located in Ventura and are a part of the Ventura County library
system: E.P. Foster, H.P. Wright, and Avenue Libraries. The characteristics of the three libraries are summarized in Table 4.11-6.

Table 4.11-6
Public Library Statistics

Library	Cardholders	Book Circulation	Hours Open Weekly	Facility Size (square feet)
E.P. Foster	29,110	169,598	54	33,000
H.P. Wright	28,317	201,227	39	12,000
Avenue	5,102	17,634	25	3,000

Source: Starrett Kreissman, Director, Ventura County Library System, personal communication, 1/21/05.

Located Downtown, E.P. Foster Library is open 54 hours per week. As of January 2005, the E.P. Foster Library had an estimated 29,110 cardholders. Based upon the most current circulation figures available, E.P. Foster Library has an annual circulation of 169,598 books. H.P. Wright Library on the Ventura College campus (a City-owned facility operated by the County on Ventura County Community College District leased land) is open 39 hours per week. H.P. Wright currently has an estimated 28,317 cardholders and an annual circulation of 201,227 books. Located on the West Side of Ventura, the Avenue Library is open 25 hours per week. The Avenue Library currently has an estimated 5,102 cardholders and had an annual circulation of 17,634 books.
e. Recreation. The Ventura recreation system includes 27 City parks, a linear park system, beaches, special recreation facilities and programs, community-wide activities, and senior services. Park and recreational facilities in the City are shown on Figure 4.11-4.

Park Standards. State and national organizations and government agencies have established a range of definitions and standards for provision of park and recreation areas and facilities based on type, size or area, access and site development. State and federal financial assistance is often predicated on the development of specific local criteria. Such standards represent a long-range measure for provision of a complete park and recreation system. The use of standards as reference measures does not imply that park acreage must necessarily be met entirely by City-owned facilities. In addition to recreation areas under City jurisdiction, substantial acreage within or adjacent to the Planning Area is held by public schools or county and state parks.

Park standards in the current Comprehensive Plan are principally derived from the National Parks and Recreation Association, statewide or other local jurisdictions. These standards are used as measures to determine the overall sufficiency of existing facilities in the City of Ventura, and as guidelines to plan for the needs of the future population. Table 4.11-7 shows that the City has adopted higher standards than those set forth by the National Recreation and Park Association.

Table 4.11-7
Park Standards per 1,000 Population

Park Type	Standard (acres per 1,000 population)	
	City of Ventura	National Park and Recreation Association
	2	1.5
Service Area	3	2
Citywide	5	5
Total	10	8.5

Sources: City of Ventura, Comprehensive Plan, 1989 and www.nrpa.org.

City Parks. The City of Ventura public park system includes neighborhood parks, service area parks, citywide parks, and a linear park system. Existing City park facilities are listed in Tables 4.11-8 and 4.11-9. With the new Ventura Community Park, the City operates about 856 acres of park facilities, or about 8 acres per 100,000 residents. A discussion of the various types of facilities follows.

Neighborhood Parks. A neighborhood park is a small park (preferably a minimum of five acres), which serves a specific neighborhood within a planning community. The City's neighborhood park standard is 2 acres of parkland for every 1,000 people. Provision of neighborhood parks close to the user population is an ongoing City objective. These types of facilities are currently available to residents in many City neighborhoods, though neighborhood parks are lacking in portions of West Ventura, Midtown, the Ventura College area, and the Wells/Saticoy area. As shown in Table 4.11-8, there are 18 neighborhood park sites in the City, totaling about 73 acres.

Service Area Parks. Service area parks are intended to provide opportunities and facilities of a special nature to a broad segment of the population. Service area parks preferably have a minimum size of 35-40 acres, although unique features or developments may be more important to a service area park than size alone. The City's standard for service area parks is 3 acres per 1,000 population. Amenities within may include athletic fields, courts, recreation buildings, preschool and youth play apparatus, group and individual picnic areas, and landscaped areas for informal activities and passive use. Six existing sites totaling about 95 acres currently serve service area park functions.

The City's service area park acreage will be substantially increased by the full construction of the new Ventura Community Park. In March 1998, the City selected Thille Ranch, a 100-acre site at the intersection of Telephone Road and Kimball Road, for the development of a community park. Plans for the park include a community center, gymnasium, aquatics center, police storefront, and fire station. The park will also include areas for passive and active recreation, as well as permanent, indoor/outdoor sports fields and courts. These facilities will be able to accommodate informal community use, in addition to organized league practice and

Table 4.11-8
City Park Facilities

Park	Park Size (in acres)				
	Neighborhood Park Use	Service Area Park Use	Citywide Park Use	Special Use	Total
Albinger Archaeological Museum				0.93	0.93
Arroyo Verde Park	2.00	23.00	104.27		129.27
Barranca Vista Park	8.74				8.74
Blanche Reynolds Park	3.35				3.35
Buenaventura Golf Course				98.90	98.90
Camino Real Park	8.21	30.00			38.21
Cemetery Memorial Park	7.09				7.09
Chumash Park	6.08				6.08
Community Park ${ }^{1}$		50.0	50.0		100.0
Downtown Mini-Park	0.37				0.37
Eastwood Park				0.73	0.73
Fill Park ${ }^{2}$	5.0				5.0
Fritz Huntsinger Youth Sports Complex	4.32	14.00			18.32
Grant Park			107.29		107.29
Harry A. Lyon Park		10.66			10.66
Hobert Park	7.05				7.05
Juanamaria Park	5.00				5.00
Junipero Serra Park	2.72				2.72
Marina Park	4.00	11.26			15.26
Marion Cannon Park	5.00				5.00
Mission Park	1.47				1.47
Montalvo Park ${ }^{2}$	5.0				5.0
Ocean Avenue Park	1.32				1.32
Olivas Adobe Historical Park				22.50	22.50
Olivas Park Golf Course				184.29	184.29
Ortega Adobe Historic Residence				0.28	0.28
Plaza Park	3.67				3.67
Promenade Park	1.00				1.00
Seaside Wilderness Park				20-24 ${ }^{3,4}$	20-24
Surfers Point at Seaside Park				$3.42{ }^{3}$	3.42
Ventura Community Park ${ }^{3}$		50.00	50.00		
Westpark	1.50	5.82			7.32
Total	82.89	144.74	261.56	$\begin{aligned} & \hline 331.05- \\ & 335.05 \end{aligned}$	$\begin{gathered} 820.24- \\ 824.24 \end{gathered}$

Sources: City of Ventura, Parks and Recreation Element and Workbook, 1989 and Community Services Department, 2002 Note that several parks are listed in more than one category, as they serve a variety of functions. This table reflects an estimate of the acreage of such facilities that is dedicated to each specific function..
${ }^{1}$ The Community Park is not operational yet, but upon completion, will serve both Service Area and Citywide park functions. Half of the 100-acre site was assumed to serve each function.
${ }^{2}$ The anticipated completion date of the Fill and Montalvo Parks is projected to be in 2005-2006.
${ }^{3}$ Acreage dependent upon mean high tide line of the Pacific Ocean.
${ }^{4}$ Acreage is variable because 65% of the area is located in the Ventura River bed.

Table 4.11-9 City-Owned Linear Parks

Park Name	Acres	Facilities Provided
Antelope Linear Park	0.70	Bike Path, Greenbelt
Arundell Linear Park	1.05	Bike Path, Greenbelt
Aurora Drive Linear Park	1.40	Bike Path, Greenbelt
Belaire Linear Park	1.50	Open Space, Walking Paths, Greenbelt, Tot Lot
Bristol Bay Linear Park	4.00	Bike Path, Greenbelt, Fence
Brock Linear Park	2.50	Bike Path, Greenbelt, Picnic Tables
Cherrie Linear Park	0.81	Phase 1 under construction
Chumash Linear Park	1.50	Bike Path, Greenbelt
County Square Linear Park	5.40	Bike Path, Greenbelt
Kindercare Linear Park	0.20	Bike Path, Greenbelt
LDS Linear Park	0.20	Bike Path, Greenbelt
Webster Linear Park	3.38	Bike Path, Greenbelt
Cyprus Point Linear Park	4.25	Bike Path, Greenbelt
Rancho Ventura Linear Park	2.00	Bike Path, Greenbelt
Riverview Linear Park	2.40	Bike Path, Greenbelt, Bike Racks, Fence, Benches, Drinking Fountains, Litter Containers
North Bank Greens Linear Park	0.55	Bike Path, Greenbelt, Fence
North Bank Linear Park	--	Bike Path, Bike Rack, Tables, Fence, Litter Containers
Stonehedge Linear Park	2.00	Bike Path, Greenbelt, Fence
Strathmore Linear Park	2.00	Bike Path, Greenbelt, Tot Lot, Picnic Tables, Benches, Basketball Court, Fence
Todd Ranch	1.00	Bike Path, Fence
Henderson Linear Park	2.50	Bike Path, Greenbelt, Litter Containers, Benches
Woodside Linear Park	4.00	Bike Path, Greenbelt, Fence
Weston Linear Park	2.56	Bike Path, Greenbelt, Litter Containers, Lights, Fence
Saticoy Linear Park	--	Bike Path
Total	45.90	

Source: City of Ventura, Linear Parks Inventory, 2001.
tournament games.

Citywide Parks. A citywide park is an area or facility that offers recreational opportunities of such a variety that it attracts a wide range of local age groups and interests from inside and outside the City. Citywide parks are usually at least 100 acres in size, and the City standard is 5 acres per 1,000 residents. Citywide parks often feature large open space areas or unique natural or cultural areas, as well as group picnic areas, interpretive centers, riding, bicycling and hiking trails, formal sports facilities, and other unique features. Citywide parks
allow for the preservation of quality leisure spaces, and efforts are made to include large scenic open spaces, where possible. Two existing sites in Ventura - Arroyo Verde Park and Grant Park - serve as citywide parks. The Ventura Community Park will also serve citywide park functions.

Special Use Facilities. The City has not adopted specific standards for special use facilities, but operates eight such facilities totaling just over 330 acres. These facilities provide unique amenities that permit a single or specialized recreational activity. Special use facilities include two golf courses, the Seaside Wilderness Park, the Olivas Adobe Historical Park, and the Albinger Archaeological Museum.

Linear Parks. The City has not adopted specific standards for linear parks; however, such facilities can serve many of the functions of both neighborhood and service area parks. Since 1974, with the adoption of a Linear Park System depicted on Land Use and Circulation Plan maps, it has been the City's intent to create a linear park around the perimeter of the City that preserves public access and vistas. This network of greenways and barrancas in the City provides natural recreational opportunities for Ventura pedestrians. Linear parks are also a valuable component of the alternative transportation system as they include trails and bikeways for commuting and recreation. As shown in Table 4.11-9, the 24 linear park facilities total about 46 acres. The linear park system includes such features as bike paths, greenbelts, picnic tables, and tot lots.

Resources available for constructing the linear park and trail system are acquired through conditions placed on developers who plan to build in areas within the linear park network.

Beaches \mathcal{E} Other Non-City Special Use Recreational Facilities. In addition to City-owned parks, a number of other recreational facilities are available within the planning area. Foremost among these are the seven miles of beach that line the western boundary of the City. Although not owned by the City, the waterfront open space provides valuable recreational opportunities for Ventura residents. Other non-City facilities include the County Fairgrounds and the Saticoy Regional Golf Course. In addition, the Ventura Unified School District and Ventura College have joint-use agreements with the City so that residents have access to their sports fields, pools, and gymnasiums after school hours. Table 4.11-10 lists non-City recreational facilities that are available to community residents.

Special use facilities, parks within the Planning Area belonging to other jurisdictions, and state beach property outside the City limits help make up for the shortage of park area in Ventura. While these facilities meet some citywide needs, they are not considered as contributors to citywide park acreage.

Park Funding. The development of parks is funded through various fee programs on new development in the City. Quimby fees are charged on all single family and condominium developments. Service Area Park Fees are charged on all new development in the City (including rental housing and non-residential development) for the development of new community facilities (such as the new community park). SIDS fees are charged on new development in the Wells/Saticoy area for the development of new facilities to offset the current deficiency of parks in that part of the Planning Area.

Table 4.11-10
Non-City Special Use Parks and Recreational Facilities

Facility Name	Acres	Ownership
Channel Islands National Park Headquarters	2.75	Federal
Emma Wood State Beach	35.87	State
Marina Beach/Cove	12.87	Ventura Port
McGrath State Beach	170.00	State
San Buenaventura State Beach Park	116.21	State
Saticoy Regional Golf Course	48.62	County
Ventura County Fairgrounds	51.96	State
Ventura College (ball fields, pool, gymnasium, track, media center)	5.00	Community College District
VUSD fields (various schools)*	156.80	Ventura Unified School District
TOTAL	$\mathbf{6 0 0 . 0 8}$	

Sources: City of Ventura, Parks and Recreation Element and Workbook, 1989 and Community Services Department, 2002, Ventura College, 2002, VUSD, 2002.

* Acreage based on estimate of turf area at all VUSD sites.
f. Solid Waste/Recycling. The Environmental Services Office (ESO) in the City Public Works Department manages collection and disposal of solid waste. The Office also develops methods of waste diversion. The City has a franchise agreement with Harrison Industries for residential and commercial solid waste removal. This arrangement includes curbside collection, with three residential disposal options (trash, recyclables, and yard waste), plus the "Unicycling Recycling Program" for businesses that allow bagged trash and recyclables to share a single container. An additional no-fee salvager permitting system allows other companies to collect recyclable materials from Ventura businesses.

After collection, waste is sorted at the Gold Coast Material Recovery Facility and Transfer Station. What cannot be recycled is sent to landfills. In 2003, the City of Ventura produced approximately 143,584 tons of waste that was sent to landfills and diverted approximately 224,579 tons. The majority of Ventura's non-recycled waste (88.1%) goes to Toland Road Landfill, while approximately 10.5% is sent to the Simi Valley Landfill. The remaining approximately 1.4% is shipped to either the Azusa Land Reclamation Company, Inc., Chiquita Canyon Sanitary Landfill, and Nu-Way Live Oak Landfill (Joe Yahner, January 2005). The Toland Road Landfill, which is operated by the Ventura Regional Sanitation District, has a permitted throughput of 1,500 tons of waste per day. Current throughput ranges from about 1,200-1,400 tons per day. The landfill's total permitted capacity is 30 million cubic yards of waste, and it is projected to reach capacity in 2027. The Simi Valley Landfill, which is operated by Waste Management of California, has a permitted throughput of 3,000 tons of waste per day, and a current maximum daily throughput of about 2,750 tons per day. The total permitted capacity is 43.5 million cubic yards, and the landfill is projected to reach capacity in 2022. Table 4.11-11 compares maximum daily capacity and current throughput at the Toland Road and Simi Valley landfills.

Table 4.11-11
Maximum Daily Capacity and Current Daily Throughput at Area Landfills

Landfill	Permitted Daily Capacity (tons)	Maximum Daily Throughput (tons)	Available Daily Capacity (tons)
Toland Road	1,500	1,400	100
Simi Valley	3,000	2,750	250
Total	$\mathbf{4 , 5 0 0}$	$\mathbf{4 , 1 5 0}$	$\mathbf{3 5 0}$

The current daily waste that reaches the Toland Landfill ranges from 1,200 to 1,400 tons/day, Monday through Saturday (Gary Haden, personal communications, 1/24/04); therefore, 1,400 tons/day was assumed as a worst case scenario. The Simi Valley Landfill currently accepts an average of approximately: 2,750 tons/day, Monday through Friday; 1,200 tons/day on Saturday; and, 20 tons on one Sunday per month (Scott Tignac, personal communications, 1/24/04); therefore, 2,750 tons/day was used to assess project impacts under a worst case scenario.

State law requires cities to divert at least 50% of the solid waste they generate from landfills through source reduction, reuse of materials, and recycling. The ESO has initiated a series of projects that have resulted in a comprehensive waste reduction and recycling program. Each year, the amount of waste diverted from local landfills has increased. In 2003, the City of Ventura achieved a 61% diversion rate.

ESO provides several household hazardous waste disposal and recycling options for residents and small businesses. In the 2003-2004 period, Gold Coast Recycling and ESO programs collected a total of 250,721 pounds of household hazardous waste and used oil. Gold Coast Recycling collected approximately 71,778 tons of household hazardous wastes, while paint stores collected approximately 45,900 tons of paint and ESO Household Hazardous Waste Events collected approximately 98,333 tons of household hazardous wastes. Finally, oil centers collected approximately 34,710 tons of used oil. Household hazardous waste collection programs are funded by California Assembly Bill 939 (AB 939) funds that are paid by customers to E.J. Harrison and then distributed to the City (Joe Yahner, January 2005).

ESO is currently constructing a new household hazardous waste facility that is anticipated to be in operation by May 2005. Currently, ESO provides four household hazardous waste collection events per year. Upon completion of the new facility, ESO household hazardous waste collection events are anticipated to increase to 11 events per year (Joe Yahner, January 2005).

4.12.2 Impact Analysis

a. Methodology and Significance Thresholds. The following thresholds have been used to determine the impacts to fire protection services, police protection services, public schools, libraries, recreation, and solid waste disposal.

The 2005 General Plan would result in potentially significant impacts relating to public services if development accommodated under any of the General Plan land use scenarios would:

- Involve substantial adverse physical impacts associated with provision of new or physically altered governmental facilities
- Create the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives.
- Directly remove or otherwise adversely affect the operation of an existing or planned park or recreational facility
- Increase the use of existing parks and recreational facilities such that substantial physical deterioration would occur or be accelerated. The potential for physical deterioration of existing parks may be considered substantial if the amount of new parkland in the City is insufficient to meet the projected demand associated with projected population growth (based on the current City standard, park demand is 10 acres per 1,000 new residents).
- Require the construction or expansion of parks or other recreational facilities that might have adverse effects on the environment
- Generate an increase in solid waste that exceeds the capacity of the current and planned solid waste disposal facilities serving the City. Impacts are also considered significant if the amount of solid waste generated by new development that is diverted from landfills is projected to be less than the State-mandated 50% diversion rate.

With respect to school enrollment, impacts associated with new development would be considered significant if it is anticipated that individual developers would not pay Statemandated school impact fees (pursuant to Section 65995(h) of the California Government Code [Senate Bill 50, chaptered August 27, 1998], the payment of statutory fees "...is deemed to be full and complete mitigation of the impacts of any legislative or adjudicative act, or both, involving, but not limited to, the planning, use, or development of real property, or any change in governmental organization or reorganization")
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the EIR scenarios. A detailed discussion of each environmental impact follows.

$$
\begin{array}{cl}
\text { Impact PS-1 } & \begin{array}{l}
\text { Development under any of the } 2005 \text { General Plan land use } \\
\text { scenarios would increase the City's population and density of } \\
\text { development, and introduce new development into high fire } \\
\text { hazard areas. This would increase demand for fire protection } \\
\text { services and potentially create the need for new fire protection } \\
\text { facilities. With proposed General Plan policies, impacts for }
\end{array} \\
\text { Scenario 1 are Class III, less than significant. Impacts for } \\
\text { Scenarios 2-6 are considered Class II, significant but mitigable. }
\end{array}
$$

The 2005 General Plan includes the following policies that address fire protection service:

Policy 7C Optimize firefighting and emergency response capabilities.

Summary Comparison of Impacts for EIR Scenarios

Impact	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Fire Protection (Impact PS-1)	30 new firefighters needed to alleviate current deficiencies; one to two new fire stations and 9 to 18 new firefighters needed to serve the Ventura Harbor and Ventura Avenue areas; limited new development introduced adjacent to high fire hazard areas. With proposed General Plan policies and actions, impacts are Class III, less than significant.	30 new firefighters needed to alleviate current deficiencies; nine new firefighters and a new fire station needed in Ventura Harbor area to serve Harbor and Olivas areas; nine new firefighters and a new fire station needed in North Avenue area to serve North Avenue expansion area; relocation of Station 4 would provide adequate service in Serra expansion area. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 2 and Class II, significant but mitigable.	Same new facilities needed as under Scenario 2; relocation of Station 4 would provide adequate service in Serra expansion area. Impacts are Class II, significant but mitigable.	Same new facilities needed as under Scenario 2; new station in North Avenue area would provide adequate service to the Western Cañada Larga expansion areas. Impacts are Class II, significant but mitigable.	Same new facilities needed as under Scenario 2. In addition, Station 3 may need to be relocated east of Victoria Avenue to serve the Poinsettia expansion area. Impacts are Class II, significant but mitigable.
Police Protection (Impact PS-2)	An additional 26 police officers needed to maintain current officers-residents ratio in 2025. New or expanded police facilities needed since the current headquarters is at capacity; Downtown storefront station also needed. Impacts are Class II, significant but mitigable.	An additional 34 police officers needed to maintain current officers-residents ratio in 2025. New or expanded police facilities facilities since the current headquarters is at capacity; Downtown storefront station also needed. Impacts are Class II, significant but mitigable.	Impacts similar to Scenario 2 and Class II, significant but mitigable.	Impacts similar to Scenario 2 and Class II, significant but mitigable.	Impacts similar to Scenario 2 and Class II, significant but mitigable.	Impacts similar to Scenario 2 and Class II, significant but mitigable.
Schools (Impact PS-3)	An estimated 3,486 new VUSD students projected by 2025 under this scenario. Based on	An estimated 4,620 new VUSD students projected by 2025 under this scenario.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Student generation and future school needs similar to Scenario 2. Impacts	Impacts similar to Scenario 2 and Class III, less than significant.

Summary Comparison of Impacts for EIR Scenarios

	Department of Education criteria, 2-3 new elementary schools needed and possibly a new middle school and new high school. Payment of Statemandated fees reduces impacts to Class III, less than significant, per State law; nevertheless, limited available land for new schools may necessitate condemnation of property for new school sites and/or more intensive use of existing facilities.	Based on Department of Education criteria, 4-5 new elementary schools needed and possibly a new middle school and new high school. Payment of State-mandated fees reduces impacts to Class III, less than significant, per State law. Expansion area acreage is sufficient to provide schools to meet expansionrelated demand and partially offset demand related to intensification/reuse.			are Class III, less than significant, per State law. However, expansion areas do not provide sufficient acreage for school facilities that meet the needs of expansion-related student population growth.	
Libraries (Impact PS-4)	An additional 78,153 square feet of library facilities needed to achieve desired 1 square foot/capita ratio in 2025. Funding needed for new facilities, but facilities could likely be provided without significant environmental effects. Impacts are Class III, less than significant.	An additional 85,160 square feet of library facilities needed to achieve desired 1 square foot/capita ratio in 2025. Funding needed for new facilities, but facilities could likely be provided without significant environmental effects. Impacts are Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.
Solid Waste (Impact PS-5)	Projected growth would increase solid waste sent to landfills by an estimated 84 tons per day by 2025. This is within the current available daily capacity, but area landfills are	Projected growth would increase solid waste sent to landfills by an estimated 110 tons per day by 2025. This is within the current available daily capacity, but area	Impacts similar to Scenario 2 and Class I, unavoidably significant.	Impacts similar to Scenario 2 and Class I, unavoidably significant.	Impacts similar to Scenario 2 and Class I, unavoidably significant.	Impacts similar to Scenario 2 and Class I, unavoidably significant.

Summary Comparison of Impacts for EIR Scenarios

	projected to close in the 2022-2027 time period. Absent an alternative means/location for disposing of waste, impacts are Class I, unavoidably significant.	landfills are projected to close in the 20222027 time period. Absent an alternative means/location for disposing of waste, impacts are Class I, unavoidably significant.				
Recreation/Parks (Impact PS-6)	Projected population growth would generate demand for 212 acres of new parks by 2025 based on 10 acres/ 1,000 residents standard. Continued collection of required park fees and requirement of land dedication for parks could reduce impacts to Class III, less than significant. However, parks in older areas of the City (Downtown, Ventura Avenue corridor, Midtown area) where available land is lacking and population growth is projected may experience shortages of neighborhood parks absent land dedication with larger projects. Large sites to accommodate citywide park facilities are also lacking under this scenario.	Projected population growth would generate demand for 282 acres of new parks by 2025 based on 10 acres/1,000 residents standard. Continued collection of required park fees and requirement of land dedication for parks could reduce impacts to Class III, less than significant. Expansion areas provide sufficient acreage to meet 2025 demand for all types of facilities.	Impacts similar to Scenario 2 and Class III, less than significant.	Park demands in 2025 similar to Scenario 2. Continued collection of required fees and requirement of land dedication for parks could reduce impacts to Class III, less than significant. Expansion areas provide sufficient acreage to meet expansion-related demand and partially offset demand related to intensification/ reuse.	Park demands in 2025 similar to Scenario 2. Continued collection of required park fees and requirement of land dedication for parks could reduce impacts to Class III, less than significant. However, expansion areas do not provide sufficient acreage to meet expansionrelated demand.	Park demands in 2025 similar to Scenario 2. Continued collection of required park fees and requirement of land dedication for parks could reduce impacts to Class III, less than significant. Expansion areas provide sufficient acreage to meet expansion-related demand and partially offset demand related to intensification/ reuse.

Action 7.12 Refer development plans to the Fire Department to assure adequacy of structural fire protection, access for firefighting, water supply, and vegetation clearance.
Action 7.13 Resolve extended response time problems by:

- Adding a fire station at the Pierpont/Harbor area,
- Relocating Fire Station \#4 to the Community Park site,
- Increasing firefighting and support staff resources, and
- Reviewing and conditioning annexations and development applications, and
- Requiring the funding of new services from fees, assessments, or taxes as new subdivisions are developed.

Table 4.11-12 compares population increases and the increase in demand for facilities and firefighting personnel needed in order to maintain an adequate emergency response time of four minutes for Scenarios 1-6. As discussed in the Setting, the City has not officially adopted a standard for firefighter staffing levels; however, for jurisdictions that are comparable in size and population to the City of Ventura, staffing levels are typically about 0.98 fire fighters per 1,000 residents which would indicate current staffing deficiencies of 30 firefighters. Facility and staffing levels are based on achieving the desired four-minute response time, which varies (at least in part) according to fire personnel staffing levels, the placement of fire stations in relation to service areas, and the density/layout of land uses and development within a service area. Impacts associated with each scenario are discussed below.

Table 4.11-12
Projected Increase in Demand for Firefighting Personnel and Facilities ${ }^{\text {a }}$

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Current Staffing	73	73	73	73	73	73
Current Staffing Deficiencies	30	30	30	30	30	30
New Staff needed for anticipated growth.	$9-18$	27	27	27	27	27
Total Staff Needed in 2025 to Maintain Desired Staffing Ratio	$\mathbf{1 1 2 - 1 2 1 ^ { \text { c } }}$	130	130	130	130	130
Existing Facilities	6	6	6	6	6	6
Needed New Facilities	$1-2$	2	2	2	2	$\mathbf{2}$
Total Facilities Needed in 2025	$\mathbf{7 - 8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$

[^5]
Scenario 1 - Intensification/Reuse Only

As shown in Table 4.11-12, there are currently 73 sworn firefighters and six fire stations serving the City. Scenario 1 would not include any expansion areas, but the addition of an estimated 21,201 new residents would require additional fire protection facilities and fire stations.

As discussed in the Setting, the VFD plans to relocate Fire Station \#4 from its current location at 8303 Telephone Road to the Community Park property located at the corner of Telephone Road and Kimball Road in order to better serve the fire protection needs of Fire Sector \#4. With this relocation, adequate fire protection service could be provided in all portions of Fire Sector \#4. Neither the Ventura Harbor area nor areas along North Ventura Avenue currently falls within the VFD's desired four-minute response time. Two new fire stations - one to serve the Harbor area and one to serve the North Ventura Avenue area - would be needed to achieve the desired response time for these areas. The VFD has tentative plans to construct a new fire station in the Harbor area and General Plan Action 7.13 calls for a new station in this area; therefore, the new fire station is expected to be added in this area. The need for a new fire station within the North Ventura Avenue area under Scenario 1 would be based on the actual intensity of development that occurs within this area over the next 20 years. As stated above, currently response times for much of the North Ventura Avenue area exceed the desired four-minute response time; intensification of development - especially in the northern region of the North Ventura Avenue area - would most likely require the construction of a new fire station to serve this area.

As stated above, approximately 30 new firefighters are currently required to alleviate current staffing deficiencies and achieve the desired 0.98 firefighters $/ 1,000$ residents ratio. In order to adequately staff the new fire station and serve the Harbor area, an estimated nine new firefighters would be required; if an additional fire station is built to serve the North Ventura Avenue area, an additional nine firefighters would be required (Chief Mike Lavery, January 2005), thus resulting in a total of 121 firefighters or approximately 0.97 firefighters $/ 1,000$ residents.

Although an exact location for the new fire station to serve the Harbor area has not been identified, given the availability of land within this area, the construction of the new fire station would most likely occur adjacent to the Harbor along Harbor Boulevard. Similarly, a new fire station would most likely be built within the North Ventura Avenue corridor to serve this area. Funding sources for the new personnel and new facilities would be required, as well as siteand project-specific environmental review once project sites are identified for new facilities. It is anticipated that the new stations could be constructed without creating significant environmental effects.

Scenario 1 also could accommodate (under existing zoning and 1989 Comprehensive Plan land use designations) limited residential development above Foothill Road. Development in hillside areas could introduce new residences that would be located within, or directly adjacent to, high fire hazard areas. General Plan Action 7.12 would reduce potential impacts to a less than significant level through VFD review of development proposals in areas subject to wildland fire hazards. Potential secondary biological impacts associated with any clearance or setback requirements would be addressed through implementation of various policies and actions, as discussed in Section 4.4, Biological Resources.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Impacts relating to intensification and reuse would be the same as those of Scenario 1. In addition, this scenario includes the possible future development of the North Avenue, Olivas, and Serra expansion areas. A discussion of possible impacts associated with the development of these areas follows.

New development within the North Avenue expansion area would be outside the City's four minute response time within this area. Development of the North Avenue expansion area would also be located adjacent to a high fire hazard area. Implementation of General Plan Action 7.12 would ensure that adequate wildland fire protections are incorporated into new developments. However, a new fire station would be needed to provide adequate fire response to the North Avenue expansion area.

The Olivas expansion area currently lacks adequate fire protection services. As discussed above, response times to the Harbor area can be 10 minutes or more, thereby exceeding the desired four minute response time. Development of the Olivas expansion area could introduce a mix of uses that currently lack adequate fire protection. However, as discussed under Scenario 1, the VFD has tentative plans for a new station adjacent to the Harbor and Action 7.13 calls for a new station in the Harbor area. This new station would provide adequate service to the Olivas expansion area.

Fire Station \#4 would have primary responsibility for responding to calls within the Serra expansion area. Development of the Serra area could introduce a mix of new uses at a somewhat higher density than currently exists within this area. Although Fire Station \#4 is adequate to serve the Serra expansion area, relocation of Fire Station \#4 to the Community Park (as currently planned) would shorten response times and help better serve Fire Sector \#4. Adequate fire protection service is expected to be available in this area.

As discussed under Scenario 1, an estimated nine new firefighters would be needed to staff a new fire station near the Harbor. About nine new firefighters would be needed to staff a second fire station to serve the North Ventura expansion area and surrounding areas (Chief Mike Lavery, January 2005). With 18 new firefighters to staff the new stations and correcting for the current staffing deficiencies, the VFD would have a total of approximately 130 firefighters. Based on the projected 2025 population, this would represent a ratio of 0.98 firefighters $/ 1,000$ residents. Funding sources for the new personnel and new facilities would be required, as well as site- and project-specific environmental review, once sites are identified for new facilities. It is anticipated that new facilities could be constructed without creating significant environmental effects.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Impacts relating to intensification and reuse would be the same as those of Scenario 1. In addition, Scenario 3 includes the possible future development of the North Avenue and Olivas expansion areas. As discussed under Scenario 2, the planned new fire station in the Harbor area would provide for adequate fire protection service in the Olivas area. However, the North

Avenue expansion area would be outside the four-minute response time; therefore, a new station would be needed to serve that area as well as adjacent areas.

As discussed under Scenario 1, an estimated nine new firefighters would be needed to staff a new fire station near the Harbor, while about nine new firefighters would be needed to staff a second fire station to serve the North Ventura expansion area and surrounding areas (Chief Mike Lavery, January 2005). With 18 new firefighters to staff the new stations and correcting the current staffing deficiencies, the VFD would have a total of approximately 130 firefighters. Based on the projected 2025 population, this would represent a ratio of 0.98 firefighters $/ 1,000$ residents. Funding sources for the new personnel and new facilities would be required, as well as site- and project-specific environmental review, once sites are identified for new facilities.

$\underline{\text { Scenario } 4 \text { - Intensification/Reuse + North Avenue + Serra }}$

Impacts relating to intensification and reuse would be the same as those of Scenario 1. In addition, Scenario 3 includes the possible future development of the North Avenue and Olivas expansion areas. As discussed under Scenario 2, fire protection service is adequate for the Serra area. However, the North Avenue expansion area would be outside the four-minute response time; therefore, a new station would be needed to serve that area as well as adjacent areas.

An estimated nine new firefighters would be needed to staff the new fire station near the Harbor, while an estimated nine new firefighters would be required to provide additional staffing for a second fire station to serve the North Ventura expansion area and surrounding areas. With 18 new firefighters to staff the new stations and correcting for the current staffing deficiencies, the VFD would have a total of approximately 130 firefighters. Based on the projected 2025 population, this would represent a ratio of 0.98 firefighters $/ 1,000$ residents. Funding sources for the new personnel and new facilities would be required, as well as siteand project-specific environmental review, once sites are identified for the new facilities.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Impacts relating to intensification and reuse would be the same as those of Scenario 1. In addition, Scenario 3 includes the possible future development of the North Avenue and Western Cañada Larga expansion areas.

Both the North Avenue and Western Cañada Larga expansion areas are outside the desired four-minute response time for the VFD. In addition, both areas are adjacent to high fire hazard areas. General Plan Action 7.12 would ensure that adequate wildland fire protections are incorporated into new developments. However, a new fire station would be needed to provide adequate fire response to these areas.

An estimated nine new firefighters would be needed to staff the new fire station near the Harbor, while an estimated nine new firefighters would be required to provide additional staffing for a second fire station to serve the North Ventura expansion area and surrounding areas. With 18 new firefighters to staff the new stations and correcting the current staffing deficiencies, the VFD would have a total of approximately 130firefighters. Based on the projected 2025 population, this would represent a ratio of 0.98 firefighters/1,000 residents.

Funding sources for new personnel and new facilities would be required, as well as site- and project-specific environmental review, once sites are identified for the new facilities.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Impacts relating to intensification and reuse would be the same as those of Scenario 1. In addition, Scenario 3 includes the possible future development of the North Avenue and Poinsettia expansion areas.

As discussed under Scenario 2, the North Avenue expansion area is outside the desired fourminute response time for the VFD. In addition, it is adjacent to high fire hazard areas. Therefore, a new fire station would be needed to provide adequate fire protection services to this expansion area.

Fire Station \#3 would have primary responsibility for serving new development within the Poinsettia expansion area. Fire Station \#3 is located near the Telegraph Road/Victoria Avenue intersection. The most direct response route from Fire Station \#3 to the Poinsettia expansion area and development along Foothill Road would require traveling east down Telegraph Road through the Telegraph Road/Victoria Avenue intersection. With the projected increase in traffic at that intersection, the response times to the Poinsettia area and adjacent neighborhoods east of Victoria Avenue could exceed the desired four minute response time. As such, Fire Station \#3 would most likely need to be relocated east of the Telegraph Road/Victoria Avenue intersection (Chief Mike Lavery, January 2005).

An estimated nine new firefighters would be needed to staff the new fire station near the Harbor, while an estimated nine new firefighters would be required to provide additional staffing for a second fire station to serve the North Ventura expansion area and surrounding areas. With 18 new firefighters to staff the new stations and correcting for the current staffing deficiencies, the VFD would have a total of approximately 130 firefighters. Based on the projected 2025 population, this would represent a ratio of 0.98 firefighters $/ 1,000$ residents. Funding sources for the new personnel and new facilities would be required, as well as siteand project-specific environmental review, once sites are identified for the new facilities.

MITIGATION MEASURES

Implementation of 2005 General Plan Action 7.13 would provide the requisite funding for new facilities and equipment needed to serve new development through 2025. Site- and projectspecific environmental review would be required for new fire stations once sites for the new facilities are identified. Action 7.12 would minimize impacts associated with new development adjacent to, or within, high fire hazard areas for Scenarios 1-6. Action 7.13, which calls for a new fire station in the Harbor area, would provide for adequate fire response in the Harbor district and the Olivas expansion area. The following actions are recommended to address potential impacts relating to fire response times in the event that possible development of the North Avenue, Western Cañada Larga, or Poinsettia expansion areas is included in the General Plan.

PS-1(a) North Avenue and Western Cañada Larga Expansion Areas. The following action shall be added to the 2005 General Plan if any land use scenario that includes possible future development of the North Avenue expansion area or the Western Cañada Larga expansion area is adopted:

- Add a fire station in the North Avenue area as determined necessary by the Ventura Fire Department. Consider an assessment district for the North Avenue area to fund a new station.

PS-1(b) Poinsettia Expansion Area. The following action shall be added to the 2005 General Plan if any land use scenario that includes possible future development of the Poinsettia expansion area is adopted:

- Include a fire station site in any future specific plan for the Poinsettia expansion area if determined necessary by the Ventura Fire Department.

SIGNIFICANCE AFTER MITIGATION

With implementation of proposed policies and action items and the additional action items recommended above, impacts relating to fire protection service would be reduced to a less than significant level for Scenarios 1-6. It is anticipated that needed new facilities could be built without creating significant environmental impacts.

Impact PS-2 Possible future development under Scenarios 1-6 would increase the City's population and density of development, thereby resulting in the need to construct new facilities in order to provide effective police protection service. Impacts would be Class II, significant but mitigable, for any of the six land use scenarios.

The 2005 General Plan includes the following policies that address police service:
Policy 7D Improve community safety through enhanced police service.
Action 7.15 Increase public access to police services by:

- Increasing police staffing to coincide with increasing population, development, and calls for service, and
- Increasing community participation by creating a Volunteers in Policing Program, and
- Requiring the funding of new services from fees, assessments, or taxes as new subdivisions are developed.

Action 7.16 Provide education about specific safety concerns such as gang activity, senior-targeted fraud, and property crimes.

Action: 7.17 Establish a nexus between police department resources and increased service demands associated with new development.

Police protection services are not "facility-driven;" that is, police protection services are not as reliant on facilities in order to effectively patrol a beat. An expansion of, or intensification of development within, a beat does not necessarily result in the need for additional facilities if police officers and patrol vehicles are equipped with adequate telecommunications equipment in order to communicate with police headquarters. However, if the geographical area of a beat is expanded, population increases, or intensification/redevelopment of an existing beat results in the need for new police officers, new or expanded facilities could be needed.

Table 4.11-13 compares population increases and the increase in demand for additional police personnel needed to maintain the current ratio of 1.21 police officers per 1,000 residents. Impacts associated with increased demand for police protection service are discussed below.

Table 4.11-13
Projected Increase in Demand for Police Department Personnel

	Scenario 1 (Intensification/ Reuse Only)	Scenarios 2-6
Projected population increase	21,201	28,208
Additional police officers needed to maintain current 1.21 officers $/ 1,000$ residents ratio	26	34

Scenario 1 - Intensification/Reuse Only

Approximately 26 additional police personnel would be needed to maintain the current 1.21 police officers per 1,000 residents ratio with the projected increase of 21,201 new residents under Scenario 1. Implementation of General Plan Action 7.15 would provide for increased staffing as necessary to serve the community.

As the existing police headquarters is currently at maximum capacity, the addition of 26 police personnel would require either an addition/expansion of the existing headquarters or the construction of a new headquarters large enough to accommodate the projected increase in police personnel and provide effective police protection services for the entire community. Intensification and redevelopment of the Downtown area, as well as the likely increase in population in this area, would require the creation of a new beat in order to provide effective police protection service for this area (Quinn Fenwick, March 2005). Of the approximately 26 new police officers required for Scenario 1, at least six of these officers would be required to patrol the new beat created for the Downtown area. In addition, a new storefront within the Downtown area would be needed.

New development that could occur outside of the existing City limits (e.g., the Upper North Avenue, North Avenue corridors, or Saticoy corridors) would not require the construction of new facilities. However, additional telecommunications equipment (e.g., radios, cell phones, and computers) would be required to effectively patrol these areas. As the construction of new
facilities would not be required to effectively patrol these areas, impacts would not be significant.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Approximately 34 additional VPD personnel would be needed to maintain the 1.21 police officers per 1,000 residents ratio with the projected increase of 28,208 new residents under Scenario 2. Impacts relating to the intensification, redevelopment, and increase in population within the Downtown area would be the same as Scenario 1.

New development in the North Avenue, Olivas, and Serra expansion areas would not require the construction of new facilities. However, additional telecommunications equipment would be required to effectively patrol these areas (Quinn Fenwick, March 2005).

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Approximately 34 additional VPD personnel would be needed to maintain the 1.21 police officers per 1,000 residents ratio with the projected increase of 28,208 new residents under Scenario 3. Impacts relating to the intensification, redevelopment, and increase in population within the Downtown area would be the same as those of Scenario 1. Impacts from new development that could be accommodated in the North Avenue and Olivas expansion areas would be the same as those described under Scenario 2.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

Approximately 34 additional VPD personnel would be needed to maintain the 1.21 police officers per 1,000 residents ratio with the projected increase of 28,208 new residents under Scenario 4. Impacts relating to the intensification, redevelopment, and increase in population within the Downtown area would be the same as those described under Scenario 1. Impacts from new development that could be accommodated in the North Avenue and Serra expansion areas would be the same as those described under Scenario 2.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Approximately 34 additional VPD personnel would be needed to maintain the 1.21 police officers per 1,000 residents ratio with the projected increase of 28,208 new residents under Scenario 5. Impacts relating to the intensification, redevelopment, and increase in population within the Downtown area would be the same as those of Scenario 1. Impacts from new development that could be accommodated in the North Avenue and Serra expansion areas would be the same as under Scenario 2. Possible new development within the Western Cañada Larga expansion area would not require the construction of new facilities. However, new telecommunications equipment would be required.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Approximately 34 additional VPD personnel would be needed to maintain the 1.21 police officers per 1,000 residents ratio with the projected increase of 28,208 new residents under

Scenario 6. Impacts relating to the intensification, redevelopment, and increase in population within the Downtown area would be the same as Scenario 1. New development in the North Avenue and Poinsettia expansion areas would not require the construction of new facilities. However, additional telecommunications equipment would be required to effectively patrol these areas.

MITIGATION MEASURES

New facilities (e.g., construction of a new storefront within the Downtown area and expansion of the existing police headquarters) would be subject to site- and project-specific environmental review and mitigation measures at such time as specific new facilities are proposed. In addition, the following mitigation measure is required.

PS-2 Police Protection Service. The following actions shall be added to the 2005 General Plan:

- Establish a new Downtown storefront to meet the needs of the growing Downtown population
- Expand the Police Department headquarters as necessary to accommodate staff growth.

SIGNIFICANCE AFTER MITIGATION

With implementation of proposed General Plan policies and actions, the above additional action items, and future site- and project-specific environmental review for the construction of new facilities, impacts relating to police protection service would be reduced to a less than significant level. It is anticipated that needed facility expansions and new facilities can be constructed with creating significant environmental effects.

Impact PS-3	Projected enrollment growth under the 2005 General Plan would exceed the capacity of existing schools within the Ventura Unified School District, thereby creating the need to construct additional facilities. However, payment of State- mandated school impact fees is presumed to provide funding for needed new school facilities. Therefore, although available land for new schools may be limited (particularly for
Scenarios 1 and 5), impacts to schools would be reduced to a Class III, less than significant, level for any of the six land use scenarios.	

Table 4.11-14 compares the anticipated post-project school enrollment for Scenarios 1-6, based on the existing school capacity for elementary schools, middle schools, and high schools in the Ventura Unified School District. Table 4.11-5 compares the estimated number and acreage of new schools needed to serve the projected increases in student populations at the VUSD. A discussion of impacts associated with each of the six land use scenarios follows.

Table 4.11-14
Projected School Enrollment and Capacity

Grade Level	Current Capacity	Current School Enrollment	New Students from Additional Growth Through 2025*	Projected 2025 Student Enrollment	Students Over Current Capacity	Capacity Utilization
Scenario 1						
K-5	8,277	7,729	1,826	9,555	1,278	115\%
6-8	4,858	4,201	747	4,948	90	102\%
9-12	5,586	5,267	913	6,180	594	111\%
Scenario 1 Total	18,721	17,197	3,486	20,683	1,962	110\%
Scenarios 2-6						
K-5	8,277	7,729	2,420	10,149	1,872	123\%
6-8	4,858	4,201	990	5,191	333	107\%
9-12	5,586	5,267	1,210	6,477	891	116\%
Scenarios 2-6 Total	18,721	17,197	4,620	21,817	3,096	117\%

* Calculated based upon rates of 0.22 elementary school students per unit, 0.09 middle school students per unit, and 0.11 high school students per unit. Numbers are rounded to the nearest whole number. The total increase in students is based upon the number of new dwelling units shown in Table 2-6 in Section 2.0 (approximately 8,300 units for Scenario 1 and 11,000 units for Scenarios 2-6).

Scenario 1 - Intensification/Reuse Only

Under Scenario 1, the anticipated addition of 8,300 residential units through 2025 would generate an estimated 3,486 new students at the Ventura Unified School District. This total includes 1,826 elementary, 747 middle, and 913 high school students. With this increase in enrollment, overall enrollment would exceed the capacity of existing VUSD schools by an estimated 1,962 students.

Based on California Department of Education recommended standards, projected student growth associated with Scenario 1 would generate the need for an estimated 2-3 new elementary schools, and potentially a new middle school and high school. Overall acreage needed to accommodate new facilities would range from about 29 to 93 acres, depending primarily upon whether or not new middle or high school facilities are needed.
Pursuant to Section 65995(h) of the California Government Code (Senate Bill 50, chaptered August27, 1998), the payment of statutory fees "...is deemed to be full and complete mitigation of the impacts of any legislative or adjudicative act, or both, involving, but not limited to, the planning, use, or development of real property, or any change in governmental organization or reorganization." Therefore, pursuant to CGC $\S 65994(\mathrm{~h})$, impacts relating to school capacity would not be significant if future developers within the VUSD continue to pay State-mandated school impact fees. Site- and project-specific environmental review would be required for

Table 4.11-15
Projected School Demand

School Type	Students Over Current Capacity (from Table 4.11-14)	Students/ School ${ }^{\text {a }}$	New Schools Needed ${ }^{\text {a }}$	School Acres Needed ${ }^{\text {b }}$
Scenario 1				
Elementary	1,278	450	2-3	19-29
Middle	90	900	0-1	0-21
School	594	1,200	0-1	0-34
Total	1,962		3-6	29-93
Scenarios 2-6				
Elementary	1,872	450	4-5	38-48
Middle	333	900	0-1	0-21
School	891	1,200	0-1	0-34
Total	3,096		4-7	38-103

${ }^{a}$ Recommended school size from the California Department of Education.
${ }^{b}$ Total students over capacity divided by the number of students per school.
${ }^{\text {c }}$ Based on recommended school size from the California Department of Education: 9.6 acres for elementary schools, 20.9 acres for middle schools, and 33.5 acres for high schools.
individual school sites as they are identified in the future.
Although impacts would not be significant under CEQA, it should be noted that Scenario 1 includes only limited land that could be used for the development of new school facilities. Development of the planned West End Elementary site would partially meet the elementary school demand. However, other sites of sufficient size to accommodate new schools are designated for other uses.

One alternative to developing new schools would be to expand existing schools. Enrollment and current capacity at several VUSD schools are currently under the CDE's recommended recommended 450 -student school size. However, it should be noted that the VUSD has indicated that existing playground facilities are already overused and more intensive use of facilities would exacerbate this condition. Another option would be to acquire properties that are currently designated for other uses and converting them to school sites. Depending upon owners' willingness to sell properties, this approach could require VUSD condemnation of properties to meet school needs.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Under Scenario 2, the anticipated addition of 11,000 residential units through 2025 would generate an estimated 4,620 new students at the Ventura Unified School District. This total includes 2,420 elementary, 990 middle, and 1,210 high school students. With this increase in enrollment, overall enrollment would exceed the capacity of existing VUSD schools by an estimated 3,096 students.

Based upon California Department of Education recommended standards, projected student growth associated with Scenario 2 would generate the need for an estimated $4-5$ new elementary schools and potentially a new middle school and high school. Overall acreage needed to accommodate new facilities would range from about 38 to 103 acres, depending primarily upon whether or not new middle or high school facilities are needed.

As with Scenario 1, site- and project-specific environmental review would be required for individual school sites as they are identified in the future and collection of State-mandated school impact fees would reduce school capacity impacts to a less than significant level.

Scenario 2 includes the North Avenue, Olivas, and Serra expansion areas, which have a combined 1,449 acres. Based on the estimated 2,700 total new residences in the expansion areas, the expansion areas themselves would generate an estimated 594 elementary school students, 243 middle school students, and 297 high school students. The 1,449 combined acres provide sufficient land to meet demands associated with expansion and at least partially offset demands associated with intensification/reuse.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Projected VUSD enrollment increases and demand for new school facilities would be identical to those identified for Scenario 2. Site- and project-specific environmental review would be required for individual school sites as they are identified in the future and collection of Statemandated school impact fees would reduce school capacity impacts to a less than significant level.

Scenario 3 includes the North Avenue and Olivas expansion areas, which have a combined 985 acres. This acreage is sufficient to meet school acreage demands associated with expansion and at least partially offset demands associated with intensification/reuse.

Scenario 4- Intensification/Reuse + North Avenue + Serra

Projected VUSD enrollment increases and demand for new school facilities would be identical to those identified for Scenario 2. Site- and project-specific environmental review would be required for individual school sites as they are identified in the future and collection of Statemandated school impact fees would reduce school capacity impacts to a less than significant level.

Scenario 4 includes the North Avenue and Serra expansion areas, which have a combined 511 acres. This acreage is sufficient to meet school acreage demands associated with expansion and at least partially offset demands associated with intensification/reuse.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Projected VUSD enrollment increases and demand for new school facilities would be identical to those identified for Scenario 2. Site- and project-specific environmental review would be required for individual school sites as they are identified in the future and collection of Statemandated school impact fees would reduce school capacity impacts to a less than significant level.

Scenario 5 includes the North Avenue and Western Cañada Larga expansion areas, which have a combined 176 acres, about of 146 of which are developable. This amount of acreage is not sufficient to accommodate any school facilities given that it is assumed that 2,700 residences would be built in the limited amount of land available. Thus, the expansion areas would not be able to provide schools to meet demand associated with expansion area development. Even if sufficient land were available to accommodate schools, the Western Cañada Larga area is not located adjacent to the more densely populated residential areas of the Planning Area and would not serve as a preferred location for new schools.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Projected VUSD enrollment increases and demand for new school facilities would be identical to those identified for Scenario 2. Site- and project-specific environmental review would be required for individual school sites in the future and collection of State-mandated school impact fees would reduce school capacity impacts to a less than significant level.

Scenario 6 includes the North Avenue and Poinsettia expansion areas, which have a combined 473 acres. This acreage is sufficient to meet school acreage demands associated with expansion and at least partially offset demands associated with intensification/reuse.

MITIGATION MEASURES

As discussed above, site- and project-specific environmental review would be required for schools if, or when, new sites are proposed for development in the future. As previously noted, pursuant to Section 65995(h) of the California Government Code (Senate Bill 50, chaptered August 27,1998), the payment of statutory fees "...is deemed to be full and complete mitigation of the impacts of any legislative or adjudicative act, or both, involving, but not limited to, the planning, use, or development of real property, or any change in governmental organization or reorganization." Therefore, mitigation is not required for any scenario. Nevertheless, the following is recommended.

PS-3(a) School Coordination. The following action should be added to the 2005 General Plan:

- Work with the Ventura Unified School District to ensure that school facilities can be provided to serve new development.

PS-3(b) Expansion Area Schools. The following action should be added to the 2005 General Plan if any land use scenario that includes an expansion area is adopted:

- Require expansion area specific plans to be prepared in coordination with the Ventura Unified School District and set aside land needed for new school facilities.

SIGNIFICANCE AFTER MITIGATION

Continued collection of State-mandated school impact fees would fund the construction of new school facilities that would be required to accommodate projected increases in school enrollment and would reduce school impacts to a less than significant level for any of the six scenarios. Nevertheless, it should be noted that land available for school development would be limited under Scenario 1; therefore, selection of that scenario may require intensification of the use of existing schools or VUSD condemnation of property to provide needed school facilities. In addition, the expansion areas considered for Scenario 5 (North Avenue and Western Cañada Larga) do not include sufficient acreage to provide for school facility demands generated by projected expansion area development.

> | Impact PS-4 | $\begin{array}{l}\text { Ventura libraries are currently undersized to serve the City's } \\ \text { existing population and, given the projected population } \\ \text { growth rates for Scenarios 1-6, the existing library services } \\ \text { would be inadequate to serve the future service area } \\ \text { population. Although new facilities would be needed to meet } \\ \text { projected demand under Scenarios 1-6, facilities could be } \\ \text { constructed without causing significant environmental } \\ \text { impacts. This is considered to be a Class III, less than } \\ \text { significant, impact for all six scenarios. }\end{array}$ |
| :--- | :--- |

Table 4.11-16 compares the anticipated demand for library services for Scenarios 1-6. Project demand is measured in terms of books per capita, as well as size of facilities (in square feet) per capita. Although the Ventura County Library currently does not have an adopted standard for these two measures, two books per capita and one square foot of facilities per capita were used, as they reflect the standards used for recently approved projects within Ventura County (e.g., the Camarillo library). The needs assessment includes E.P. Foster Library, H.P. Wright Library, and Avenue Library.

It is important to note that other factors besides the number of books and size of facilities have an impact on the quality of library services. Staffing levels, computer equipment, internet access, and age of books, for example, also play a key role in the quality of library services. However, in order to assess impacts on library facilities for Scenarios 1-6, books per capita and

Table 4.11-16
Projected Demand for Library Services

	Current Books ${ }^{\text {a }}$	Books Needed in 2025 at 2 Books/ Capita ${ }^{\text {b }}$	Additional Books Required to Maintain 2 Books/ Capita	Current Facilities (square feet) ${ }^{\text {c }}$	Facilities Needed in 2025 to Achieve 1 Square Foot/Capita Ratio (square feet) ${ }^{\text {b }}$	Additional Facilities Required to Meet 1 Square Foot/Capita Ratio ${ }^{\text {d }}$
Scenario 1	227,565	252,306	24,741	48,000	126,153	78,153
$\begin{gathered} \text { Scenarios } \\ 2-6 \end{gathered}$	227,565	266,320	38,755	48,000	133,160	85,160

${ }^{a}$ Bood estimates from Starrett Kreissman, personal communication, 1/24/05.
${ }^{b}$ Based on population of 126,153 for Scenario 1 and 133,160 for Scenarios 2-6.
${ }^{c}$ Size of facilities from Starrett Kreissman, personal communication, 1/24/05.
library facilities per capita were used as they are directly related to the need for new or physically altered facilities. A discussion of impacts for each scenario follows.

Scenario 1 - Intensification/Reuse Only

Although there is no officially adopted books per capita ratio, 2 books per capita is considered an appropriate standard for the City of Ventura (Starrett Kreissman, January 2005). With a total of 227,565 books and a population of 104,952 residents, E.P. Foster Library, H.P. Wright Library, and Avenue Library currently maintain 2.16 books per capita, thereby exceeding the 2 books per capita standard. Under Scenario 1, the projected 2025 population would be 126,153 residents. Therefore, 252,306 books would be needed to maintain 2 books per capita, which would require the acquisition of an estimated 24,741 additional books.

Similar to the books per capita ratio, there is no officially adopted facilities per capita ratio; however, one square foot per capita is considered an appropriate standard (Starrett Kreissman, January 2005). With a total of 48,000 square feet of facilities and a population of 104,952 , the current ratio is 0.46 square feet of facilities per capita. In order to achieve one square foot of facilities per capita, an additional 78,153 square feet of library facilities would be required by 2025 based on the 0.88% annual population growth projection.

Additional facilities would likely be provided within already urbanized areas of the Planning Area. Options for providing additional facilities could include the leasing of existing buildings, expanding existing library facilities, and/or building new facilities, any of which could likely be implemented without creating significant environmental impacts.

Scenarios 2-6

Because impacts would be the same for Scenarios 2-6, these scenarios are not discussed
individually. Under Scenarios 2-6, the projected 2025 population would be 133,160 residents. Therefore, 266,320 books would be needed to maintain 2 books per capita, which would require the acquisition of an estimated 38,755 additional books.

In order to achieve one square foot of library facilities per capita in 2025, an additional 85,160 square feet of facilities would be required by 2025 based on the 1.14% annual population growth projection assumed for Scenarios 2-6. Additional facilities could be provided within already urbanized areas of the Planning Area through leasing of existing buildings, expanding existing library facilities, and/or building new facilities. Expansion areas could also be used to wholly or partially meet new library demands under any of the five scenarios. Any of the options for providing new library facilities could likely be implemented without creating significant environmental impacts.

MITIGATION MEASURES

As discussed above, Scenarios 1-6 could accommodate the construction of new library facilities without creating any significant environmental impacts. Mitigation is not needed, though increased funding of libraries would be needed if new facilities are to be developed.

SIGNIFICANCE AFTER MITIGATION

Impacts would not be significant for any of the six land use scenarios. Projected overall demand for additional library facilities and services would be greater under Scenarios 2-6 than under Scenario 1 because of the higher projected population.

$$
\begin{array}{ll}
\text { Impact PS-5 } & \begin{array}{l}
\text { Existing landfills have adequate capacity to accommodate } \\
\text { projected citywide increases in solid waste generation for the } \\
\text { next 15-17 years. However, regional waste generation } \\
\text { increases could exceed the daily capacity of area landfills. In } \\
\text { addition, area landfills are projected to close in the 2022-2027 } \\
\text { period; therefore, expanded or new facilities will be needed to } \\
\text { accommodate solid waste generated in the City through } 2025 . \\
\text { Although the identification of new facilities is physically } \\
\text { feasible, the City cannot ensure that new facilities are sited. } \\
\text { Impacts are therefore considered Class I, unavoidably } \\
\text { significant, for all six land use scenarios. }
\end{array}
\end{array}
$$

The 2005 General Plan includes the following policies and actions related to reducing solid waste generation:

Policy 5B Improve services in ways that respect and even benefit the environment.

Action 5.10 Utilize existing waste source reduction requirements, and continue to expand and improve composting and recycling options.
Policy 1D Expand the use of green practices.
Action 1.25 Purchase and use recycled materials and alternative and renewable
energy sources as feasible in City operations.
Action 1.27 Utilize green waste as biomass/compost in City operations.
Action 1.30 Provide information to businesses about how to reduce waste and pollution and conserve resources.

Table 4.11-17 shows the estimated increase in solid waste generation anticipated for Scenarios 16. A discussion of the impacts associated with each scenario follows.

Table 4.11-17
Current and Projected Solid Waste Generation (tons per day)

	Current Citywide (2003) ${ }^{\text {a }}$		2025 Citywide		Projected Increase (2003-2025)				
	Tons Generated Per Day	Tons Diverted from Landfills	Tons Sent to Landfills	Tons Generated Per Day b	Tons Diverted from Landfills c	Tons Sent to Landfills c	Increase in Tons Per Day	Additional Tons Diverted from Landfills	Additional Tons Sent to Landfills
	1,009	616	393	1,224	747	477	215	131	84
Scenarios $2-6$	1,009	616	393	1,291	788	503	282	172	110

${ }^{a}$ From Gary Haden, City of Ventura Environmental Services Office, personal communication, 1/24/04.
${ }^{b}$ Based on the current per capita rate of 0.0096 tons/person/day applied to the projected population of 126,153 (Scenario 1) and 133,160 (Scenarios 2-6).
${ }^{c}$ Assumes the City's 2003 diversion rate of 61%.

Scenario 1 - Intensification/Reuse Only

Under Scenario 1, daily citywide solid waste generation is projected to increase by about 215 tons per day by 2025. Assuming that the current 61% diversion rate is maintained, 39% of this total, about 84 tons per day, would be sent to area landfills. This is within the 350 -ton combined currently available capacity at the Toland Road and Simi Valley Landfills (100 tons at Toland Road and 250 tons at Simi Valley). Adequate landfill capacity could potentially be available for the next 15-17 years. However, the Simi Valley Landfill is a less desirable alternative to Toland Road because of its long distance from Ventura. In addition, that landfill is currently projected to close by 2022. This would reduce available capacity to 100 tons per day. Though the projected 84 -ton increase for the City is within this amount, the cumulative increase in solid waste sent by Ventura and other cities in the region is anticipated to exceed 100 tons given that waste generated in Ventura makes up only about $25-30 \%$ of the total waste currently going to Toland Road Landfill. In addition, the Toland Road Landfill is projected to close by 2027. Consequently, a new or expanded solid waste disposal facility is expected to be needed over the next 20 years to accommodate waste generated in Ventura. Impacts relating to solid waste disposal are considered significant.

As discussed in the Setting, household hazardous waste collection programs resulted in the collection of approximately 250,721 pounds of household hazardous waste and oil during 20032004. Using the City of Ventura 2003 population of approximately 104,300 residents, household
hazardous waste collection programs collected approximately 2.4 pounds of household hazardous waste and oil per person per year. Using this per capita rate, population growth under Scenario 1 would increase household hazardous waste generation by approximately 50,882 pounds per year. The Environmental Services Office is currently constructing a household hazardous waste facility that would allow the number of household hazardous waste collection events to increase from four to eleven events per year. Construction of the new household hazardous waste facility and the anticipated increase in collection events could accommodate the anticipated increase in household hazardous waste and oil under Scenario 1. Therefore, impacts relating to household hazardous waste are not considered significant.

Scenarios 2-6

Because solid waste generation and impacts would be the same for Scenarios 2-6, those scenarios are not discussed individually. Under Scenarios 2-6, daily citywide solid waste generation is projected to increase by about 282 tons per day by 2025. Assuming that the current 61% diversion rate is maintained, 39% of this total, about 110 tons per day, would be sent to area landfills. This is within the 350-ton combined currently available capacity at the Toland Road and Simi Valley Landfills (100 tons at Toland Road and 250 tons at Simi Valley). Therefore, adequate landfill capacity could potentially be available for the next 15-17 years. However, as noted previously, the Simi Valley Landfill is a less desirable alternative than Toland because of its distance from Ventura and is currently projected to close by 2022. This would reduce available capacity to 100 tons per day, which is not sufficient to accommodate the 110 -increase associated with growth under Scenarios 2-6 or the combined increase in solid waste generation in all cities that take solid waste to Toland Road Landfill. In addition, the Toland Road Landfill is projected to close by 2027. Consequently, a new or expanded solid waste disposal facility is expected to be needed over the next 20 years to accommodate solid waste generated in Ventura. Impacts relating to solid waste disposal are considered significant.

Using the per capita rate of 2.4 pounds of household hazardous waste per year (see discussion under Scenario 1), population growth under Scenarios 2-6 would increase household hazardous waste generation by approximately 67,700 pounds per year. As noted above, the Environmental Services Office is currently constructing a household hazardous waste facility that would allow the number of household hazardous waste collection events to increase from four to eleven events per year. Construction of the new household hazardous waste facility and the anticipated increase in collection events could accommodate the anticipated increase in household hazardous waste and oil under Scenarios 2-6. Therefore, impacts relating to household hazardous waste are not considered significant.

MITIGATION MEASURES

The policies and actions listed at the beginning of this impact discussion would serve to reduce solid waste generation and landfilling to the maximum degree feasible, but would not address the potential landfill capacity shortfall. The following measure is recommended to address the potential lack of available landfill capacity in 2025 for all six scenarios.

PS-5 Solid Waste Disposal Facilities. The following actions shall be added to the 2005 General Plan:

- Coordinate with the Ventura Regional Sanitation District and the County to expand the capacity of existing landfills, site new landfills, or develop alternative means of disposing of solid waste that will provide sufficient capacity for waste generated in the City.
- Develop incentives for new residences and businesses to incorporate recycling and waste diversion practices using guidelines provided by the Environmental Services Office.

SIGNIFICANCE AFTER MITIGATION

Implementation of the recommended action would provide a mechanism for identifying landfill space or other means of disposing of solid waste that would meet the City's needs through 2025 and beyond. However, because siting of new landfills and waste disposal facilities is subject to the approval of another agency (the Regional Sanitation District), the City cannot guarantee the siting of a new landfill within the timeframe of the 2005 General Plan. In addition, though any new or expanded facility would likely be subject to separate environmental review under CEQA, the siting of a new facility would likely have unavoidably significant secondary environmental impacts. As such, impacts relating to solid waste disposal facilities are considered unavoidably significant for any of the six scenarios.

> Impact PS-6 Population growth accommodated under any of the 2005
> General Plan land use scenarios would increase demand for recreational facilities and programs. With continued payment of Quimby fees and parkland dedication in conjunction with new development, impacts could be reduced to a Class III, less than significant, level for all six scenarios. It should be noted, however, that Scenario 1 does not include land that could accommodate new citywide park facilities, while the expansion areas included in Scenario 5 do not include sufficient land to provide park acreage meeting the demands of projected expansion area population growth.

The 2005 General Plan includes the following policies and actions relating to the provision of parks.

Policy 6A Expand the park and trail network to link shoreline, hillside, and watershed areas.
Action 6.1 Develop new neighborhood parks, pocket parks, and community gardens as feasible and appropriate to meet citizen needs, and require them in new development.

Action 6.2 Require higher density development to provide pocket parks, tot lots, seating plazas, and other aesthetic green spaces.
Action 6.3 Require development to include trails when appropriate.

Action 6.4 Request Flood Control District approval of public access along unchannelized watercourses for hiking.
Action 6.5 Seek landowner permission to allow public access on properties adjacent to open space where needed to connect trails.
Action 6.6 Update plans for and complete the linear park system as resources allow.
Action 6.7 Work with the County of Ventura to initiate efforts to create public trails in the hillsides.

Action 6.8 Update the Park and Recreation Workbook as necessary to reflect City objectives and community needs.
Action 6.9 Require dedication of land identified as part of the City Linear Park System in conjunction with new development.
Action 6.10 Evaluate and incorporate, as feasible, linear park segments in the General Bikeway Plan.
Action 6.11 Update standards for citywide public parks and open space to include an expanded menu of shared park types, and identify locations and potential funding sources for acquiring new facilities in existing neighborhoods.
Action 6.12 Update and carry out the Grant Park Master Plan.
Action 6.13 Foster the partnership between the City and Fair Board to improve Seaside Park.
Action 6.13 Foster the partnership between the City and Fair Board to improve Seaside Park.

Policy 6B Ensure equal access to facilities and programs.
Action 6.14 Improve facilities at City parks to respond to the requirements of special needs groups.
Action 6.15 Adjust and subsidize fees to ensure that all residents have the opportunity to participate in recreation programs.
Action 6.16 Update the project fee schedule as necessary to ensure that development provides its fair share of park and recreation facilities.
Policy 6C Provide additional gathering spaces and recreation opportunities.
Action 6.17 Update and create new agreements for joint use of school and City recreational and park facilities.
Action 6.18 Offer programs that highlight natural assets, such as surfing, sailing, kayaking, climbing, gardening, and bird watching.
Action 6.19 Provide additional boating and swimming access as feasible.
Action 6.20 Earmark funds for adequate maintenance and rehabilitation of existing skatepark facilities, and identify locations and funding for new development of advanced level skatepark facilities.

Table 4.11-18 compares the parkland demand that would result from growth projected for Scenarios 1-6. A discussion of each scenario follows.

Table 4.11-18
Current and Projected Parkland Demand

	Current Demand for $^{\text {Parkland }^{\mathrm{a}}}$	Increased Parkland Demand Due to Projected Population $_{\text {Growth }^{\mathbf{a}}}$	Total Parkland Demand in $^{\mathbf{2 0 2 5}^{\mathrm{a}}}$	Total Existing Parkland	Additional Parkland Required to Meet 10/Acres per 1,000
Residents in					
$\mathbf{2 0 2 5}$					

${ }^{a}$ Demand for parkland is based on the City's current standard of 10 acres/1,000 residents.
${ }^{b}$ Total existing parkland includes Community, Montalvo, and Fill Parks, as well as City-owned linear parks. The total existing parkland varies, as the size of Surfers Point at Seaside Park and Seaside Wilderness Park fluctuate according to the mean high tide line. In addition, approximately 65\% of Seaside Wilderness Park is located in the Ventura Riverbed.

Scenario 1 - Intensification/Reuse Only

Parkland demand is based on the City standard of 10 acres per 1,000 residents. Using the 2004 population of 104,952, total existing parkland is deficient by approximately 180-184 acres. With an annual population growth rate of 0.88%, Scenario 1 would generate an estimated 21,201 new residents. Based on the 10 acres $/ 1,000$ residents standard, this would generate the need for approximately 212 acres of additional parkland. Therefore, citywide demand for parkland in 2025 would be 1,262 acres. Because the current parkland inventory includes 866-870 acres, approximately 392-396 acres of new parkland would be needed to meet the 10 acres/1,000 residents standard.

Scenario 1 does not include any expansion areas and would emphasize intensification of development and the reuse of existing lands within already developed areas. Site- and projectspecific environmental review would be required as sites are identified for new facilities. Dedication of parklands for new development and continued payment of required park fees to purchase lands that could be converted into parklands within the City would help offset the demand in new parklands under Scenario 1. Moreover, non-city special use facilities (e.g., state beaches, the Ventura County Fairgrounds, and Ventura Unified School District sports fields) would continue to provide approximately 600 acres of additional recreational parks and facilities that could be utilized by current and new residents.

Dedication of parkland for new development and continued collection of required park fees on new development would allow the City to address increased demand for parks associated with population growth. Specific environmental impacts associated with individual new park facilities would need to be addressed on a case-by-case as new facilities are proposed.

The intensification of residential development in certain areas of the City - notably portions of Saticoy, the Downtown District, and the Ventura Avenue, Main Street, and Thompson

City of Ventura

Boulevard, and Telegraph Road corridors - could substantially increase demand for parks in these areas, which are largely lacking in local park facilities. Available land for new park facilities, particularly citywide facilities, is largely lacking in these areas. Therefore, the development of new parks may require land dedication in conjunction with the development of large properties in order to provide park facilities in areas where substantial residential growth is anticipated. General Plan Action 6.1 addresses this issue, calling for new neighborhood parks, pocket parks, and community gardens, and requiring new development to incorporate park facilities. In addition, Action 6.2 requires higher density development to provide pocket parks, tot lots, seating plazas, and other aesthetic green spaces. It should be noted, however, that large parcels of 100 acres or more that could accommodate citywide park facilities are lacking under Scenario 1. Consequently, the development of new citywide facilities may require future consideration of SOI expansion. Such expansion would be subject to environmental review under CEQA and, depending upon which areas, if any, are considered, voter approval.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Based on a projected annual population growth rate of 1.14%, Scenario 2 would accommodate an estimated 28,208 new residents. Based on the 10 acres $/ 1,000$ residents standard, this would generate the need for approximately 282 acres of additional parkland. Therefore, the citywide demand for parkland in 2025 would be 1,262 acres. The current parkland inventory includes 866-870 acres; therefore, approximately 462-466 acres of new parkland would be required to meet the 10 acres $/ 1,000$ residents standard in 2025.

Dedication of parkland for new development and continued collection of required park fees on new development would allow the City to address increased demand for parks associated with population growth. Specific environmental impacts associated with individual new park facilities would need to be addressed on a case-by-case as new facilities are proposed.

Park issues associated with intensification and reuse would be similar to those described for Scenario 1. This scenario would also include the North Avenue, Olivas, and Serra expansion areas, which include a combined 1,449 acres. If developed in the future, these areas are projected to accommodate up to about 2,700 new residences. Based on the current 2.57 persons/household, the expansion areas would accommodate a population of just under 7,000. Thus, about 70 acres of parks would be needed in order to meet demand associated with expansion area development. Specific plans have not been developed for any of the expansion areas. However, as noted in the "Expansion Area Acres by Use" estimates provided in Appendix B, it is anticipated that less than 500 acres of land would be needed to accommodate the amount of development projected for the expansion areas. Thus, more than 900 expansion area acres would potentially be available for new park facilities. This acreage would more than meet the demands associated with expansion area residential development and could be used to offset the current citywide shortfall of park acreage as well as the lack of space for citywide park facilities in intensification/reuse areas.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

The increase in park demand associated with Scenario 3 would be identical to that of Scenario 2

- 282 acres. Citywide demand for parkland in 2025 would be 1,262 acres. As with Scenario 2, approximately 462-466 acres of new parkland would be required to meet the 10 acres / 1,000 residents standard in 2025.

Dedication of parkland for new development and continued collection of required park fees on new development would allow the City to address increased demand for parks associated with population growth. Specific environmental impacts associated with individual new park facilities would need to be addressed on a case-by-case as new facilities are proposed.

Park issues associated with intensification and reuse would be similar to those described for Scenario 1. This scenario would also include the North Avenue and Olivas expansion areas, which include a combined 985 acres and, if developed, could accommodate about 7,000 new residents. Similar to Scenario 2, about 70 acres of parks would be needed in order to meet demand associated with expansion area development. As noted in the "Expansion Area Acres by Use" estimates provided in Appendix B, it is anticipated that more than 500 expansion area acres would potentially be available for new park facilities under this scenario. This acreage would more than meet the demands associated with expansion area residential development and potentially could be used to offset the current citywide shortfall of park acreage as well as the lack of space for citywide park facilities in intensification/reuse areas.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

The increase in park demand associated with Scenario 4 would be identical to that of Scenario 2 - 282 acres. Citywide demand for parkland in 2025 would be 1,262 acres. As with Scenario 2, approximately 462-466 acres of new parkland would be required to meet the 10 acres /1,000 residents standard in 2025.

Dedication of parkland for new development and continued collection of required park fees on new development would allow the City to address increased demand for parks associated with population growth. Specific environmental impacts associated with individual new park facilities would need to be addressed on a case-by-case as new facilities are proposed.

Park issues associated with intensification and reuse would be similar to those described for Scenario 1. This scenario would also include the North Avenue and Serra expansion areas, which include a combined 519 acres and, if developed, could accommodate about 7,000 new residents. Similar to Scenario 2, about 70 acres of parks would be needed in order to meet demand associated with expansion area development. As noted in the "Expansion Area Acres by Use" estimates provided in Appendix B, it is estimated that 147 expansion area acres would potentially be available for new park facilities under this scenario. This acreage would more than meet the demands associated with expansion area residential development and could be used to partially offset some of the current citywide shortfall of park acreage as well as the lack of space for citywide park facilities in intensification/reuse areas.

$\underline{\text { Scenario } 5 \text { - Intensification/Reuse + North Avenue + Western Cañada Larga }}$

The increase in park demand associated with Scenario 5 would be identical to that of Scenario 2 - 282 acres. Citywide demand for parkland in 2025 would be 1,262 acres. As with Scenario 2,
approximately 462-466 acres of new parkland would be required to meet the 10 acres / 1,000 residents standard in 2025.

Dedication of parkland for new development and continued collection of required park fees on new development would allow the City to address increased demand for parks associated with population growth. Specific environmental impacts associated with individual new park facilities would need to be addressed on a case-by-case as new facilities are proposed.

Park issues associated with intensification and reuse would be similar to those described for Scenario 1. This scenario would also include the North Avenue and Western Cañada Larga expansion areas, which include a combined 176 acres and, if developed, could accommodate about 7,000 new residents. Similar to Scenario 2, about 70 acres of parks would be needed in order to meet demand associated with expansion area development. As noted in the "Expansion Area Acres by Use" estimates provided in Appendix B, it is estimated that only about 32 expansion area acres would potentially be available for new park facilities under this scenario. This acreage would not be adequate to meet the demands associated with expansion area residential development.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

The increase in park demand associated with Scenario 6 would be identical to that of Scenario 2 - 282 acres. Citywide demand for parkland in 2025 would be 1,262 acres. As with Scenario 2, approximately 462-466 acres of new parkland would be required to meet the 10 acres / 1,000 residents standard in 2025.

Dedication of parkland for new development and continued collection of required park fees on new development would allow the City to address increased demand for parks associated with population growth. Specific environmental impacts associated with individual new park facilities would need to be addressed on a case-by-case as new facilities are proposed.

Park issues associated with intensification and reuse would be similar to those described for Scenario 1. This scenario would also include the North Avenue and Poinsettia expansion areas, which include a combined 473 acres and, if developed, could accommodate about 7,000 new residents. Similar to Scenario 2, about 70 acres of parks would be needed in order to meet demand associated with expansion area development. As noted in the "Expansion Area Acres by Use" estimates provided in Appendix B, it is estimated that 113 expansion area acres would potentially be available for new park facilities under this scenario. This acreage would more than meet the demands associated with expansion area residential development and could be used to partially offset some of the current citywide shortfall of park acreage as well as the lack of space for citywide park facilities in intensification/reuse areas.

MITIGATION MEASURES

Continued payment of required park fees and dedication of land for parks on a case-by-case basis would reduce impacts to a less than significant level. Mitigation is not required for any of the six scenarios.

SIGNIFICANCE AFTER MITIGATION

Impacts would be less than significant for any of the six scenarios with continued payment of applicable park fees and dedication of parkland on a case-by-case basis. Possible environmental impacts associated with the development of new parks would depend upon the local and type of facility and would need to be addressed on case-by-case basis. It should be noted that Scenarios 2, 3, 4, and 6 would provide greater opportunities for the development of new parks, particularly citywide facilities, than would Scenarios 1 or 5 . Scenario 5 includes insufficient expansion area acreage to provide enough parkland to meet the parkland demand associated with that scenario.

4.12 TRANSPORTATION and CIRCULATION

This section discusses the impacts of the 2005 General Plan upon the local transportation and circulation system. Impacts relating to the roadway system, public transit, and bicycle and pedestrian facilities are evaluated. The analysis summarizes the findings and conclusions of the Circulation Element Update Traffic Study prepared by Austin-Foust Associates. The entire text of that study, dated May 2005, is included in Appendix E. Intersection capacity utilization worksheets and other traffic study backup data are available for review at the City of Ventura Community Development Department.

4.12.1 Setting

a. Street System Performance Criteria. To evaluate the Circulation Element arterial street system in relation to the Land Use Element, use is made of performance criteria. These criteria include "performance standards" and "thresholds of significance," the latter being used for identifying project impacts.

Performance Criteria Definitions. The analysis of the arterial road system is based on intersection capacity since this is the defining capacity limitation on an arterial highway system. Levels of service for arterial roadway intersections are determined based on operating conditions during the AM and PM peak hours. The intersection capacity utilization (ICU) methodology is applied using peak hour volumes and the geometric configuration of the intersection. This methodology sums the V/C ratios for the critical movements of an intersection and is generally compatible with the intersection capacity analysis methodology outlined in the 2000 Highway Capacity Manual (HCM 2000).

The ICU calculation methodology and associated impact criteria used for the study area arterial system are summarized in Table 4.12-1. Action 4.11 of the 2005 General Plan directs the City to "refine level of service standards to encourage use of alternative modes of transportation while meeting state and regional mandates." To this end, the standards for analyzing the performance of the City's circulation system are established as level of service "D" or "E" depending on location. This constitutes a relaxation of the current City standard (LOS C citywide except for LOS D for intersections in the Downtown, Midtown, and Westside areas). The calculation methodology, which includes saturation flow rate and clearance interval parameters that are representative values for planning purposes, could change over time in response to changes in technical procedures used for such purposes.
b. Arterial Street System. The citywide street system is illustrated on Figure 4.12-1, which shows the intersections analyzed in this EIR. Traffic conditions on the street network are described in terms of traffic volumes on the individual streets and also in terms of intersection operation. The former uses average daily traffic (ADT) as the measure of traffic usage, while the latter examines peak hour volumes to determine how well an intersection performs during rush hours.

Existing ADT volumes on the arterial street system are shown on Figure 2-2 of the traffic study in Appendix E. Estimates of current traffic volumes are based on counts taken in 2004 and represent two-direction 24 -hour vehicles on an average weekday. Such volumes are not used

Table 4.12-1
Arterial Intersection Performance Criteria

V/C Calculation Methodology ${ }^{\text {a }}$

Level of service to be based on peak hour intersection capacity utilization (ICU) values calculated using the following values:

Saturation Flow Rate: 1,600 vehicles/hour/lane.
Clearance Interval: none

Performance Standard

Level of Service E (peak hour ICU less than or equal to 1.00) for freeway ramp intersections. Level of Service D (peak hour ICU less than or equal to 0.90) for all other Principal Intersections*.

Threshold of Significance (for impact analyses)

For an intersection that is forecast to operate worse than it's performance standard, the impact of a given project is considered to be significant if the project increases the ICU by more than 0.01 . An ICU increase of more than .01 does not cause the threshold of significance to be exceeded if the with-project ICU does not exceed the maximum ICU value.

Level of Service

Level of service ranges are as follows:

ICU	LEVEL OF SERVICE $($ LOS $)$
$0.00-0.60$	A
$0.61-0.70$	B
$0.71-0.80$	C
$0.81-0.90$	D
$0.91-1.00$	E
Above 1.00	F

* Principal Intersections are intersections to be regularly monitored as a gauge of the operation of the City's circulation system. These intersections are illustrated on Figure 4-5 of the traffic study in Appendix E.
${ }^{a}$ Methodology is consistent with that recommended in the Ventura County Congestion Management Program
directly in level of service criteria, but serve a number of purposes relative to evaluating the use of the arterial street system. In particular, they provide one of the criteria for determining functional classification.

Level of service (LOS) on the arterial street system is defined according to peak hour intersection performance using ICU values. Figure 4.12-1 shows the intersections included in this evaluation and Table 4.12-2 lists the ICUs and corresponding LOS values for year 2004. The ICUs and LOS values are illustrated on Figure 4.12-2, which shows the highest of the AM or PM ICU values at each intersection. One location does not meet the City's performance standard. The deficiency identified at the Ventura Boulevard/North Bank Drive intersection is a consequence of assuming the location to be signalized and is not an indicator of traffic operations at this location. The uncontrolled single lane off-ramp from northbound U.S. 101

Intersection Location Map

[^6]

Existing Intersecton Capacity Utilization (ICU)

Table 4.12-2
Existing ICU Summary

Intersection	AM Peak Hour		PM Peak Hour	
	ICU	LOS	ICU	LOS
1. Victoria \& Foothill	. 46	A	. 47	A
2. Victoria \& Loma Vista	. 51	A	. 45	A
3. Victoria \& Telegraph	. 57	A	. 69	B
4. Victoria \& Woodland	. 64	B	. 50	A
5. Victoria \& SR 126 SB Ramps	. 53	A	. 78	C
6. Victoria \& Thille	. 49	A	. 51	A
7. Victoria \& Telephone	. 57	A	. 63	B
8. Victoria \& Ralston	. 59	A	. 74	C
10. Victoria \& Moon	. 50	A	. 53	A
14. Hill \& Telephone	. 53	A	. 45	A
15. Johnson \& Telephone	. 42	A	. 52	A
18. Seaward \& US 101 NB Ramps	. 47	A	. 54	A
19. Monmouth/US 101 SB \& Harbor	. 48	A	. 62	B
20. Harbor \& Olivas Park	. 39	A	. 54	A
23. Mills \& Loma Vista	. 33	A	. 40	A
24. Mills \& Telegraph	. 45	A	. 48	A
25. Mills \& Maple	. 47	A	. 48	A
26. Mills \& Dean	. 51	A	. 53	A
27. Mills \& Main	. 59	A	. 61	B
28. US 101 NB Ramps \& Main	. 60	A	. 67	B
29. SR 126 EB Ramps \& Main	. 37	A	. 51	A
30. Callens \& Main	. 34	A	. 55	A
31. Donlon \& Main	. 45	A	. 69	B
32. Telephone \& Main	. 43	A	. 63	B
33. US 101 NB Ramps \& Telephone	. 39	A	. 60	A
34. Portola \& Telephone	. 38	A	. 45	A
35. Saratoga \& Telephone	. 32	A	. 42	A
38. Telephone \& Market	. 38	A	. 57	A
42. Telephone \& McGrath	. 24	A	. 45	A
45. Catalina \& Main	. 48	A	. 48	A
46. Seaward \& Main	. 49	A	. 55	A
47. Main \& Loma Vista	. 48	A	. 44	A
49. Main \& Telegraph	. 38	A	. 54	A
50. Emma \& Main	. 31	A	. 41	A
51. Lemon Grove \& Main	. 31	A	. 41	A
53. Kimball \& Telephone	. 69	B	. 53	A

Table 4.12-2
Existing ICU Summary

Intersection	AM Peak Hour		PM Peak Hour	
	ICU	LOS	ICU	LOS
55. Kimball \& SR 126 EB Ramps	. 35	A	. 34	A
56. Kimball \& SR 126 WB Ramps	. 60	A	. 34	A
58. Kimball \& Telegraph	. 21	A	. 30	A
60. Ramelli \& Telephone	. 29	A	. 53	A
61. Montgomery \& Telephone	. 54	A	. 36	A
63. Petit \& Telephone	. 43	A	. 58	A
65. Sanjon \& Thompson	. 35	A	. 40	A
68. Seaward \& Thompson	. 42	A	. 55	A
71. Sanjon \& Harbor	. 32	A	. 53	A
75. Ashwood \& Telegraph	. 29	A	. 42	A
77. Day \& Telegraph	. 40	A	. 37	A
85. Victoria \& Olivas Park	. 77	C	. 79	C
86. Telephone \& Olivas Park	. 53	A	. 66	B
91. Johnson \& Ralston	. 53	A	. 62	B
92. Johnson \& Bristol	. 74	C	. 80	C
94. Johnson \& North Bank	. 60	A	. 70	B
95. Bristol \& Ramelli	. 42	A	. 21	A
96. Montgomery \& North Bank	. 39	A	. 29	A
100. Saticoy \& Telephone	. 43	A	. 41	A
101. Saticoy \& Telegraph	. 46	A	. 42	A
102. Wells \& Telegraph	. 54	A	. 52	A
104. Wells \& SR 126 EB Ramps	. 73	C	. 63	B
105. Wells \& Darling	. 72	C	. 78	C
106. Wells \& Telephone	. 78	C	. 72	C
114. California \& Thompson	. 52	A	. 54	A
115. Chestnut \& Thompson	. 42	A	. 50	A
120. Ventura \& Main	. 35	A	. 60	A
132. Ventura \& Stanley	. 55	A	. 61	B
136. US 101 SB Ramps \& Valentine	. 40	A	. 44	A
138. Johnson \& US 101 SB Ramps	. 42	A	. 51	A
160. Victoria \& US 101 NB Ramps	. 66	B	. 60	A
161. Victoria \& Valentine	. 43	A	. 61	B
162. California \& Harbor	. 16	A	. 29	A
163. Santa Clara \& Main	. 23	A	. 23	A
164. Seaward \& Poli	. 39	A	. 44	A
165. Seaward \& Harbor	. 57	A	. 59	A
166. College \& Telegraph	. 33	A	. 38	A

Table 4.12-2
Existing ICU Summary

Intersection	AM Peak Hour		PM Peak Hour	
	ICU	LOS	ICU	LOS
168. Day \& Foothill	.71	C	.72	C
169. Kimball \& Foothill	.46	A	.40	A
170. Petit \& Foothill	.26	A	.12	A
171. Saticoy \& Foothill	.27	A	.23	A
172. Wells \& Foothill	.22	A	.16	A
173. Victoria \& SR 126 WB Ramps	.65	B	.61	B
174. Petit \& Telegraph	.34	A	.24	A
175. Ventura \& Northbank	.51	A	1.22	F
176. Saticoy \& Darling	.31	A	.23	A
177. Wells \& SR 126 WB Ramps	.24	A	.33	A
178. SR-33 Ramps \& Stanley	.49	A	.56	A
179. SR-33 Ramps \& Shell	.71	C	.70	B
180. Estates \& Telegraph	.26	A	.39	A
181. Ventura \& Ramona	.31	A	.45	A
182. Olive \& Main	.47	A	.47	A

Level of service ranges: . $00-.60=A$
$.61-.70=B$
$.71-.80=C$
$.81-.90=D$
$.91-1.00=E$
Above $1.00=F$
Note: Gray shading denotes intersection locations that exceed performance criteria.
feeds into three lanes on eastbound North Bank Drive and the other movements are stop-sign controlled.
c. Transit. The bus routes currently serving the City are illustrated on Figure 4.12-3. Service is provided by South Coast Area Transit (SCAT), with all six routes operating on both weekdays and weekend days. The routes serve major activity centers throughout the City, and as discussed in the bicycle section later in this chapter, buses are able to transport bicycles by means of special racks mounted on the buses.

Ventura Intercity Service Transit Authority (VISTA) provides bus service between Ventura and Santa Barbara via the transit center at Pacific View Mall. Greyhound buses connect Ventura with other statewide and national destinations. The Greyhound Station is located at 291 East Thompson Boulevard near Palm Street, and is located in a small undersized building.

Rail transit service is provided by Metrolink and AMTRAK. Figure 4.12-3 shows the station locations.

Metrolink provides rail service between Ventura and Union Station in Los Angeles on the Ventura County line. A Metrolink station operates in the City of Ventura at Ventura Boulevard and Inez Street (the Montalvo Station). Presently, three trains in both the AM and PM operate the entire length of the route between Ventura and Union Station.

Rail service to Ventura is also provided by AMTRAK via the Pacific Surfliner, which runs between San Luis Obispo to the north and San Diego to the south. The station is an unstaffed facility located at Harbor Boulevard and Figueroa Street adjacent to the Ventura County Fairgrounds (Seaside Park). Four trains operate daily, with one additional train on the weekends and one additional train that operates only during the weekdays.
d. Bicycle/Pedestrian Travel. The non-motorized components of the City's circulation system include bicycle and pedestrian facilities. These are discussed below.

Bicycle Facilities. The City General Bikeway Plan, adopted in December 1999, provides detailed information regarding the current bikeway network and an implementation program for augmenting the existing system. The plan envisions a "citywide bikeway system that serves the needs of both commuter and recreational cyclists." The Select System of Bikeways Map, shown on Figure 4.12-4, delineates existing and proposed bikeways that connect major destinations such as schools, businesses, public facilities, transit centers, and regional trails. The map also indicates the locations of amenities such as bike racks, restrooms, and shower facilities. The General Bikeway Plan is designed to facilitate the following actions:

- Address and expand upon existing City policies and establish related goals
- Recommend bikeway design standards
- Evaluate existing bicycle safety and education programs and make recommendations for enhancement
- Identify priorities and a phasing plan for implementation of the Select System of Bikeways Map
- Identify and recommend potential funding alternatives and other opportunities for inter-agency cooperation

The General Bikeway Plan serves as a flexible, comprehensive and long-range guide for future bicycle planning, design and budgetary decisions, and helps ensure that the community's bicycle transportation and recreational needs are met.

City bikeways conform to standards and designations established by the California Department of Transportation (Caltrans), which are described below.

- Bike Path (Class I) - Class I bike paths are separated from roads by distance or barriers, and cross-traffic by motor vehicles is minimized. Bike paths offer opportunities not provided by the road system and can provide recreational opportunities or serve as desirable commuter routes. Design standards require twoway bicycle paths to be a minimum of eight feet wide plus shoulders. Bike paths are usually shared with pedestrians, and if pedestrian use is expected to be significant, the desirable width is 12 feet.

Existing Transit Routes

Existing System of Bikeways

- Bike Lane (Class II) - A Class II bikeway is a lane on a road that is reserved for bicycles. The lane is painted with pavement lines and markings and is signed. The lane markings decrease the potential for conflicts between motorists and bicyclists. Bike lanes are one-way, with a lane on each side of the roadway between the travel lane and the edge of paving or, if parking is permitted, between the travel lane and the parking lane. The lanes are at least four feet wide, five feet if parking is permitted.
- Bike Route (Class III) - Class III bike routes share existing roads and provide continuity to other bikeways or designated preferred routes through high traffic areas. There is no separate lane and bike routes are established by placing signs that direct cyclists and warn drivers of the presence of bicyclists. Since bicyclists are permitted on all roads, the decision to sign a road as a bike route is based on factors including the advisability of encouraging bicycle travel on the route, the need to meet bicycle demand, and the desire to connect discontinuous segments of bike lanes.

Pedestrian Facilities and Programs. Figure $4.12-5$ shows primary pedestrian facilities in Ventura, which are described below.

Sidewalks. Sidewalks are the most important component of the City's pedestrian system. The City maintains 283 centerline miles of streets (one centerline mile is 5,280 feet by 10 feet) and 2 million square feet of sidewalks. Most city streets have sidewalks, but some neighborhood streets do not. For example, portions of the Arundell area that were developed in the 1970s and 1980s lack sidewalks. During that period, it was assumed industrial uses would not need sidewalks. Some hillside neighborhoods also lack sidewalks, including portions of Hobson Heights and Ondulando. Finally, there are stretches of arterial streets, such as Foothill Road and Telephone Road that lack sidewalks. Maintenance of the sidewalk system is a large cost item for the City. As of January 2002, the City had recorded 11,249 damaged segments of sidewalk.

Access Ramps. Access ramps are sloped sidewalks at intersections that provide transitions into street crosswalks for wheelchairs, strollers, and other wheeled vehicles like bicycles. The need for access ramps was codified with the 1990 Americans with Disabilities Act (ADA), which intends to make American society more accessible to people with disabilities. It contains requirements for new construction, alterations or renovations to buildings and facilities, and access to existing facilities of private companies that provide public goods or services. ADA requires access ramps at each street intersection from the sidewalk to the street level to permit safe movement for people with disabilities. Access ramps are currently being retrofitted into City sidewalks.

Crosswalks. The California Vehicle Code defines a crosswalk as the portion of a roadway at an intersection that is an extension of the curb and property lines of the intersecting street, or is any other portion of a roadway that is marked as a pedestrian crossing location by painted lines. A marked crosswalk is delineated by white or yellow painted markings on the pavement. Crosswalks adjacent to or within 600 feet of a school building or grounds or along a suggested route to school are painted yellow; all other painted crosswalks are white. Although drivers legally must yield to pedestrians in any crosswalk (marked or unmarked), marking encourages pedestrians to use particular crossings. The City maintains marked crosswalks at intersections:

- Where there is substantial conflict between vehicle and pedestrian movement
- Where significant pedestrian concentrations occur
- Where pedestrians could not otherwise recognize the proper place to cross
- Where traffic movements are controlled

Such locations include school crossings and signalized and four way stop intersections.

In an effort to improve the "pedestrian friendliness" of the local circulation system, the City has undertaken a number of programs. These are summarized below.

- Lowered Speed Limits. In January 2001, the State revised the criteria used to determine speed limits to include consideration of adjacent residential density and bicycle and pedestrian safety. Many City streets have been re-surveyed under the new criteria and speed limits have been lowered. This ongoing effort will continue to evaluate and adjust the speed limit.
- Restriping Streets. The City has been studying the advantages, disadvantages, and feasibility of narrowing selected segments of arterials and collector streets from four lanes to two to make them more pedestrian and bicycle friendly, as well as to calm traffic. Pierpont Boulevard was restriped from four lanes to two, narrowing the field of car travel while affording pedestrians more buffer area from through-lanes of vehicle traffic. Class II bike lanes on the street were widened and clearly painted, while cars were aligned more toward the center of the street. Similar efforts have been implemented on portions of Main Street, Santa Clara Street, and Loma Vista Road between Main Street and Mills Road.
- Neighborhood Traffic Management and Calming Program. In June 1997, the City adopted a Comprehensive Neighborhood Traffic Management Program aimed at reducing traffic volumes and speeds on local residential streets carrying 800 or more vehicles per day. The Program, which was updated in December 2004, includes a four-tiered approach offering 25 different options to citizens wanting to implement traffic measures on their streets. Levels 1 and 2, which do not involve major physical changes to the street, are implemented by the City. Posting 25 mph speed limits and directing Police Department enforcement are two traffic-claming approaches at these levels. Levels 3 and 4 options, which are funded by citizens, involve physical changes to the street such as traffic circles, speed humps, and chokers, to calm traffic speeds and/or reduce traffic volumes. A report describing the Neighborhood Traffic Management and Calming Program is available at City Hall or online at www.ci.ventura.ca.us/cityhall/publicworks/traffic.htm.
- School Traffic Safety Programs. The Ventura Unified School District and the City have been working together to maintain a Comprehensive Suggested Route to School Program. In addition, the City has developed a manual entitled, "School Area Traffic Safety Guidelines." The guidelines include safe routes to school maps for all elementary and middle schools in the Ventura Unified District, information on the adult/assistant crossing guard program, traffic control devices that can potentially be used in school zones, and walking/biking safety education programs.

Assembly Bill 1886 allows for a doubling of the base fines in the case of misdemeanors or infractions, respectively, occurring in specially posted school zones. The program was implemented by a vote of the city council. The enhanced portion of

the fine imposed, pursuant to Section 42011 of the Vehicle Code, is used exclusively to pay for the cost of school pedestrian-bicyclist safety programs. Currently double fine school zones have been installed throughout the City at all of the elementary and middle school locations.

The City uses specialized funding through the State Safe Routes to School (SR2S) program. It is a safety program that uses federal transportation funds for construction of school access-related bicycle/pedestrian safety and traffic calming projects.

- Improved Pedestrian Signals. The City is working to improve pedestrian accessibility at signalized intersections. There are several different programs being worked on to retrofit all existing pedestrian push buttons with ADA compliant accessible push buttons and install audible pedestrian signals (APS) at several intersection locations where visually impaired pedestrians routinely cross. Lastly, the City is putting in "countdown timers" which indicate the time remaining until the flashing "Don't Walk" phase of the signal is terminated.

Pedestrian System Deficiencies. The main deficiency of Ventura's pedestrian system is its discontinuity. Many sections of streets lack sidewalks, and pedestrian connections between key use areas are rare and often in need of repair. A pedestrian environment is lacking in a number of locations throughout the City. There are limited crosswalks in some key use areas, and, in some instances, the pedestrian signal phases may be too short for some walkers. Trafficcalming measures would also improve the walkability of many Ventura neighborhoods. Table 4.12-3 lists specific pedestrian system deficiencies by neighborhood.

Table 4.12-3
Neighborhood Pedestrian System Concerns

Community	Concern				
Westside	- Few sidewalk and pedestrian amenities such as street trees, lights, benches				
- Conflict between bicycles on sidewalks and pedestrians		$	$	Midtown	- Inadequate and unsafe Beach connections
:---	:---				
- Few sidewalk and pedestrian amenities such as street trees					
- Limited marked or signalized crosswalks					
- Signal phases for crossing wide streets too short					
- Cars drive too fast despite 35 mph posted speed limit					

Source: Ventura Vision, 2000, CPAC workshops 2001-2002, various neighborhood plans, and Rincon Consultants site visits, 2002.

4.12.2 Impact Analysis

a. Methodology and Significance Thresholds. The analysis of impacts uses long-range traffic forecast data based on projected growth in accordance with the General Plan land uses through 2025 to assess future needs and thereby identify a future street network that is adequate to serve those needs.

The approach used in this analysis is to apply year 2025 traffic forecasts to the existing system plus committed improvements (i.e., those that are funded and planned for implementation). The resulting information is then used to identify where deficiencies can be anticipated. Additional or expanded roadways are then added to the committed arterial street system until there is adequate capacity to serve the future traffic demands (these are referred to as noncommitted improvements). Where appropriate, alternative strategies for achieving a balanced system were tested and evaluated.

Traffic forecast data presented here was produced using the Ventura citywide traffic forecasting model. The model uses future land use and circulation system assumptions to derive corresponding traffic forecast data. A detailed description of the modeling procedures can be found in the traffic model documentation report, which is available for review at the City of Ventura Community Development Department.

The evaluation of land use and circulation system alternatives uses the performance criteria described in the Setting. As discussed there, the procedure is based on peak hour intersection performance with emphasis on the Principal Intersections identified throughout the City (and as illustrated on Figure 4-5 of the traffic study in Appendix E). Peak hour intersection capacity utilization (ICU) values are calculated using a "Baseline" set of roadway system improvements. As discussed in the Setting, level of service (LOS) "E" (ICU not to exceed 1.00) is the performance standard for freeway ramp intersections and LOS "D" (ICU not to exceed .90) is the performance standard for all other Principal Intersections. Locations not operating at an acceptable LOS with the Baseline Network assumptions are considered deficient, and improvements needed to mitigate the projected deficiencies are identified. Impacts relating to transportation and circulation would also be considered potentially significant if development allowed under the 2005 General Plan through 2025 would:

- Result in a change in air traffic patterns
- Substantially increase traffic-related hazards due to a design feature or incompatible uses
- Result in inadequate emergency access
- Conflict with adopted policies relating to alternative transportation modes, including transit, walking, and bicycling
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of transportation and circulation impacts for each of the six 2005 General Plan land use scenarios. A discussion of the impacts for each scenario follows.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Roadway System Impacts (Impact TC-1)	One location - Wells Road and Darling Road intersection requires additional (non-committed) improvements. Because feasible improvements are available for this deficiency, impacts are Class II, significant but mitigable.	Four locations require additional (non-committed) improvements, with one deficiency under the Baseline Network and four deficiencies under the Alternative Network. Deficient locations are: Baseline Network - Wells Road at Darling Road Alternative Network - Mills Road at Main Street - Johnson Drive at North Bank Drive - Wells Road at Darling Road - Ventura Boulevard at North Bank Drive Feasible improvements are available for all deficiencies except Johnson Drive/North Bank Drive. Impacts at that location are Class I, unavoidably significant.	Two locations require additional (non-committed) improvements, with one deficiency under the Baseline Network and two under the Alternative Network. Deficient locations are: Baseline Network - Wells Road at Darling Road Alternative Network - Mills Road at Main Street - Wells Road at Darling Road Because feasible improvements are available for these deficiencies, impacts are Class II, significant but mitigable.	Four locations require additional (non-committed) improvements, with three deficiencies under each network scenario (Baseline and Alternative). Deficient locations are: Baseline Network - Johnson Drive at Telephone Road - Johnson Drive at North Bank Drive - Wells Road at Darling Road Alternative Network - Johnson Drive at North Bank Drive - Wells Road at Darling Road - Ventura Boulevard at North Bank Drive Because feasible improvements are available for these deficiencies, impacts are Class II, significant but mitigable.	Two locations require additional (non-committed) improvements, with both deficiencies under each network scenario (Baseline and Alternative). Deficient locations are: Baseline Network - SR-33 Ramps at Shell Road - Wells Road at Darling Road Alternative Network - SR-33 Ramps at Shell Road - Wells Road at Darling Road Because feasible improvements are available for these deficiencies, impacts are Class II, significant but mitigable.	One location requires additional (non-committed) improvements, with the deficiency under both network scenarios (Baseline and Alternative). The deficient location is: Baseline Network - Wells Road at Darling Road Alternative Network - Wells Road at Darling Road Because feasible improvements are available for this deficiency, impacts are Class II, significant but mitigable.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Alternative Transportation Modes (Impact TC-2)	Emphasis on intensification/reuse and mixed use development, in combination with proposed General Plan policies, generally enhance opportunities for alternative transportation modes. Impacts are Class IV, beneficial.	Impacts similar to Scenario 1 and Class IV, beneficial. Expansion areas served by existing bus routes. Olivas and Serra areas would improve connections between existing neighborhoods.	Impacts similar to Scenario 1 and Class IV, beneficial. Expansion areas served by existing bus routes. Olivas area would improve connections between existing neighborhoods.	Impacts similar to Scenario 1 and Class IV, beneficial. Expansion areas served by existing bus routes. Serra area would improve connections between existing neighborhoods.	Impacts similar to Scenario 1 and Class IV, beneficial. Expansion areas served by existing bus routes.	Impacts similar to Scenario 1 and Class IV, beneficial. Expansion areas served by existing bus routes. Poinsettia area would improve connections between existing neighborhoods.
Traffic-Related Hazards (Impact TC-3)	Mixed use development along main traffic corridors (Main Street, Thompson Boulevard, Ventura Avenue, etc.) creates some potential for pedestrian hazards. Proposed General Plan policies/actions and existing City programs reduce impacts to Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas pose no obvious traffic hazards.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas pose no obvious traffic hazards.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas pose no obvious traffic hazards.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas pose no obvious traffic hazards.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas pose no obvious traffic hazards.
Air Traffic (Impact TC-4)	No airports are located within or adjacent to the Ventura Planning Area. Air traffic impacts are Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant.

$$
\begin{array}{ll}
\text { Impact TC-1 } & \begin{array}{l}
\text { Growth accommodated under any of the General Plan land use } \\
\text { scenarios could result in deficiencies to the local circulation }
\end{array} \\
\text { system based on recommended level of service standards. The } \\
\text { number of locations that could have deficiencies based on the } \\
\text { projected growth scenarios ranges from one (for Scenario 1) to } \\
\text { four (for Scenarios } 2 \text { and 4). Feasible improvements are } \\
\text { available to address all projected deficiencies for Scenarios 1, 3, } \\
4,5, \text { and 6; therefore, impacts associated with those scenarios are } \\
\text { considered Class II, significant but mitigable. For Scenario 2, } \\
\text { implementation of feasible improvements would not achieve } \\
\text { performance standards at the Johnson Drive/North Bank Drive } \\
\text { intersection. The impact at that location is considered Class I, } \\
\text { unavoidably significant, for Scenario } 2 \text {. }
\end{array}
$$

Scenario 1 - Intensification/Reuse Only

The overall trip generation increase citywide through 2025 is estimated at 172,290 ADT under this scenario (see Table 3-1 in the traffic study in Appendix E). This represents an increase of 18.7% over existing conditions, and the growth is generally spread throughout the Planning Area. ADTs for specific roadways are shown on Figure 3-2 of the traffic study in Appendix E.

Year 2025 ICUs are illustrated on Figure 4.12-6. Transportation improvements to provide adequate capacity for this scenario are shown in Table 4.12-4. Year 2025 ICUs are listed in Table 4.12-5, which shows the ICU values under Baseline improvements only, and then the values obtained by adding the recommended additional improvements (labeled "non-committed" improvements). Scenario 1 results in one location requiring additional (non-committed) improvements. This location is the Wells Road and Darling Road intersection.

Table 4.12-4
Roadway Improvements - Scenario 1

Location	Improvement
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR 126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR 126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/right-turn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound leftturn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR 126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
2. Intersections (Baseline Network)	
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane

2025 Intersection Capacity Utilization (ICU) Scenario 1 (Baseline Network)
Source: Austin-Foust Associates, Inc., May 2005

Table 4.12-5 2025 ICU Summary - Scenario 1

Intersection	Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak		AM Peak		PM Peak	
	ICU	LOS	ICU	LOS	ICU	LOS	ICU	LOS
1. Victoria \& Foothill	. 50	A	. 54	A	--		--	
2. Victoria \& Loma Vista	. 55	A	. 51	A	--		--	
3. Victoria \& Telegraph	. 62	B	. 77	C	--		--	
4. Victoria \& Woodland	. 71	C	. 56	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 84	D	--		--	
6. Victoria \& Thille	. 52	A	. 60	A	--		--	
7. Victoria \& Telephone	. 63	B	. 72	C	--		--	
8. Victoria \& Ralston	. 69	B	. 77	C	--		--	
10. Victoria \& Moon	. 56	A	. 62	B	--		--	
14. Hill \& Telephone	. 53	A	. 60	A	--		--	
15. Johnson \& Telephone	. 49	A	. 74	C	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 52	A	. 62	B	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 56	A	. 80	C	--		--	
20. Harbor \& Olivas Park	. 41	A	. 76	C	--		--	
23. Mills \& Loma Vista	. 33	A	. 42	A	--		--	
24. Mills \& Telegraph	. 50	A	. 52	A	--		--	
25. Mills \& Maple	. 53	A	. 52	A	--		--	
26. Mills \& Dean	. 54	A	. 53	A	--		--	
27. Mills \& Main	. 69	B	. 73	C	--		--	
28. US 101 NB Ramps \& Main (a)	. 78	C	. 83	D	--		--	
29. SR 126 EB Ramps \& Main (a)	. 53	A	. 65	B	--		--	
30. Callens \& Main	. 46	A	. 68	B	--		--	
31. Donlon \& Main	. 56	A	. 84	D	--		--	
32. Telephone \& Main (a)	. 61	B	. 86	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 56	A	. 67	B	--		--	
34. Portola \& Telephone	. 36	A	. 50	A	--		--	
35. Saratoga \& Telephone	. 30	A	. 56	A	--		--	
38. Telephone \& Market	. 60	A	. 72	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--	
45. Catalina \& Main	. 38	A	. 35	A	--		--	
46. Seaward \& Main	. 53	A	. 69	B	--		--	
47. Main \& Loma Vista	. 52	A	. 54	A	--		--	
49. Main \& Telegraph	. 46	A	. 71	C	--		--	
50. Emma \& Main	. 40	A	. 51	A	--		--	
51. Lemon Grove \& Main	. 41	A	. 47	A	--		--	
53. Kimball \& Telephone	. 76	C	. 66	B	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 35	A	. 33	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 77	C	. 40	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--	
60. Ramelli \& Telephone	. 38	A	. 67	B	--		--	
61. Montgomery \& Telephone	. 58	A	. 35	A	--		--	
63. Petit \& Telephone	. 46	A	. 58	A	--		--	
65. Sanjon \& Thompson	. 48	A	. 59	A	--		--	
68. Seaward \& Thompson	. 51	A	. 65	B	--		--	
71. Sanjon \& Harbor	. 36	A	. 66	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 48	A	--		--	
77. Day \& Telegraph	. 44	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 66	B	. 80	C	--		--	
86. Telephone \& Olivas Park	. 56	A	. 69	B	--		--	
91. Johnson \& Ralston	. 71	C	. 80	C	--		--	
92. Johnson \& Bristol	. 71	C	. 73	C	--		--	

Table 4.12-5

2025 ICU Summary - Scenario 1

	Baseline Improvements				Non-Committed Improvements			
94. Johnson \& North Bank	. 70	B	. 82	D	--		--	
95. Bristol \& Ramelli	. 49	A	. 26	A	--		--	
96. Montgomery \& North Bank	. 55	A	. 47	A	--		--	
100. Saticoy \& Telephone	. 47	A	. 46	A	--		--	
101. Saticoy \& Telegraph	. 47	A	. 51	A	--		--	
102. Wells \& Telegraph	. 63	B	63	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 65	B	. 74	C	--		--	
105. Wells \& Darling	. 69	B	1.06	F	. 63	B	. 88	D
106. Wells \& Telephone	. 72	C	. 73	C	--		--	
114. California \& Thompson	. 39	A	. 46	A	--		--	
115. Chestnut \& Thompson	. 48	A	. 59	A	--		--	
120. Ventura \& Main	. 40	A	. 71	C	--		--	
132. Ventura \& Stanley	. 75	C	. 83	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 48	A	. 53	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 52	A	. 84	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 81	D	. 66	B	--		--	
161. Victoria \& Valentine (a)	. 69	B	. 78	C	--		--	
162. California \& Harbor	. 26	A	. 36	A	--		--	
163. Santa Clara \& Main	. 25	A	. 30	A	--		--	
164. Seaward \& Poli	. 41	A	. 50	A	--		--	
165. Seaward \& Harbor	. 58	A	. 70	B	--		--	
166. College \& Telegraph	. 33	A	. 40	A	--		--	
168. Day \& Foothill	. 74	C	. 76	C	--		--	
169. Kimball \& Foothill	. 51	A	. 45	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 30	A	--		--	
172. Wells \& Foothill	. 33	A	. 26	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 86	D	. 74	C	--		--	
174. Petit \& Telegraph	. 42	A	. 28	A	--		--	
175. Ventura \& North Bank (a)	. 41	A	. 88	D	--		--	
176. Saticoy \& Darling	. 35	A	. 29	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 50	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 67	B	. 76	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 83	D	. 86	D	--		--	
180. Estates \& Telegraph	. 29	A	. 39	A	--		--	
181. Ventura \& Ramona	. 32	A	. 49	A	--		--	
182. Olive \& Main	. 52	A	. 58	A	--		--	
190. Petit \& North Bank	. 20	A	. 26	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--	
192. Los Angeles \& North Bank	. 71	C	. 85	D	--		--	
193. Saticoy \& A Street	. 17	A	. 13	A	--		--	
194. Wells \& A Street	. 43	A	. 41	A	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.
Note: Gray shading denotes intersection locations that exceed the performance standard.

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue, Olivas, and Serra expansion areas. The overall trip generation increase citywide through 2025 is estimated at 206,905 ADT under this scenario (see Table 3-4 in the traffic study in Appendix E). This represents an increase of 22.5% over existing conditions. ADTs for specific roadways are shown on Figure 3-5 of the traffic study in Appendix E.

Year 2025 ICUs are depicted on Figure 4.12-7. To serve this scenario, it is anticipated that the following new roadway links would be added as an alternative to the Baseline Network along with selected intersection improvements:

1. Mills Road extension to Harbor Boulevard (connection at Schooner Drive)
2. New collector between Mills Road and Telephone Road in the Olivas expansion area
3. North Bank Drive extension from Johnson Drive to Bristol Road
4. Kimball Road extension from Telephone Road to North Bank Drive
5. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Table 4.12-6 summarizes the overall roadway and intersection improvements for this scenario, and Table 4.12-7 lists the ICU values with Baseline Improvements and with the recommended additional improvements. It should be noted that with North Bank Drive extended from Johnson Drive to Bristol Road in the Alternative Network, the six-lane widening of Johnson Drive between North Bank Drive and Bristol Road that is assumed in the Baseline Network is not needed.

Scenario 2 results in a total of four locations that require additional (non-committed) improvements, with one deficiency occurring under the Baseline Network and four deficiencies occurring under the Alternative Network. The deficient locations are as follows:

Baseline Network

- Wells Road at Darling Road

Alternative Network

- Mills Road at Main Street
- Johnson Drive at North Bank Drive
- Wells Road at Darling Road
- Ventura Boulevard at North Bank Drive

This page intentionally left blank.

2025 Intersection Capacity Utilization (ICU)
Scenario 2 (Baseline Network)

[^7]Table 4.12-6
Roadway Improvements - Scenario 2

Location	Improvement
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes (a)
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR 126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR 126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/right-turn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound Right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR 126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound rightturn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
1a. Streets (Alternative Network)	
B Street (Mills Road to Telephone Road)	New two-lane roadway
Kimball Road (Telephone Road to North Bank Drive)	New four-lane roadway
Mills Road (Arundell Avenue to Harbor Boulevard)	New four-lane roadway
North Bank Drive (Johnson Drive to Bristol Road)	New four-lane roadway
Ralston Street (Ramelli Avenue to Montgomery Avenue)	New two-lane roadway

City of Ventura

Table 4.12-6
Roadway Improvements - Scenario 2

Location	Improvement
2. Intersections (Baseline Network)	Add eastbound left-turn lane, second southbound left- turn lane and second westbound left-turn lane
105. Wells Road at Darling Road	Add northbound left-turn lane and second northbound and southbound through lanes
2a. Intersections (Alternative Network)	Improve eastbound approach to provide two left-turn lanes, three through lanes and a separate right-turn lane, and improve westbound approach to provide three left-turn lanes and two through lanes
27. Mills Road at Main Street	Add eastbound left-turn lane, second southbound left- turn lane and second westbound left-turn lane
94. Johnson Drive at North Bank Drive	Add third eastbound through lane
105. Wells Road at Darling Road	

(a) This widening is not needed in the Alternative Network for this scenario, which includes an extension of North Bank Drive from Johnson Drive to Bristol Road.

Table 4.12-7
2025 ICU Summary - Scenario 2

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements (including noncommitted alternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 50	A	. 53	A	--		--		. 51	A	. 54	A	--		--	
2. Victoria \& Loma Vista	. 57	A	. 51	A	--		--		. 55	A	. 51	A	--		--	
3. Victoria \& Telegraph	. 64	B	. 77	C	--		--		. 61	B	. 76	C	--		--	
4. Victoria \& Woodland	. 73	C	. 57	A	--		--		. 69	B	. 54	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 89	D	--		--		. 54	A	. 82	D	--		--	
6. Victoria \& Thille	. 53	A	. 62	B	--		--		. 50	A	. 56	A	--		--	
7. Victoria \& Telephone	. 66	B	. 75	C	--		--		. 60	A	. 68	B	--		--	
8. Victoria \& Ralston	. 70	B	. 80	C	--		--		. 63	B	. 80	C	--		--	
10. Victoria \& Moon	. 57	A	. 66	B	--		--		. 54	A	. 59	A	--		--	
14. Hill \& Telephone	. 56	A	. 65	B	--		--		. 51	A	. 55	A	--		--	
15. Johnson \& Telephone	. 52	A	. 85	D	--		--		. 45	A	. 47	A	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 59	A	. 66	B	--		--		. 50	A	. 54	A	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 57	A	. 87	D	--		--		. 58	A	. 85	D	--		--	
20. Harbor \& Olivas Park	. 52	A	. 82	D	--		--		. 52	A	. 79	C	--		--	
23. Mills \& Loma Vista	. 34	A	. 43	A	--		--		. 33	A	. 44	A	--		--	
24. Mills \& Telegraph	. 49	A	. 52	A	--		--		. 49	A	. 55	A	--		--	
25. Mills \& Maple	. 51	A	. 52	A	--		--		. 57	A	. 60	A	--		--	
26. Mills \& Dean	. 54	A	. 52	A	--		--		. 58	A	. 59	A	--		--	
27. Mills \& Main	. 70	B	. 69	B	--		--		. 83	D	1.14	F	. 59	A	. 76	C
28. US 101 NB Ramps \& Main (a)	. 82	D	. 80	C	--		--		. 72	C	. 72	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 55	A	. 63	B	--		--		. 47	A	. 58	A	--		--	
30. Callens \& Main	. 47	A	. 67	B	--		--		. 41	A	. 61	B	--		--	
31. Donlon \& Main	. 58	A	. 86	D	--		--		. 51	A	. 79	C	--		--	
32. Telephone \& Main (a)	. 69	B	. 95	E	--		--		. 63	B	. 90	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 57	A	. 71	C	--		--		. 56	A	. 69	B	--		--	
34. Portola \& Telephone	. 36	A	. 51	A	--		--		. 36	A	. 51	A	--		--	
35. Saratoga \& Telephone	. 31	A	. 57	A	--		--		. 30	A	. 55	A	--		--	

Table 4.12-7
2025 ICU Summary - Scenario 2

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements (including noncommitted alternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
38. Telephone \& Market	. 67	B	. 77	C	--		--		. 62	B	. 74	C	--		--	
42. Telephone \& McGrath	. 41	A	. 84	D	--		--		. 29	A	. 70	B	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 38	A	. 34	A	--		--	
46. Seaward \& Main	. 58	A	. 70	B	--		--		. 54	A	. 66	B	--		--	
47. Main \& Loma Vista	. 55	A	. 51	A	--		--		. 53	A	. 50	A	--		--	
49. Main \& Telegraph	. 45	A	. 68	B	--		--		. 44	A	. 68	B	--		--	
50. Emma \& Main	. 41	A	. 45	A	--		--		. 42	A	. 47	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 42	A	--		--		. 46	A	. 51	A	--		--	
53. Kimball \& Telephone	. 76	C	. 71	C	--		--		. 49	A	. 38	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 36	A	. 34	A	--		--		. 40	A	. 34	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 78	C	. 43	A	--		--		. 92	E	. 47	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--		. 27	A	. 34	A	--		--	
60. Ramelli \& Telephone	. 42	A	. 71	C	--		--		. 28	A	. 35	A	--		--	
61. Montgomery \& Telephone	. 60	A	. 39	A	--		--		. 55	A	. 40	A	--		--	
63. Petit \& Telephone	. 46	A	. 60	A	--		--		. 49	A	. 62	B	--		--	
65. Sanjon \& Thompson	. 49	A	. 57	A	--		--		. 48	A	. 55	A	--		--	
68. Seaward \& Thompson	. 50	A	. 61	B	--		--		. 50	A	. 60	A	--		--	
71. Sanjon \& Harbor	. 37	A	. 69	B	--		--		. 36	A	. 69	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 47	A	--		--		. 31	A	. 46	A	--		--	
77. Day \& Telegraph	. 42	A	. 39	A	--		--		. 44	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 72	C	. 89	D	--		--		. 72	C	. 86	D	--		--	
86. Telephone \& Olivas Park	. 64	B	. 87	D	--		--		. 55	A	. 65	B	--		--	
91. Johnson \& Ralston	. 52	A	. 57	A	--		--		. 43	A	. 53	A	--		--	
92. Johnson \& Bristol	. 75	C	. 79	C	--		--		. 33	A	. 51	A	--		--	
94. Johnson \& North Bank	. 74	C	. 89	D	--		--		. 99	E	1.32	F	. 79	C	. 97	E
95. Bristol \& Ramelli	. 51	A	. 31	A	--		--		. 12	A	. 14	A	--		--	
96. Montgomery \& North Bank	. 62	B	. 47	A	--		--		. 54	A	. 43	A	--		--	

Table 4.12-7
2025 ICU Summary - Scenario 2

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements (including noncommitted alternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
100. Saticoy \& Telephone	. 50	A	. 48	A	--		--		. 46	A	. 45	A	--		--	
101. Saticoy \& Telegraph	. 50	A	. 51	A	--		--		. 49	A	. 52	A	--		--	
102. Wells \& Telegraph	. 65	B	. 63	B	--		--		. 63	B	. 61	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 66	B	. 75	C	--		--		. 63	B	. 73	C	--		--	
105. Wells \& Darling	. 69	B	1.07	F	. 63	B	. 88	D	. 67	B	1.03	F	. 61	B	. 83	D
106. Wells \& Telephone	. 74	C	. 73	C	--		--		. 68	B	. 70	B	--		--	
114. California \& Thompson	. 43	A	. 47	A	--		--		. 41	A	. 46	A	--		--	
115. Chestnut \& Thompson	. 50	A	. 59	A	--		--		. 49	A	. 56	A	--		--	
120. Ventura \& Main	. 42	A	. 71	C	--		--		. 41	A	. 72	C	--		--	
132. Ventura \& Stanley	. 75	C	. 83	D	--		--		. 75	C	. 83	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 54	A	. 64	B	--		--		. 55	A	. 63	B	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 57	A	. 86	D	--		--		. 59	A	. 84	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 86	D	. 72	C	--		--		. 81	D	. 68	B	--		--	
161. Victoria \& Valentine (a)	. 79	C	. 91	E	--		--		. 75	C	. 86	D	--		--	
162. California \& Harbor	. 29	A	. 37	A	--		--		. 31	A	. 37	A	--		--	
163. Santa Clara \& Main	. 25	A	. 30	A	--		--		. 25	A	. 28	A	--		--	
164. Seaward \& Poli	. 42	A	. 51	A	--		--		. 41	A	. 48	A	--		--	
165. Seaward \& Harbor	. 64	B	. 77	C	--		--		. 57	A	. 64	B	--		--	
166. College \& Telegraph	. 34	A	. 40	A	--		--		. 34	A	. 41	A	--		--	
168. Day \& Foothill	. 74	C	. 76	C	--		--		. 75	C	. 74	C	--		--	
169. Kimball \& Foothill	. 51	A	. 44	A	--		--		. 53	A	. 51	A	--		--	
170. Petit \& Foothill	. 35	A	. 18	A	--		--		. 34	A	. 19	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 31	A	--		--		. 36	A	. 32	A	--		--	
172. Wells \& Foothill	. 33	A	. 25	A	--		--		. 33	A	. 26	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 89	D	. 75	C	--		--		. 83	D	. 71	C	--		--	
174. Petit \& Telegraph	. 42	A	. 27	A	--		--		. 44	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 46	A	. 92	E	--		--		. 48	A	1.13	F	. 48	A	. 78	C

Table 4.12-7
2025 ICU Summary - Scenario 2

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements (including noncommitted alternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
176. Saticoy \& Darling	. 35	A	. 29	A	--		--		. 35	A	. 28	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 50	A	--		--		. 32	A	. 49	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 69	B	. 75	C	--		--		. 69	B	. 75	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 93	E	. 93	E	--		--		. 93	E	. 93	E	--		--	
180. Estates \& Telegraph	. 28	A	. 40	A	--		--		. 28	A	. 38	A	--		--	
181. Ventura \& Ramona	. 33	A	. 50	A	--		--		. 33	A	. 50	A	--		--	
182. Olive \& Main	. 54	A	. 61	B	--		--		. 55	A	. 61	B	--		--	
190. Petit \& North Bank	. 22	A	. 27	A	--		--		. 24	A	. 30	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--		. 08	A	. 13	A	--		--	
192. Los Angeles \& North Bank	. 72	C	. 86	D	--		--		. 66	B	. 82	D	--		--	
193. Saticoy \& A St	. 17	A	. 12	A	--		--		. 18	A	. 12	A	--		--	
194. Wells \& A St	. 44	A	. 41	A	--		--		. 43	A	. 42	A	--		--	
196. Ramelli \& Ralston	--		--		--		--		. 33	A	. 37	A	--		--	
197. Kimball \& Ralston	--		--		--		--		. 32	A	. 46	A	--		--	
198. Montgomery \& Ralston	--		--		--		--		. 26	A	. 23	A	--		--	
199. Kimball \& North Bank	--		--		--		--		. 69	B	. 64	B	--		--	
200. Harbor \& Mills	--		--		--		--		. 42	A	. 59	A	--		--	
201. Mills \& B St	--		--		--		--		. 73	C	. 75	C	--		--	
202. Telephone \& B St	--		--		--		--		. 48	A	. 65	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all
other intersection locations. other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Olivas expansion areas. The overall trip generation increase citywide through 2025 is estimated at 201,998 ADT under this scenario (see Table 3-7 of the traffic study in Appendix E). This represents an increase of 21.9% over existing conditions. ADTs for specific roadways are shown on Figure 3-8 of the traffic study in Appendix E.

Year 2025 ICUs are depicted on Figure 4.12-8. Deficiencies shown here are addressed by selected intersection improvements and by new roadway links serving the Olivas expansion area (the Mills Road extension and a new collector between the extension of Mills Road and Telephone Road). Table 4.12-8 summarizes the overall roadway and intersection improvements for this scenario. Table 4.12-9 lists the ICU values with Baseline improvements and with the recommended additional improvements.

Scenario 3 results in two locations that require additional (non-committed) improvements, with one deficiency occurring under the Baseline Network and two occurring under the Alternative Network. The deficient locations are as follows:

Baseline Network

- Wells Road at Darling Road

Alternative Network

- Mills Road at Main Street
- Wells Road at Darling Road

Table 4.12-8
Roadway Improvements - Scenario 3

Location	Improvement
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR 126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR 126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/right-turn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR 126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound rightturn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
1a. Streets (Alternative Network)	
B Street (Mills Road to Telephone Road)	New two-lane roadway
Mills Road (Arundell Avenue to Harbor Boulevard)	New four-lane roadway
2. Intersections (Baseline Network)	
105. Wells Road at Darling Road	Add second southbound left-turn lane, second westbound left-turn lane and eastbound left-turn lane
2a. Intersections (Alternative Network)	
27. Mills Road at Main Street	Add northbound left-turn lane and second northbound and southbound through lanes
105. Wells Road at Darling Road	Add second southbound left-turn lane, second westbound left-turn lane and eastbound left-turn lane

2025 Intersection Capacity Utilization (ICU)
Scenario 3 (Baseline Network)

[^8]Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 49	A	. 53	A	--		--		. 50	A	. 52	A	--		--	
2. Victoria \& Loma Vista	. 56	A	. 50	A	--		--		. 55	A	. 49	A	--		--	
3. Victoria \& Telegraph	. 63	B	. 77	C	--		--		. 61	B	. 75	C	--		--	
4. Victoria \& Woodland	. 71	C	. 56	A	--		--		. 69	B	. 55	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 87	D	--		--		. 56	A	. 84	D	--		--	
6. Victoria \& Thille	. 53	A	. 61	B	--		--		. 51	A	. 60	A	--		--	
7. Victoria \& Telephone	. 64	B	. 72	C	--		--		. 61	B	. 70	B	--		--	
8. Victoria \& Ralston	. 69	B	. 80	C	--		--		. 68	B	. 79	C	--		--	
10. Victoria \& Moon	. 57	A	. 63	B	--		--		. 57	A	. 62	B	--		--	
14. Hill \& Telephone	. 53	A	. 61	B	--		--		. 53	A	. 61	B	--		--	
15. Johnson \& Telephone	. 48	A	. 74	C	--		--		. 48	A	. 73	C	--		--	
$\begin{aligned} & \text { 18. Seaward \& } \\ & \text { US } 101 \text { NB } \\ & \text { Ramps (a) } \\ & \hline \end{aligned}$. 60	A	. 67	B	--		--		. 52	A	. 55	A	--		--	
19. Monmouth/US Harbor (a)	. 57	A	. 89	D	--		--		. 58	A	. 86	D	--		--	
20. Harbor \& Olivas Park	. 55	A	. 82	D	--		--		. 53	A	. 81	D	--		--	

Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
23. Mills \& Loma Vista	. 34	A	. 44	A	--		--		. 33	A	. 45	A	--		--	
24. Mills \& Telegraph	. 49	A	. 50	A	--		--		. 50	A	. 54	A	--		--	
25. Mills \& Maple	. 52	A	. 51	A	--		--		. 58	A	. 60	A	--		--	
26. Mills \& Dean	. 54	A	. 54	A	--		--		. 57	A	. 58	A	--		--	
27. Mills \& Main	. 70	B	. 71	C	--		--		. 95	E	1.27	F	. 60	A	. 82	D
28. US 101 NB Ramps \& Main (a)	. 82	D	. 80	C	--		--		. 71	C	. 70	B	--		--	
29. SR 126 EB Ramps \& Main (a)	. 55	A	. 63	B	--		--		. 47	A	. 57	A	--		--	
30. Callens \& Main	. 47	A	. 68	B	--		--		. 42	A	. 59	A	--		--	
31. Donlon \& Main	. 59	A	. 85	D	--		--		. 54	A	. 79	C	--		--	
32. Telephone \& Main (a)	. 69	B	. 96	E	--		--		. 65	B	. 90	D	--		--	
$\begin{aligned} & \text { 33. US } 101 \text { NB } \\ & \text { Ramps \& } \\ & \text { Telephone (a) } \end{aligned}$. 57	A	. 70	B	--		--		. 56	A	. 69	B	--		--	
34. Portola \& Telephone	. 37	A	. 51	A	--		--		. 35	A	. 50	A	--		--	
35. Saratoga \& Telephone	. 31	A	. 55	A	--		--		. 30	A	. 55	A	--		--	
42. Telephone \& McGrath	. 46	A	. 88	D	--		--		. 29	A	. 70	B	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 38	A	. 34	A	--		--	
46. Seaward \& Main	. 59	A	. 70	B	--		--		. 56	A	. 67	B	--		--	

Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
47. Main \& Loma Vista	. 55	A	. 53	A	--		--		. 53	A	. 51	A	--		--	
 Telegraph	. 46	A	. 68	B	--		--		. 45	A	. 67	B	--		--	
50. Emma \& Main	.41	A	. 45	A	--		--		. 42	A	. 47	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 43	A	--		--		. 49	A	. 49	A	--		--	
53. Kimball \& Telephone	. 76	C	. 66	B	--		--		. 76	C	. 65	B	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 35	A	. 33	A	--		--		. 34	A	. 32	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 76	C	. 40	A	--		--		. 76	C	. 40	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--		. 24	A	. 33	A	--		--	
60. Ramelli \& Telephone	. 37	A	. 68	B	--		--		. 38	A	. 67	B	--		--	
61. Montgomery \& Telephone	. 58	A	. 35	A	--		--		. 58	A	. 36	A	--		--	
63. Petit \& Telephone	. 46	A	. 58	A	--		--		. 46	A	. 59	A	--		--	
65. Sanjon \& Thompson	. 49	A	. 57	A	--		--		. 48	A	. 57	A	--		--	
68. Seaward \& Thompson	. 53	A	. 60	A	--		--		. 50	A	. 58	A	--		--	
71. Sanjon \& Harbor	. 38	A	. 70	B	--		--		. 37	A	. 68	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 46	A	--		--		. 31	A	. 48	A	--		--	

Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
77. Day \& Telegraph	. 42	A	. 39	A	--		--		. 43	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 74	C	. 90	D	--		--		. 73	C	. 85	D	--		--	
86. Telephone \& Olivas Park	. 68	B	. 87	D	--		--		. 56	A	. 66	B	--		--	
91. Johnson \& Ralston	. 67	B	. 80	C	--		--		. 71	C	. 81	D	--		--	
92. Johnson \& Bristol	. 72	C	. 74	C	--		--		. 71	C	. 74	C	--		--	
94. Johnson \& North Bank	. 71	C	. 85	D	--		--		. 71	C	. 81	D	--		--	
95. Bristol \& Ramelli	. 50	A	. 27	A	--		--		. 47	A	. 26	A	--		--	
96. Montgomery \& North Bank	. 55	A	. 48	A	--		--		. 54	A	. 46	A	--		--	
100. Saticoy \& Telephone	. 48	A	. 46	A	--		--		. 47	A	. 46	A	--		--	
101. Saticoy \& Telegraph	. 47	A	. 51	A	--		--		. 47	A	. 51	A	--		--	
102. Wells \& Telegraph	. 66	B	. 62	B	--		--		. 66	B	. 62	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 66	B	. 74	C	--		--		. 66	B	. 74	C	--		--	
105. Wells \& Darling	. 69	B	1.07	F	. 63	B	. 89	D	. 69	B	1.06	F	. 63	B	. 88	D
106. Wells \& Telephone	. 72	C	. 73	C	--		--		. 72	C	. 73	C	--		--	
114. California \& Thompson	. 44	A	. 47	A	--		--		. 43	A	. 47	A	--		--	
115. Chestnut \& Thompson	. 50	A	. 59	A	--		--		. 50	A	. 58	A	--		--	

Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
120. Ventura \& Main	. 40	A	. 72	C	--		--		. 41	A	. 72	C	--		--	
132. Ventura \& Stanley	. 74	C	. 85	D	--		--		. 74	C	. 84	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 56	A	. 66	B	--		--		. 56	A	. 63	B	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 58	A	. 85	D	--		--		. 58	A	. 85	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 87	D	. 73	C	--		--		. 82	D	. 71	C	--		--	
161. Victoria \& Valentine (a)	. 82	D	. 94	E	--		--		. 80	C	. 90	D	--		--	
162. California \& Harbor	. 28	A	. 38	A	--		--		. 31	A	. 38	A	--		--	
163. Santa Clara \& Main	. 25	A	. 30	A	--		--		. 25	A	. 29	A	--		--	
$\begin{aligned} & \text { 164. Seaward \& } \\ & \text { Poli } \\ & \hline \end{aligned}$. 42	A	. 51	A	--		--		. 41	A	. 49	A	--		--	
165. Seaward \& Harbor	. 65	B	. 77	C	--		--		. 56	A	. 68	B	--		--	
166. College \& Telegraph	. 33	A	. 40	A	--		--		. 34	A	. 42	A	--		--	
$\begin{aligned} & \text { 168. Day \& } \\ & \text { Foothill } \end{aligned}$. 73	C	. 75	C	--		--		. 73	C	. 73	C	--		--	
169. Kimball \& Foothill	. 51	A	. 45	A	--		--		. 51	A	. 46	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--		. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 31	A	--		--		. 36	A	. 31	A	--		--	

Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
172. Wells \& Foothill	. 33	A	. 26	A	--		--		. 33	A	. 26	A	--		--	
$\begin{aligned} & \text { 173. Victoria \& } \\ & \text { SR } 126 \mathrm{WB} \\ & \text { Ramps (a) } \end{aligned}$. 87	D	. 73	C	--		--		. 84	D	. 71	C	--		--	
174. Petit \& Telegraph	. 41	A	. 27	A	--		--		. 41	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 42	A	. 91	E	--		--		. 42	A	. 89	D	--		--	
176. Saticoy \& Darling	. 34	A	. 30	A	--		--		. 34	A	. 29	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 49	A	--		--		. 33	A	. 49	A	--		--	
178. SR-33 Stanley (a)	. 68	B	. 74	C	--		--		. 68	B	. 74	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 96	E	. 98	E	--		--		. 96	E	. 98	E	--		--	
180. Estates \& Telegraph	. 29	A	. 39	A	--		--		. 28	A	. 39	A	--		--	
181. Ventura \& Ramona	. 33	A	. 52	A	--		--		. 33	A	. 51	A	--		--	
182. Olive \& Main	. 55	A	. 61	B	--		--		. 56	A	. 61	B	--		--	
190. Petit \& North Bank	. 21	A	. 26	A	--		--		. 20	A	. 26	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--		. 08	A	. 15	A	--		--	
192. Los Angeles \& North Bank	. 71	C	. 86	D	--		--		. 71	C	. 86	D	--		--	

Table 4.12-9
2025 ICU Summary - Scenario 3

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
$\begin{aligned} & \text { 193. Saticoy \& } \\ & \text { A St } \end{aligned}$. 16	A	. 13	A	--		--		. 16	A	. 13	A	--		--	
194. Wells \& A St	. 44	A	. 42	A	--		--		. 44	A	. 41	A	--		--	
$\begin{aligned} & \text { 200. Harbor \& } \\ & \text { Mills } \end{aligned}$	--		--		--		--		. 42	A	. 64	B	--		--	
$\begin{aligned} & \text { 201. Mills \& B } \\ & \text { St } \end{aligned}$	--		--		--		--		. 77	C	. 83	D	--		--	
202. Telephone \& B St	--		--		--		--		. 49	A	. 65	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Scenario 4 - Intensification/Reuse + North Avenue + Serra

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Serra expansion areas. The overall trip generation increase citywide through 2025 is estimated at 199,798 ADT under this scenario (see Table 3-10 of the traffic study in Appendix E). This represents an increase of 21.7% over existing conditions. ADTs for specific roadways are shown on Figure 3-11 of the traffic study in Appendix E.

Year 2025 ICUs are shown on Figure 4.12-9. To serve this scenario, it is anticipated that the following new roadway links would be added as an alternative to the Baseline Network along with selected intersection improvements:

1. North Bank Drive extension from Johnson Drive to Bristol Road
2. Kimball Road extension from Telephone Road to North Bank Drive
3. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Table 4.12-10 summarizes the overall roadway and intersection improvements for this scenario, and Table 4.12-11 lists the ICU values with Baseline Improvements and with the recommended additional improvements. It should be noted that with North Bank Drive extended from Johnson Drive to Bristol Road in the Alternative Network, the six-lane widening of Johnson Drive between North Bank Drive and Bristol Road that is assumed in the Baseline Network is not needed.

Scenario 4 results in four locations that require additional (non-committed) improvements, with three deficiencies occurring under each network scenario (Baseline and Alternative). The deficient locations are as follows:

Baseline Network

- Johnson Drive at Telephone Road
- Johnson Drive at North Bank Drive
- Wells Road at Darling Road

Alternative Network

- Johnson Drive at North Bank Drive
- Wells Road at Darling Road
- Ventura Boulevard at North Bank Drive

2025 Intersection Capacity Utilization (ICU)
Scenario 4 (Baseline Network)

Table 4.12-10
Roadway Improvements - Scenario 4

Location	Improvement
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes (a)
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR 126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR 126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/right-turn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR 126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound rightturn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
1a. Streets (Alternative Network)	
Kimball Road (Telephone Road to North Bank Drive)	New four-lane roadway
North Bank Drive (Johnson Drive to Bristol Road)	New four-lane roadway
Ralston Street (Ramelli Avenue to Montgomery Avenue)	New two-lane roadway
2. Intersections (Baseline Network)	
15. Johnson Drive \& Telephone Road	Add separate eastbound right-turn lane

Table 4.12-10
Roadway Improvements - Scenario 4

Location	Improvement
94. Johnson Drive at North Bank Drive	Add southbound right-turn lane
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left- turn lane and second westbound left-turn lane
2a. Intersections (Alternative Network)	Improve eastbound approach to provide two left-turn lanes, three through lanes and a separate right-turn lane, and improve westbound approach to provide three left-turn lanes and two through lanes
94. Johnson Drive at North Bank Drive	Add eastbound left-turn lane, second southbound left- turn lane and second westbound left-turn lane
105. Wells Road at Darling Road	Add third eastbound through lane
175. Ventura Boulevard at North Bank Drive	

(a) This widening is not needed in the Alternative Network for this scenario, which includes an extension of North Bank Drive from Johnson Drive to Bristol Road.

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 50	A	. 54	A	--		--		. 50	A	. 53	A	--		--	
2. Victoria \& Loma Vista	. 58	A	. 51	A	--		--		. 59	A	. 52	A	--		--	
3. Victoria \& Telegraph	. 64	B	. 78	C	--		--		. 64	B	. 77	C	--		--	
4. Victoria \& Woodland	. 72	C	. 57	A	--		--		. 71	C	. 57	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 91	E	--		--		. 56	A	. 83	D	--		--	
6. Victoria \& Thille	. 53	A	. 64	B	--		--		. 52	A	. 62	B	--		--	
7. Victoria \& Telephone	. 64	B	. 77	C	--		--		. 63	B	. 72	C	--		--	
8. Victoria \& Ralston	. 71	C	. 85	D	--		--		. 69	B	. 87	D	--		--	
10. Victoria \& Moon	. 60	A	. 68	B	--		--		. 58	A	. 64	B	--		--	
14. Hill \& Telephone	. 57	A	. 66	B	--		--		. 53	A	. 58	A	--		--	
15. Johnson \& Telephone	. 55	A	. 92	E	. 52	A	. 85	D	. 46	A	. 66	B	--		--	
$\begin{aligned} & \text { 18. Seaward \& } \\ & \text { US } 101 \mathrm{NB} \\ & \text { Ramps (a) } \end{aligned}$. 52	A	. 61	B	--		--		. 52	A	. 61	B	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 55	A	. 84	D	--		--		. 55	A	. 84	D	--		--	

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
20. Harbor \& Olivas Park	. 41	A	. 78	C	--		--		. 41	A	. 78	C	--		--	
23. Mills \& Loma Vista	. 33	A	. 43	A	--		--		. 33	A	. 42	A	--		--	
24. Mills \& Telegraph	. 49	A	. 52	A	--		--		. 49	A	. 51	A	--		--	
25. Mills \& Maple	. 52	A	. 50	A	--		--		. 51	A	. 50	A	--		--	
26. Mills \& Dean	. 54	A	. 53	A	--		--		. 54	A	. 54	A	--		--	
27. Mills \& Main	. 69	B	. 68	B	--		--		. 67	B	. 68	B	--		--	
28. US 101 NB Ramps \& Main (a)	. 78	C	. 78	C	--		--		. 77	C	. 78	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 53	A	. 62	B	--		--		. 52	A	. 62	B	--		--	
30. Callens \& Main	. 46	A	. 66	B	--		--		. 45	A	. 65	B	--		--	
31. Donlon \& Main	. 57	A	. 81	D	--		--		. 56	A	. 81	D	--		--	
32. Telephone \& Main (a)	. 62	B	. 90	D	--		--		. 62	B	. 89	D	--		--	
33. US 101 NB Telephone (a)	. 56	A	. 70	B	--		--		. 56	A	. 69	B	--		--	
34. Portola \& Telephone	. 36	A	. 52	A	--		--		. 35	A	. 50	A	--		--	

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
35. Saratoga \& Telephone	. 31	A	. 57	A	--		--		. 31	A	. 56	A	--		--	
38. Telephone \& Market	. 62	B	. 72	C	--		--		. 62	B	. 72	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--		. 29	A	. 75	C	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 37	A	. 33	A	--		--	
46. Seaward \& Main	. 55	A	. 68	B	--		--		. 55	A	. 68	B	--		--	
47. Main \& Loma Vista	. 56	A	. 54	A	--		--		. 56	A	. 53	A	--		--	
49. Main \& Telegraph	. 45	A	. 63	B	--		--		. 45	A	. 62	B	--		--	
50. Emma \& Main	. 40	A	. 44	A	--		--		. 40	A	. 44	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 42	A	--		--		. 40	A	. 42	A	--		--	
53. Kimball \& Telephone	. 75	C	. 74	C	--		--		. 63	B	. 44	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 37	A	. 33	A	--		--		. 38	A	. 34	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 81	D	. 44	A	--		--		. 84	D	. 48	A	--		--	
58. Kimball \& Telegraph	. 25	A	. 32	A	--		--		. 25	A	. 33	A	--		--	
60. Ramelli \& Telephone	. 45	A	. 74	C	--		--		. 35	A	. 42	A	--		--	

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
61. Montgomery \& Telephone	. 61	B	. 42	A	--		--		. 52	A	. 42	A	--		--	
63. Petit \& Telephone	. 46	A	. 60	A	--		--		. 49	A	. 62	B	--		--	
65. Sanjon \& Thompson	. 47	A	. 55	A	--		--		. 47	A	. 54	A	--		--	
68. Seaward \& Thompson	. 49	A	. 61	B	--		--		. 49	A	. 61	B	--		--	
71. Sanjon \& Harbor	. 36	A	. 69	B	--		--		. 36	A	. 69	B	--		--	
75. Ashwood \& Telegraph	. 30	A	. 45	A	--		--		. 29	A	. 45	A	--		--	
77. Day \& Telegraph	. 43	A	. 39	A	--		--		. 44	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 68	B	. 82	D	--		--		. 68	B	. 83	D	--		--	
86. Telephone \& Olivas Park	. 56	A	. 70	B	--		--		. 56	A	. 70	B	--		--	
91. Johnson \& Ralston	. 56	A	. 62	B	--		--		. 48	A	. 60	A	--		--	
$\begin{aligned} & \text { 92. Johnson \& } \\ & \text { Bristol } \end{aligned}$. 79	C	. 85	D	--		--		. 66	B	. 86	D	--		--	
94. Johnson \& North Bank	. 76	C	. 91	E	. 71	C	. 87	D	. 92	E	1.19	F	. 77	C	. 88	D
95. Bristol \& Ramelli	. 54	A	. 37	A	--		--		. 32	A	. 29	A	--		--	
96. North Bank	. 66	B	. 47	A	--		--		. 45	A	. 39	A	--		--	

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
100. Saticoy \& Telephone	. 49	A	. 48	A	--		--		. 48	A	. 49	A	--		--	
101. Saticoy \& Telegraph	. 49	A	. 51	A	--		--		. 48	A	. 52	A	--		--	
102. Wells \& Telegraph	. 63	B	. 62	B	--		--		. 64	B	. 62	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 66	B	. 74	C	--		--		. 66	B	. 74	C	--		--	
105. Wells \& Darling	. 69	B	1.06	F	. 63	B	. 89	D	. 69	B	1.08	F	. 63	B	. 87	D
106. Wells \& Telephone	. 74	C	. 73	C	--		--		. 73	C	. 73	C	--		--	
114. California \& Thompson	. 42	A	. 46	A	--		--		. 42	A	. 46	A	--		--	
115. Chestnut \& Thompson	. 49	A	. 57	A	--		--		. 50	A	. 55	A	--		--	
120. Ventura \& Main	. 42	A	. 73	C	--		--		. 41	A	. 72	C	--		--	
132. Ventura \& Stanley	. 74	C	. 87	D	--		--		. 74	C	. 87	D	--		--	
$\begin{aligned} & \hline \text { 136. US } 101 \\ & \text { SB Ramps \& } \\ & \text { Valentine (a) } \\ & \hline \end{aligned}$. 46	A	. 54	A	--		--		. 49	A	. 55	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 56	A	. 91	E	--		--		. 58	A	. 87	D	--		--	
$\begin{aligned} & \text { 160. Victoria \& } \\ & \text { US } 101 \text { NB } \\ & \text { Ramps (a) } \end{aligned}$. 83	D	. 70	B	--		--		. 81	D	. 68	B	--		--	

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
161. Victoria \& Valentine (a)	. 73	C	. 78	C	--		--		. 70	B	. 78	C	--		--	
162. California \& Harbor	. 28	A	. 36	A	--		--		. 28	A	. 36	A	--		--	
163. Santa Clara \& Main	. 25	A	. 29	A	--		--		. 25	A	. 29	A	--		--	
164. Seaward \& Poli	. 41	A	. 49	A	--		--		. 41	A	. 50	A	--		--	
165. Seaward \& Harbor	. 58	A	. 70	B	--		--		. 58	A	. 70	B	--		--	
166. College \& Telegraph	. 33	A	. 40	A	--		--		. 32	A	. 38	A	--		--	
168. Day \& Foothill	. 74	C	. 75	C	--		--		. 74	C	. 75	C	--		--	
169. Kimball \& Foothill	. 51	A	. 45	A	--		--		. 51	A	. 48	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--		. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 31	A	--		--		. 36	A	. 31	A	--		--	
172. Wells \& Foothill	. 33	A	. 25	A	--		--		. 33	A	. 25	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 89	D	. 76	C	--		--		. 87	D	. 75	C	--		--	
174. Petit \& Telegraph	. 42	A	. 26	A	--		--		. 41	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 48	A	. 95	E	--		--		. 47	A	1.06	F	. 47	A	. 74	C

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
176. Saticoy \& Darling	. 37	A	. 29	A	--		--		. 36	A	. 30	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 49	A	--		--		. 33	A	. 49	A	--		--	
178. SR-33 Stanley (a)	. 68	B	. 77	C	--		--		. 68	B	. 77	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 96	E	. 98	E	--		--		. 96	E	. 98	E	--		--	
180. Estates \& Telegraph	. 29	A	. 40	A	--		--		. 29	A	. 40	A	--		--	
181. Ventura \& Ramona	. 33	A	. 52	A	--		--		. 33	A	. 53	A	--		--	
182. Olive \& Main	. 55	A	. 62	B	--		--		. 55	A	. 62	B	--		--	
 North Bank	. 22	A	. 29	A	--		--		. 22	A	. 28	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 16	A	--		--		. 08	A	. 14	A	--		--	
$\begin{aligned} & \text { 192. Los } \\ & \text { Angeles \& } \\ & \text { North Bank } \\ & \hline \end{aligned}$. 73	C	. 86	D	--		--		. 71	C	. 85	D	--		--	
$\begin{aligned} & \text { 193. Saticoy \& } \\ & \text { A St } \end{aligned}$. 18	A	. 13	A	--		--		. 18	A	. 12	A	--		--	
194. Wells \& A St	. 44	A	. 42	A	--		--		. 45	A	. 41	A	--		--	
196. Ramelli \& Ralston	--		--		--		--		. 48	A	. 57	A	--		--	

Table 4.12-11
2025 ICU Summary - Scenario 4

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
197. Kimball \& Ralston	--		--		--		--		. 26	A	. 38	A	--		--	
$198 .$ Montgomery \& Ralston	--		--		--		--		. 25	A	. 24	A	--		--	
199. Kimball \& North Bank	--		--		--		--		. 71	C	. 64	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Western Cañada Larga expansion areas. The overall trip generation increase citywide through 2025 is estimated at 190,050 ADT under this scenario (see Table 3-13 of the traffic study in Appendix E). This represents an increase of 20.6% over existing conditions. ADTs for specific roadways are shown on Figure 3-14 of the traffic study in Appendix E.

Year 2025 ICUs are shown on Figure 4.12-10. To serve this scenario, it is anticipated that the following new roadway links would be added as an alternative to the Baseline Network along with selected intersection improvements:

1. Kimball Road extension from Johnson Drive to Bristol Road
2. Ralston Street extension from Ramelli Avenue to Montgomery Avenue
3. Cedar Street extension from Kellogg Street to Stanley Avenue
4. Stanley Avenue extension from Ventura Avenue to Cedar Street

Table 4.12-12 summarizes the overall roadway and intersection improvements for this scenario, and Table 4.12-13 lists the ICU values with Baseline improvements and with the recommended additional improvements.

Scenario 5 results in two locations that require additional (non-committed) improvements, with both deficiencies occurring under each network scenario (Baseline and Alternative). The deficient locations are as follows:

Baseline Network

- SR 33 Ramps at Shell Road
- Wells Road at Darling Road

Alternative Network

- SR 33 Ramps at Shell Road
- Wells Road at Darling Road

This page intentionally left blank.

2025 Intersection Capacity Utilization (ICU) Scenario 5 (Baseline Network)

Table 4.12-12
Roadway Improvements - Scenario 5

Location	Improvement
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR 126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR 126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/rightturn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR 126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
1a. Streets (Alternative Network)	
Cedar Street (Kellogg Street to Stanley Avenue)	New two-lane roadway
Kimball Road (Telephone Road to North Bank Drive)	New four-lane roadway
Ralston Street (Ramelli Avenue to Montgomery Avenue)	New two-lane roadway
Stanley Avenue (Cedar Street to Ventura Avenue)	New two-lane roadway

Table 4.12-12
Roadway Improvements - Scenario 5

Location	Improvement
2. Intersections (Baseline Network)	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
105. Wells Road at Darling Road	Add southbound right-turn lane, second westbound through lane and separate westbound right-turn lane
179. SR-33 Ramps at Shell Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
2a. Intersections (Baseline Network)	Add southbound right-turn lane, second westbound through lane and separate westbound right-turn lane
105. Wells Road at Darling Road	179. SR-33 Ramps at Shell Road

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 49	A	. 53	A	--		--		. 49	A	. 53	A	--		--	
2. Victoria \& Loma Vista	. 56	A	. 50	A	--		--		. 57	A	. 51	A	--		--	
3. Victoria \& Telegraph	. 63	B	. 76	C	--		--		. 62	B	. 76	C	--		--	
4. Victoria \& Woodland	. 70	B	. 56	A	--		--		. 70	B	. 55	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 59	A	. 86	D	--		--		. 58	A	. 85	D	--		--	
6. Victoria \& Thille	. 52	A	. 62	B	--		--		. 51	A	. 61	B	--		--	
7. Victoria \& Telephone	. 63	B	. 72	C	--		--		. 61	B	. 71	C	--		--	
8. Victoria \& Ralston	. 67	B	. 79	C	--		--		. 71	C	. 82	D	--		--	
10. Victoria \& Moon	. 55	A	. 63	B	--		--		. 57	A	. 61	B	--		--	
14. Hill \& Telephone	. 53	A	. 61	B	--		--		. 53	A	. 60	A	--		--	
15. Johnson \& Telephone	. 48	A	. 73	C	--		--		. 48	A	. 73	C	--		--	
$\begin{aligned} & \text { 18. Seaward \& } \\ & \text { US } 101 \mathrm{NB} \\ & \text { Ramps (a) } \\ & \hline \end{aligned}$. 53	A	. 61	B	--		--		. 53	A	. 59	A	--		--	
19. Monmouth/US Harbor (a)	. 56	A	. 86	D	--		--		. 55	A	. 88	D	--		--	
20. Harbor \& Olivas Park	. 43	A	. 80	C	--		--		. 43	A	. 80	C	--		--	

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
23. Mills \& Loma Vista	. 33	A	. 42	A	--		--		. 33	A	. 42	A	--		--	
24. Mills \& Telegraph	. 48	A	. 52	A	--		--		. 48	A	. 50	A	--		--	
25. Mills \& Maple	. 51	A	. 50	A	--		--		. 51	A	. 50	A	--		--	
26. Mills \& Dean	. 53	A	. 54	A	--		--		. 53	A	. 54	A	--		--	
27. Mills \& Main	. 68	B	. 70	B	--		--		. 68	B	. 70	B	--		--	
28. US 101 NB Ramps \& Main (a)	. 78	C	. 79	C	--		--		. 78	C	. 79	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 53	A	. 63	B	--		--		. 53	A	. 62	B	--		--	
$\begin{aligned} & \text { 30. Callens \& } \\ & \text { Main } \end{aligned}$. 46	A	. 66	B	--		--		. 46	A	. 66	B	--		--	
31. Donlon \& Main	. 56	A	. 84	D	--		--		. 56	A	. 83	D	--		--	
32. Telephone \& Main (a)	. 62	B	. 87	D	--		--		. 62	B	. 87	D	--		--	
$\begin{aligned} & \text { 33. US } 101 \text { NB } \\ & \text { Ramps \& } \\ & \text { Telephone (a) } \end{aligned}$. 55	A	. 68	B	--		--		. 56	A	. 68	B	--		--	
34. Portola \& Telephone	. 35	A	. 49	A	--		--		. 35	A	. 49	A	--		--	
35. Saratoga \& Telephone	. 30	A	. 56	A	--		--		. 30	A	. 56	A	--		--	
38. Telephone \& Market	. 61	B	. 73	C	--		--		. 61	B	. 72	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--		. 29	A	. 75	C	--		--	

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
45. Catalina \& Main	. 38	A	. 34	A	--		--		. 38	A	. 33	A	--		--	
46. Seaward \& Main	. 56	A	. 69	B	--		--		. 56	A	. 68	B	--		--	
47. Main \& Loma Vista	. 55	A	. 53	A	--		--		. 56	A	. 52	A	--		--	
 Telegraph	. 45	A	. 67	B	--		--		. 45	A	. 67	B	--		--	
50. Emma \& Main	. 41	A	. 46	A	--		--		. 41	A	. 46	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 43	A	--		--		. 40	A	. 43	A	--		--	
53. Kimball \& Telephone	. 76	C	. 67	B	--		--		. 66	B	. 44	A	--		--	
$\begin{aligned} & \text { 55. Kimball \& } \\ & \text { SR } 126 \text { EB } \\ & \text { Ramps (a) } \\ & \hline \end{aligned}$. 35	A	. 33	A	--		--		. 38	A	. 33	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 77	C	. 39	A	--		--		. 85	D	. 40	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--		. 24	A	. 35	A	--		--	
60. Ramelli \& Telephone	. 38	A	. 67	B	--		--		. 35	A	. 38	A	--		--	
$\begin{aligned} & \text { 61. } \\ & \text { Montgomery \& } \\ & \text { Telephone } \\ & \hline \end{aligned}$. 58	A	. 35	A	--		--		. 56	A	. 39	A	--		--	
63. Petit \& Telephone	. 46	A	. 58	A	--		--		. 46	A	. 56	A	--		--	
65. Sanjon \& Thompson	. 48	A	. 57	A	--		--		. 49	A	. 57	A	--		--	
68. Seaward \& Thompson	. 50	A	. 60	A	--		--		. 49	A	. 59	A	--		--	

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
71. Sanjon \& Harbor	. 35	A	. 68	B	--		--		. 35	A	. 70	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 47	A	--		--		. 29	A	. 47	A	--		--	
 Telegraph	. 42	A	. 39	A	--		--		. 42	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 66	B	. 81	D	--		--		. 66	B	. 81	D	--		--	
86. Telephone \& Olivas Park	. 56	A	. 68	B	--		--		. 56	A	. 68	B	--		--	
91. Johnson \& Ralston	. 46	A	. 55	A	--		--		. 67	B	. 89	D	--		--	
92. Johnson \& Bristol	. 70	B	. 73	C	--		--		. 72	C	. 69	B	--		--	
94. Johnson \& North Bank	. 69	B	. 82	D	--		--		. 70	B	. 82	D	--		--	
95. Bristol \& Ramelli	. 49	A	. 27	A	--		--		. 49	A	. 31	A	--		--	
$\begin{aligned} & \text { 96. } \\ & \text { Montgomery \& } \\ & \text { North Bank } \\ & \hline \end{aligned}$. 55	A	. 48	A	--		--		. 46	A	. 32	A	--		--	
100. Saticoy \& Telephone	. 46	A	. 46	A	--		--		. 47	A	. 45	A	--		--	
101. Saticoy \& Telegraph	. 47	A	. 52	A	--		--		. 48	A	. 52	A	--		--	
102. Wells \& Telegraph	. 63	B	. 62	B	--		--		. 65	B	. 62	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 67	B	. 75	C	--		--		. 66	B	. 76	C	--		--	
105. Wells \& Darling	. 70	B	1.07	F	. 64	B	. 88	D	. 69	B	1.07	F	. 63	B	. 88	D

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
106. Wells \& Telephone	. 73	C	. 73	C	--		--		. 73	C	. 71	C	--		--	
114. California \& Thompson	. 44	A	. 48	A	--		--		. 43	A	. 51	A	--		--	
115. Chestnut \& Thompson	. 51	A	. 55	A	--		--		. 54	A	. 59	A	--		--	
120. Ventura \& Main	. 43	A	. 76	C	--		--		. 39	A	. 71	C	--		--	
132. Ventura \& Stanley	. 68	B	. 83	D	--		--		. 61	B	. 62	B	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 49	A	. 57	A	--		--		. 49	A	. 56	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 57	A	. 83	D	--		--		. 57	A	. 83	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 81	D	. 67	B	--		--		. 80	C	. 67	B	--		--	
161. Victoria \& Valentine (a)	. 68	B	. 78	C	--		--		. 68	B	. 78	C	--		--	
162. California \& Harbor	. 29	A	. 35	A	--		--		. 29	A	. 41	A	--		--	
163. Santa Clara \& Main	. 26	A	. 31	A	--		--		. 26	A	. 30	A	--		--	
164. Seaward \& Poli	. 41	A	. 50	A	--		--		. 41	A	. 50	A	--		--	
165. Seaward \& Harbor	. 60	A	. 72	C	--		--		. 59	A	. 71	C	--		--	
166. College \& Telegraph	. 34	A	. 39	A	--		--		. 33	A	. 40	A	--		--	
 Foothill	. 74	C	. 76	C	--		--		. 73	C	. 76	C	--		--	

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
169. Kimball \& Foothill	. 51	A	. 44	A	--		--		. 51	A	. 45	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--		. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 30	A	--		--		. 36	A	. 31	A	--		--	
172. Wells \& Foothill	. 33	A	. 26	A	--		--		. 33	A	. 25	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 85	D	. 73	C	--		--		. 80	C	. 73	C	--		--	
174. Petit \& Telegraph	. 41	A	. 28	A	--		--		. 41	A	. 28	A	--		--	
175. Ventura \& North Bank (a)	. 42	A	. 89	D	--		--		. 42	A	. 89	D	--		--	
176. Saticoy \& Darling	. 35	A	. 29	A	--		--		. 35	A	. 28	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 49	A	--		--		. 33	A	. 49	A	--		--	
178. SR-33 Stanley (a)	. 64	B	. 69	B	--		--		. 61	B	. 62	B	--		--	
179. SR-33 Ramps \& Shell (a)	1.13	F	1.11	F	. 80	C	. 78	C	1.12	F	1.10	F	. 80	C	. 76	C
180. Estates \& Telegraph	. 28	A	. 39	A	--		--		. 28	A	. 39	A	--		--	
181. Ventura \& Ramona	. 36	A	. 54	A	--		--		. 33	A	. 39	A	--		--	
182. Olive \& Main	. 63	B	. 69	B	--		--		. 61	B	. 67	B	--		--	

Table 4.12-13
2025 ICU Summary - Scenario 5

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
190. Petit \& North Bank	. 20	A	. 25	A	--		--		. 21	A	. 22	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--		. 08	A	. 14	A	--		--	
192. Los Angeles \& North Bank	. 72	C	. 86	D	--		--		. 71	C	. 86	D	--		--	
$\begin{aligned} & \text { 193. Saticoy \& } \\ & \text { A St } \end{aligned}$. 17	A	. 13	A	--		--		. 17	A	. 13	A	--		--	
194. Wells \& A St	. 43	A	. 41	A	--		--		. 44	A	. 41	A	--		--	
196. Ramelli \& Ralston	--		--		--		--		. 39	A	. 48	A	--		--	
197. Kimball \& Ralston	--		--		--		--		. 32	A	. 44	A	--		--	
$198 .$ Montgomery \& Ralston	--		--		--		--		. 22	A	. 17	A	--		--	
199. Kimball \& North Bank	--		--		--		--		. 44	A	. 47	A	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Poinsettia expansion areas. The overall trip generation increase citywide through 2025 is estimated at 199,936 ADT under this scenario (see Table 3-16 of the traffic study in Appendix E). This represents an increase of 21.7% over existing conditions. ADTs for specific roadways are shown on Figure 317 of the traffic study in Appendix E.

Year 2025 ICUs are shown on Figure 4.12-11. To serve this scenario, it is anticipated that the following new roadway links would be added as an alternative to the Baseline Network along with selected intersection improvements:

1. Johnson Drive extension from SR 126 to Foothill Road
2. Loma Vista Road extension from Victoria Avenue to Kimball Road
3. Woodland Street extension from Hill Road to Johnson Drive

Table 4.12-14 summarizes the overall roadway and intersection improvements for this scenario, and Table 4.12-15 lists the ICU values with Baseline improvements and with the recommended additional improvements.

Scenario 6 results in one location that will require additional (non-committed) improvements, with the deficiency occurring under both network scenarios (Baseline and Alternative). The deficient location is as follows:

Baseline Network

- Wells Road at Darling Road

Alternative Network

- Wells Road at Darling Road

2025 Intersection Capacity Utilization (ICU)
Scenario 6 (Baseline Network)

[^9]Table 4.12-14
Roadway Improvements - Scenario 6

Location	Improvement
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR 126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR 126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/rightturn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/rightturn lane
104. Wells Road at SR 126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
1a. Streets (Alternative Network)	
Johnson Drive (Current terminus to Telegraph Road)	New four-lane roadway
Johnson Drive (Telegraph Road to Foothill Road)	New two-lane roadway
Loma Vista Road (Kimball Road to Victoria Avenue)	New two-lane roadway
Woodland Street (Hill Road to Johnson Drive)	New two-lane roadway

Table 4.12-14
Roadway Improvements - Scenario 6

Location	Improvement
2. Intersections (Baseline Network)	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
2a. Intersections (Alternative Network)	105. Wells Road at Darling Road

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 53	A	. 69	B	--		--		. 53	A	. 56	A	--		--	
2. Victoria \& Loma Vista	. 68	B	. 61	B	--		--		. 56	A	. 57	A	--		--	
3. Victoria \& Telegraph	. 74	C	. 87	D	--		--		. 56	A	. 75	C	--		--	
4. Victoria \& Woodland	. 82	D	. 77	C	--		--		. 65	B	. 51	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 64	B	. 94	E	--		--		. 48	A	. 70	B	--		--	
6. Victoria \& Thille	. 57	A	. 68	B	--		--		. 47	A	. 57	A	--		--	
7. Victoria \& Telephone	. 64	B	. 76	C	--		--		. 61	B	. 78	C	--		--	
8. Victoria \& Ralston	. 73	C	. 81	D	--		--		. 75	C	. 80	C	--		--	
10. Victoria \& Moon	. 60	A	. 65	B	--		--		. 56	A	. 61	B	--		--	
14. Hill \& Telephone	. 53	A	. 61	B	--		--		. 69	B	. 66	B	--		--	
15. Johnson \& Telephone	. 50	A	. 78	C	--		--		. 73	C	. 79	C	--		--	
$\begin{aligned} & \text { 18. Seaward \& } \\ & \text { US } 101 \mathrm{NB} \\ & \text { Ramps (a) } \\ & \hline \end{aligned}$. 52	A	. 62	B	--		--		. 52	A	. 61	B	--		--	
19. Monmouth/US Harbor (a)	. 55	A	. 83	D	--		--		. 55	A	. 81	D	--		--	
20. Harbor \& Olivas Park	. 41	A	. 80	C	--		--		. 41	A	. 79	C	--		--	

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements (including non-committed alternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
23. Mills \& Loma Vista	. 35	A	. 43	A	--		--		. 34	A	. 43	A	--		--	
24. Mills \& Telegraph	. 49	A	. 53	A	--		--		. 49	A	. 51	A	--		--	
25. Mills \& Maple	. 53	A	. 51	A	--		--		. 51	A	. 48	A	--		--	
26. Mills \& Dean	. 55	A	. 53	A	--		--		. 53	A	. 56	A	--		--	
27. Mills \& Main	. 69	B	. 71	C	--		--		. 66	B	. 69	B	--		--	
28. US 101 NB Ramps \& Main (a)	. 79	C	. 80	C	--		--		. 76	C	. 78	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 54	A	. 64	B	--		--		. 51	A	. 61	B	--		--	
$\begin{aligned} & \text { 30. Callens \& } \\ & \text { Main } \end{aligned}$. 46	A	. 67	B	--		--		. 44	A	. 63	B	--		--	
31. Donlon \& Main	. 55	A	. 84	D	--		--		. 54	A	. 81	D	--		--	
32. Telephone \& Main (a)	. 62	B	. 90	D	--		--		. 64	B	. 93	E	--		--	
$\begin{aligned} & \text { 33. US } 101 \text { NB } \\ & \text { Ramps \& } \\ & \text { Telephone (a) } \end{aligned}$. 56	A	. 70	B	--		--		. 56	A	. 70	B	--		--	
34. Portola \& Telephone	. 36	A	. 52	A	--		--		. 36	A	. 52	A	--		--	
35. Saratoga \& Telephone	. 30	A	. 58	A	--		--		. 33	A	. 57	A	--		--	
38. Telephone \& Market	. 65	B	. 73	C	--		--		. 63	B	. 74	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--		. 28	A	. 74	C	--		--	

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 37	A	. 33	A	--		--	
46. Seaward \& Main	. 55	A	. 69	B	--		--		. 56	A	. 70	B	--		--	
47. Main \& Loma Vista	. 56	A	. 55	A	--		--		. 55	A	. 56	A	--		--	
49. Main \& Telegraph	. 45	A	. 68	B	--		--		. 45	A	. 65	B	--		--	
50. Emma \& Main	. 40	A	. 45	A	--		--		. 40	A	. 44	A	--		--	
51. Lemon Grove \& Main	. 39	A	. 43	A	--		--		. 39	A	. 42	A	--		--	
53. Kimball \& Telephone	. 84	D	. 71	C	--		--		. 66	B	. 53	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 39	A	. 38	A	--		--		. 31	A	. 24	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 83	D	. 43	A	--		--		. 71	C	. 35	A	--		--	
58. Kimball \& Telegraph	. 30	A	. 39	A	--		--		. 26	A	. 35	A	--		--	
60. Ramelli \& Telephone	. 39	A	. 72	C	--		--		. 33	A	. 56	A	--		--	
61. Telephone	. 59	A	. 34	A	--		--		. 58	A	. 35	A	--		--	
63. Petit \& Telephone	. 44	A	. 58	A	--		--		. 44	A	. 59	A	--		--	
65. Sanjon \& Thompson	. 49	A	. 56	A	--		--		. 47	A	. 55	A	--		--	
68. Seaward \& Thompson	. 50	A	. 62	B	--		--		. 49	A	. 60	A	--		--	

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
71. Sanjon \& Harbor	. 36	A	. 68	B	--		--		. 36	A	. 67	B	--		--	
75. Ashwood \& Telegraph	. 31	A	. 48	A	--		--		. 32	A	. 48	A	--		--	
77. Day \& Telegraph	. 43	A	. 41	A	--		--		. 43	A	. 41	A	--		--	
85. Victoria \& Olivas Park	. 68	B	. 82	D	--		--		. 70	B	. 81	D	--		--	
86. Telephone \& Olivas Park	. 56	A	. 70	B	--		--		. 56	A	. 66	B	--		--	
91. Johnson \& Ralston	. 53	A	. 55	A	--		--		. 54	A	. 63	B	--		--	
92. Johnson \& Bristol	. 72	C	. 76	C	--		--		. 66	B	. 85	D	--		--	
94. Johnson \& North Bank	. 72	C	. 83	D	--		--		. 72	C	. 89	D	--		--	
95. Bristol \& Ramelli	. 47	A	. 28	A	--		--		. 53	A	. 31	A	--		--	
96. Montgomery \& North Bank	. 54	A	. 47	A	--		--		. 54	A	. 47	A	--		--	
100. Saticoy \& Telephone	. 47	A	. 45	A	--		--		. 45	A	. 46	A	--		--	
101. Saticoy \& Telegraph	. 51	A	. 56	A	--		--		. 48	A	. 51	A	--		--	
102. Wells \& Telegraph	. 68	B	. 69	B	--		--		. 63	B	. 60	A	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 67	B	. 76	C	--		--		. 67	B	. 78	C	--		--	
105. Wells \& Darling	. 70	B	1.08	F	. 64	B	. 89	D	. 69	B	1.08	F	. 66	B	. 89	D

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
106. Wells \& Telephone	. 73	C	. 74	C	--		--		. 72	C	. 73	C	--		--	
114. California \& Thompson	. 42	A	. 47	A	--		--		. 41	A	. 48	A	--		--	
115. Chestnut \& Thompson	. 49	A	. 57	A	--		--		. 47	A	. 57	A	--		--	
120. Ventura \& Main	. 41	A	. 71	C	--		--		. 40	A	. 72	C	--		--	
132. Ventura \& Stanley	. 74	C	. 84	D	--		--		. 74	C	. 84	D	--		--	
$\begin{aligned} & \hline \text { 136. US } 101 \\ & \text { SB Ramps \& } \\ & \text { Valentine (a) } \end{aligned}$. 45	A	. 53	A	--		--		. 47	A	. 53	A	--		--	
$\begin{aligned} & \text { 138. Johnson } \\ & \& \text { US } 101 \text { SB } \\ & \text { Ramps (a) } \\ & \hline \end{aligned}$. 56	A	. 86	D	--		--		. 52	A	. 84	D	--		--	
$\begin{aligned} & \text { 160. Victoria \& } \\ & \text { US } 101 \text { NB } \\ & \text { Ramps (a) } \end{aligned}$. 84	D	. 70	B	--		--		. 82	D	. 69	B	--		--	
161. Victoria \& Valentine (a)	. 71	C	. 79	C	--		--		. 71	C	. 78	C	--		--	
162. California \& Harbor	. 27	A	. 36	A	--		--		. 28	A	. 36	A	--		--	
163. Santa Clara \& Main	. 25	A	. 29	A	--		--		. 25	A	. 29	A	--		--	
164. Seaward \& Poli	. 44	A	. 51	A	--		--		. 42	A	. 49	A	--		--	
165. Seaward \& Harbor	. 57	A	. 71	C	--		--		. 57	A	. 71	C	--		--	
166. College \& Telegraph	. 36	A	. 43	A	--		--		. 33	A	. 43	A	--		--	
168. Day \& Foothill	. 80	C	. 78	C	--		--		. 80	C	. 79	C	--		--	

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
169. Kimball \& Foothill	. 63	B	. 66	B	--		--		. 55	A	. 43	A	--		--	
170. Petit \& Foothill	. 37	A	. 20	A	--		--		. 39	A	. 22	A	--		--	
171. Saticoy \& Foothill	. 38	A	. 33	A	--		--		. 42	A	. 35	A	--		--	
172. Wells \& Foothill	. 36	A	. 28	A	--		--		. 37	A	. 27	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 95	E	. 87	D	--		--		. 80	C	. 70	B	--		--	
174. Petit \& Telegraph	. 44	A	. 28	A	--		--		. 46	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 42	A	. 89	D	--		--		. 43	A	. 95	E	--		--	
176. Saticoy \& Darling	. 37	A	. 28	A	--		--		. 34	A	. 26	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 34	A	. 50	A	--		--		. 33	A	. 47	A	--		--	
178. SR-33 Stanley (a)	. 67	B	. 74	C	--		--		. 67	B	. 74	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 96	E	. 98	E	--		--		. 96	E	. 98	E	--		--	
180. Estates \& Telegraph	. 27	A	. 41	A	--		--		. 28	A	. 41	A	--		--	
181. Ventura \& Ramona	. 33	A	. 52	A	--		--		. 33	A	. 50	A	--		--	
182. Olive \& Main St	. 53	A	. 62	B	--		--		. 53	A	. 61	B	--		--	

Table 4.12-15
2025 ICU Summary - Scenario 6

Intersection	Baseline Network								Alternative Network							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements(including non-committedalternative network streets)				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
190. Petit Av \& North Bank Dr	. 20	A	. 27	A	--		--		. 19	A	. 26	A	--		--	
191. Saticoy Av \& North Bank Dr	. 08	A	. 15	A	--		--		. 08	A	. 15	A	--		--	
192. Los Angeles Av \& North Bank	. 72	C	. 87	D	--		--		. 71	C	. 86	D	--		--	
193. Saticoy Av \& A St	. 19	A	. 13	A	--		--		. 18	A	. 12	A	--		--	
194. Wells Rd \& A St	. 45	A	. 42	A	--		--		. 40	A	. 41	A	--		--	
205. Johnson \& Woodland	--		--		--		--		. 66	B	. 69	B	--		--	
206. Johnson \& Telegraph	--		--		--		--		. 78	C	. 68	B	--		--	
207. Johnson \& Loma Vista	--		--		--		--		. 32	A	. 49	A	--		--	
208. Johnson \& Foothill	--		--		--		--		. 52	A	. 63	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

MITIGATION MEASURES

The 2005 General Plan includes the following actions intended to maintain and improve traffic circulation in the Planning Area.

$$
\begin{array}{ll}
\text { Action 4.2 } & \begin{array}{l}
\text { Develop a prioritized list of projects needed to improve safety for all } \\
\text { travel modes and provide needed connections and multiple route options. }
\end{array} \\
\text { Action 4.5 } & \begin{array}{l}
\text { Utilize existing roadways to meet mobility needs, and only consider } \\
\text { widening roads when other alternatives are not feasible. }
\end{array} \\
\text { Action 4.7 } & \begin{array}{l}
\text { Update the traffic mitigation fee program to fund necessary citywide } \\
\text { circulation system and mobility improvements needed in conjunction } \\
\text { with new development. }
\end{array}
\end{array}
$$

Action 4.10 Modify traffic signal timing to ensure safety and minimize delay for all users.

In addition, as discussed in the Setting and in subsection a of the Impact Analysis ("Methodology and Significance Thresholds"), 2005 General Plan Action 4.11 directs the City to "refine level of service standards to encourage use of alternative modes of transportation while meeting state and regional mandates." Although no specific level of service (LOS) is defined in the 2005 General Plan, the local Congestion Management Program (CMP) establishes a minimum LOS of E for CMP intersections. Using this a guide, the analysis contained in this EIR uses LOS standards of "E" (ICU not to exceed 1.00) for freeway ramp intersections and "D" (ICU not to exceed .90) for all other Principal Intersections. This represents a relaxation of the current Comprehensive Plan standards of LOS "C" citywide and LOS "D" for intersections along Ventura Avenue. This relaxation of standards is consistent with the overall circulation goal of reducing dependence on the automobile and improving opportunities for other modes of transportation. However, it should be recognized that this relaxation of standards would allow for higher levels of traffic congestion at City intersections before implementing improvements to ease congestion.

As discussed in the "Impact Analysis," certain intersections within the Planning Area are projected to experience levels of service below the performance standards used for this analysis (LOS "D" or "E" depending on the location. The discussion for each of the scenarios identifies specific locations where deficiencies are projected to occur and specific feasible improvements that could be implemented at those intersections to achieve the level of service standards. For Scenarios 1, 3, 4, 5, and 6, feasible improvements are available to achieve performance standards at all intersections. For Scenario 2, feasible improvements are available for all of the intersections other than the Johnson Drive/North Bank Drive intersection. However, even with implementation of feasible improvements, that intersection would not meet the performance standard of LOS D. Therefore, the impact at that location is considered unavoidably significant under Scenario 2.

Because the analysis of Year 2025 impacts is out of necessity based upon predictions about the level of development that will occur and where such development will be, it cannot be determined with certainty which of the identified improvements which actually be needed over the next 20 years. As such, it would not be appropriate to adopt actual physical improvements
at this time. Rather, the purpose of the EIR analysis is to determine whether mitigation is possible, if actually needed in the future.

To provide a mechanism for addressing impacts as they occur and implementing the improvements identified in this EIR (or other feasible improvements that achieve the same objectives) as needed, the following measure is required:

TC-1 Additional Circulation Actions. The following actions shall be added to the 2005 General Plan to ensure that traffic impacts of future developments are addressed and mitigated:

- Require project proponents to analyze traffic impacts and implement mitigation as appropriate prior to development. Depending upon the nature of the impacts and improvements needed, mitigation may either consist of implementing needed physical improvements, contributing "fair share" fee toward implementation of needed improvements, or some combination thereof.
- Update the traffic mitigation fee program to fund necessary citywide circulation and mobility system improvements needed in conjunction with new development.

SIGNIFICANCE AFTER MITIGATION

Implementation of the above action would provide a mechanism for implementation of transportation system improvements as needed. Thus, impacts would be reduced to a less than significant level for Scenarios 1,3,4,5, and 6. However, as noted above, the level of service at the Johnson Drive/North Bank Drive is not projected to meet the performance standard of LOS D under Scenario 2. Therefore, the impact at that location is considered unavoidably significant for Scenario 2.

The identified roadway system improvements primarily consist of re-striping of existing roads and addition of lanes at specific intersections. In most locations, improvements would not require the acquisition of additional right-of-way and would generally have only minor secondary effects. However, at certain locations, additional right-of-way may be needed. In addition, at a limited number of locations, road extensions or widenings are anticipated. For example, under any scenario, it is anticipated that A Street would be built between Saticoy Avenue and Wells Road, Hill Road would be extended from Moon Drive to Ralston Street, North Bank Drive would be extended to Wells Road, and Thille Street would be extended to Telephone Road. In addition, it is anticipated that Victoria Avenue from U.S. 101 to the southern City limit would be widened to six lanes and Wells Road would be widened (from two to four lanes north of SR 126 and from four to six lanes south of SR 126). These types of improvements may cause temporary traffic disruption and minor land disturbances, though it is anticipated that they can be implemented without significant secondary effects.

It should again be noted that it is anticipated that implementation of the 2005 General Plan will involve a relaxation of current level of service standards. This would minimize secondary
impacts relating to the construction of roadway improvements, but would allow for higher levels of traffic congestion than would be anticipated under the current level of service standards.

$$
\begin{array}{ll}
\text { Impact TC-2 } & \begin{array}{l}
\text { Implementation of any of the } 2005 \text { General Plan land use } \\
\text { scenarios would be expected to generally enhance the use of } \\
\text { alternative transportation modes, including transit, bicycling, } \\
\text { and walking. Impacts relating to alternative transportation are } \\
\text { considered Class IV, beneficial, under any scenario. }
\end{array} \\
&
\end{array}
$$

The 2005 General Plan includes a range of policies and actions aimed at enhancement of alternative transportation mode opportunities throughout the Planning Area. These include:

Policy 4A Ensure that the transportation system is safe and easily accessible to all travelers.

Action 4.2 Develop a prioritized list of projects needed to improve safety for all travel modes and provide needed connections and multiple route options.

Action 4.3 Provide transportation services that meet the special mobility needs of the community including youth, elderly, and disabled persons.

Action 4.6 Require new development to be designed with interconnected transportation modes and routes.
Action 4.8 Implement the City's Neighborhood Traffic Management Program and update as necessary to improve livability in residential areas.
Action 4.11 Refine level of service standards to encourage use of alternative modes of transportation while meeting state and regional mandates.

Action 4.12 Design roadway improvements and facility modifications to minimize the potential for conflict between pedestrians, bicycles, and automobiles.
Policy 4B Help reduce dependence on the automobile.
Action 4.14 Provide development incentives to encourage projects that reduce automobile trips.
Action 4.15 Encourage the placement of facilities that house or serve elderly, disabled, or socioeconomically disadvantaged persons in areas with existing public transportation services and pedestrian and bicycle amenities.

Action 4.16 Install roadway, transit, and alternative transportation improvements along existing or planned multi-modal corridors, including primary bike and transit routes, and at land use intensity nodes.

Action 4.17 Prepare and periodically update a Mobility Plan that integrates a variety of travel alternatives to minimize reliance on any single mode.

Action 4.18 Promote the development and use of recreational trails as transportation routes to connect housing with services, entertainment, and employment.

Action 4.19 Adopt new development code provisions that establish vehicle trip reduction requirements for all development.

Action 4.20 Develop a transportation demand management program to shift travel behavior toward alternative modes and services.

Action 4.21 Require new development to provide pedestrian and bicycle access and facilities as appropriate, including connected paths along the shoreline and watercourses.

Action 4.22 Update the General Bikeway Plan as needed to encourage bicycle use as a viable transportation alternative to the automobile and include the bikeway plan as part of a new Mobility Plan.
Action 4.23 Upgrade and add bicycle lanes when conducting roadway maintenance as feasible.

Action 4.24 Require sidewalks wide enough to encourage walking that include ramps and other features needed to ensure access for mobility-impaired persons.

Action 4.25 Adopt new development code provisions that require the construction of sidewalks in all future projects, where appropriate.
Policy 4C Increase transit efficiency and options.
Action 4.28 Require all new development to provide for citywide improvements to transit stops that have sufficient quality and amenities, including shelters and benches, to encourage ridership.

Action 4.29 Develop incentives to encourage City employees and local employers to use transit, rideshare, walk, or bike.

Action 4.30 Work with public transit agencies to provide information to riders at transit stops, libraries, lodging, and event facilities.

Action 4.31 Work with public and private transit providers to enhance public transit service.

Action 4.32 Coordinate with public transit systems for the provision of additional routes as demand and funding allow.
Action 4.33 Work with Amtrak, Metrolink, and Union Pacific to maximize efficiency of passenger and freight rail service to the City and to integrate and coordinate passenger rail service with other transportation modes.

Action 4.34 Lobby for additional transportation funding and changes to Federal, State, and regional transportation policy that support local decision-making.

All of the General Plan land use scenarios emphasize intensification and reuse of already developed areas of the City prior to the conversion of agricultural or open space lands at the City's periphery, focusing future development in particular on the districts and corridors identified on Figures 2-3 through 2-8 in Section 2.0, Project Description. Higher intensity land use patterns are generally supportive of alternative transportation since residences, employment centers, and services are generally closer together. Research indicates that in compact neighborhoods, where destinations are nearer to one another, people are more willing to walk, bicycle and ride transit. According to one study, every time a neighborhood doubles in
compactness, the number of vehicle trips residents make is reduced by 20% to 30% (Holtzclaw, 1991).

Implementation of the policies and actions included in the 2005 General Plan is expected to improve the availability of sidewalks, bike paths, and transit over time. By making these transportation alternatives more attractive, General Plan implementation is expected to foster a gradual transition toward greater use of alternatives to the single-occupant automobile.

The districts and corridors where development is to be emphasized under any of the land use scenarios are generally located along or in close proximity to existing SCAT bus routes (see Figure 4.12-3). Similarly, all of the expansion areas included in Scenarios 2-6 are located along existing SCAT bus routes, as follows:

- North Avenue - Routes 6B, and 16
- Olivas - Route 12
- Serra - Routes 10/11
- Western Cañada Larga - Routes 6B and 16
- Poinsettia - Routes 10/11

Any of the land use scenarios would emphasize development that could be served by existing alternative transportation and it is anticipated that the type of development envisioned, in combination with implementation of proposed General Plan policies and actions, would enhance alternative transportation mode opportunities under any scenarios. Consequently, conflicts with policies relating to alternative transportation are not anticipated. As discussed in Section 4.14, Land Use and Planning, any of the land use scenarios could also be found to be consistent with relevant alternative transportation policies of the Southern California Association of Governments' Regional Comprehensive Plan and Guide.

MITIGATION MEASURES

None required.

SIGNIFICANCE AFTER MITIGATION

Implementation of any of the 2005 General Plan land use scenarios is expected to generally enhance opportunities for the use of alternative transportation.

$$
\begin{array}{ll}
\text { Impact TC-3 } & \begin{array}{l}
\text { None of the } 2005 \text { General Plan land use scenarios would } \\
\text { accommodate design features that would create traffic hazards. } \\
\\
\text { The placement of new residential development along highly } \\
\text { traveled thoroughfares may incrementally increase hazards for } \\
\text { pedestrians; however, implementation of proposed policies } \\
\text { relating to traffic calming and improving walkability would } \\
\text { reduce such impacts to a Class III, less than significant, level for } \\
\text { any of the General Plan land use scenarios. }
\end{array} .
\end{array}
$$

By emphasizing intensification and reuse of developed areas of the City, any of the General Plan land use scenarios would accommodate new mixed use and residential development along relatively highly traveled corridors. Among the corridors anticipated to accommodate substantial new mixed use development are Main Street, Thompson Boulevard, Ventura Avenue, and Telegraph Road. Other heavily traveled roads throughout the City may also accommodate new mixed use development, though likely to a lesser degree.

The placement of residences along main travel corridors is expected to generally increase pedestrian activity in these areas, with the potential for increased hazards for pedestrians. However, the 2005 General Plan includes a range of policies and actions specifically intended to enhance the walkability of neighborhoods and corridors throughout the Planning Area. These include Policy 4A and Actions 4.11, 4.12, 4.24, and 4.25 listed under Impact TC-2 as well as the following:

$$
\begin{array}{ll}
\text { Policy 3E } & \begin{array}{l}
\text { Ensure the appropriateness of urban form through modified development } \\
\text { review. }
\end{array} \\
\text { Action 3.23 } & \begin{array}{l}
\text { Develop and adopt a form-based Development Code that emphasizes } \\
\text { pedestrian orientation, integration of land uses, treatment of streetscapes } \\
\text { as community living space, and environmentally sensitive building } \\
\text { design and operation. }
\end{array}
\end{array}
$$

Implementation of proposed policies and actions, in combination with continued application of standard safety requirements and ongoing City programs described in the Setting (lowering of speed limits, re-striping of streets, neighborhood traffic management and calming) is expected to generally improve overall safety conditions for pedestrians throughout the Planning Area. Implementation of General Plan policies, actions, and ongoing City programs on any future development in any of the potential expansion areas would also minimize traffic-related hazards associated with the development of those areas. Therefore, significant traffic safety impacts are not anticipated for any of the 2005 General Plan land use scenarios.

MITIGATION MEASURES

None required.

SIGNIFICANCE AFTER MITIGATION

Impacts relating to traffic hazards would be less than significant for any of the 2005 General Plan land use scenarios.

$$
\begin{array}{ll}
\text { Impact TC-4 } & \begin{array}{l}
\text { None of the } 2005 \text { General Plan land use scenarios would affect } \\
\text { air traffic patterns. Impacts relating to air traffic are considered }
\end{array} \\
\text { Class III, less than significant, under any scenario. }
\end{array}
$$

No airports are located within the Ventura Planning Area. The nearest airports are Oxnard Airport (more than two miles from the southern boundary of the Planning Area), Santa Paula

City of Ventura

Airport (more than six miles from the eastern boundary of the Planning Area), and Camarillo Airport (approximately five miles from the southern boundary of the Planning Area). Development within the Ventura Planning Area would not affect air traffic at any of these facilities or at any other airports within the region. Impacts to air traffic would not be significant under any of the General Plan land use scenarios.

MITIGATION MEASURES

None required.

SIGNIFICANCE AFTER MITIGATION

Impacts to air traffic would be less than significant for any of the 2005 General Plan land use scenarios.

4.13 UTILITIES and SERVICE SYSTEMS

Public utilities provided by the City include water services, and wastewater conveyance and treatment facilities. These public utilities are described below. Section 4.8, Hydrology and Water Quality, addresses potential impacts to storm drain infrastructure and surface water quality.

4.13.1 Setting

a. Water. This section presents detailed information about the City of Ventura water system as of April 2002, with critical information updated as of the date of this EIR. Facilities discussed include water treatment, wells, reservoirs, pump stations, and pipelines. The City water system consists of approximately 30,000 service connections. The City receives supplemental water from Casitas Municipal Water District and United Water Conservation District. The City water system provides water to residential, commercial, industrial, petroleum recovery, irrigation, and municipal users. Raw water is used in the North Ventura Avenue area for irrigation and injected into the ground for oil recovery. All other customers receive treated potable water.

The western portion of the City obtains water predominantly from Lake Casitas and the Ventura River diversion near Foster Park north of the City. The eastern portion of the City obtains water predominantly from wells drawing on three groundwater basins. Because of an agreement between the Casitas Water District and the U.S. Bureau of Reclamation and the method of financing the Lake Casitas project, water from Lake Casitas cannot be used outside the Casitas District boundaries. Only City-generated water diverted from the Ventura River at Foster Park can be used to service the eastern area of the City.

The 1993 City Water Master Plan provides a detailed analysis of the water system and future needs. The study, which is incorporated by reference, evaluated water quality, supply and storage capacity, the distribution system, system reliability, and operational flexibility. The study identified alternative sources of supply, recommended system improvements, and provided an implementation plan for meeting future demand.

The water system consists of four treatment facilities, 30 tanks and reservoirs (active) on 20 sites, 22 pump stations, and 12 groundwater wells. One of the treatment facilities has been decommissioned. The service area is divided into 14 pressure zones. These zones have been established based on the growth pattern, topography, and physical capability of the water pipelines, storage, and pumping facilities. Figure 4.13-1 shows the location of water distribution facilities, and Table 4.13-1 lists the water treatment facilities and their capacities.

Table 4.13-1
Water Treatment Facilities

Treatment Facilities	Capacity	Remarks
Avenue Water Treatment Plant	10 MGD	In Service
Seaward Water Conditioning Plant	6 MGD	Decommissioned
Bailey Water Conditioning Facility	4 MGD	In Service
Saticoy Water Conditioning Facility	4 MGD	In Service

Source: City of Ventura Public Works Department.

Table 4.13-2 shows that City water storage facilities, consisting of tanks and reservoirs, have a total capacity of 49.68 million gallons (MG).

Table 4.13-2
Water Storage Facilities

Reservoir	Status	Zone	Capacity
Power Reservoir	Active	210	15.17 MG
Pistol Range Tank	Active	210	1.0 MG
Hall Canyon Reservoir (2)	Active	210	8.20 MG
Grant Park Reservoir (2)	Active	260	2.20 MG
Hall Canyon Tanks (2)	Active	260	0.65 MG
Bailey Reservoir (3)	Active	330	7.2 MG
Valley Vista Tank (New)	Active	400	1.0 MG
Foothill Tanks (2)	Active	430	1.50 MG
Sexton Tanks (2)	Active	430	5.00 MG
Corbett Tank	Active	430	1.50 MG
Mariano Tanks (2)	Active	460	0.65 MG
Kimball Tank	Active	530	1.00 MG
McElrea Tanks (2)	Active	598	0.25 MG
View Park Tank	Active	597	0.16 MG
Kalorama Tanks (2)	Active	605	0.30 MG
Willis Tank	Active	605	1.0 MG
Ondulando Tank	Active	860	0.40 MG
Nob Hill Tank	Active	1035	0.30 MG
Seneca Tank	Active	400	1.2 MG
Elizabeth Tank	Active	605 W	1.0 MG
Total Storage Capacity (Active)		49.68 MG	

The City's distribution system mains fall into two categories: (1) distribution mains ranging in size from 4 -inches to 12 -inches in diameter; and (2) transmission mains ranging in size from 14inches to 36 -inches in diameter. Table 4.13-3 provides a breakdown of the composition of the City's distribution system. Figure 4.13-1 shows the locations of water distribution mains.

Table 4.13-3
Distribution Mains

Material	Amount (Percent)	Size (Inches)
Cast Iron - Cement Lined	40	$4-36$
Ductile Iron	5	$4-20$
Asbestos Cement	40	$6-10$
PVC	10	8
Standard Steel	5	$12-20$

Source: City of Ventura Public Works.

Legend
BOOSTER PUMP STATION
RESERVOIR \& TANK
WELL - $\mathbf{3 6}$ inches (Transmission Mains)
Parcels
City Limits
Pressure Zones

The map is a product of the City of San Buenaventura, purposes only; its accuracy cannot be guaranteed.

Water Distribution Facilities

The City operates and maintains 21 pump stations, eight of which have been recently improved. Table 4.13-4 lists these pump stations.

Table 4.13-4 Booster Pump Stations

Booster Pump Station	Unit No.	Total Capacity (gpm)	Horsepower (Hp)	Zone Supplied
Elizabeth	\#1	1,600	75	535
	\#2	1,600	75	535
	\#3	1,600	75	535
McEIrea	\#1	400	30	588
	\#2	400	30	588
Day Road	\#1	540	40	605
	\#2	Standby only	40	Standby only
	\#3	Standby only	40	Standby only
Foothill	\#1	400	40	430A
	\#2	440	40	430A
Golf Course ${ }^{1}$	\#1	2,000	250	330
	\#2	2,000	250	330
	\#3	2,000	250	330
	\#4	2,000	200	315
Gosnell	\#2	1,500	200	Standby only - 400
Hall Canyon ${ }^{1}$	\#1	675	20	260
	\#2	750	20	260
Kimball ${ }^{1}$	\#1	1,000	40	535
	\#2	1,000	40	535
Five Points ${ }^{1}$	\#2	1,600	100	430
	\#3	2,500	200	430
	\#4	2,500	200	430
	\#5	2,500	200	430
Modella ${ }^{1}$	\#1	660	25	260
	\#2	660	25	260
	\#3	660	25	260
Nob Hill ${ }^{1}$	\#1	480	30	1035
	\#2	480	30	1035
Ondulando ${ }^{1}$	\#1	600	75	860
	\#2	600	75	860
Power ${ }^{1}$	\#1	7,000	200	210
	\#2	7,050	200	210
Seaward \& Poli	\#1	1,100	100	430
	\#2	1,100	100	430
	\#3	1,100	100	430
Mariano	\#1	590	50	466
	\#2	590	50	466
Valley Vista	\#1	480	40	400
	\#2	480	40	400
	\#3	900	75	400
View Park	\#1	500	40	605
	\#2	500	40	605
Willis	\#1	545	50	860
	\#2	545	50	860
Bailey	\#1	2,400	100	430
	\#2	2,400	100	430
	\#3	2,400	100	430
Kalorama \& Church St.	\#1	430	60	605
	\#2	430	60	605
330 Zone	\#1	2,500	300	330
	\#2	2,500	300	330
	\#3	2,500	300	330

[^10]The City's system is divided into 14 pressure zones (see Table 4.13-5 and Figure 4.13-1), which range from 210 to 1,035 feet above sea level. These zones were established based on the land use pattern, topography and the ability to optimize system pressure. The pressure zone numbers refer to the storage facility and high water elevations serving that zone. The City does not experience any low pressures.

Table 4.13-5
Pressure Zones

Zone	Area (acres)
$400 / 260 \mathrm{R}$	$2,322.0$
535	$1,695.5$
1035	109.7
210	$4,338.7$
860	402.5
$860 / 660 \mathrm{R}$	220.5
430	$5,292.2$
605 K	77.5
$605 \mathrm{M} / 466 \mathrm{R}$	97.5
260	628.0
605 V	136.0
330	$4,411.2$
$466 / 360 \mathrm{R}$	325.4
605 W	300.2
Totals	$\mathbf{2 0 , 3 5 6 . 8}$

Source: City of Ventura GIS.
The City has five different well groups with a total of 12 wells, as shown in Table 4.13-6. The Golf Course Wells, Victoria Well, and Nye Wells are used extensively. Victoria Well \#2 and Saticoy Well \#2 located at the Saticoy Water Conditioning facility are the most recent wells added to the system.

Table 4.13-6 Water Wells

Well	Location	Discharge Zone	Unit Number	Horsepower	Quantity (gpm)	(TDH) (ft)
Golf Course	Ventura Golf Course	330	\#3	75	2,304	500
			\#4	75	2,069	500
			\#5	75	2,500	500
			\#6	75	2,500	500
Victoria	800 S. Victoria	330	\#2	450	2,800	500
Saticoy	Telephone and Wells Road	430	\#2	No data Available	No data Available	500
Nye	Foster Park	210	\#1A	15	500	37
			\#2	10	550	40
			\#7	25	1,670	36
			\#8	15	1,034	33
Mound	Hill and Telegraph	330	\#1	500	2,500	500

Source: City of Ventura Public Works.

There are presently five water sources that provide water to the City water system.

- Casitas Municipal Water District
- Ventura River Surface Water Intake, Subsurface Water and Wells (Foster Park)
- Mound Groundwater Basin
- Oxnard Plain Groundwater Basin (Fox Canyon Aquifer)
- Santa Paula Groundwater Basin

Table 4.13-7 summarizes historic and projected water supply from these sources, as detailed in the 2000 City Urban Water Management Plan. The historic delivery values shown represent the capacity of available sources. The projected numbers in the table estimate available water supply levels under normal, non-drought conditions. Actual water supply levels in any given year may be significantly higher or lower than these averages.

Table 4.13-7
 Historic and Projected Water Source Supply Availability (Acre Feet)

Year	Surface Water		Groundwater				Total Water Supply
	Lake Casitas	Ventura River	Mound Basin	Oxnard Plain Basin	Santa Paula Basin	Saticoy Yard Well	
Historic							
1980	7,544	7,276	0	5,198	2,129	0	22,147
1985	9,099	5,493	2,360	6,172	46	0	23,170
1990	6,175	2,859	4,365	5,749	0	0	19,148
1995	1,622	9,042	2,169	2,603	2,594	0	18,030
1996	4,456	7,926	2,789	2,768	1,599	0	19,538
1997	7,089	7,052	213	3,452	2,025	0	19,831
1998	4,328	8,069	802	4,312	1,033	0	18,544
1999	7,061	6,419	3,955	1,621	1,669	0	20,725
2000	5,836	6,779	4,579	2,674	1,698	0	21,566
2001	6,292	5,727	4,030	905	2,006	0	18,960
2002	7,127	5,951	3,720	1,978	1,157	0	19,933
2003	4,874	6,722	5,546	2,898	316	0	20,356
Projected							
2005	8,000	6,700	4,200	4,400	3,000	0	26,300
2010	8,000	6,700	4,200	4,100	3,000	2,262	28,262
2015	8,000	6,700	4,200	4,100	3,000	2,262	28,262
2020	8,000	6,700	4,200	4,100	3,000	2,262	28,262

Source: City of Ventura Urban Water Management Plan, December 2000
City of Ventura 2004 Biennial Water Supply Report as amended, September 2004 (see Appendix F).
The City generally uses its water supplies in the following order: (1) Ventura River; (2) Lake Casitas; and (3) groundwater basins. Water is used in this order to maximize the amount of surface water that would otherwise be lost to runoff before using stored groundwater.

The City also utilizes recycled water supply from the Ventura Water Reclamation Facility to augment its municipal water supply. The tertiary-level treatment plant produces effluent that meets the requirements of Title 22 of the California Administrative Code at an average daily flow to 9.5 million gallons per day. Recycled water is currently used at two golf courses, for landscaping at the Olivas Adobe City Park, and for landscaped medians in the Ventura marina area. Treated effluent is also used for wildlife enhancement in the Santa Clara River estuary. The City recycled water system consists of five miles of pipelines and two pumping facilities. The total recycled water delivery for 1999 was 329 million gallons.

The 1992 City Reclaimed Water Master Plan, which guides future expansion of reclaimed water service, recommends pursuit of landscape irrigation opportunities adjacent to or within reasonable distances of existing reclaimed water distribution systems. A 1999 City review of the Plan noted that implementation of all of the recommended improvements was not justified at that time because the amount of available effluent supply was less than estimated in the Master Plan due to the fact that most of the reclaimed water is required to be discharged into the estuary, and that the proposed expansion of the golf courses currently using reclaimed water would utilize most or all of the estimated available supply. The analysis also found that reclaimed water fees did not generate enough revenue to allow significant expansion and/or upgrades to the existing reclaimed water system. The City Council adopted a reclaimed water policy in 1999 whereby new developments located near existing reclaimed water mains or within the defined reclaimed water focus area, as shown as part of the policy, are required to use reclaimed water in lieu of potable water for irrigation and other uses as appropriate. Each development is required to pay for upgrades to the existing reclaimed water facilities and/or new facilities required to meet their reclaimed water demands.

To enhance system reliability, the City, pursuant to regulations set by the Fox Canyon Groundwater Management Agency has established a water bank for emergency purposes. This water is reserved for significant water shortage such as drought or catastrophic events and is not available for normal use. State Water Project water became available in 1971 through an agreement with the Casitas Water District and the Department of Water Resources that is valid until 2038. However, the City has not yet received delivery of its entitlement, and it is not certain if or when facilities will be constructed to transport State Water Project water to the City.

Water consumption in the City has decreased as a result of successful water conservation efforts. Demand management programs include plumbing retrofits, mandatory conservation ordinances affecting new and existing homes and businesses, water system optimization, and higher cost of water through increasing block rates. Existing and proposed conservation programs are intended to reduce per capita water use through more efficient water consumption by all users.

Table 4.13-8 presents historic and projected water production in the service area. The City does not currently experience water supply shortages and, with the upcoming addition of the Saticoy Yard Well, does not anticipate the need for additional supplies within a 20-year horizon.

Table 4.13-8
Historic and Projected Water Production (Acre Feet)

Year	Estimated Population Served	Per Capita Use	Treated Water Production	Raw Water Production	Total Water Production
Historic					
1980	73,774	0.236	17,381	4,766	22,147
1990	94,856	0.177	16,831	2,317	19,148
1995	99,668	0.165	16,428	1,602	18,030
1996	100,482	0.180	18,038	1,500	19,538
1997	101,096	0.178	18,002	1,829	19,831
1998	101,610	0.165	16,775	1,769	18,544
1999	102,224	0.192	19,658	1,067	20,725
2000	103,238	0.198	20,437	1,129	21,566
2001	104,153	0.173	18,071	889	18,960
2002	105,267	0.180	18,965	968	19,933
2003	106,782	0.183	19,510	846	20,356
Projected					
2005	109,465	0.179	19,594	1,000	20,594
2010	115,774	0.179	20,724	1,000	21,724
2015	122,447	0.179	21,918	1,000	22,918
2020	129,504	0.179	23,181	1,000	24,181

Sources: City of Ventura Urban Water Management Plan, Dec. 2000
City of Ventura 2004 Biennial Water Supply Report as amended, September 2004 (see Appendix F).
(1) Per capita use excludes raw water and oil use.

Water Quality. The following terms are used to describe water quality:

- Maximum Contaminant Level (MCL): The highest level of a contaminant allowed in drinking water. Primary MCLs are set as close to the Federal Public Health Goals or State Maximum Contaminant Level Goals as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.
- Primary Drinking Water Standard: MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.
- Maximum Contaminant Level Goal: The level of contaminant in drinking water below which there is no known or expected risk to the health; set by EPA.
- Public Health Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health; set by the California EPA.
- Regulatory Action Level (RAL): The concentration of a contaminant, which, if exceeded, triggers treatment or other requirements that a water system must follow.

In late 2002, the City completed changes to its water supply disinfection program for the use of chloramines for disinfection rather than chlorine primarily because the Casitas District also switched to chloramine disinfection and the two methods can't be utilized where the water would be commingled. This process was selected because chloramines have less odor and taste. The City owns and maintains a full scale, state certified laboratory where water quality is monitored. All treatment plants are run by State certified operators who consistently monitor water quality constituents.

In order to ensure tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) and the California Department of Health Services prescribe regulations that limit the amount of certain contaminants allowed in water provided by public water systems. The City of Ventura treats its water according to the Department's regulations. Table 4.13-9 shows 2001 water quality test results for Ventura. The system meets all primary drinking water standards including state and federal water quality requirements. However, as shown in Table 4.13-9, the average total dissolved solid concentration from groundwater sources was slightly higher than the Maximum Contaminant Level (MCL) for secondary standards.

The Department of Heath Services also conducts an annual inspection of the public water systems. Table 4.13-10 shows water quality testing results for the distribution system and wells. An inspection report prepared in 2001 indicated a history of high nitrate levels in the following Eastside well: standby Victoria Well No. 1 ($44.3 \mathrm{mg} / \mathrm{l}$). Monthly sampling is required at this well to monitor nitrate. The City obtained additional samples at Victoria Well No. 1 with nitrate results around 10 ppm in June 2001, and 8.1 ppm in January 2002. The MCL is 10 ppm . Since this time, levels have stayed below the MCL but if levels increase above the MCL, the City could make adjustments by blending or wellhead treatment to meet the MCL as mandated by the Department of Heath Services. Mound Well No. 1 has experienced increased TDS levels of late, but nothing that would make it infeasible for use.
b. Wastewater. This section presents detailed information from evaluation of the City of Ventura sewer system as of April 2002, with critical information updated as of the date of this EIR. Sewer system components discussed are treatment facilities, lift stations, pipelines and new facilities and services. The majority of residents receive sewer service directly from the City; however, three separate sanitary sewer agencies provide service to specific areas: Montalvo Municipal Improvement District, Saticoy Sanitary Sewer District, and Ojai Valley Sanitary District. Each agency has its own treatment facility. There are a few pockets in the City currently served by individual septic tanks, which typically have been annexed to the City since 1979 and have been slowly connecting to the sewer system as failures of private septic tank systems occur.

The Ventura Water Reclamation Facility, located in the harbor area, treats most of the wastewater for the City. This plant was originally designed with a capacity of 14 mgd and provides tertiary treatment, effluent filtration and chlorination/de-chlorination. The effluent then discharges into the Santa Clara River Estuary. Solids handling consists of thickening, anaerobic digestion and

Table 4.13-9
Water Quality Testing, 2001

Constituent	Units	Maximum Level MCL	Ventura River		Groundwater		CMWD	
			Average	Range	Average	Range	Average	Range
Primary Standards (PDWD)								
Water Clarity Turbidity	NTU	5	0.24	0.09-0.24	0.4	0.1-0.4	0.13	0.01-0.13
Radioactive Contaminants Gross Alpha Gross Beta Radium 226 \& 228 Uranium	$\begin{aligned} & \mathrm{pCi} / \mathrm{l} \\ & \mathrm{pCi} / \mathrm{l} \\ & \mathrm{pCi} / \mathrm{l} \\ & \mathrm{pCi} / \mathrm{l} \end{aligned}$	$\begin{gathered} 15 \\ 50 \\ 5 \\ 20 \end{gathered}$	$\begin{gathered} 3.8 \\ 4 \\ 0.63 \\ 2.4 \end{gathered}$	$\begin{gathered} 2.1-5.8 \\ \text { ND-8.0 } \\ \text { ND-1.7 } \\ 1.8-3.4 \end{gathered}$	$\begin{gathered} 6.7 \\ 8 \\ 1.1 \\ 5.1 \end{gathered}$	$\begin{gathered} 2.7-12.1 \\ \text { ND-15.8 } \\ \text { ND-1.7 } \\ 2.8-8.5 \end{gathered}$	$\begin{gathered} 2 \\ \text { NA } \\ \text { NA } \\ \text { NA } \end{gathered}$	$\begin{gathered} 0.9-2 \\ \text { NA } \\ \text { NA } \\ \text { NA } \end{gathered}$
Inorganic Contaminants Aluminum Arsenic Barium Fluoride Nitrate (as N)	ppb ppb ppm ppm ppm	$\begin{gathered} 1000 \\ 50 \\ 1 \\ 2 \\ 10 \end{gathered}$	$\begin{aligned} & \text { ND } \\ & \text { ND } \\ & \text { ND } \\ & 0.5 \\ & 0.8 \end{aligned}$	$\begin{gathered} \text { ND } \\ \text { ND } \\ \text { ND } \\ 0.4-0.6 \\ \text { ND-1.3 } \end{gathered}$	$\begin{aligned} & 89 \\ & \text { ND } \\ & \text { ND } \\ & 0.5 \\ & 0.7 \end{aligned}$	$\begin{gathered} 63-114 \\ \text { ND } \\ \text { ND } \\ 0.5-0.8 \\ \text { ND-2.2 } \end{gathered}$	$\begin{gathered} \text { ND } \\ 2 \\ 0.1 \\ 0.2 \\ 0.4 \end{gathered}$	$\begin{gathered} \text { ND } \\ 2 \\ 0.1 \\ 0.2 \\ \text { ND-0.7 } \end{gathered}$

Secondary Standards

Aesthetic Standards								
Color	color	15	ND	ND	4.1	ND-5	2	1-2
Odor	Threshold	3	ND	ND	ND	ND-2	2	1-2
Chloride	ppm	500	28	24-36	67	27-97	11	11-12
Corrosivity	ppm	Non corrosive	0.23	-0.21-0.47	0.37	0.13-0.71	0.3	0.3
Iron	ppb	300	ND	ND	ND	ND-200	ND	ND
Total dissolved solids	ppb	1000	498	460-558	1133	994-1392	370	370
Specific conductance	umhos	1600	756	650-800	1560	$\begin{aligned} & 1376- \\ & 1800 \end{aligned}$	524	500-560
Sulfate	ppm	500	189	171-197	546	192-710	132	132
Additional Constituents								
pH	units	6.5-8.5	7.7	7.5-7.9	7.5	7.1-8.1	NA	NA
Hardness	ppm	None	334	263-517	587	531-711	225	225
Calcium	ppm	None	81	64-96	159	146-182	NA	NA
Magnesium	ppm	None	27	24-29	46	39-62	NA	NA
Sodium	ppm	None	34	27-38	130	97-166	23	23
Phosphate	ppm	None	0.1	0.1-0.21	0.1	0.07-0.15	NA	NA
Potassium	ppm	None	2.5	2.3-2.9	4.8	4.1-5.4	NA	NA
Total Alkalinity	ppm	None	160	141-187	235	151-289	NA	NA

pCi/l = pico Curies per liter; ppb = parts per billion ; ppm = parts per million

Table 4.13-10
Distribution System and Well Testing, 2001

ppb = parts per billion
ppm = parts per million
ND: Not Detected
NA: Data Not Available
dewatering by filter presses prior to land application. Plant flow for 2001 averaged 9.3 mgd and in 2004 averaged just under 9.0 mgd .

A minimum of 5.6 mgd of the effluent is discharged to the Santa Clara Estuary as required by the existing Regional Water Quality Control Broad (RWQCB) Permit. The remaining effluent is either transferred to recycling ponds, where a portion is delivered as reclaimed water, or lost through percolation or evaporation.

Table 4.13-11 shows monthly average wastewater flows for 2001. Peak monthly flow in 2001 occurred in March (10.8 mgd). Peak flow in 2000 occurred in June (12.7 mgd) and in 1999 in September (9.4 mgd).

The reclamation facility operates under a RWQCB permit for production of reclaimed water (issued 1987). In 2002, the RWQCB initiated a review of the City's effluent permit. This review and a new permit are pending.

The Ojai Valley Sanitary District Treatment Plant was constructed in 1963 with a capacity of 1.4 million gallons per day. It was expanded to the current capacity of 3.0 mgd in 1965. A major rehabilitation and upgrade project financed by an EPA Clean Water Construction Grant was carried out in 1982 to bring effluent into compliance with requirements established by the Los

Table 4.13-11
Wastewater Flows, 2001

Month	Average Flow (mgd)
January	9.28
February	9.59
March	$\mathbf{1 0 . 7 8}$
April	9.61
May	9.15
June	9.14
July	9.09
August	9.13
September	9.06
October	8.89
November	9.08
December	8.85
Average	9.304
Peak	$\mathbf{1 0 . 7 8}$
Minimum	8.85
Total	$\mathbf{1 1 1 . 6 5}$

Source: Ventura Water Reclamation Facility Annual Report 2001

Angeles Regional Water Quality Control Board. Reduction of ammonia-nitrogen was the most important of these requirements. Current flows as of 2004 averaged about 2.0 mgd and this treated effluent is discharged to the Ventura River.

The Montalvo Municipal Improvement District Treatment Plant is a secondary treatment plant, with a capacity of 0.36 mgd , and serves the Montalvo Community. The Saticoy Sanitary District Treatment Plant has a capacity of 2.2 million gallons per day and is currently undergoing expansion and upgrading to tertiary treatment.

Table 4.13-12 lists wastewater generation factors applied to new development in Ventura.
The City collection system includes seven major tributary, or planning, areas (see Figure 4.13-2) with a total service area of 31,309 acres: Ventura Avenue; Vista Del Mar; Woolsey Trunk; Pierpont Bay; Olivas-Bristol Trunk; Wells Road Valley; and, Santa Clara River area. The downtown area has sewer pipes that were installed as early as 1905. Some of the most recently installed pipes comprise the southern portion of the sewer system in the Ventura Harbor area.

The City also provides wastewater treatment for tributary collections systems operated by others. These include the North Coast Communities (Ventura County Service Area 29), where the system is owned by the County and operated by the Ventura County Regional Sanitation District, and McGrath State Beach, owned and operated by the State.

Table 4.13-12
Wastewater Generation Factors

Land Use	Average Flow
Residential	$0.00013 \mathrm{cfs} /$ capita
Industrial	$0.0081 \mathrm{cfs} /$ acre
Commercial	$0.0061 \mathrm{cfs} /$ acre
Public Structures	$0.0061 \mathrm{cfs} /$ acre
Recreation	$0.00031 \mathrm{cfs} /$ acre
Hospital	$0.039 \mathrm{cfs} / 100$ beds
School	$0.031 \mathrm{cfs} / 1,000$ students
College	$0.031 \mathrm{cfs} / 1,000$ students

Source: Ventura Standards and Design Manual, 2000.
The City collection system consists of nearly 60 miles of main collector sewer pipeline with about 450 miles of total gravity sewer pipe, 3 miles of force mains, 8,700 manholes, and 14 lift stations, two of which have been abandoned indefinitely. Sewer system lines range in diameter from 4 to 48 inches. Figure 4.13-2 shows the locations of sewage collection and treatment Facilities. Table 4.13-13 summarizes the lift station capacities.

Table 4.13-13
Lift Station Capacities
(City Facilities Only)

Facility Name	Capacity (gpm)
Beachmont	200
Cabrillo Village	Data not available - Private Facility
Harper Drive	160
Mammoth Street	Abandoned indefinitely
Marina	275
North Bank	580
Olivas	2,400
Pierpont	4,200
Seaside	200
Ventura Keys	300
Spinnaker	385
State Beach	271
Topaz	965
Wells Road	

Source: City of Ventura Public Works Department.
The Pierpont Lift Station is in the process of being upgraded to improve reliability performance, and various sewer replacements are being undertaken as part of the City's current Capital

${ }^{N}$

Legend

Existing Sewer Facilities

\triangle LIFT STATION
凹 TREATMENT PLANT
\triangle ABANDONED LIFT STATION

Major Sewer Trunk Mains

6－10 inches
12－18 inches
21－30 inches
$\checkmark 36$ inches or higher
R゙ロ Sewer Distribution MainsPlanning AreasCity Limits
Parcels

Improvement Program. One such project is the North Bank replacement, which is scheduled to be in operation by the end of 2003 and when completed will eliminate the Topaz, Harper and Wells Road Lift Stations as well as the old North Bank Lift Station.

4.9.2 Impact Analysis

a. Methodology and Significance Thresholds. The following thresholds have been used to determine the impacts to water provision, wastewater treatment, and solid waste disposal.

The 2005 General Plan would result in potentially significant impacts if growth accommodated by the Plan would result in substantial adverse physical impacts associated with provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios or other performance objectives.

Water. The 2005 General Plan would have a significant effect on water supplies if demand associated with projected growth exceeds the available supply, thereby causing water shortages during average or peak demand periods. Impacts related to the proposed 2005 General Plan would be considered substantial if growth under the Plan would:

- Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted);
- Require or result in the construction of new water facilities or expansion of existing facilities, the construction of which could cause significant environmental effects; or
- Fail to have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed.

Wastewater. Impacts to the sewer system are considered significant if sewage generated by growth that could be accommodated under the 2005 General Plan would exceed the existing or planned capacity of the sewage collection or treatment system, or require extension of a trunk line with capacity to serve new development. Impacts related to the 2005 General Plan would be considered substantial if growth accommodated under the Plan would:

- Require or result in the construction of new wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects; or
- Result in a determination that the wastewater treatment provider (the City or the Ojai Valley Sanitary District) that it does not have adequate capacity to serve projected demand in addition to existing commitments.
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the six 2005 General Plan land use scenarios. A discussion of impacts for each scenario follows.

> Impact U-1 Development accommodated under any of the 2005 General Plan land use scenarios would increase water demand, with net increases in demand ranging from about 2,700 acre-feet per year (AFY) to 5,900 AFY. The total estimated water available from Lake Casitas, the Ventura River diversion, and groundwater basins of approximately 28,300 acre-feet per year is sufficient to meet these projected demand increases. Therefore, water supply impacts are considered Class III, less than significant, for all six scenarios .

Agriculture Water Credit

There are areas within the City's SOI, such as the McGrath property, that are currently in agricultural use. Although not being served by the City water system, these areas utilize water from private wells drawing from the same groundwater basin as the City and when taken out of agricultural production will increase the available supply that can be extracted from existing City wells or from new wells installed by the City. Although water use will vary depending on such elements as crop type and soil characteristics, the average agricultural irrigation use is assumed to be 2.5 feet per year (30 inches).

The six land use scenarios would accommodate the conversion of varying amounts of agricultural land to urban uses, thus creating an additional source of groundwater for the overall scenario development. This includes both agricultural acreage within the current SOI that is already designated for non-agricultural uses and, for Scenarios 2-6, agricultural lands within the expansion areas under consideration for future conversion. The total acreage, location, and water credit for these agricultural areas for conversion to urban development are discussed below.

Scenario 1 - Intensification/Reuse Only

Under Scenario 1, there are no expansion areas that would be taken out of agriculture; therefore, no credits for additional groundwater sources available for new development in these areas. However, as discussed previously, agricultural lands within the existing SOI that are already designated for non-agricultural uses could be converted under this scenario. Using the agricultural irrigation factor of 2.5 feet per year, the total amount of water credit is 1,278 acrefeet per year (AFY) (see Table 4.13-14). This amount is credited against the total projected water demand calculation for intensification/reuse that could occur under every scenario.

Projected water demands for the various land uses and cumulative totals for Scenario 1 are shown in Table 4.13-15. As indicated in the table, growth accommodated under this Scenario would increase current water demand by 5.18 million gallons per day (mgd) or about 5,806 acre-feet per year (AFY).

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Water Supply and Delivery (Impact U-1)	Net demand increase of 4,528 AFY, resulting in overall demand of approximately 26,028 AFY in 2025. This is within projected supply. System upgrades needed in older parts of the City to improve pressure and fire flow, but can be achieved with significant secondary impacts. Impacts are Class III, less than significant.	Net demand increase of 2,710 AFY, resulting in overall demand of approximately 24,210 AFY in 2025. This is within projected supply. Minor infrastructure extensions needed for expansion areas, but water mains are adjacent; new reservoir needed for North Avenue area. Impacts are Class III, less than significant.	Net demand increase of 3,877 AFY, resulting in overall demand of approximately 25,377 AFY in 2025. This is within projected supply. Minor infrastructure extensions needed for expansion areas, but water mains are adjacent; new reservoir needed for North Avenue area. Impacts are Class III, less than significant.	Net demand increase of 5,035 AFY, resulting in overall demand of approximately 26,535 AFY in 2025. This is within projected supply. Minor infrastructure extensions needed for expansion areas, but water mains are adjacent; new reservoir needed for North Avenue area. Impacts are Class III, less than significant.	Net demand increase of 5,880 AFY, resulting in overall demand of approximately 27,380 AFY in 2025. This is within projected supply. Minor infrastructure extensions needed for expansion areas, but water mains are adjacent; new reservoir needed for North Avenue and Western Cañada Larga areas and possible new well for Western Cañada Larga. Impacts are Class III, less than significant.	Net demand increase of $5,150 \mathrm{AFY}$, resulting in overall demand of approximately 26,650 AFY in 2025. This is within projected supply. Minor infrastructure extensions needed for expansion areas, but water mains are adjacent; new reservoir needed for North Avenue area. Impacts are Class III, less than significant.
Wastewater Conveyance and Treatment (Impact U-2)	Projected increase in flow of 2.88 million gallons per day (mgd) at VWRF and 0.18 mgd at OVSD plant. Increases are within the capacities of both plants. Sewer line upgrades needed in many older neighborhoods, but can be achieved without significant secondary impacts. Impacts are Class III, less than significant.	Projected increase in flow of 3.72 mgd at VWRF and 0.28 mgd at OVSD plant. Increases are within the capacities of both plants. Sewer line upgrades needed in many older neighborhoods, but can be achieved without significant secondary impacts. Sewer mains adequate for expansion areas. Impacts are Class III, less than significant.	Projected increase in flow of 3.67 mgd at VWRF and 0.33 mgd at OVSD plant. Increases are within the capacities of both plants. Sewer line upgrades needed in many older neighborhoods, but can be achieved without significant secondary impacts. Sewer mains adequate for expansion areas. Impacts are Class III, less than significant.	Projected increase in flow of 3.67 mgd at VWRF and 0.33 mgd at OVSD plant. Increases are within the capacities of both plants. Sewer line upgrades needed in many older neighborhoods, but can be achieved without significant secondary impacts. Sewer mains adequate for expansion areas. Impacts are Class III, less than significant.	Projected increase in flow of 2.98 mgd at VWRF and 1.01 mgd at OVSD plant. Increase at OVSD plant exceeds capacity. Sewer line upgrades needed in many older neighborhoods, but can be achieved without significant secondary impacts. Sewer mains adequate for expansion areas. Impacts are Class II, significant but mitigable.	Projected increase in flow of 3.67 mgd at VWRF and 0.33 mgd at OVSD plant. Increases are within the capacities of both plants. Sewer line upgrades needed in many older neighborhoods. Possible upgrade of SR 126 sewer main needed for Poinsettia area, but can be achieved without significant secondary impacts. Impacts are Class III, less than significant.

Table 4.13-14 Agriculture Water Credit (Lands with Non-Agricultural Designations)

	Acres	Water Demand (acre-feet/ year/acre)	Water Credit (AFY)			
Districts						
Saticoy	280	2.5	700			
Arundell	66	2.5	188			
Auto Center		2.5	165			
SOI/Other Infill	25					
101/126 Agriculture	25	2.5	63			
Pending Developments	40					
West Ventura	$\mathbf{5 1 1}$	2.5	63			
Telephone/Kimball		100				
Total						$\mathbf{1 , 2 7 8}$

Current water production has totaled approximately 19,000 to 21,500 AFY over the past few years, with the range due to seasonal climate and rainfall variations. Using the higher value to be conservative, adding the projected increase of 5,806 AFY to the current water production ($21,500 \mathrm{AFY}$), and subtracting the 1,278 AFY of agricultural credit results in overall demand of approximately 26,028 AFY in 2025. This represents a net increase of 4,528 AFY.

Projected overall 2025 demand is lower than the long-term projected supply of 28,262 AFY from the City's 2004 Biennial Water Supply Report and the City's 2000 Urban Water Management Plan projected demand of 27,624 AFY for the year 2020 (five years earlier). Therefore, water supply impacts associated with this scenario are not considered significant. Additional wastewater reclamation and/or water conservation efforts could further reduce this demand.

Connection fees would be paid by all new developments, and these would cover each project's "buy-in" to existing City supply, storage and transmission/distribution systems. In addition, developers would be responsible for constructing all local on and off-site distribution improvements necessary to bring the particular development up to current standards. In some areas of the City, particularly older neighborhoods such as Downtown and the Ventura Avenue corridor where substantial intensification is anticipated may require upgrades to older water distribution infrastructure to improve pressure and fire flow. In the upper Ventura Avenue area, providing water service would be predicated on annexation. Distribution system looping would be needed in the upper reaches. In the College area, fire flow will likely be weak in Loma Vista. In the Harbor area, fire flow could require improvements and the Seaward Drive area may need strengthening. Replacement of existing lines, which are located underneath City streets, would involve temporary disruption of traffic as well as temporary noise and air quality impacts. However, such impacts could be reduced to a less than significant level through implementation of standard traffic, noise, and dust controls.

Table 4.13-15
Projected Water Demand Intensification / Reuse Only (Scenario 1)

	Residential		Non-Residential Development						Grand Totals
	Number of Units	Water (AFY)	Retail (sf)	Office (sf)	Industrial (sf)	Hotel (sf)	Total (sf)	$\begin{aligned} & \text { Water } \\ & \text { (AFY) } \end{aligned}$	Water (AFY)
Districts									
Upper North Avenue	100	50	10,000	50,000	150,000		210,000	70	120
North Avenue	50	25	10,000	50,000	250,000		310,000	105	130
Downtown	1,600	807	100,000	200,000		150,000	450,000	168	975
Pacific View Mall	25	13	25,000	0			25,000	7	20
Harbor	300	151	66,000			150,000	216,000	54	205
Arundell	200	101	25,000	300,000	1,000,000		1,325,000	444	545
North Bank	50	25	300,000	50,000	300,000		650,000	204	229
Montalvo	50	25		50,000	25,000		75,000	23	48
Saticoy	50	25	0		25,000		25,000	9	34
Subtotals (Districts)	2,425	1,223	536,000	700,000	1,750,000	300,000	3,286,000	1,084	2,307
Corridors									
Ventura Avenue	800	404	40,000	100,000	50,000		190,000	57	460
Main Street	100	50	15,000	40,000			55,000	15	66
Thompson Boulevard	300	151	15,000	40,000			55,000	15	167
Loma Vista Road	25	13	15,000	40,000			55,000	15	28
Telegraph Road	250	126	15,000	40,000			55,000	15	142
Victoria Avenue	50	25	15,000	40,000			55,000	15	41
Johnson Drive	150	76	50,000	20,000			70,000	20	95
Wells Road	50	25	15,000	20,000			35,000	10	35
Subtotals (Corridors)	1,725	870	180,000	340,000	50,000	0	570,000	163	1,033
SOI/Other Infill									
101/126 Agriculture	200	101					0	0	101
Wells/Saticoy	1,050	530					0	0	530
Pierpont	100	50	30,000				30,000	8	59
Other Neighborhood Centers	100	50						0	50
Second Units	300	151						0	151
Underutilized	250	126						0	126
Vacant	450	227	165,000	50,000			215,000	60	287
Subtotals (Other Infill)	2,450	1,236	195,000	50,000	0	0	245,000	69	1,304
Totals (Intensification/Reuse)	6,600	3,329	911,000	1,090,000	1,800,000	300,000	4,101,000	1,316	4,645
Planned and Pending Developments									
Downtown	50	25	1,072			150,000	151,072	84	110
Ventura Avenue/Westside	238	120	7,086		27,000		34,086	12	132
Midtown	34	17	13,751				13,751	4	21
College (Telegraph/Loma Vista)	4	2	2,718	8,849			11,567	3	5
Telephone Road Corridor	256	129		54,785			54,785	15	144
Montalvo/Victoria	296	149		4,300			4,300	1	151
Saticoy/East End	840	424	7,950	5,600			13,550	4	427
Arundell		0	41,640	42,614	18,080		102,334	30	30
Olivas		0	7,160	7,066	390,053		404,279	142	142
Subtotals (Planned/Pending	1,718	867	81,377	123,214	435,133	150,000	789,724	295	1,162
Totals (Intensification + Expansion + Pending)	8,318	4,196	992,377	1,213,214	2,235,133	450,000	4,890,724	1,611	5,806

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Projected water demands for the various land uses and cumulative totals for Scenario 2 are shown in Table 4.13-16. As indicated in the table, growth accommodated under this scenario would increase current water demand by 6.79 mgd , or about 7,611 AFY.

In addition to the 1,278 AFY of agricultural water credit common to all scenarios, Scenario 2 would accommodate the conversion of 1,449 acres of agricultural areas in the North Avenue, Olivas and Serra expansion areas. Using the same assumptions for agricultural water use described under Scenario 1, these areas would generate an agricultural water credit of 3,623 AFY, bringing the total agricultural water use credit to 4,901 AFY. Therefore, it is assumed that any new water requirement for development in this scenario can be reduced or adjusted down by this amount to determine the net demand required from new water sources.

Adding the projected increase of 7,611 AFY to current water production (21,500 AFY), and subtracting the total water credit of 4,901 AFY for current agricultural use results in overall demand of approximately 24,210 AFY in 2025. This represents a net increase of 2,710 AFY.

Projected overall demand in 2025 is lower than the long-term projected supply of 28,262 AFY from the City's 2004 Biennial Water Supply Report and the City's 2000 Urban Water Management Plan projected demand of 27,624 AFY for the year 2020 (five years earlier). Thus, water supply impacts associated with this scenario are not considered significant. As with Scenario 1, additional wastewater reclamation and/or water conservation efforts could further reduce this demand.

As noted in the Scenario 1 discussion, connection fees would be charged to new development to cover City expenses for upgrade and maintenance of storage and transmission/distribution systems. Impacts relating to replacement of water distribution infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of any of the three expansion areas included in this scenario would require extension of water distribution infrastructure. Development of the North Avenue expansion area would require extension of the Valley Vista Reservoir system and an additional reservoir within the development. The Olivas area would require an extension of the 210 Zone and would offer the opportunity to loop systems across U.S. 101, thus adding reliability to the Harbor area. The Serra area would require new east-west pipelines that would strengthen the water systems on either side of this area. As described above, existing water mains are adjacent to all three potential expansion areas and it is anticipated that needed extensions could be achieved without disruption of service or significant secondary environmental impacts.

Table 4.13-16
Projected Water Demand Intensification/Reuse + North Avenue + Olivas + Serra (Scenario 2)

	Residential		Non-Residential Development						Grand Totals
	Number of Units	$\begin{aligned} & \text { Water } \\ & \text { (AFY) } \end{aligned}$	$\begin{gathered} \hline \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	Office (sf)	$\begin{array}{\|c\|} \hline \text { Industrial } \\ \text { (sf) } \end{array}$	$\begin{gathered} \text { Hotel } \\ \text { (sf) } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Water } \\ & \text { (AFY) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Water } \\ & \text { (AFY) } \\ & \hline \end{aligned}$

Districts

	100	50	10,000	50,000	200,000		260,000	87	138
Upper North Avenue	50	25	10,000	50,000	400,000		460,000	158	183
North Avenue	1,600	807	100,000	200,000		150,000	450,000	168	
Downtown	25	13	25,000		0			25,000	7
Pacific View Mall	300	151	66,000			150,000	216,000	54	20
Harbor	200	101	25,000	300,000	$1,200,000$		$1,525,000$	515	205
Arundell	50	25	300,000	50,000	300,000		650,000	204	616
North Bank	50	25		50,000	50,000		100,000	32	229
Montalvo	50	25	0		75,000		75,000	26	
Saticoy	$\mathbf{2 , 4 2 5}$	$\mathbf{1 , 2 2 3}$	$\mathbf{5 3 6 , 0 0 0}$	$\mathbf{7 0 0 , 0 0 0}$	$\mathbf{2 , 2 2 5 , 0 0 0}$	$\mathbf{3 0 0 , 0 0 0}$	$\mathbf{3 , 7 6 1 , 0 0 0}$	$\mathbf{1 , 2 5 1}$	
Subtotals (Districts)	$\mathbf{2 , 4 7 5}$								

Corridors

Ventura Avenue	800	404	40,000	100,000	100,000		240,000	75	478
Main Street	100	50	15,000	40,000			55,000	15	66
Thompson Boulevard	300	151	15,000	40,000			55,000	15	167
Loma Vista Road	25	13	15,000	40,000			55,000	15	28
Telegraph Road	250	126	15,000	40,000			55,000	15	142
Victoria Avenue	50	25	15,000	40,000			55,000	15	41
Johnson Drive	150	76	50,000	20,000			70,000	20	95
Wells Road	50	25	15,000	20,000			35,000	10	35
Subtotals (Corridors)	1,725	870	180,000	340,000	100,000	0	620,000	181	1,051

101/126 Agriculture	200	101					0	0	101
Wells/Saticoy	1,050	530					0	0	530
Pierpont	100	50	30,000				30,000	8	59
Other Neighborhood Centers	100	50						0	50
Second Units	300	151						0	151
Underutilized	250	126						0	126
Vacant	450	227	165,000	50,000			215,000	60	287
Subtotals (Other Infill)	2,450	1,236	195,000	50,000	0	0	245,000	69	1,304
Totals (Intensification/Reuse)	6,600	3,329	911,000	1,090,000	2,325,000	300,000	4,626,000	1,501	4,830

Expansion Areas									
North Avenue	176	89	18,295				18,295	5	94
Olivas	1,484	749	109,771	439,085			548,856	154	902
Serra	1,042	526	91,476	256,133			347,609	97	623
Canada Larga		0						0	0
Poinsettia		0						0	0
Subtotals (Expansion)	2,702	1,363	219,542	695,218	0	0	914,760	256	1,619

Downtown	50	25	1,072			150,000	151,072	84	110
Ventura Avenue/Westside	238	120	7,086		27,000		34,086	12	132
Midtown	34	17	13,751				13,751	4	21
College (Telegraph/Loma Vista)	4	2	2,718	8,849			11,567	3	5
Telephone Road Corridor	256	129		54,785			54,785	15	144
Montalvo/Victoria	296	149		4,300			4,300	1	151
Saticoy/East End	840	424	7,950	5,600			13,550	4	427
Arundell		0	41,640	42,614	18,080		102,334	30	30
Olivas		0	7,160	7,066	390,053		404,279	142	142
Subtotals (Planned/Pending)	1,718	867	81,377	123,214	435,133	150,000	789,724	295	1,162
Totals (Intensification + Expansion + Pending)	11,020	5,558	1,211,919	1,908,432	2,760,133	450,000	6,330,484	2,053	7,611

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Projected water demands for the various land uses and cumulative totals for Scenario 3 are shown in Table 4.13-17. As indicated in the table, growth accommodated under this scenario would increase current water demand by 6.80 mgd or about 7,618 AFY, almost exactly the same as Scenario 2 and 1,812 AFY more than Scenario 1.

Scenario 3 would accommodate the conversion of the North Avenue and Olivas areas from agriculture to urban development. Using the same rationale and assumptions as described above under the previous scenarios, the combined 985 acres of agricultural land that could be converted in these two expansion areas equates to an agricultural demand of 2,463 AFY. Additionally, there would be the 1,278 AFY agricultural water credit common to all scenarios, as discussed above. Therefore, it is assumed that any new water demand requirement can be reduced or adjusted down by the sum of these two or 3,741 AFY to determine the net demand required from new water sources.

Adding the projected increase of $7,618 \mathrm{AFY}$ to the current water production (21,500 AFY), and subtracting the total water credit of 3,741 AFY for current agricultural use results in overall demand of approximately 25,377 AFY in 2025. This represents a net increase of 3,877 AFY.

Projected overall 2025 demand is lower than the long-term projected supply of 28,262 AFY from the City's 2004 Biennial Water Supply Report and the City's 2000 Urban Water Management Plan projected demand of 27,624 AFY for the year 2020 (five years earlier). Thus, water supply impacts are not considered significant. As with the other scenarios, additional wastewater reclamation and/or water conservation efforts could further reduce this demand.

As noted in the Scenario 1 discussion, connection fees would be charged to new development to cover City expenses for upgrade and maintenance of storage and transmission/distribution systems. Impacts relating to replacement of water distribution infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of either the North Avenue expansion area or the Olivas expansion area would require extension of water distribution infrastructure, as described under Scenario 2. As discussed previously, existing water mains are adjacent to both potential expansion areas and it is anticipated that needed extensions could be achieved without disruption of service or significant secondary environmental impacts.

Table 4.13-17
Projected Water Demand
Intensification/Reuse + North Avenue + Olivas (Scenario 3)

	Residential		Non-Residential Development						Grand Totals
	$\begin{gathered} \text { Number of } \\ \text { Units } \\ \hline \end{gathered}$	Water (AFY)	$\begin{gathered} \hline \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	Office (sf)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Industrial } \\ \text { (sf) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Hotel } \\ \text { (sf) } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	Water (AFY)	Water (AFY)
Districts									
Upper North Avenue	100	50	10,000	50,000	200,000		260,000	87	138
North Avenue	50	25	10,000	50,000	400,000		460,000	158	183
Downtown	1,600	807	100,000	200,000		150,000	450,000	168	975
Pacific View Mall	25	13	25,000	0			25,000	7	20
Harbor	300	151	66,000			150,000	216,000	54	205
Arundell	200	101	25,000	300,000	1,200,000		1,525,000	515	616
North Bank	50	25	300,000	50,000	300,000		650,000	204	229
Montalvo	50	25		50,000	50,000		100,000	32	57
Saticoy	50	25	0		75,000		75,000	26	52
Subtotals (Districts)	2,425	1,223	536,000	700,000	2,225,000	300,000	3,761,000	1,251	2,475
Corridors									
Ventura Avenue	800	404	40,000	100,000	100,000		240,000	75	478
Main Street	100	50	15,000	40,000			55,000	15	66
Thompson Boulevard	300	151	15,000	40,000			55,000	15	167
Loma Vista Road	25	13	15,000	40,000			55,000	15	28
Telegraph Road	250	126	15,000	40,000			55,000	15	142
Victoria Avenue	50	25	15,000	40,000			55,000	15	41
Johnson Drive	150	76	50,000	20,000			70,000	20	95
Wells Road	50	25	15,000	20,000			35,000	10	35
Subtotals (Corridors)	1,725	870	180,000	340,000	100,000	0	620,000	181	1,051
SOI/Other Infill									
101/126 Agriculture	200	101					0	0	101
Wells/Saticoy	1,050	530					0	0	530
Pierpont	100	50	30,000				30,000	8	59
Other Neighorhood Centers	100	50						0	50
Second Units	300	151						0	151
Underutilized	250	126						0	126
Vacant	450	227	165,000	50,000			215,000	60	287
Subtotals (Other Infill)	2,450	1,236	195,000	50,000	0	0	245,000	69	1,304
Totals (Intensification/Reuse)	6,600	3,329	911,000	1,090,000	2,325,000	300,000	4,626,000	1,501	4,830
Expansion Areas									
North Avenue	322	162	36,590	54,886			91,476	26	188
Olivas	2,394	1,208	182,952	640,332			823,284	231	1,438
Serra		0						0	0
Canada Larga		0						0	0
Poinsettia		0						0	0
Subtotals (Expansion)	2,716	1,370	219,542	695,218	0	0	914,760	256	1,626
Planned and Pending Developments									
Downtown	50	25	1,072			150,000	151,072	84	110
Ventura Avenue/Westside	238	120	7,086		27,000		34,086	12	132
Midtown	34	17	13,751				13,751	4	21
College (Telegraph/Loma Vista)	4	2	2,718	8,849			11,567	3	5
Telephone Road Corridor	256	129		54,785			54,785	15	144
Montalvo/Victoria	296	149		4,300			4,300	1	151
Saticoy/East End	840	424	7,950	5,600			13,550	4	427
Arundell		0	41,640	42,614	18,080		102,334	30	30
Olivas		0	7,160	7,066	390,053		404,279	142	142
Subtotals (Planned/Pending)	1,718	867	81,377	123,214	435,133	150,000	789,724	295	1,162
Totals (Intensification + Expansion + Pending)	11,034	5,566	1,211,919	1,908,432	2,760,133	450,000	6,330,484	2,053	7,618

Scenario 4- Intensification/Reuse + North Avenue + Serra

Projected water demands for the various land uses and cumulative totals for Scenario 4 are shown in Table 4.13-18. As indicated in the table, growth accommodated under this scenario would increase current water demand by 6.79 mgd , or about 7,611 AFY. This is almost exactly the same as Scenarios 2 and 3 and 1,805 AFY more than Scenario 1.

Scenario 4 would accommodate the conversion of the North Avenue and Serra expansion areas from agriculture to urban development. Using the same rationale and assumptions as described above under Scenario 2, the total 519 acres of agricultural land that could be converted in these two expansion areas equates to an agricultural demand of 1,298 AFY. Combining this with the agricultural water credit common to all scenarios, as discussed above, equates to a total credit of 2,576 AFY. Therefore, it is assumed that any new water demand requirement for development under this scenario can be reduced or adjusted down by this amount to determine the net demand required from new water sources.

Adding the projected increase of $7,611 \mathrm{AFY}$ to the current water production (21,500 AFY), and subtracting the credit of 2,576 AFY for agricultural land conversion results in overall demand of 26,535 in 2025. This represents a net increase in demand of approximately 5,035 AFY.

Projected overall 2025 demand is lower than the long-term projected supply of 28,262 AFY from the City's 2004 Biennial Water Supply Report and the City's 2000 Urban Water Management Plan projected demand of 27,624 AFY for the year 2020 (five years earlier). Thus, impacts to water supply associated with this scenario are not considered significant. As with the other scenarios, additional wastewater reclamation and/or water conservation efforts could further reduce this demand.

As noted in the Scenario 1 discussion, connection fees would be charged to new development to cover City expenses for upgrade and maintenance of storage and transmission/distribution systems. Impacts relating to replacement of water distribution infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of either the North Avenue expansion area or the Serra expansion area would require extension of water distribution infrastructure, as described under Scenario 2. As discussed previously, existing water mains are adjacent to both potential expansion areas and it is anticipated that needed extensions could be achieved without disruption of service or significant secondary environmental impacts.

Table 4.13-18
Projected Water Demand Intensification/Reuse + North Avenue + Serra (Scenario 4)

	Residential		Non-Residential Development						Grand Totals
	$\begin{aligned} & \text { Number of } \\ & \text { Units } \end{aligned}$	Water (AFY)	$\begin{gathered} \hline \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Office } \\ \text { (sf) } \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Industrial } \\ \text { (sf) } \end{array} \\ \hline \end{array}$	Hotel (sf)	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Water } \\ & \text { (AFY) } \end{aligned}$	$\begin{aligned} & \text { Water } \\ & \text { (AFY) } \end{aligned}$
Districts									
Upper North Avenue	100	50	10,000	50,000	200,000		260,000	87	138
North Avenue	50	25	10,000	50,000	400,000		460,000	158	183
Downtown	1,600	807	100,000	200,000		150,000	450,000	168	975
Pacific View Mall	25	13	25,000	0			25,000	7	20
Harbor	300	151	66,000			150,000	216,000	54	205
Arundell	200	101	25,000	300,000	1,200,000		1,525,000	515	616
North Bank	50	25	300,000	50,000	300,000		650,000	204	229
Montalvo	50	25		50,000	50,000		100,000	32	57
Saticoy	50	25	0		75,000		75,000	26	52
Subtotals (Districts)	2,425	1,223	536,000	700,000	2,225,000	300,000	3,761,000	1,251	2,475
Corridors									
Ventura Avenue	800	404	40,000	100,000	100,000		240,000	75	478
Main Street	100	50	15,000	40,000			55,000	15	66
Thompson Boulevard	300	151	15,000	40,000			55,000	15	167
Loma Vista Road	25	13	15,000	40,000			55,000	15	28
Telegraph Road	250	126	15,000	40,000			55,000	15	142
Victoria Avenue	50	25	15,000	40,000			55,000	15	41
Johnson Drive	150	76	50,000	20,000			70,000	20	95
Wells Road	50	25	15,000	20,000			35,000	10	35
Subtotals (Corridors)	1,725	870	180,000	340,000	100,000	0	620,000	181	1,051
SOI/Other Infill									
101/126 Agriculture	200	101					0	0	101
Wells/Saticoy	1,050	530					0	0	530
Pierpont	100	50	30,000				30,000	8	59
Other Neighborhood Centers	100	50						0	50
Second Units	300	151						0	151
Underutilized	250	126						0	126
Vacant	450	227	165,000	50,000			215,000	60	287
Subtotals (Other Infill)	2,450	1,236	195,000	50,000	0	0	245,000	69	1,304
Totals (Intensification/Reuse)	6,600	3,329	911,000	1,090,000	2,325,000	300,000	4,626,000	1,501	4,830
Expansion Areas									
North Avenue	322	162	36,590	54,886			91,476	26	188
Olivas		0					0	0	0
Serra	2,380	1,200	182,952	640,332			823,284	231	1,431
Canada Larga		0						0	0
Poinsettia		0						0	0
Subtotals (Expansion)	2,702	1,363	219,542	695,218	0	0	914,760	256	1,619
Planned and Pending Developments									
Downtown	50	25	1,072			150,000	151,072	84	110
Ventura Avenue/Westside	238	120	7,086		27,000		34,086	12	132
Midtown	34	17	13,751				13,751	4	21
College (Telegraph/Loma Vista)	4	2	2,718	8,849			11,567	3	5
Telephone Road Corridor	256	129		54,785			54,785	15	144
Montalvo/Victoria	296	149		4,300			4,300	1	151
Saticoy/East End	840	424	7,950	5,600			13,550	4	427
Arundell		0	41,640	42,614	18,080		102,334	30	30
Olivas		0	7,160	7,066	390,053		404,279	142	142
Subtotals (Planned/Pending)	1,718	867	81,377	123,214	435,133	150,000	789,724	295	1,162
Totals (Intensification + Expansion + Pending)	11,020	5,558	1,211,919	1,908,432	2,760,133	450,000	6,330,484	2,053	7,611

Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga

Projected water demands for the various land uses and cumulative totals for Scenario 5 are shown in Table 4.13-19. As indicated in the table, growth accommodated under this scenario would increase current water demand by 6.78 mgd or about 7,598 AFY, nearly the same as Scenario 2, 3, and 4 and 1,792 AFY more than Scenario 1.

Scenario 5 calls for the conversion of the North Avenue and Western Cañada Larga areas from agriculture to development. Using the same rationale and assumptions as described above under the previous scenarios, the total 176 acres of agricultural land scheduled for conversion into development in these two expansion areas equates to an annual agricultural demand of 440 acre-feet or 0.39 mgd . Combining this with the agricultural water credit common to all scenarios, as discussed above, equates to a total credit of 1,718 AFY. Therefore, it is assumed that any new water demand requirement for development under this scenario can be reduced or adjusted down by this amount to determine the net demand required from new water sources.

Adding the projected increase of 7,598 AFY to the current water production (21,500 AFY), and subtracting the water credit of 1,718 AFY for agricultural land conversion results in overall 2025 demand of 27,380 AFY. This represents a net increase of 5,880 AFY.

Overall projected 2025 demand is lower than the long-term projected supply of 28,262 AFY from the City's 2004 Biennial Water Supply Report and slightly lower than the City's 2000 Urban Water Management Plan projected demand of 27,624 AFY for the year 2020 (five years earlier). Thus, impacts to water supply associated with this scenario are not considered significant. As with the other scenarios, additional wastewater reclamation and/or water conservation efforts could further reduce this demand.

As noted in the Scenario 1 discussion, connection fees would be charged to new development to cover City expenses for upgrade and maintenance of storage and transmission/distribution systems. Impacts relating to replacement of water distribution infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Water distribution infrastructure needed for development of the North Avenue expansion area is discussed under Scenario 2. The Western Cañada Larga expansion area would also require extension of water distribution infrastructure, including a pump station from the existing Power Reservoir, a new reservoir within the development, and possibly a new well site in or adjacent to the development. Existing water mains are adjacent to both potential expansion areas and it is anticipated that needed extensions could be achieved without disruption of service or significant secondary environmental impacts.

Table 4.13-19
Projected Water Demand Intensification/Reuse + North Avenue + W. Canada Larga (Scenario 5)

	Residential		Non-Residential Development						Grand Totals
	$\begin{gathered} \text { Number of } \\ \text { Units } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Water } \\ & \text { (AFY) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	Office (sf)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Industrial } \\ \text { (sf) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Hotel } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	Water (AFY)	Water (AFY)
Districts									
Upper North Avenue	100	50	10,000	50,000	200,000		260,000	87	138
North Avenue	50	25	10,000	50,000	400,000		460,000	158	183
Downtown	1,600	807	100,000	200,000		150,000	450,000	168	975
Pacific View Mall	25	13	25,000	0			25,000	7	20
Harbor	300	151	66,000			150,000	216,000	54	205
Arundell	200	101	25,000	300,000	1,200,000		1,525,000	515	616
North Bank	50	25	300,000	50,000	300,000		650,000	204	229
Montalvo	50	25		50,000	50,000		100,000	32	57
Saticoy	50	25	0		75,000		75,000	26	52
Subtotals (Districts)	2,425	1,223	536,000	700,000	2,225,000	300,000	3,761,000	1,251	2,475
Corridors									
Ventura Avenue	800	404	40,000	100,000	100,000		240,000	75	478
Main Street	100	50	15,000	40,000			55,000	15	66
Thompson Boulevard	300	151	15,000	40,000			55,000	15	167
Loma Vista Road	25	13	15,000	40,000			55,000	15	28
Telegraph Road	250	126	15,000	40,000			55,000	15	142
Victoria Avenue	50	25	15,000	40,000			55,000	15	41
Johnson Drive	150	76	50,000	20,000			70,000	20	95
Wells Road	50	25	15,000	20,000			35,000	10	35
Subtotals (Corridors)	1,725	870	180,000	340,000	100,000	0	620,000	181	1,051
SOI/Other Infill									
101/126 Agriculture	200	101					0	0	101
Wells/Saticoy	1,050	530					0	0	530
Pierpont	100	50	30,000				30,000	8	59
Other Neighborhood Centers	100	50						0	50
Second Units	300	151						0	151
Underutilized	250	126						0	126
Vacant	450	227	165,000	50,000			215,000	60	287
Subtotals (Other Infill)	2,450	1,236	195,000	50,000	0	0	245,000	69	1,304
Totals (Intensification/Reuse)	6,600	3,329	911,000	1,090,000	2,325,000	300,000	4,626,000	1,501	4,830
Expansion Areas									
North Avenue	979	494	91,476	219,542			311,018	87	581
Olivas		0					0	0	0
Serra		0						0	0
Canada Larga	1,728	872	109,771	439,085			548,856	154	1,025
Poinsettia		0						0	0
Subtotals (Expansion)	2,707	1,365	201,247	658,627	0	0	859,874	241	1,606
Planned and Pending Developments									
Downtown	50	25	1,072			150,000	151,072	84	110
Ventura Avenue/Westside	238	120	7,086		27,000		34,086	12	132
Midtown	34	17	13,751				13,751	4	21
College (Telegraph/Loma Vista)	4	2	2,718	8,849			11,567	3	5
Telephone Road Corridor	256	129		54,785			54,785	15	144
Montalvo/Victoria	296	149		4,300			4,300	1	151
Saticoy/East End	840	424	7,950	5,600			13,550	4	427
Arundell		0	41,640	42,614	18,080		102,334	30	30
Olivas		0	7,160	7,066	390,053		404,279	142	142
Subtotals (Planned/Pending)	1,718	867	81,377	123,214	435,133	150,000	789,724	295	1,162
Totals (Intensification + Expansion + Pending)	11,025	5,561	1,193,624	1,871,841	2,760,133	450,000	6,275,598	2,037	7,598

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Projected water demands for the various land uses and cumulative totals for Scenario 6 are shown in Table 4.13-20. As indicated in the table, growth accommodated under this scenario would increase current water demand by 6.79 million mgd or about 7,611 AFY, almost exactly the same as Scenario 2, 3, 4, and 5, and 1,805 AFY more than Scenario 1.

Scenario 6 calls for the conversion of the North Avenue and Poinsettia areas from agriculture to development. Using the same rationale and assumptions as described above under the other scenarios, the total 473 acres of agricultural land that could be converted in these two expansion areas equates to an annual agricultural demand of 1,183 acre-feet or 1.06 mgd . Combining this with the agricultural water credit common to all scenarios, as discussed above, equates to a total credit of 2,461 AFY. Therefore, it is assumed that any new water demand requirement for development on these areas can be reduced or adjusted down by this amount to determine the net demand required from new water sources.

Adding the projected increase of 7,611 AFY to current water production (21,500 AFY), and subtracting the water credit of 2,461 AFY for agricultural land conversion results in overall 2025 demand of 26,650 AFY. This represents a net increase of 5,150 AFY.

Projected overall demand is lower than the long-term projected supply of 28,262 AFY from the City's 2004 Biennial Water Supply Report and also lower than the City's 2000 Urban Water Management Plan projected demand of 27,624 AFY for the year 2020 (five years earlier). Thus, water supply impacts associated with this alternative are not considered significant. As with the other scenarios, additional wastewater reclamation and/or water conservation efforts could further reduce this demand.

As noted in the Scenario 1 discussion, connection fees would be charged to new development to cover City expenses for upgrade and maintenance of storage and transmission/distribution systems. Impacts relating to replacement of water distribution infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Water distribution infrastructure needed for development of the North Avenue expansion area is discussed under Scenario 2. The Poinsettia expansion area would require connection to the existing 430 Zone to the east and west. Existing water mains are adjacent to both potential expansion areas and it is anticipated that needed extensions could be achieved without disruption of service or significant secondary environmental impacts.

Table 4.13-20
Projected Water Demand Intensification/Reuse + North Avenue + Poinsettia (Scenario 6)

	Residential		Non-Residential Development						Grand Totals
	$\begin{gathered} \text { Number of } \\ \text { Units } \\ \hline \end{gathered}$	Water (AFY)	$\begin{gathered} \hline \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	Office (sf)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Industrial } \\ \text { (sf) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Hotel } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	Water (AFY)	Water (AFY)
Districts									
Upper North Avenue	100	50	10,000	50,000	200,000		260,000	87	138
North Avenue	50	25	10,000	50,000	400,000		460,000	158	183
Downtown	1,600	807	100,000	200,000		150,000	450,000	168	975
Pacific View Mall	25	13	25,000	0			25,000	7	20
Harbor*	300	151	66,000			150,000	216,000	54	205
Arundell	200	101	25,000	300,000	1,200,000		1,525,000	515	616
North Bank	50	25	300,000	50,000	300,000		650,000	204	229
Montalvo	50	25		50,000	50,000		100,000	32	57
Saticoy	50	25	0		75,000		75,000	26	52
Subtotals (Districts)	2,425	1,223	536,000	700,000	2,225,000	300,000	3,761,000	1,251	2,475
Corridors									
Ventura Avenue	800	404	40,000	100,000	100,000		240,000	75	478
Main Street	100	50	15,000	40,000			55,000	15	66
Thompson Boulevard	300	151	15,000	40,000			55,000	15	167
Loma Vista Road	25	13	15,000	40,000			55,000	15	28
Telegraph Road	250	126	15,000	40,000			55,000	15	142
Victoria Avenue	50	25	15,000	40,000			55,000	15	41
Johnson Drive	150	76	50,000	20,000			70,000	20	95
Wells Road	50	25	15,000	20,000			35,000	10	35
Subtotals (Corridors)	1,725	870	180,000	340,000	100,000	0	620,000	181	1,051
SOI/Other Infill									
101/126 Agriculture	200	101					0	0	101
Wells/Saticoy	1,050	530					0	0	530
Pierpont	100	50	30,000				30,000	8	59
Other Neighborhood Centers	100	50						0	50
Second Units	300	151						0	151
Underutilized	250	126						0	126
Vacant	450	227	165,000	50,000			215,000	60	287
Subtotals (Other Infill)	2,450	1,236	195,000	50,000	0	0	245,000	69	1,304
Totals (Intensification/Reuse)	6,600	3,329	911,000	1,090,000	2,325,000	300,000	4,626,000	1,501	4,830
Expansion Areas									
North Avenue	322	162	36,590	54,886			91,476	26	188
Olivas		0					0	0	0
Serra		0						0	0
Canada Larga		0						0	0
Poinsettia	2,380	1,200	182,952	640,332			823,284	231	1,431
Subtotals (Expansion)	2,702	1,363	219,542	695,218	0	0	914,760	256	1,619
Planned and Pending Developments									
Downtown	50	25	1,072			150,000	151,072	84	110
Ventura Avenue/Westside	238	120	7,086		27,000		34,086	12	132
Midtown	34	17	13,751				13,751	4	21
College (Telegraph/Loma Vista)	4	2	2,718	8,849			11,567	3	5
Telephone Road Corridor	256	129		54,785			54,785	15	144
Montalvo/Victoria	296	149		4,300			4,300	1	151
Saticoy/East End	840	424	7,950	5,600			13,550	4	427
Arundell		0	41,640	42,614	18,080		102,334	30	30
Olivas		0	7,160	7,066	390,053		404,279	142	142
Subtotals (Planned/Pending)	1,718	867	81,377	123,214	435,133	150,000	789,724	295	1,162
Totals (Intensification + Expansion + Pending)	11,020	5,558	1,211,919	1,908,432	2,760,133	450,000	6,330,484	2,053	7,611

MITIGATION MEASURES

The 2005 General Plan includes the following policies and actions relating to water conservation.

Policy 5A Follow an approach that contributes to resource conservation.
Action 5.1 Require low flow fixtures, leak repair, and drought tolerant landscaping (native species if possible), plus emerging water conservation techniques, such as reclamation, as they become available.

Action 5.3 Demonstrate low water use techniques at community gardens and cityowned facilities.

Action 5.4 Update the Urban Water Management plan as necessary in compliance with the State 1983 Urban Water Management Planning Act.

Policy 5B Improve services in ways that respect and even benefit the environment.
Action 5.8 Locate new development in or close to developed areas with adequate public services, where it will not have significant adverse effects, either individually or cumulatively, on coastal resources.

Action 5.9 Update development fee and assessment district requirements as appropriate to cover the true costs associated with development.

Action 5.11 Increase emergency water supply capacity through cooperative tie-ins with neighboring suppliers.

Additional mitigation beyond these proposed policies and actions is not required, but the following measure is recommended.

U-1 Water System Analysis. The following action shall be added to the 2005 General Plan:

- Require project proponents to conduct evaluations of the existing water distribution system, pump station, and storage requirements for the proposed development in order to determine if there are any system deficiencies or needed improvements for the proposed development.

SIGNIFICANCE AFTER MITIGATION

Impacts related to water supply and reliability would not be significant for any of the six land use scenarios. Implementation of the proposed General Plan policies and action items would further minimize the potential for impacts.

$$
\begin{array}{ll}
\text { Impact U-2 } & \begin{array}{l}
\text { New development under any of the } 2005 \text { General Plan land use } \\
\text { scenarios would increase wastewater generation. Projected } \\
\text { future wastewater flows to the City's wastewater treatment } \\
\text { plant are projected to remain within the current capacity for all } \\
\text { six scenarios. Projected flows to the Ojai Valley Sanitary } \\
\text { District plant would be within the capacity of the plant for all } \\
\text { scenarios except Scenario } 5 \text { (Intensification/Reuse + North } \\
\text { Avenue + Western Cañada Larga). Therefore, the impacts of } \\
\text { Scenarios 1-4 and } 6 \text { are considered Class III, less than significant, } \\
\text { while the impact of Scenario } 5 \text { is considered Class II, significant } \\
\text { but mitigable. }
\end{array}
\end{array}
$$

Scenario 1 - Intensification/Reuse Only

As shown in Table 4.13-21, growth accommodated under Scenario 1 is projected to generate an additional 3.06 mgd of wastewater flow. The flow generated from land north of Dakota Street in the Ventura Avenue area is outside of the City's service area and would likely be collected and treated by Ojai Valley Sanitary District (OVSD). The only developments in Scenario 1 that are within this OVSD area and would not flow to the Ventura Wastewater Reclamation Facility (VWRF) are assumed to be the Upper North Avenue and North Avenue districts, which are projected to generate approximately 0.18 mgd . The 1.0 mgd of capacity at the OVSD plant is adequate to meet this flow increase. OVSD should also be advised of the development proposed under this scenario so that they can plan for expansion of their plant if this, along with other development plans in their service area, requires the need for additional capacity, but the small flow projected to flow to the OVSD plant should be able to be accommodated by their existing plant.

The additional flow to the VWRF through 2025 is estimated at 2.88 mgd . The flow at the Ventura Wastewater Reclamation Plant for 2004 averaged just under 9.0 mgd and the rated capacity is 14 mgd , leaving capacity for an additional 5.0 mgd before expansion would be required. Thus, an adequate buffer is available for the projected flow.

Some intensification/reuse development, especially in the Downtown area, may cause localized sewer capacity deficiencies that require upgrades of older, undersized sewer infrastructure, primarily the smaller diameter north-south lines. Intensification/reuse within the Midtown area could cause capacity constraints in the East Thompson and East Main sewers. The Ventura Avenue sewer may also have capacity constraints. In the College area, some 8 -inch diameter lines may require upgrading. In the East End, portions of the Victoria Avenue and Telephone Road sewer may require upgrading. In the Harbor area, the Marin Lift Station is currently at capacity and could not handle additional flow with upgrades.

Sewer lines that may need replacement are generally located underneath existing streets; therefore, line replacement would involve temporary traffic disruption as well as temporary noise and air quality impacts. However, such impacts could be reduced to a less than significant level through implementation of standard traffic, noise, and dust controls.

City of Ventura

Table 4.13-21
Wastewater Generation Intensification/Reuse Only (Scenario 1)

	Residential		Non-Residential Development						Grand Totals Wastewater (mgd)
	$\begin{aligned} & \text { Number of } \\ & \text { Units } \end{aligned}$	$\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	$\begin{gathered} \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	Office (sf)	$\begin{gathered} \text { Industrial } \\ \text { (sf) } \end{gathered}$	Hotel (sf)	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WW } \\ \text { (mgd) } \end{gathered}$	
Districts									
Upper North Avenue	100	0.022	10,000	50,000	150,000		210,000	0.058	0.080
North Avenue	50	0.011	10,000	50,000	250,000		310,000	0.088	0.099
Downtown	1,600	0.344	100,000	200,000		150,000	450,000	0.126	0.470
Pacific View Mall	25	0.005	25,000	0			25,000	0.006	0.011
Harbor	300	0.065	66,000			150,000	216,000	0.006	0.071
Arundell	200	0.043	25,000	300,000	1,000,000		1,325,000	0.372	0.415
North Bank	50	0.011	300,000	50,000	300,000		650,000	0.167	0.178
Montalvo	50	0.011		50,000	25,000		75,000	0.019	0.029
Saticoy	50	0.011	0		25,000		25,000	0.008	0.018
Subtotals (Districts)	2,425	0.521	536,000	700,000	1,750,000	300,000	3,286,000	0.849	1.370
Corridors									
Ventura Avenue	800	0.172	40,000	100,000	50,000		190,000	0.046	0.218
Main Street	100	0.022	15,000	40,000			55,000	0.012	0.034
Thompson Boulevard	300	0.065	15,000	40,000			55,000	0.012	0.077
Loma Vista Road	25	0.005	15,000	40,000			55,000	0.012	0.017
Telegraph Road	250	0.054	15,000	40,000			55,000	0.012	0.066
Victoria Avenue	50	0.011	15,000	40,000			55,000	0.012	0.023
Johnson Drive	150	0.032	50,000	20,000			70,000	0.015	0.048
Wells Road	50	0.011	15,000	20,000			35,000	0.008	0.018
Subtotals (Corridors)	1,725	0.371	180,000	340,000	50,000	0	570,000	0.129	0.500
SOI/Other Infill									
101/126 Agriculture	200	0.043					0	0.000	0.043
Wells/Saticoy	1,050	0.226					0	0.000	0.226
Pierpont	100	0.022	30,000				30,000	0.007	0.028
Other Neighborhood Centers	100	0.022						0.000	0.022
Second Units	300	0.065						0.000	0.065
Underutilized	250	0.054						0.000	0.054
Vacant	450	0.097	165,000	50,000			215,000	0.047	0.144
Subtotals (Other Infill)	2,450	0.527	195,000	50,000	0	0	245,000	0.054	0.581
Totals (Intensification/Reuse)	6,600	1.419	911,000	1,090,000	1,800,000	300,000	4,101,000	1.032	2.451
Planned and Pending Developments									
Downtown	50	0.011	1,072			150,000	151,072	0.060	0.071
Ventura Avenue/Westside	238	0.051	7,086		27,000		34,086	0.010	0.061
Midtown	34	0.007	13,751				13,751	0.003	0.010
College (Telegraph/Loma Vista)	4	0.001	2,718	8,849			11,567	0.003	0.003
Telephone Road Corridor	256	0.055		54,785			54,785	0.012	0.067
Montalvo/Victoria	296	0.064		4,300			4,300	0.001	0.065
Saticoy/East End	840	0.181	7,950	5,600			13,550	0.003	0.184
Arundell		0.000	41,640	42,614	18,080		102,334	0.024	0.024
Olivas		0.000	7,160	7,066	390,053		404,279	0.120	0.120
Subtotals (Planned/Pending)	1,718	0.369	81,377	123,214	435,133	150,000	789,724	0.236	0.605
Totals (Intensification + Expansion + Pending)	8,318	1.788	992,377	1,213,214	2,235,133	450,000	4,890,724	1.267	3.056

Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra

Table 4.13-22 shows that the growth accommodated under Scenario 2 through 2025 is projected to generate an additional 4.00 mgd of wastewater flow. The flow generated and treated by developments in the Upper North Avenue and North Avenue districts and the North Avenue expansion area are expected to flow to the OVSD. Future development in these areas is projected to generate approximately 0.28 mgd , which is within the 1.0 mgd of available capacity at the OVSD plant. Nevertheless, the OVSD should be advised of the development and coincident sewage flow proposed under this scenario so that they can plan for expansion of their plant if this, along with other development plans in their service area, requires the need for additional capacity.

The additional flow to the VWRF through 2025 is estimated at 3.72 mgd . As discussed under Scenario 1, the VWRF currently has capacity for an additional 5.0 mgd before expansion would be required. Thus, an adequate buffer is available for the projected flow increase under this scenario and impacts to wastewater treatment facilities would not be significant.

As noted in the Scenario 1 discussion, some intensification/reuse development may cause localized sewer pipeline capacity constraints. Impacts relating to replacement of wastewater infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of the North Avenue, Olivas, or Serra expansion areas would require extension of sewer lines. However, large diameter trunk sewers exist adjacent to all three areas and it is anticipated that needed extensions could be achieved without capacity constraints, disruption of service, or significant secondary environmental impacts.

Table 4.13-22
Wastewater Generation Intensification/Reuse + North Avenue + Olivas + Serra (Scenario 2)

	Residential		Non-Residential Development						$\begin{gathered} \hline \text { Grand Totals } \\ \hline \begin{array}{c} \text { Wastewater } \\ \text { (mgd) } \end{array} \\ \hline \end{gathered}$
	Number of Units	$\begin{gathered} \text { WW } \\ \text { (mgd) } \end{gathered}$	Retail (sf)	Office (sf)	$\begin{aligned} & \text { Industrial } \\ & \text { (sf) } \end{aligned}$	$\begin{gathered} \text { Hotel } \\ \text { (sf) } \end{gathered}$	Total (sf)	$\begin{gathered} \text { WW } \\ \text { (mgd) } \end{gathered}$	
Districts									
Upper North Avenue	100	0.022	10,000	50,000	200,000		260,000	0.073	0.095
North Avenue	50	0.011	10,000	50,000	400,000		460,000	0.133	0.144
Downtown	1,600	0.344	100,000	200,000		150,000	450,000	0.126	0.470
Pacific View Mall	25	0.005	25,000	0			25,000	0.006	0.011
Harbor	300	0.065	66,000			150,000	216,000	0.006	0.071
Arundell	200	0.043	25,000	300,000	1,200,000		1,525,000	0.432	0.475
North Bank	50	0.011	300,000	50,000	300,000		650,000	0.167	0.178
Montalvo	50	0.011		50,000	50,000		100,000	0.026	0.037
Saticoy	50	0.011	0		75,000		75,000	0.023	0.033
Subtotals (Districts)	2,425	0.521	536,000	700,000	2,225,000	300,000	3,761,000	0.991	1.513
Corridors									
Ventura Avenue	800	0.172	40,000	100,000	100,000		240,000	0.061	0.233
Main Street	100	0.022	15,000	40,000			55,000	0.012	0.034
Thompson Boulevard	300	0.065	15,000	40,000			55,000	0.012	0.077
Loma Vista Road	25	0.005	15,000	40,000			55,000	0.012	0.017
Telegraph Road	250	0.054	15,000	40,000			55,000	0.012	0.066
Victoria Avenue	50	0.011	15,000	40,000			55,000	0.012	0.023
Johnson Drive	150	0.032	50,000	20,000			70,000	0.015	0.048
Wells Road	50	0.011	15,000	20,000			35,000	0.008	0.018
Subtotals (Corridors)	1,725	0.371	180,000	340,000	100,000	0	620,000	0.144	0.515
SOI/Other Infill									
101/126 Agriculture	200	0.043					0	0.000	0.043
Wells/Saticoy	1,050	0.226					0	0.000	0.226
Pierpont	100	0.022	30,000				30,000	0.007	0.028
Other Neighborhood Centers	100	0.022						0.000	0.022
Second Units	300	0.065						0.000	0.065
Underutilized	250	0.054						0.000	0.054
Vacant	450	0.097	165,000	50,000			215,000	0.047	0.144
Subtotals (Other Infill)	2,450	0.527	195,000	50,000	0	0	245,000	0.054	0.581
Totals (Intensification/Reuse)	6,600	1.419	911,000	1,090,000	2,325,000	300,000	4,626,000	1.189	2.608
Expansion Areas									
North Avenue	176	0.038	18,295				18,295	0.004	0.042
Olivas	1,484	0.319	109,771	439,085			548,856	0.121	0.440
Serra	1,042	0.224	91,476	256,133			347,609	0.076	0.301
Canada Larga		0.000						0.000	0.000
Poinsettia		0.000						0.000	0.000
Subtotals (Expansion)	2,702	0.581	219,542	695,218	0	0	914,760	0.201	0.782
Planned and Pending Developments									
Downtown	50	0.011	1,072			150,000	151,072	0.060	0.071
Ventura Avenue/Westside	238	0.051	7,086		27,000		34,086	0.010	0.061
Midtown	34	0.007	13,751				13,751	0.003	0.010
College (Telegraph/Loma Vista)	4	0.001	2,718	8,849			11,567	0.003	0.003
Telephone Road Corridor	256	0.055		54,785			54,785	0.012	0.067
Montalvo/Victoria	296	0.064		4,300			4,300	0.001	0.065
Saticoy/East End	840	0.181	7,950	5,600			13,550	0.003	0.184
Arundell		0.000	41,640	42,614	18,080		102,334	0.024	0.024
Olivas		0.000	7,160	7,066	390,053		404,279	0.120	0.120
Subtotals (Planned/Pending)	1,718	0.369	81,377	123,214	435,133	150,000	789,724	0.236	0.605
Totals (Intensification + Expansion + Pending)	11,020	2.369	1,211,919	1,908,432	2,760,133	450,000	6,330,484	1.626	3.996

Scenario 3 - Intensification/Reuse + North Avenue + Olivas

Table 4.13-23 shows that the growth accommodated under Scenario 3 through 2025 is projected to generate an additional 4.00 mgd of wastewater flow. The flow generated and treated by developments in the Upper North Avenue and North Avenue districts and the North Avenue expansion area are expected to flow to the OVSD. Future development in these areas is projected to generate approximately 0.33 mgd , which is within the 1.0 mgd of available capacity at the OVSD plant. Nevertheless, the OVSD should be advised of the development and coincident sewage flow proposed under this scenario so that they can plan for expansion of their plant if this, along with other development plans in their service area, requires the need for additional capacity.

The additional flow to the VWRF through 2025 is estimated at 3.67 mgd . As discussed under Scenario 1, the VWRF currently has capacity for an additional 5.0 mgd before expansion would be required. Thus, an adequate buffer is available for the projected flow increase under this scenario.

As noted in the Scenario 1 discussion, some intensification/reuse development may cause localized sewer pipeline capacity constraints. Impacts relating to replacement of wastewater infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of the North Avenue or Olivas expansion areas would require extension of sewer lines. However, as discussed under Scenario 2, large diameter sewer mains exist adjacent to both potential expansion areas and it is anticipated that needed extensions could be achieved without capacity constraints, disruption of service, or significant secondary environmental impacts.

Table 4.13-23
Wastewater Generation Intensification/Reuse + North Avenue + Olivas (Scenario 3)

	Residential		Non-Residential Development						Grand Totals Wastewater (mgd)
	Number of Units	$\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	Retail (sf)	Office (sf)	Industrial (sf)	Hotel (sf)	$\begin{gathered} \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	
Districts									
Upper North Avenue	100	0.022	10,000	50,000	200,000		260,000	0.073	0.095
North Avenue	50	0.011	10,000	50,000	400,000		460,000	0.133	0.144
Downtown	1,600	0.344	100,000	200,000		150,000	450,000	0.126	0.470
Pacific View Mall	25	0.005	25,000	0			25,000	0.006	0.011
Harbor	300	0.065	66,000			150,000	216,000	0.006	0.071
Arundell	200	0.043	25,000	300,000	1,200,000		1,525,000	0.432	0.475
North Bank	50	0.011	300,000	50,000	300,000		650,000	0.167	0.178
Montalvo	50	0.011		50,000	50,000		100,000	0.026	0.037
Saticoy	50	0.011	0		75,000		75,000	0.023	0.033
Subtotals (Districts)	2,425	0.521	536,000	700,000	2,225,000	300,000	3,761,000	0.991	1.513
Corridors									
Ventura Avenue	800	0.172	40,000	100,000	100,000		240,000	0.061	0.233
Main Street	100	0.022	15,000	40,000			55,000	0.012	0.034
Thompson Boulevard	300	0.065	15,000	40,000			55,000	0.012	0.077
Loma Vista Road	25	0.005	15,000	40,000			55,000	0.012	0.017
Telegraph Road	250	0.054	15,000	40,000			55,000	0.012	0.066
Victoria Avenue	50	0.011	15,000	40,000			55,000	0.012	0.023
Johnson Drive	150	0.032	50,000	20,000			70,000	0.015	0.048
Wells Road	50	0.011	15,000	20,000			35,000	0.008	0.018
Subtotals (Corridors)	1,725	0.371	180,000	340,000	100,000	0	620,000	0.144	0.515
SOI/Other Infill									
101/126 Agriculture	200	0.043					0	0.000	0.043
Wells/Saticoy	1,050	0.226					0	0.000	0.226
Pierpont	100	0.022	30,000				30,000	0.007	0.028
Other Neighorhood Centers	100	0.022						0.000	0.022
Second Units	300	0.065						0.000	0.065
Underutilized	250	0.054						0.000	0.054
Vacant	450	0.097	165,000	50,000			215,000	0.047	0.144
Subtotals (Other Infill)	2,450	0.527	195,000	50,000	0	0	245,000	0.054	0.581
Totals (Intensification/Reuse)	6,600	1.419	911,000	1,090,000	2,325,000	300,000	4,626,000	1.189	2.608
Expansion Areas									
North Avenue	322	0.069	36,590	54,886			91,476	0.020	0.089
Olivas	2,394	0.515	182,952	640,332			823,284	0.181	0.696
Serra		0.000						0.000	0.000
Canada Larga		0.000						0.000	0.000
Poinsettia		0.000						0.000	0.000
Subtotals (Expansion)	2,716	0.584	219,542	695,218	0	0	914,760	0.201	0.785
Planned and Pending Developments									
Downtown	50	0.011	1,072			150,000	151,072	0.060	0.071
Ventura Avenue/Westside	238	0.051	7,086		27,000		34,086	0.010	0.061
Midtown	34	0.007	13,751				13,751	0.003	0.010
College (Telegraph/Loma Vista)	4	0.001	2,718	8,849			11,567	0.003	0.003
Telephone Road Corridor	256	0.055		54,785			54,785	0.012	0.067
Montalvo/Victoria	296	0.064		4,300			4,300	0.001	0.065
Saticoy/East End	840	0.181	7,950	5,600			13,550	0.003	0.184
Arundell		0.000	41,640	42,614	18,080		102,334	0.024	0.024
Olivas		0.000	7,160	7,066	390,053		404,279	0.120	0.120
Subtotals (Planned/Pending)	1,718	0.369	81,377	123,214	435,133	150,000	789,724	0.236	0.605
Totals (Intensification + Expansion + Pending)	11,034	2.372	1,211,919	1,908,432	2,760,133	450,000	6,330,484	1.626	3.999

Scenario 4-Intensification/Reuse + North Avenue + Serra

Table 4.13-24 shows that the growth accommodated under Scenario 4 is projected to generate an additional 4.00 mgd of wastewater flow. The flow generated and treated by developments in the Upper North Avenue and North Avenue districts and the North Avenue expansion area are expected to flow to the OVSD. Similar to Scenario 3, future development in these areas is projected to generate approximately 0.33 mgd , which is within the 1.0 mgd of available capacity at the OVSD plant. Nevertheless, the OVSD should be advised of the development and coincident sewage flow proposed under this scenario so that they can plan for expansion of their plant if this, along with other development plans in their service area, requires the need for additional capacity.

Similar to Scenario 3, the additional flow to the VWRF through 2025 is estimated at 3.67 mgd . As discussed under Scenario 1, the VWRF currently has capacity for an additional 5.0 mgd before expansion would be required. Thus, an adequate buffer is available for the projected flow increase under this scenario.

As noted in the Scenario 1 discussion, some intensification/reuse development may cause localized sewer pipeline capacity constraints. Impacts relating to replacement of wastewater infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of the North Avenue or Serra expansion areas would require extension of sewer lines. However, as discussed under Scenario 2 , large diameter sewer mains exist adjacent to both areas and it is anticipated that needed extensions could be achieved without capacity constraints, disruption of service, or significant secondary environmental impacts.

Table 4.13-24
Wastewater Generation Intensification/Reuse + North Avenue + Serra (Scenario 4)

	Residential		Non-Residential Development						Grand Totals Wastewater (mgd)
	Number of Units	$\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	Retail (sf)	Office (sf)	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Industrial } \\ \text { (sf) } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Hotel } \\ \text { (sf) } \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	
Districts									
Upper North Avenue	100	0.022	10,000	50,000	200,000		260,000	0.073	0.095
North Avenue	50	0.011	10,000	50,000	400,000		460,000	0.133	0.144
Downtown	1,600	0.344	100,000	200,000		150,000	450,000	0.126	0.470
Pacific View Mall	25	0.005	25,000	0			25,000	0.006	0.011
Harbor	300	0.065	66,000			150,000	216,000	0.006	0.071
Arundell	200	0.043	25,000	300,000	1,200,000		1,525,000	0.432	0.475
North Bank	50	0.011	300,000	50,000	300,000		650,000	0.167	0.178
Montalvo	50	0.011		50,000	50,000		100,000	0.026	0.037
Saticoy	50	0.011	0		75,000		75,000	0.023	0.033
Subtotals (Districts)	2,425	0.521	536,000	700,000	2,225,000	300,000	3,761,000	0.991	1.513
Corridors									
Ventura Avenue	800	0.172	40,000	100,000	100,000		240,000	0.061	0.233
Main Street	100	0.022	15,000	40,000			55,000	0.012	0.034
Thompson Boulevard	300	0.065	15,000	40,000			55,000	0.012	0.077
Loma Vista Road	25	0.005	15,000	40,000			55,000	0.012	0.017
Telegraph Road	250	0.054	15,000	40,000			55,000	0.012	0.066
Victoria Avenue	50	0.011	15,000	40,000			55,000	0.012	0.023
Johnson Drive	150	0.032	50,000	20,000			70,000	0.015	0.048
Wells Road	50	0.011	15,000	20,000			35,000	0.008	0.018
Subtotals (Corridors)	1,725	0.371	180,000	340,000	100,000	0	620,000	0.144	0.515
SOI/Other Infill									
101/126 Agriculture	200	0.043					0	0.000	0.043
Wells/Saticoy	1,050	0.226					0	0.000	0.226
Pierpont	100	0.022	30,000				30,000	0.007	0.028
Other Neighborhood Centers	100	0.022						0.000	0.022
Second Units	300	0.065						0.000	0.065
Underutilized	250	0.054						0.000	0.054
Vacant	450	0.097	165,000	50,000			215,000	0.047	0.144
Subtotals (Other Infill)	2,450	0.527	195,000	50,000	0	0	245,000	0.054	0.581
Totals (Intensification/Reuse)	6,600	1.419	911,000	1,090,000	2,325,000	300,000	4,626,000	1.189	2.608
Expansion Areas									
North Avenue	322	0.069	36,590	54,886			91,476	0.020	0.089
Olivas		0.000					0	0.000	0.000
Serra	2,380	0.512	182,952	640,332			823,284	0.181	0.693
Canada Larga		0.000						0.000	0.000
Poinsettia		0.000						0.000	0.000
Subtotals (Expansion)	2,702	0.581	219,542	695,218	0	0	914,760	0.201	0.782
Planned and Pending Developments									
Downtown	50	0.011	1,072			150,000	151,072	0.060	0.071
Ventura Avenue/Westside	238	0.051	7,086		27,000		34,086	0.010	0.061
Midtown	34	0.007	13,751				13,751	0.003	0.010
College (Telegraph/Loma Vista)	4	0.001	2,718	8,849			11,567	0.003	0.003
Telephone Road Corridor	256	0.055		54,785			54,785	0.012	0.067
Montalvo/Victoria	296	0.064		4,300			4,300	0.001	0.065
Saticoy/East End	840	0.181	7,950	5,600			13,550	0.003	0.184
Arundell		0.000	41,640	42,614	18,080		102,334	0.024	0.024
Olivas		0.000	7,160	7,066	390,053		404,279	0.120	0.120
Subtotals (Planned/Pending)	1,718	0.369	81,377	123,214	435,133	150,000	789,724	0.236	0.605
Totals (Intensification + Expansion + Pending)	11,020	2.369	1,211,919	1,908,432	2,760,133	450,000	6,330,484	1.626	3.996

Scenario 5 - Intensification/Reuse + North Avenue + Western Cańada Larga.

Table 4.13-25 shows that the growth accommodated under Scenario 5 is projected to generate an additional 3.99 mgd of wastewater flow. The flow generated and treated by developments in the Upper North Avenue and North Avenue districts and the North Avenue and Western Cañada Larga expansion areas are expected to flow to the OVSD. Future development in these areas is projected to generate approximately 1.01 mgd , which is essentially equal to the 1.0 mgd of available capacity at the OVSD plant. Impacts are therefore considered potentially significant, though OVSD staff has indicated that they would be able to expand their plant with revenues collected from connection fees as long as they have adequate time to plan, design, permit and construct this plant expansion, which can take on the order of five years. The OVSD should be advised of the level of development and coincident sewage flow proposed under this scenario so that they can plan for expansion of their plant since this, along with other development plans in their service area, would likely require the need for additional capacity.

The additional flow to the VWRF through 2025 is estimated at 2.98 mgd . As discussed under Scenario 1, the VWRF currently has capacity for an additional 5.0 mgd before expansion would be required. Thus, an adequate buffer is available for the projected flow increase under this scenario.

As noted in the Scenario 1 discussion, some intensification/reuse development may cause localized sewer pipeline capacity constraints. Impacts relating to replacement of wastewater infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. Development of the North Avenue or Western Cañada Larga expansion areas would require extension of sewer lines. Lines in the Western Cañada Larga area could most likely gravity flow to the Ojai Valley Sanitary District plant. Large diameter sewer mains exist adjacent to both potential expansion areas and it is anticipated that needed extensions could be achieved without capacity constraints, disruption of service, or significant secondary environmental impacts.

Table 4.13-25
Wastewater Generation
Intensification/Reuse + North Avenue + W. Canada Larga (Scenario 5)

	Residential		Non-Residential Development						Grand Totals Wastewater (mgd)
	Number of Units	$\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	$\begin{gathered} \hline \text { Retail } \\ \text { (sf) } \\ \hline \end{gathered}$	Office (sf)	$\begin{array}{\|c\|} \hline \text { Industrial } \\ \text { (sf) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Hotel } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { WW } \\ (\mathrm{mgd}) \end{gathered}$	
Districts									
Upper North Avenue	100	0.022	10,000	50,000	200,000		260,000	0.073	0.095
North Avenue	50	0.011	10,000	50,000	400,000		460,000	0.133	0.144
Downtown	1,600	0.344	100,000	200,000		150,000	450,000	0.126	0.470
Pacific View Mall	25	0.005	25,000	0			25,000	0.006	0.011
Harbor	300	0.065	66,000			150,000	216,000	0.006	0.071
Arundell	200	0.043	25,000	300,000	1,200,000		1,525,000	0.432	0.475
North Bank	50	0.011	300,000	50,000	300,000		650,000	0.167	0.178
Montalvo	50	0.011		50,000	50,000		100,000	0.026	0.037
Saticoy	50	0.011	0		75,000		75,000	0.023	0.033
Subtotals (Districts)	2,425	0.521	536,000	700,000	2,225,000	300,000	3,761,000	0.991	1.513
Corridors									
Ventura Avenue	800	0.172	40,000	100,000	100,000		240,000	0.061	0.233
Main Street	100	0.022	15,000	40,000			55,000	0.012	0.034
Thompson Boulevard	300	0.065	15,000	40,000			55,000	0.012	0.077
Loma Vista Road	25	0.005	15,000	40,000			55,000	0.012	0.017
Telegraph Road	250	0.054	15,000	40,000			55,000	0.012	0.066
Victoria Avenue	50	0.011	15,000	40,000			55,000	0.012	0.023
Johnson Drive	150	0.032	50,000	20,000			70,000	0.015	0.048
Wells Road	50	0.011	15,000	20,000			35,000	0.008	0.018
Subtotals (Corridors)	1,725	0.371	180,000	340,000	100,000	0	620,000	0.144	0.515
SOI/Other Infill									
101/126 Agriculture	200	0.043					0	0.000	0.043
Wells/Saticoy	1,050	0.226					0	0.000	0.226
Pierpont	100	0.022	30,000				30,000	0.007	0.028
Other Neighborhood Centers	100	0.022						0.000	0.022
Second Units	300	0.065						0.000	0.065
Underutilized	250	0.054						0.000	0.054
Vacant	450	0.097	165,000	50,000			215,000	0.047	0.144
Subtotals (Other Infill)	2,450	0.527	195,000	50,000	0	0	245,000	0.054	0.581
Totals (Intensification/Reuse)	6,600	1.419	911,000	1,090,000	2,325,000	300,000	4,626,000	1.189	2.608
Expansion Areas									
North Avenue	979	0.210	91,476	219,542			311,018	0.068	0.279
Olivas		0.000					0	0.000	0.000
Serra		0.000						0.000	0.000
Canada Larga	1,728	0.372	109,771	439,085			548,856	0.121	0.492
Poinsettia		0.000						0.000	0.000
Subtotals (Expansion)	2,707	0.582	201,247	658,627	0	0	859,874	0.189	0.771
Planned and Pending Developments									
Downtown	50	0.011	1,072			150,000	151,072	0.060	0.071
Ventura Avenue/Westside	238	0.051	7,086		27,000		34,086	0.010	0.061
Midtown	34	0.007	13,751				13,751	0.003	0.010
College (Telegraph/Loma Vista)	4	0.001	2,718	8,849			11,567	0.003	0.003
Telephone Road Corridor	256	0.055		54,785			54,785	0.012	0.067
Montalvo/Victoria	296	0.064		4,300			4,300	0.001	0.065
Saticoy/East End	840	0.181	7,950	5,600			13,550	0.003	0.184
Arundell		0.000	41,640	42,614	18,080		102,334	0.024	0.024
Olivas		0.000	7,160	7,066	390,053		404,279	0.120	0.120
Subtotals (Planned/Pending)	1,718	0.369	81,377	123,214	435,133	150,000	789,724	0.236	0.605
Totals (Intensification + Expansion + Pending)	11,025	2.370	1,193,624	1,871,841	2,760,133	450,000	6,275,598	1.614	3.985

Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia

Table 4.13-26 shows that the growth accommodated under Scenario 6 is projected to generate an additional 4.00 mgd of wastewater flow. The flow generated and treated by developments in the Upper North Avenue and North Avenue districts and the North Avenue expansion area are expected to flow to the OVSD. Similar to Scenarios 3 and 4, future development in these areas is projected to generate approximately 0.33 mgd , which is within the 1.0 mgd of available capacity at the OVSD plant. Nevertheless, the OVSD should be advised of the development and coincident sewage flow proposed under this scenario so that they can plan for expansion of their plant if this, along with other development plans in their service area, requires the need for additional capacity.

Similar to Scenarios 3 and 4, the additional flow to the VWRF through 2025 is estimated at 3.67 mgd. As discussed under Scenario 1, the VWRF currently has capacity for an additional 5.0 mgd before expansion would be required. Thus, an adequate buffer is available for the projected flow increase under this scenario.

As noted in the Scenario 1 discussion, some intensification/reuse development, especially in the Downtown area, may cause localized sewer pipeline capacity constraints. Impacts relating to replacement of wastewater infrastructure in the older neighborhoods of the City would be similar to those described for Scenario 1 and would be less than significant. The North Avenue area is discussed under Scenario 2. Development of the Poinsettia expansion area would require extension of sewer lines to connect to the Highway 126 sewer and could require replacement of portions of that sewer. Existing large diameter sewer mains are adjacent to the North Avenue expansion area and further downstream of the Poinsettia area. It is anticipated that needed sewer infrastructure extensions could be achieved without significant capacity constraints, disruption of service, or significant secondary environmental impacts.

Table 4.13-26

Wastewater Generation

 Intensification/Reuse + North Avenue + Poinsettia (Scenario 6)| | Residential | | Non-Residential Development | | | | | | Grand Totals
 Wastewater
 (mgd) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Number of Units | $\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$ | Retail (sf) | Office
 (sf) | $\begin{array}{\|c\|} \hline \text { Industrial } \\ \text { (sf) } \end{array}$ | $\begin{gathered} \text { Hotel } \\ \text { (sf) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Total } \\ \text { (sf) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { WW } \\ (\mathrm{mgd}) \end{gathered}$ | |
| Districts | | | | | | | | | |
| Upper North Avenue | 100 | 0.022 | 10,000 | 50,000 | 200,000 | | 260,000 | 0.073 | 0.095 |
| North Avenue | 50 | 0.011 | 10,000 | 50,000 | 400,000 | | 460,000 | 0.133 | 0.144 |
| Downtown | 1,600 | 0.344 | 100,000 | 200,000 | | 150,000 | 450,000 | 0.126 | 0.470 |
| Pacific View Mall | 25 | 0.005 | 25,000 | 0 | | | 25,000 | 0.006 | 0.011 |
| Harbor* | 300 | 0.065 | 66,000 | | | 150,000 | 216,000 | 0.006 | 0.071 |
| Arundell | 200 | 0.043 | 25,000 | 300,000 | 1,200,000 | | 1,525,000 | 0.432 | 0.475 |
| North Bank | 50 | 0.011 | 300,000 | 50,000 | 300,000 | | 650,000 | 0.167 | 0.178 |
| Montalvo | 50 | 0.011 | | 50,000 | 50,000 | | 100,000 | 0.026 | 0.037 |
| Saticoy | 50 | 0.011 | 0 | | 75,000 | | 75,000 | 0.023 | 0.033 |
| Subtotals (Districts) | 2,425 | 0.521 | 536,000 | 700,000 | 2,225,000 | 300,000 | 3,761,000 | 0.991 | 1.513 |
| Corridors | | | | | | | | | |
| Ventura Avenue | 800 | 0.172 | 40,000 | 100,000 | 100,000 | | 240,000 | 0.061 | 0.233 |
| Main Street | 100 | 0.022 | 15,000 | 40,000 | | | 55,000 | 0.012 | 0.034 |
| Thompson Boulevard | 300 | 0.065 | 15,000 | 40,000 | | | 55,000 | 0.012 | 0.077 |
| Loma Vista Road | 25 | 0.005 | 15,000 | 40,000 | | | 55,000 | 0.012 | 0.017 |
| Telegraph Road | 250 | 0.054 | 15,000 | 40,000 | | | 55,000 | 0.012 | 0.066 |
| Victoria Avenue | 50 | 0.011 | 15,000 | 40,000 | | | 55,000 | 0.012 | 0.023 |
| Johnson Drive | 150 | 0.032 | 50,000 | 20,000 | | | 70,000 | 0.015 | 0.048 |
| Wells Road | 50 | 0.011 | 15,000 | 20,000 | | | 35,000 | 0.008 | 0.018 |
| Subtotals (Corridors) | 1,725 | 0.371 | 180,000 | 340,000 | 100,000 | 0 | 620,000 | 0.144 | 0.515 |
| SOI/Other Infill | | | | | | | | | |
| 101/126 Agriculture | 200 | 0.043 | | | | | 0 | 0.000 | 0.043 |
| Wells/Saticoy | 1,050 | 0.226 | | | | | 0 | 0.000 | 0.226 |
| Pierpont | 100 | 0.022 | 30,000 | | | | 30,000 | 0.007 | 0.028 |
| Other Neighborhood Centers | 100 | 0.022 | | | | | | 0.000 | 0.022 |
| Second Units | 300 | 0.065 | | | | | | 0.000 | 0.065 |
| Underutilized | 250 | 0.054 | | | | | | 0.000 | 0.054 |
| Vacant | 450 | 0.097 | 165,000 | 50,000 | | | 215,000 | 0.047 | 0.144 |
| Subtotals (Other Infill) | 2,450 | 0.527 | 195,000 | 50,000 | 0 | 0 | 245,000 | 0.054 | 0.581 |
| Totals (Intensification/Reuse) | 6,600 | 1.419 | 911,000 | 1,090,000 | 2,325,000 | 300,000 | 4,626,000 | 1.189 | 2.608 |
| Expansion Areas | | | | | | | | | |
| North Avenue | 322 | 0.069 | 36,590 | 54,886 | | | 91,476 | 0.020 | 0.089 |
| Olivas | | 0.000 | | | | | 0 | 0.000 | 0.000 |
| Serra | | 0.000 | | | | | | 0.000 | 0.000 |
| Canada Larga | | 0.000 | | | | | | 0.000 | 0.000 |
| Poinsettia | 2,380 | 0.512 | 182,952 | 640,332 | | | 823,284 | 0.181 | 0.693 |
| Subtotals (Expansion) | 2,702 | 0.581 | 219,542 | 695,218 | 0 | 0 | 914,760 | 0.201 | 0.782 |
| Planned and Pending Developments | | | | | | | | | |
| Downtown | 50 | 0.011 | 1,072 | | | 150,000 | 151,072 | 0.060 | 0.071 |
| Ventura Avenue/Westside | 238 | 0.051 | 7,086 | | 27,000 | | 34,086 | 0.010 | 0.061 |
| Midtown | 34 | 0.007 | 13,751 | | | | 13,751 | 0.003 | 0.010 |
| College (Telegraph/Loma Vista) | 4 | 0.001 | 2,718 | 8,849 | | | 11,567 | 0.003 | 0.003 |
| Telephone Road Corridor | 256 | 0.055 | | 54,785 | | | 54,785 | 0.012 | 0.067 |
| Montalvo/Victoria | 296 | 0.064 | | 4,300 | | | 4,300 | 0.001 | 0.065 |
| Saticoy/East End | 840 | 0.181 | 7,950 | 5,600 | | | 13,550 | 0.003 | 0.184 |
| Arundell | | 0.000 | 41,640 | 42,614 | 18,080 | | 102,334 | 0.024 | 0.024 |
| Olivas | | 0.000 | 7,160 | 7,066 | 390,053 | | 404,279 | 0.120 | 0.120 |
| Subtotals (Planned/Pending) | 1,718 | 0.369 | 81,377 | 123,214 | 435,133 | 150,000 | 789,724 | 0.236 | 0.605 |
| Totals (Intensification + Expansion + Pending) | 11,020 | 2.369 | 1,211,919 | 1,908,432 | 2,760,133 | 450,000 | 6,330,484 | 1.626 | 3.996 |

Wastewater Comparison by Scenario

The six scenarios discussed above would have varying impacts on existing wastewater plants as summarized in the Table 4.13-27. Scenario 1 has the lowest wastewater flow and, along with Scenario 5, would provide a substantial buffer (approximately 2.0 mgd) with regard to total capacity at the VWRF. Scenario 3, 4 and 6 are virtually identical in terms of their impacts and Scenario 2 is only slightly higher in its impact on the VWRF but slightly lower in its impact on the OVSD plant. Scenario 5 would have the highest impact on the OVSD plant. Additionally, future water conservation measures implemented by these new developments as well as ongoing measures by existing customers could reduce per capita water use inside the home, thus generating less sewage and providing additional wastewater capacity. These flows can be monitored in the future to determine whether they are tracking on or below projections and adjustments made, if necessary, for planning purposes.

Table 4.13-27
Projected Wastewater Flow Summary

	VWRF	OVSD
	(mgd)	(mgd)
Scenario 1	2.85	0.18
Scenario 2	3.72	0.28
Scenario 3	3.67	0.33
Scenario 4	3.67	0.33
Scenario 5	2.98	1.01
Scenario 6	3.67	0.33

MITIGATION MEASURES

The 2005 General Plan includes the following policies and actions relating to minimizing impacts associated with wastewater generation.

Policy 5B Improve services in ways that respect and even benefit the environment.
Action 5.8 Locate new development in or close to developed areas with adequate public services, where it will not have significant adverse effects, either individually or cumulatively, on coastal resources.

Action $5.9 \quad$ Update development fee and assessment district requirements as appropriate to cover the true costs associated with development.

Action 5.10 Utilize existing waste source reduction requirements, and continue to expand and improve composting and recycling options.

Action 5.12 Apply new technologies to increase the efficiency of the wastewater treatment system.

In addition to the above policy and actions, the following measure is recommended for all six scenarios.

U-2(a) Sewer System Analyses. The following action should be added to the 2005 General Plan:

- Require project proponents to conduct sewer collection system analysis to determine if downstream facilities are adequate to handle the proposed development.

In addition, the following measure is required for Scenario 5.
U-2(b) Ojai Valley Sanitary District Capacity. The following action shall be added to the 2005 General Plan if Scenario 5 or any other scenario that includes both the North Avenue and Western Cañada Larga expansion areas is selected:

- Allow development within the North Avenue expansion area or Western Cañada Larga expansion only when the Ojai Valley Sanitary District has adequate treatment capacity for projected wastewater flows or other mitigation is approved by the City Engineer.

SIGNIFICANCE AFTER MITIGATION

With implementation of the proposed General Plan policies and action items, and above mitigation measures, impacts related wastewater collection and treatment would be less than significant for any of the six land use scenarios.

4.14 LAND USE and PLANNING

This section analyzes the 2005 General Plan's consistency with, and potential environmental impacts resulting from, applicable local, regional, and state land use policies. Consistency with the Ventura County Air Quality Management Plan (AQMP) is discussed in Section 4.3, Air Quality. Land use compatibility conflicts associated with growth accommodated under the 2005 General Plan are discussed in Sections 4.1, Aesthetics and Community Design, 4.2, Agriculture, 4.3, Air Quality, 4.7, Hazards and Hazardous Materials, and 4.10, Noise, 4.11.

4.14.1 Setting

Ventura is subject to the land use regulatory policies of various state and regional agencies. These agencies and the corresponding state and regional policy documents that affect land use planning in Ventura are discussed below.
a. Regulatory Agencies. State, regional, and local agencies with roles in establishing and implementing land use policy in Ventura include the California Coastal Commission, the Southern California Association of Governments, and the Ventura County Local Agency Formation Commission (LAFCO).

California Coastal Commission. The California Coastal Commission was established by voter initiative in 1972 (Proposition 20) and later made permanent by the Legislature through adoption of the California Coastal Act of 1976. The mission of the Coastal Commission is to protect, conserve, restore, and enhance environmental and human-based resources of the California coast and ocean for environmentally sustainable and prudent use by current and future generations.

In partnership with coastal cities and counties, the Coastal Commission plans and regulates the use of land and water within the coastal zone. ${ }^{1}$ Development activities, which are broadly defined by the Coastal Act to include (among others) construction of buildings, divisions of land, and activities that change the intensity of use of land or public access to coastal waters, generally require a coastal permit from either the Coastal Commission or the local government.

Southern California Association of Governments (SCAG). The City of Ventura is located within the planning area of the Southern California Association of Governments (SCAG). SCAG functions as the Metropolitan Planning Organization for Los Angeles, Orange, San Bernardino, Riverside, Ventura and Imperial Counties. The region encompasses a population exceeding 15 million persons in an area of more than 38,000 square miles. As the designated Metropolitan Planning Organization, SCAG is mandated by the federal government to research and draw up plans for transportation, growth management, hazardous waste management, and air quality. Also functioning as the Metropolitan Transportation Authority, SCAG administers the state-mandated Regional Transportation Plan (RTP), designed to address the regional impact of urban congestion.

[^11]Ventura County Local Agency Formation Commission (LAFCO). The Ventura LAFCO was formed and operates according to the Cortese-Knox-Hertzberg Local Government Reorganization Act of 2000 (California Government Code $\$ 56000$ et seq.). State law provides for LAFCOs to be formed as independent agencies in each county in California. LAFCOs implement state requirements and state and local policies relating to boundary changes for cities and most special districts, including spheres of influence, incorporations, annexations, reorganizations and other changes of organization. In this capacity, the Ventura LAFCO is the boundary agency for cities and most special districts in Ventura County.
b. Applicable Plans and Policies. Plans, regulations, and policies of the above agencies that are relevant to the proposed 2005 General Plan are described below.

California Coastal Act. The California Coastal Act of 1976 (Public Resources Code 30000 et. seq.) establishes policies guiding development and conservation along the California coast. Coastal Act policies fall into six general categories: (1) public access; (2) recreation; (3) marine environment; (4) land resources; (5) development; and (6) industrial development. Specific policies and their relevance to the 2005 General Plan are discussed under Impact LU-2, beginning on page 4.14-10.

The Coastal Act requires local jurisdictions that are located (wholly or partly) in the coastal zone to prepare a Local Coastal Program (LCP) for the portion of the local jurisdiction that lies within the Coastal Zone. The LCP consists of a Land Use Plan (such as this General Plan) and an Implementation Plan (i.e., Zoning Regulations). The Coastal Commission must approve (i.e., "certify") a City's LCP in order to ensure that the LCP is consistent with, and achieves the objectives of, the Coastal Act. As the LCP is being updated as part of the 2005 General Plan, the LCP will require certification by the Coastal Commission.

Regional Comprehensive Plan and Guide. SCAG's Regional Comprehensive Plan and Guide (RCPG) contains a general overview of federal, state, and regional plans applicable to the southern California region and serves as a comprehensive planning guide for future regional growth. The primary goals of the RCPG are to improve the standard of living, enhance the quality of life, and promote social equity. The RCPG was adopted in 1994 by the member agencies of SCAG to set broad goals for the Southern California region and identify strategies for agencies at all levels of government to use in their decision making. It includes input from each of the 13 subregions that make up the Southern California region and includes Los Angeles, Orange, San Bernardino, Riverside, Imperial, and Ventura Counties.

Regional Transportation Plan (RTP). SCAG's RTP is a long range transportation plan that looks ahead $20+$ years and provides a vision for the future of the regional multi-modal transportation system. The RTP identifies major challenges as well as potential opportunities associated with growth, transportation finances, the future of airports in the region, and impending transportation system deficiencies that could result from growth that is anticipated in the region.

Growth Vision Report. In an effort to provide local decision-makers with the tools they need to plan more effectively for the six million new residents projected to live in Southern California by 2030, SCAG undertook a growth visioning initiative called Southern California

Compass. The objective of this effort was to develop a comprehensive new vision for Southern California over the next 30 years by taking a more all-encompassing, inclusive approach to planning at both the local and regional levels. The SCAG Growth Vision Report begins with a general discussion of the challenges facing Southern California as it prepares to accommodate an estimated 6.3 million additional people by 2030. It studies historical trends in demographics, housing, jobs, and other key aspects essential to understanding how the region will evolve and grow. Looking forward, the report explores how emerging trends and conditions will affect future growth in the region. It also discusses the challenges of continuously developing and refining the Growth Vision.

Guidelines for Orderly Development. The Guidelines for Orderly Development make Ventura County unique in the State in terms of County/City development issues. Originally adopted in 1969 by the Ventura LAFCO, Ventura County, and each of the cities in the County, the Guidelines for Orderly Development are statements of local policies which provide that urban development should occur, whenever and wherever practical, within incorporated cities.

4.14.3 Impact Analysis

a. Methodology and Significance Thresholds. The discussion of land use impacts analyzes the proposed 2005 General Plan's consistency with applicable policies of the various state and regional plan's for the purposes of assessing the proposed project's environmental impacts related to land use.

The proposed 2005 General Plan is a citywide plan intended to provide for the orderly development of the community over the next 20 years. As such, it would not physically divide an established community. Therefore, the proposed 2005 General Plan would result in a potentially significant land use impact if it would:

- Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including SCAG's Regional Comprehensive Plan and Guide and the California Coastal Act) adopted for the purpose of avoiding or mitigating an environmental effect
- Conflict with an applicable habitat conservation plan or natural community conservation plan

Although the analysis that follows evaluates consistency with various regulatory policies, it should be noted that each individual agency (California Coastal Commission, SCAG, Ventura County LAFCO) ultimately has the discretion to determine consistency of the 2005 General Plan with the policies, plans, and/or programs that fall within that agency's purview.
b. Project Impacts and Mitigation Measures. The following matrix provides a summary comparison of impacts for each of the EIR scenarios. A detailed discussion of each environmental impact follows.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
State and LAFCO Boundary Adjustment Policies (Impact LU-1)	Generally consistent with applicable policies; LAFCO will determine consistency of individual future adjustments on a case-by-case basis. Impacts are Class III, less than significant.	Generally consistent with applicable policies; LAFCO will determine consistency of individual future adjustments on a case-by-case basis. Impacts are Class III, less than significant.	Generally consistent with applicable policies; LAFCO will determine consistency of individual future adjustments on a case-by-case basis. Impacts are Class III, less than significant.	Generally consistent with applicable policies; LAFCO will determine consistency of individual future adjustments on a case-by-case basis. Impacts are Class III, less than significant.	Generally consistent with applicable policies; LAFCO will determine consistency of individual future adjustments on a case-by-case basis. Impacts are Class III, less than significant.	Generally consistent with applicable policies; LAFCO will determine consistency of individual future adjustments on a case-by-case basis. Impacts are Class III, less than significant.
California Coastal Act (Impact LU-2)	Consistent with Coastal Act policies. Impacts are Class III, less than significant.	Generally consistent with Coastal Act policies, but possible conversion of Prime agricultural land inconsistent with policies relating to the maintenance of Prime agricultural land within the coastal zone. Impacts are Class I, unavoidably significant.	Impacts similar to Scenario 2 and Class I, unavoidably significant, due to possible conversion of Olivas area Prime agricultural land.	Consistent with Coastal Act policies. Impacts are Class III, less than significant.	Consistent with Coastal Act policies. Impacts are Class III, less than significant.	Consistent with Coastal Act policies. Impacts are Class III, less than significant.
SCAG Regional Comprehensive Plan and Guide (RCPG) (Impact LU-3)	Generally consistent with RCPG policies. Impacts are Class III, less than significant.	Generally consistent with RCPG policies. Impacts are Class III, less than significant.	Generally consistent with RCPG policies. Impacts are Class III, less than significant.	Generally consistent with RCPG policies. Impacts are Class III, less than significant.	Generally consistent with RCPG policies. Impacts are Class III, less than significant.	Generally consistent with RCPG policies. Impacts are Class III, less than significant.
SCAG Regional Transportation Plan (RTP)	Generally consistent with RTP policies.	Generally consistent with RTP policies. Impacts are Class	Generally consistent with RTP policies. Impacts are Class	Generally consistent with RTP policies. Impacts are Class	Generally consistent with RTP policies. Impacts are Class	Generally consistent with RTP policies.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
(Impact LU-4)	Impacts are Class III, less than significant.	Impacts are Class III, less than significant.				
SCAG Growth Visioning Report (Impact LU-5)	Generally consistent with Growth Visioning Report policies. Impacts are Class III, less than significant.	Generally consistent with Growth Visioning Report policies. Impacts are Class III, less than significant.	Generally consistent with Growth Visioning Report policies. Impacts are Class III, less than significant.	Generally consistent with Growth Visioning Report policies. Impacts are Class III, less than significant.	Generally consistent with Growth Visioning Report policies. Impacts are Class III, less than significant.	Generally consistent with Growth Visioning Report policies. Impacts are Class III, less than significant.

$$
\begin{array}{ll}
\text { Impact LU-1 } & \begin{array}{l}
\text { No boundary adjustments are being sought at this time and all of } \\
\text { the General Plan scenarios emphasize intensification and reuse } \\
\text { over expansion of the City. Annexations and Sphere of Influence } \\
\text { adjustments could be sought at some point in the future under } \\
\text { any of the scenarios and certain possible annexations/Sphere of }
\end{array} \\
& \text { Influence adjustments could potentially conflict with relevant } \\
& \text { State and LAFCO policies. However, because any conflicts would } \\
& \text { need to be resolved prior to LAFCO approval of any boundary } \\
\text { adjustment, impacts can be reduced to a Class III, less than } \\
& \text { significant, level for all six scenarios. }
\end{array}
$$

The State of California possesses the exclusive power to regulate boundary changes, which means that no local government has the right to change its own boundary without State approval. The Legislature has prescribed a "uniform process" for boundary changes for both cities and special districts that is now embodied in the Cortese-Knox-Hertzberg Local Government Reorganization Act of 2000 (California Government Code Section 56000 et seq.). This Act delegates the Legislature's boundary powers to local agency formation commissions (LAFCOs).

The Ventura LAFCO is responsible for reviewing and approving proposed jurisdictional boundary changes in Ventura County, including the annexation and detachment of territory to and/or from cities and most special districts, incorporations of new cities, formations of new special districts, and consolidations, mergers, and dissolutions of existing districts. In addition, LAFCOs must review and approve contractual service agreements, conduct service reviews, and determine spheres of influence for each city and district.

In addition to the Cortese-Knox-Hertzberg Act, the Ventura LAFCO has adopted local policies that it considers in its review of projects. The LAFCO also enforces the County's Guidelines for Orderly Development. A complete listing of policies that LAFCO considers in its review of proposed boundary changes can be found in the LAFCO website (www.ventura.lafco.ca.gov).

No adjustments to the City's corporate boundaries or Sphere of Influence (SOI) are proposed at this time. However, all of the 2005 General Plan scenarios could accommodate the development of lands that are outside the current City boundaries and SOI. Specific analysis of individual proposals would be needed at the time such possible future boundary adjustments are proposed, but boundary adjustment policies are discussed below as they relate to the 2005 General Plan.

Conformance with Local Plans and Policies. Unless exceptional circumstances are shown, LAFCO will not approve a proposal unless it is consistent with the applicable general plan and any applicable specific plan. No boundary adjustments are being sought at this time. Although boundary adjustments may be sought in the future under any of the EIR scenarios, it is anticipated that such adjustments would be consistent with the 2005 General Plan, regardless of which of the EIR scenarios is adopted.

LAFCO will not approve a proposal unless it is consistent with ordinances requiring voter approval. Scenarios 2-6 all includes potential expansion areas that are subject to voter approval. No land use designated or boundary adjustment is being sought at this time for any of the expansion areas. If such adjustments are sought at some point in the future, they will be sought only after voter approval of a land use designation change for the property in question.

Guidelines for Orderly Development. LAFCO encourages proposals that involve urban development or that result in urban development to include annexation to a city wherever possible. All of the EIR scenarios emphasize intensification/reuse over expansion of the City's boundaries and no boundary adjustments are being sought at this time. Nevertheless, all of the scenarios would accommodate development in lands that are outside the current corporate boundaries and the SOI. Development of such areas could be found to be in conflict with the Guidelines for Orderly Development, particularly with respect to the North Avenue and Western Cañada Larga expansion areas, which are not contiguous with the existing City corporate boundary. However, no development would occur until such time as the property in question is annexed and, if necessary, included in the SOI. Such adjustments could be made only with LAFCO approval and, in the case of the expansion areas, voter approval under SOAR. Given that future boundary adjustments would only be made at such time as they are deemed consistent with the Guidelines for Orderly Development, any of the scenarios could be found to be consistent with the Guidelines.

Greenbelts. LAFCO will not approve a proposal for a city that is in conflict with any Greenbelt Agreement unless exceptional circumstances are shown to exist. Scenarios 1, 4, 5, and 6 do not include any lands that are subject to existing Greenbelt Agreements. However, the Olivas expansion area that is included in Scenarios 2 and 3 is within the Oxnard-Ventura Greenbelt. As such, the Olivas area could be brought into the SOI and annexed to the City only if it is removed from the Greenbelt. Such an amendment to the Greenbelt Agreement could be made only with the consent of the City of Oxnard. Moreover, approval of a land use designation change could only be made with voter approval under the SOAR Ordinance.

Agricultural and Open Space Preservation. LAFCO will approve a proposal for a change of organization that is likely to result in the conversion of Prime agricultural land or open space land only if it finds that the proposal will lead to planned, orderly, and efficient development. For a development to be deemed planned, orderly, and efficient, all of the following criteria must be met: (1) the territory involved is contiguous with lands developed with an urban use or that have received approvals for urban development; (2) the territory is likely to be developed within 5 years and has been pre-zoned for non-agricultural use; (3) insufficient non-Prime agricultural land or vacant land exists within the existing boundaries of the agency that is planned and developable for the same general type of use; (4) the territory is not subject to voter approval for the extension of services or changing of land use designations; and (5) the proposal will have no significant adverse effects on the integrity of other Prime agricultural or open space lands.

All of the EIR scenarios emphasize intensification and reuse of existing urban lands prior to the development of agricultural lands. Nevertheless, as discussed in Section 4.2, Agricultural Resources, any of the six scenarios would potentially accommodate the conversion of some Prime agricultural lands if the City's planning objectives cannot be met through intensification
and reuse. All of the areas that could potentially be converted are contiguous with existing urban uses and, in many instances, are surrounded by urban uses. Although the North Avenue, Olivas, Serra, and Poinsettia expansion areas are subject to voter approval under the SOAR Ordinance, voter approval would have to be received prior to any LAFCO action. In addition, it is anticipated that inclusion within the SOI and/or annexation would not be sought unless development were planned within five years. In the case of large developments that could potentially be accommodated under Scenarios 2, 3, 4, and 6, development and annexation may need to be phased. Any of the agricultural lands that could be converted under Scenarios $1-6$ could be found to be consistent with LAFCO's agricultural and open space preservation policies, though LAFCO's determination would need to be at the time of individual proposals based upon current (at that time) circumstances and the nature of the proposals.

School Capacity. LAFCO will not favor a change of organization where any affected school district certifies that there is no sufficient existing school capacity to serve the territory involved. As discussed in Section 4.11, Public Services, many VUSD schools are at or near capacity and would be over capacity in 2025 with the growth projected under any of the EIR scenarios. Scenario 1 would only accommodate a minor SOI adjustment that would not bring any residential development, though the annexation of individual properties that may be sought in the future under Scenario 1 could generate new VUSD students. The expansion areas included in Scenarios 2, 3, 4, and 6 include sufficient acreage to accommodate new schools that would be needed to serve the areas. However, the expansion areas included in Scenario 5 may lack sufficient land to accommodate the development of new schools. The impacts of individual developments on schools will need to be addressed on a case-by-case basis as such impacts depend upon the nature of the project and the circumstances for the VUSD at the time of the individual application.

Annexation of Unincorporated Island Areas. Any approval of a proposal for a change of organization for an area of 40 acres or more will be conditioned to provide that the proceedings will not be completed until and unless a subsequent proposal is filed with LAFCO initiating proceedings for the change of organization of all unincorporated island areas that meet the provisions of Government Code Section 56375.3. This policy means that LAFCO will not approve annexations of 40 acres or more unless the City has filed an application to annex all of the island areas in the City, which include eight separate islands in the Montalvo area totaling about 55 acres. Therefore, no additional annexations will be completed until an application for annexation of these island areas has been filed.

Mitigation Measures. No mitigation is required. Individual boundary adjustment proposals will need to be addressed by the City and the Ventura LAFCO on a case-by-case basis.

Significance After Mitigation. As the City is not seeking any boundary adjustments at this time, no inconsistencies would occur with respect to any of the six scenarios. Certain areas that may be considered for future annexation and/ or inclusion within the SOI would not be eligible under current conditions; however, it is assumed that boundary adjustments would not be sought until such time as such adjustments could be found to be consistent with state and local requirements.

$$
\begin{array}{ll}
\text { Impact LU-2 } & \begin{array}{l}
\text { Scenarios 1, 4, 5, and } 6 \text { could be found to be consistent with } \\
\text { applicable policies of the California Coastal Act. Impacts } \\
\text { would be Class III, less than significant. However, Scenarios } 2 \\
\text { and } 3 \text { would potentially accommodate the conversion of Prime } \\
\text { agricultural land within the Olivas expansion area, which is } \\
\text { within the Coastal Zone. Such conversion could be found } \\
\text { inconsistent with California Coastal Act policies relating to } \\
\text { the maintenance of Prime agricultural land within the coastal } \\
\text { zone. Impacts for these two scenarios would be Class I, } \\
\text { unavoidably significant. }
\end{array}
\end{array}
$$

The coastal zone boundary with the Ventura Planning Area is shown on Figure 4.14-1. Areas within the existing City limits that are located within the Coastal Zone generally include Emma Wood State Beach, the majority of the Downtown District, the southwestern portion of the Catalina neighborhood, San Buenaventura State Beach Park, Pierpont Keys, Ventura Harbor, and the open space areas located south/southeast of the Ventura Harbor that extend to the southern City limits and include a portion of McGrath State Beach. As intensification and reuse could occur within these areas of the City under Scenarios 1-6, these areas are included in the following policy consistency analysis. Moreover, the Olivas expansion area, which is roughly bisected by the Coastal Zone boundary, is the only expansion area under consideration that is located within the Coastal Zone. As Scenarios 2 and 3 include the Olivas expansion area, the following discussion includes an analysis of the Olivas expansion area under Scenarios 2 and 3 as well.

The following analysis assesses the proposed project's consistency with applicable policies of the Coastal Act that were adopted for the purpose of avoiding or mitigating an environmental effect. The final determination of the proposed 2005 General Plan's consistency with the Coastal Act ultimately resides with the Coastal Commission as a part of the certification process for the City of Ventura's Local Coastal Program (LCP). The LCP component relevant to the DEIR is the land use plan. The Coastal Commission will review the land use plan component of the LCP for consistency with the Coastal Act.

Article 2-Public Access. Article 2 of the Coastal Act provides a number of policies designed to ensure the public's constitutionally endowed right of access to coastal resources. More specifically, Article 2 coastal access policies include, but are not limited to, the following: (1) access must be provided to coastal resources (Section 30210); (2) new development shall not interfere with existing public access to coastal resources (Section 30211); and (3) public access shall be provided in specific situations involving new development between the nearest public roadway and the shoreline (Section 30212).

The 2005 General Plan does not include substantial future development near the coast that would prevent public access to coastal resources. None of the six development scenarios include development that would hinder access to the coast and some future developments in the Downtown and Harbor areas may enhance coastal access. In particular, possible future hotel development in the Downtown area and planned improvements to Harbor facilities in accordance with the Ventura Harbor Master Plan could generally improve public access to the
coast. Public access would continue to be provided at Emma Woods State Beach, San Buenaventura State Beach Park, the Pierpont Keys, Ventura Harbor, and McGrath State Beach under each of the scenarios. The 2005 General Plan includes following policies and actions relating to coastal access:

$$
\begin{aligned}
& \text { Action 3.4 } \begin{array}{l}
\text { Require all shoreline development (including anti-erosion or other } \\
\text { protective structures) to provide public access to and along the coast, } \\
\text { unless it would duplicate adequate access existing nearby, adversely } \\
\text { affect agriculture, or be inconsistent with public safety, military security, } \\
\text { or protection of fragile coastal resources. }
\end{array} \text {. }
\end{aligned}
$$

Policy 6A Expand the park and trail network to link shoreline, hillside, and watershed areas.

With implementation of Action 3.4 and Policy 6A, development under Scenarios 1-6 could be found to be consistent with the public access requirements of the Coastal Act.

Article 3-Recreation. Article 3 of the California Coastal Act includes a number of policies designed to protect and enhance coastal-related recreational activities and facilities. Article 3 includes, but is not limited to, policies regulating the following recreational activities and facilities: (1) coastal areas suited for water-oriented recreational activities that cannot readily be provided at inland water areas (Section 30220); (2) oceanfront land suitable for recreational use (Section 30221); (3) private lands suitable for visitor-serving commercial recreational facilities (Section 30222); and (4) facilities designed to enhance recreational boating use of coastal waters (Section 30224). Scenarios 1-6 would all maintain the existing parks and recreational facilities located within the City limits, which include Emma Wood State Beach, the Promenade, San Buenaventura State Beach Park, beaches adjacent to the Pierpont Keys, and McGrath State Beach. These areas, which include biking and pedestrian paths, day-use facilities, camping facilities, boating facilities, the Ventura Pier, and the Channel Islands National Monument, would continue to facilitate coastal recreational activities. The Ventura Harbor would continue to provide facilities that provide for public and commercial recreational boating activities.

Action 3.4, discussed above, would require new development to provide access to coastal resources for recreational activities. Therefore, Scenarios 1-6 could be consistent with the requirements of the Coastal Act recreational policies and impacts would be less than significant.

Article 4 - Marine Environment. Article 4 of the Coastal Act is designed to maintain, enhance, and restore marine resources. More specifically, Article 4 includes, but is not limited to, policies intended to achieve the following: (1) maintenance of the biological productivity and quality of coastal waters, streams, wetlands, estuaries, and lakes (Section 30231); (2) provisions for diking, filling, or dredging of open coastal waters, wetlands, estuaries, and lakes where there is no feasible less environmentally damaging alternative (Section 30233); (3) protection of commercial fishing and recreational boating facilities (Section 30234); and, (4) development of water supply and flood control projects within rivers and streams using the best mitigation measures feasible (Section 30236).

As discussed in Section 4.4, Biological Resources, Ventura maintains a diverse range of coastal biological habitats including coastal strand habitat, rocky shore habitat, salt and fresh water estuaries/marshes, and coastal sage scrub habitat. Moreover, man-made revetments located at the Harbor, Pierpont, Fairgrounds, and Beachfront Promenade require maintenance activities that include filling and dredging of open coastal waters. Finally, the Ventura Pier and Ventura Harbor provide important recreational and commercial fishing and boating facilities.

The 2005 General Plan includes the following resource protection policies and actions aimed at the preservation and enhancement of marine resources.

Policy 1A Reduce beach and hillside erosion and threats to coastal ecosystem health.
Action 1.1 Adhere to the policies and directives of the California Coastal Act in reviewing and permitting any proposed development in the Coastal Zone.

Action 1.2 Prohibit non coastal-dependent energy facilities within the Coastal Zone, and require any coastal-dependent facilities including pipelines and public utility structures to avoid coastal resources (including recreation, habitat, and archaeological areas) to the extent feasible, or to minimize any impacts if development in such areas is unavoidable.
Action 1.3 Work with the State Department of Parks and Recreation, Ventura County Watershed Protection Agency, and the Ventura Port District to determine and carry out appropriate methods for protecting and restoring coastal resources, including by supplying sand at beaches under the Beach Erosion Authority for Control Operations and Nourishment (BEACON) South Central Coast Beach Enhancement program.
Action 1.4 Require new coastal development to provide non-structural shoreline protection that avoids adverse impacts to coastal processes and nearby beaches.
Action 1.5 Collect suitable material from dredging and development, and add it to beaches as needed and feasible.
Action 1.11 Require that sensitive wetland and coastal areas be preserved as undeveloped open space wherever feasible and that future developments result in no net loss of wetlands or "natural" coastal areas.
Action 1.19 Require projects near watercourses, shoreline areas, and other sensitive habitat areas to include surveys for State and/or federally listed sensitive species and to provide appropriate buffers and other mitigation necessary to protect habitat for listed species.
Action 1.20 Conduct coastal dredging in accordance with the U.S. Army Corps of Engineers and California Department of Fish and Game requirements in order to avoid impacts to sensitive fish and bird species.

These policies and actions would provide protection and restoration of environmentally sensitive habitat, including coastal waters, wetlands, and estuaries. With the proposed 2005

General Plan policies and actions, Scenarios 1-6 could be found consistent with Coastal Act policies relating to the marine environment.

The 2005 General Plan does not include any policies or actions that would restrict commercial fishing or recreational boating. It includes the following actions aimed at improving boating opportunities:

Action 6.18 Offer programs that highlight natural assets, such as surfing, sailing, kayaking, climbing, gardening, and bird watching.

Action 6.19 Provide additional boating and swimming access as feasible.
The 2005 General Plan includes the following actions aimed at applying appropriate approaches to flood control:

Action 1.6 Support continued efforts to decommission Matilija Dam to improve the sand supply to local beaches.
Action 1.10 Remove concrete channel structures as funding allows, and where doing so will fit the context of the surrounding area and not create unacceptable flood or erosion potential.
Action 1.16 Comply with directives from regulatory authorities to update and enforce stormwater quality and watershed protection measures that limit impacts to aquatic ecosystems and that preserve and restore the beneficial uses of natural watercourses and wetlands in the city.

With implementation of the above policies and actions, the 2005 General Plan could be found to be consistent with the requirements of the Coastal Act recreational policies and impacts would be less than significant.

Article 5 - Land Resources. Article 5 of the Coastal Act applies to development and local regulatory actions that involve environmentally sensitive habitat (Section 30240), the maintenance or conversion of agricultural lands (Section 30241-30243), and archaeological or paleontological resources (Section 30244). Section 30240 limits development within environmentally sensitive habitat areas to uses dependent on resources found within those areas. In addition, Section 30240 limits development adjacent to environmentally sensitive habitat areas, parks, and recreational areas to activities that will not degrade, or be incompatible with, such habitat and recreation areas. The 2005 General Plan includes policies and actions that direct the City to monitor the condition of environmentally sensitive habitat and regulate future development on, or adjacent to, such areas under Scenarios 1-6. Therefore, Scenarios 1-6 could be found to be consistent with the environmentally sensitive habitat policies of the Coastal Act and impacts would be less than significant.

Section 30241 of the Coastal Act is designed to maintain the maximum amount of Prime agricultural land in production to protect the agricultural economy and to avoid conflicts between agricultural and urban land uses. In addition, Section 30242 states that lands suitable for agricultural use shall not be converted to non-agricultural uses unless:

- Continued or renewed agricultural use is infeasible;
- Conversion would preserve Prime agricultural land; or
- Conversion would allow for the concentration of new residential, commercial, or industrial development located contiguous with, or in close proximity to, existing developed areas able to accommodate it or, where such areas are not able to accommodate it, in other areas with adequate public services and where it will not have significant adverse effects, either individually or cumulatively, on coastal resources (Section 30250)

As discussed in Section 4.2, Agriculture, Scenarios 2 and 3 include an estimated 876 acres of prime agricultural land within the Olivas expansion area, approximately half of which is located within the coastal zone and subject to Coastal Act policies regulating the conversion of agricultural lands. The Olivas expansion area currently has an Agricultural Use designation under the 1989 Comprehensive Plan and this designation would remain under any of the 2005 General Plan land use scenarios. However, Scenarios 2 and 3 would accommodate the possible future conversion of Prime farmland within the coastal zone by identifying the Olivas area as an area for possible future expansion.

As discussed in Section 4.2, Agriculture, the Olivas expansion area is subject to the City's SOAR initiative and would require approval by a majority of voters in order to change from an agricultural to a non-agricultural land use designation. Pursuant to the procedures outlined in the Coastal Act (Section 30241.5) for determining the economic viability of existing agricultural uses, an economic feasibility evaluation would be required to demonstrate that the conversion of agricultural lands is warranted due to conflicts with urban uses, or because the conversion of agricultural lands would complete a logical and viable neighborhood and contribute to the establishment of a stable limit to urban development. The conversion of agricultural lands within the Olivas expansion area to urban uses could be considered to be a logical way to accommodate future regional population and economic growth, as well as housing needs. Development of the Olivas expansion area would be adjacent to existing urban development and public services located to the north and west in the Preble and Pierpont Keys neighborhoods, would connect the Midtown and Arundell areas to Ventura Harbor, and would not be located within an area marked by steep slopes and high fire hazards. Development of this area could also potentially fulfill other Coastal Act objectives, such as improving coastal access and restoring the channelized Arundell Barranca to a more natural condition. Neverthelesss, the conversion of Prime farmland within the Olivas area to a non-agricultural use could be found to be inconsistent with Section 30241 of the Coastal Act.

Section 30244 of the Coastal Act states, "Where development would adversely impact archaeological or paleontological resources as identified by the State Historic Preservation Officer, reasonable mitigation measures shall be required." As discussed in Section 4.5, Cultural and Historic Resources, Scenarios 1-6 could include development within the vicinity of areas of known archaeological sensitivity. However, due to previous ground disturbance related to existing urban development within the existing City limits and agricultural activities within the Olivas expansion area, it is unlikely that significant archaeological or paleontological resources are present within areas of possible future development. As discussed in Section 4.5, the 2005 General Plan includes several policies aimed at the preservation and protection of
archaeological resources. Therefore, Scenarios 1-6 could all be found to be consistent with the requirements of this policy.

Article 6 - Development. Article 6 of the Coastal Act, which applies to new development in the Coastal Zone, includes, but is not limited to, policies and regulations intended to: (1) locate new residential, commercial, or industrial development (with the exception of certain new hazardous industrial development and visitor-serving facilities) such that the new development is contiguous with, or in close proximity to, existing developed areas able to accommodate the new development (Section 30250); (2) protect scenic and visual qualities of coastal areas (Section 30251); (3) minimize adverse impacts to life and property (Section 30253); and (5) establish coastal-dependent development as a priority on or near the shoreline (Section 30255).

The proposed 2005 General Plan does not include site- or project-specific proposals for new development under Scenarios 1-6; however, the 2005 General Plan include various policies and actions to which future new development would be subject. As discussed above under Impact LU-1, LAFCO Policy 2, Policy 3C of the 2005 General Plan would encourages the utilization of available land in the City prior to allowing expansion outside of the existing City limits under Scenarios 1-6. Moreover, as discussed in Section 4.1, Aesthetics and Community Design, the 2005 General Plan includes the following policy and actions that would preserve and enhance the visual qualities of new development within the Coastal Zone:

Policy 3A Sustain and complement cherished community characteristics.

Action 3.3 Require preservation of public view sheds and solar access.
Action 3.4 Require all shoreline development (including anti-erosion or other protective structures) to provide public access to and along the coast, unless it would duplicate adequate access existing nearby, adversely affect agriculture, or be inconsistent with public safety, military security, or protection of fragile coastal resources.
$\begin{array}{ll}\text { Action 3.5 } & \begin{array}{l}\text { Establish land development incentives to upgrade the appearance of } \\ \text { poorly maintained or otherwise unattractive sites, and enforce existing } \\ \text { land maintenance regulations. }\end{array}\end{array}$
With implementation of the proposed design-related policies and actions of the 2005 General Plan, Scenarios 1-6 could be found consistent with the scenic and visual resource policies of the Coastal Act and impacts would be less than significant.

Section 30253 of the Coastal Act provides for the minimization of adverse impacts relating (but not limited) to the following: geologic, flood, and fire hazards; stability and structural integrity of buildings and structures - especially those on beaches, bluffs, and cliffs; and, air quality. A discussion of the proposed 2005 General Plan's potential to create adverse impacts under Scenarios 1-6 can be found in Section 4.3, Air Quality, 4.6, Geologic Hazards, 4.7, Hazards, and 4.8, Hydrology and Water Quality. None of the land use scenarios are expected to create unavoidably significant geologic, flood, or fire impacts, or adversely affect beaches, bluffs, or cliffs. The impact of any of the land use scenarios to regional air quality is identified as unavoidably significant because population projections for the City exceed those contained in the Ventura

County AQMP. However, as discussed in Section 4.3, this is primarily because the population projections in the AQMP have not been updated to reflect current conditions. In a general sense, the emphasis on intensification and reuse of existing developed areas within the City is expected to reduce future air pollutant emissions as compared to continued low density suburban development at the urban fringe. Therefore, any of the land use scenarios could be found to be consistent with Coastal Act Section 30253.

Article 7 - Industrial Development. Article 7 includes policies that apply to coastaldependent industrial development, including refineries and petrochemical facilities, thermal electric generating plants, and offshore oil transportation. The existing Ventura Water Reclamation Facility, located in the Ventura Harbor area, is the only area within the coastal zone that would have an industrial land use designation according to the 2005 General Plan; however, sewage treatment facilities are not regulated pursuant to Article 7 of the Coastal Act. Therefore, Scenarios 1-6 would be consistent with Article 7 of the Coastal Act.

MITIGATION MEASURES

With implementation of the proposed policies and actions of the 2005 General Plan, development under Scenarios 1, 4, 5, and 6 could be found consistent with all applicable Coastal Act policies. However, the possible conversion of prime agricultural lands to urban uses within the Olivas expansion area that could occur under Scenarios 2 and 3 could be found to be inconsistent with Coastal Act policies relating to the maintenance of Prime agricultural lands. Implementation of Policy 3C and associated actions would minimize the premature conversion of productive agriculture land to non-agricultural uses.

SIGNIFICANCE AFTER MITIGATION

Implementation of the policies and actions mentioned above would minimize the premature conversion of Prime agricultural lands within the Olivas expansion area to non-agricultural uses. Nevertheless, Scenarios 2 and 3 could be found to be inconsistent with Coastal Act policies discouraging the conversion of Prime agricultural land to non-agricultural uses due to the inclusion of the Olivas expansion area.

$$
\begin{array}{ll}
\text { Impact LU-3 } & \begin{array}{l}
\text { Scenarios 1-6 could be found to be consistent with SCAG } \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\text { Qagaagity polionent, Air Quality, Outdoor Recreation, and Water } \\
\text { significant, for any of the six } 2005 \text { General Plan land use } \\
\text { scenarios. }
\end{array}
\end{array}
$$

SCAG's Regional Comprehensive Plan and Guide (RCPG) serves as a framework for decisionmaking with respect to regional growth and changes that can be anticipated during the next 20 years and beyond. The RCPG provides a general view of regional plans that will affect local governments, responses to significant issues facing Southern California, and a summary of how the region will meet certain federal and state requirements with respect to Transportation, Growth Management, Air Quality, Housing, Hazardous Waste Management, and Water

Quality Management. Relevant goals and policies contained within the Growth Management, Air Quality, and Open Space chapters are discussed below, with cross-references to sections of this EIR that are applicable to specific issue areas. RCPG Policies relating to population and housing are discussed in Section 4.15, Population and Housing.

Growth Management

The RCPG includes, but is not limited to, Growth Management goals that seek to develop urban forms that minimize public and private development costs, enable firms to be more competitive, and stimulate the regional economy. The following policies are intended to guide efforts toward achievement of these goals.
3.03 The timing, financing, and location of public facilities, utility systems, and transportation systems shall be used by SCAG to implement the region's growth policies.

Environmental impacts associated with public services, public facilities, transportation, and utilities for the 2005 General Plan are discussed in Sections 4.11, Public Services, 4.12, Transportation and Circulation, and, 4.13, Utilities and Service System; SCAG could use the analysis provided in each of those sections for Scenarios 1-6 to implement the region's growth policies. Therefore, Scenarios 1-6 could be found to be consistent with RCPG Policy 3.03.
3.05 Encourage patterns of urban development and land use, which reduce costs of infrastructure construction and make better use of existing facilities.
3.09 Support local jurisdictions' efforts to minimize the costs of infrastructure and public service delivery, and efforts to seek new sources of funding for development and the provision of services.
3.10 Support local jurisdictions' actions to minimize red tape and expedite the permitting process to maintain economic vitality and competitiveness.

As discussed above under Impact LU-1, Scenarios 1-6 would be subject to Policy 3C and associated actions, which encourage reuse and intensification within existing urban areas prior to development of expansion areas outside of the existing City limits. This compact land use pattern is intended to utilize existing infrastructure to the maximum extent feasible and minimize costs associated with significant infrastructure extensions. Although the 2005 General Plan is not a budgeting document, several policies and actions provide general guidance for the funding of public services and facilities. Similarly, although the 2005 General Plan does not address specific procedural requirements for permitting development, it includes a range of policies and actions intended to foster economic vitality. Scenarios 1-6 could be found to be consistent with the requirements of RCPG Policies 3.5, 3.9, and 3.10.

> Encourage existing or proposed local jurisdictions' programs aimed at designing land uses which encourage the use of transit and thus reduce the need for roadway expansion, reduce the number of auto trips and vehicle miles traveled, and create opportunities for residents to walk and bike.

> 3.13 Encourage local jurisdictions' plans that maximize the use of existing urbanized areas accessible to transit through infill and redevelopment.
> 3.16 Encourage development in and around activity centers, transportation corridors, underutilized infrastructure systems, and areas needing recycling and redevelopment.
3.18 Encourage planned development in locations least likely to cause environmental impact.

The 2005 General Plan includes numerous policies and actions that encourage reliance on transit facilities, reduce the need for roadway expansion, reduce the number of auto trips and vehicle miles traveled, and facilitate walking and biking. Among these are:

Action 3.25 | Establish first priority growth areas to include the districts, corridors, |
| :--- |
| and neighborhood centers as identified on the General Plan Diagram; |
| and second priority areas to include vacant undeveloped land when a |
| community plan has been prepared for such (within the City limits). |

Action 4.6 $\quad \begin{aligned} & \text { Require new development to be designed with interconnected } \\ & \text { transportation modes and routes. }\end{aligned}$
Action 4.15 Encourage the placement of facilities that house or serve elderly, disabled, or socioeconomically disadvantaged persons in areas with existing public transportation services and pedestrian and bicycle amenities.
Action 4.16 $\begin{aligned} & \text { Install roadway, transit, and alternative transportation improvements } \\ & \text { along existing or planned multi-modal corridors, including primary bike } \\ & \text { and transit routes, and at land use intensity nodes. }\end{aligned}$
Action 4.29 Develop incentives to encourage City employees and local employers to use transit, rideshare, walk, or bike.

As discussed under Impact LU-1, Scenarios 1-6 would be subject to Policy 3C and associated actions, which encourage new development, reuse, or intensification within existing urban areas prior to development of expansion areas outside of the existing City limits.

Finally, development that could occur under Scenarios 1-6 would be subject to a number of policies and actions that encourage development in locations least likely to cause environmental impacts. As discussed under Impact LU-1, Scenarios 1-6 would include adjustments to the existing SOI such that the northern boundary would be coterminous with the existing northern City limits, thereby removing the hills above the City from the SOI. In doing so, Scenarios 1-6 would remove the possibility for urban development within the foothills area, which is marked by high fire hazards, steep slopes, and sensitive biological resources. Although any of the six scenarios would accommodate the conversion of Prime agricultural land to non-agricultural uses within potential expansion areas, these areas would be located adjacent to urban, developed areas with existing public services, utilities, and infrastructure, the expansion of which could result in fewer environmental impacts than that which would likely occur in order to accommodate growth within the existing SOI (i.e., in the hillsides above the current City limits). Therefore, Scenarios 1-6 could be found to be consistent with RCPG Policies 3.12, 3.13, 3.16, and 3.18.
3.20 Support the protection of vital resources such as wetlands, groundwater recharge areas, woodlands, production lands, and land containing unique and endangered plants and animals.
3.21 Encourage the implementation of measures aimed at the preservation and protection of recorded and unrecorded cultural resources and archaeological sites.
3.22 Encourage mitigation measures that reduce noise in certain locations, measures aimed at preservation of biological and ecological resources, measures that would reduce exposure to seismic hazards, minimize earthquake damage, and to develop emergency response and recovery plans.

The potential impacts of Scenarios 1-6 relating to biological resources, cultural and archaeological resources, noise, seismic hazards, and emergency response plans are discussed in detail in Sections 4.4, Biological Resources, 4.5, Cultural and Historic Resources, 4.10, Noise, 4.6, Geologic Hazards, and 4.7, Hazards and Hazardous Materials (respectively). As discussed in those sections, Scenarios 1-6 would be subject to a number of policies and actions that would protect and enhance important biological habitats (e.g., wetlands, riparian habitat, and sensitive species), avoid impacts to cultural and archaeological resources, protect noise-sensitive uses, minimize exposure to hazards resulting from seismic events, and provide adequate resources for emergency response plans. Therefore, Scenarios 1-6 could be found to be consistent with SCAG Policies 3.20, 3.21, and 3.22.

3.23 Discourage development, or encourage the use of special design requirements, in areas with steep slopes, high fire, flood, and seismic hazards.

As discussed under Impact LU-1, Scenarios 1-6 would involve an adjustment to the SOI boundary that would remove the foothills to the north of the City from the SOI, which is an area marked by steep slopes and high fire hazards. Moreover, as discussed in detail in Sections 4.6, Geologic Hazards, 4.7, Hazards and Hazardous Materials, and 4.8, Hydrology and Water Quality, Scenarios 1-6 would be subject to a number of policies and actions that would discourage or avoid development within areas with steep slopes or subject to high fire, flood, or seismic hazards. Therefore, Scenarios 1-6 could be found to be consistent with RCPG Policy 3.23.

Air Quality

The Air Quality chapter of the RCPG discusses SCAG's air quality planning responsibilities and also describes plans and policies developed by regional, state, and federal air agencies. Specific air quality impacts of the proposed project and consistency with the Ventura County APCD AQMP are discussed in Section 4.3, Air Quality. The following core actions described in the RCPG that are related to the 2005 General Plan include:
5.07 Determine specific programs and associated actions needed (e.g. indirect source rules, enhanced use of telecommunications, provision or community based shuttle services, provision of demand management based programs, or vehicle-miles-traveled/emission fees) so that options to command and control regulations can be assessed.
5.11 Through the environmental document review process, ensure that plans at all
levels of government (regional, air basin, county, subregional and local) consider
air quality, land use, transportation and economic relationships to ensure consistency and minimize conflicts.

Scenarios 1-6 would be subject to a number of policies and actions designed to reduce reliance on automobiles and improve air quality within the Ventura County portion of the South Central Coast Air Basin, without reliance on command and control regulations. However, as discussed in Section 4.3, Air Quality, population projections for Scenarios 1-6 exceed those of the Air Quality Management Plan (AQMP) for Ventura County and would likely result in an increase in air pollutant emissions within the Ventura County portion of the South Central Coast Air Basin that exceed AQMP standards.

The significance of air quality impacts associated with individual projects will depend upon the characteristics of the projects and the availability of feasible mitigation measures. As discussed in Section 4.3, Air Quality, mitigation measures for future construction activities, as well as compliance with the Ventura County APCD Transportation Control Measures, would reduce impacts to air quality resulting from possible development under Scenarios 1-6.

As discussed in Section 4.3, Air Quality, although the policies and actions would reduce impacts to air quality, impacts under Scenarios 1-6 would remain significant. However, this EIR analyzes land use, economic, air quality, and transportation relationships in order to ensure consistency and minimize conflicts of the 2005 General Plan with other governmental plans and programs. Therefore, the 2005 General Plan could be found to be consistent with RCPG Policies 5.07 and 5.11.

Open Space

The purpose of the Open Space and Conservation Chapter is to assist local governments in planning for local and regional open space. The Chapter recommends alternative approaches, and strategies that can be useful to local officials as they address future open space needs in their community and ensure a high quality of life and equity for Southern California residents. The following actions described in the RCPG that are related to the 2005 General Plan include:

Outdoor Recreation

9.01 Provide adequate land resources to meet the outdoor recreation needs of the present and future residents in the region and to promote tourism in the region.
9.02 Increase the accessibility to open space lands for outdoor recreation.
9.03 Promote self-sustaining regional recreation resources and facilities.

As discussed in Section 4.11, Public Services, Scenarios 1-6 would increase demand for recreational facilities and programs. The expansion areas included in Scenarios 2, 3, 4, and 6 all provide sufficient acreage to meet expansion area needs and at least partially address the current shortage of park space based on the City's 10 acres $/ 1,000$ residents standard. Scenarios 1 and 5 do not include additional acreage that could specifically set aside for parks.
Nevertheless, continued collection of required park fees and required parkland dedication in conjunction with new development, in combination with implementation of the parks and recreation policies and action items proposed in the 2005 General Plan, could provide parks to
meet future needs. Therefore, any of the six scenarios could be found to be consistent with these RCPG policies.

Public Health and Safety
9.04 Maintain open space for adequate protection of lives and properties against natural and man-made hazards.
9.05 Minimize potentially hazardous developments in hillsides, canyons, areas susceptible to flooding, earthquakes, wildfire and other known hazards, and areas with limited access for emergency equipment.
9.06 Minimize public expenditure for infrastructure and facilities to support urban type uses in areas where public health and safety could not be guaranteed.

As discussed under Impact LU-1, Scenarios 1-6 would involve an adjustment to the SOI boundary that would remove the hillside areas to the north of the City from the SOI. This area is marked by steep slopes and high fire hazards. Moreover, as discussed in detail in Sections 4.6, Geologic Hazards, 4.7, Hazards and Hazardous Materials, and 4.8, Hydrology and Water Quality, Scenarios 1-6 would be subject to a number of policies and actions that would discourage or avoid development within areas with steep slopes and high fire, flood, and seismic hazards. Therefore, Scenarios 1-6 could be found consistent with SCAG Policies 9.04-9.06.

Resource Protection

9.08 Develop well-managed viable ecosystems or known habitats of rare, threatened and endangered species, including wetlands.

As discussed in Section 4.4, Biological Resources, Scenarios 1-6 would be subject to a number of policies and actions that would protect and enhance important biological habitats (e.g., wetlands, riparian habitat, and sensitive species). Therefore, Scenarios 1-6 could be found consistent with SCAG Policy 9.08.

Water Quality

The Water Quality chapter is intended to provide a regional perspective on current water quality issues and the plans and programs for addressing these issues, and to better clarify the relationship between water quality and other regional concerns. The following actions described in the RCPG Water Quality chapter that are related to the 2005 General Plan include:

> Encourage water reclamation throughout the region where it is cost-effective, feasible, and appropriate to reduce reliance on imported water and wastewater discharges. Current administrative impediments to increased use of wastewater should be addressed.

Scenarios 1-6 would all be subject to the 2005 General Plan policies and actions. The feasibility of using water reclamation techniques for individual development projects would be required at the time at which specific proposals for development are submitted to the City for review. Although it cannot be predicted with any certainty whether reclaimed water will be available
for future project sites under Scenarios 1-6, the City will continue to seek ways to conserve water resources. Scenarios 1-6 could be found consistent with SCAG Policy 11.07.

MITIGATION MEASURES

With implementation of the policies and actions of the 2005 General Plan, Scenarios 1-6 could be found to be consistent with RCPG policies. No mitigation measures would be required.

SIGNIFICANCE AFTER MITIGATION

Any of the 2005 General Plan land use scenarios could be found to be consistent with applicable policies of the RCPG.

> Impact LU-4 Scenarios 1-6 could be found to be consistent with the Southern California Association of Governments' Regional Transportation Plan (RTP). Impacts would be Class III, less than significant, for any of the six land use scenarios.

The SCAG 2004 Regional Transportation Plan (RTP) links the goal of sustaining mobility with the goals of fostering economic development, enhancing the environment, reducing energy consumption, promoting transportation-friendly development patterns, and encouraging fair and equitable access to residents affected by socio-economic, geographic, and commercial limitations. The goals of the RTP relevant to the 2005 General Plan include:

- Maximize mobility and accessibility for all people and goods in the region.
- Ensure travel safety and reliability for all people and goods in the region.
- Preserve and ensure a sustainable regional transportation system.
- Maximize the productivity of our transportation system.
- Protect the environment, improve air quality and promote energy efficiency.
- Encourage land use and growth patterns that complement our transportation investments.

These goals are supported by the policies listed below. A discussion of the 2005 General Plan's consistency with each of the policies follows.

Policy 1: Transportation investments shall be based on SCAG's adopted Regional Performance Indicators.

Table 4.14-1 identifies the RTP performance indicators, which are used to identify transportation investments to achieve RTP goals.

Table 4.14-1
Regional Performance Indicators

Performance Indicator	Purpose
Mobility	Increase mobility within the region.
Accessibility	Increase accessibility within the region.
Reliability	Reduce variability in travel time.
Safety	Increase safety by reducing accident rates.
Cost-Effectiveness	Ensure benefits of RTP investments exceed investment costs.
Productivity	Increase the efficiency of transportation infrastructure and provided services.
Sustainability	Sustain current system performance.
Preservation	Maintain current conditions.
Environmental	Reduce air emissions.
Environmental Justice	Avoid disproportionate impacts to any ethnic group.

Although overall traffic levels are likely to increase under Scenarios 1-6, the 2005 General Plan includes policies and actions that would at least partially attenuate likely increases in traffic and could be found consistent with the performance indicators and goals of the RTP. As discussed under Impact LU-1, development under Scenarios 1-6 would be subject to Policy 3C of the proposed 2005 General Plan, thereby promoting new development that focuses on intensification and reuse of existing lands within the existing City limits and SOI prior to expansion. In addition, as discussed under Impact AQ-1 in Section 4.3, Air Quality, recent research indicates that infill development reduces vehicle miles traveled (VMT) and associated air pollutant emissions as compared to development on sites in the periphery of metropolitan areas, also known as "greenfield" sites. A 1999 simulation study conducted for the U.S. Environmental Protection Agency comparing infill development to greenfield development found that infill development results in substantially less VMT per capita and generates fewer emissions of most air pollutants and greenhouse gases (see Table 4.3-5 in Section 4.3). Similarly, a 1991 study presented to the California Energy Resources Conservation and Development Commission found that a doubling of residential densities is associated with a $20-30 \%$ reduction in per capita VMT.

A reduction in VMT would be consistent with the RTP performance indicators as it is likely to result in the following:

- A reduction in congestion on busy roadways and intersections, thereby reducing travel time and delays, as well as variability in travel time
- A reduction in automobile accident rates
- A reduction in maintenance costs resulting from wear and tear on existing

infrastructure

- A reduced need to construct new roadways or expand existing roadways, thereby resulting in a more efficient use of existing roadways
- A reduction in air emissions

New development also would be subject to various 2005 General Plan transportation policies and actions aimed at strengthening and balancing vehicle, bicycle, pedestrian, and transit connections in the City and surrounding region. With implementation of the 2005 General Plan policies and actions, Scenarios 1-6 could be found to be consistent with the Regional Performance Indicators of SCAG RTP Policy 1.

Policy 2: Ensuring safety, adequate maintenance, and efficiency of operations on the existing multi-modal transportation system will be RTP priorities and will be balanced against the need for system expansion investments.

Policy 3: RTP land use and growth strategies that are different from currently expected trends will require a collaborative implementation program that identifies required actions and policies by all affected agencies and sub-regions.
Policy 4: High Occupancy Vehicle (HOV) gap closures that significantly increase transit and rideshare usage will be supported and encouraged, subject to Policy \#1.

As discussed under Impact LU-3, the 2005 General Plan includes a number policies and actions that are designed to ensure the safety, adequate maintenance, and efficiency of operations on the portion of the multi-modal transportation system that lies within the City of Ventura. By promoting intensification and reuse prior to expansion as well as mixed-use and pedestrianoriented urban development, implementation of the 2005 General Plan would result in a diverse, safe, and efficient transportation system that minimizes the need for system expansion investments. Moreover, the growth projections, policies, and actions under Scenarios 1-6 are generally consistent with RTP land use and growth strategies and, therefore, would not require significant changes to the RTP implementation plan. Finally, none of the scenarios under consideration for the 2005 General Plan include HOV gap closures. Therefore, Scenarios 1-6 could be found to be consistent with SCAG RTP Policies 2-4.

MITIGATION MEASURES

With implementation of the proposed 2005 General Plan policies and actions, Scenarios 1-6 could all be found to be consistent with the SCAG 2004 RTP. No mitigation is required.

SIGNIFICANCE AFTER MITIGATION

Any of the six land use scenarios could be found to be consistent with applicable goals and policies of the Regional Transportation Plan.

$$
\begin{array}{ll}
\text { Impact LU-5 } & \begin{array}{l}
\text { Scenarios 1-6 could all be found to be consistent with the } \\
\text { Southern California Association of Governments' Growth } \\
\\
\text { Visioning Report. Impacts would be Class III, less than } \\
\text { significant, for any of the six } 2005 \text { General Plan land use } \\
\text { scenarios. }
\end{array}
\end{array}
$$

SCAG has prepared the Growth Visioning Report to provide a framework for local and regional decision making that improves the quality of life for all SCAG residents. The following principles are guidelines for promoting and sustaining for future generations the region's mobility, livability, and prosperity. A discussion of the 2005 General Plan's (and each scenario's) consistency with these principles follows.

Principle 1: Improve mobility for all residents

- Encourage transportation investments and land use decisions that are mutually supportive.
- Locate new housing near existing jobs and new jobs near existing housing.
- Encourage transit-oriented development.
- Promote a variety of travel choices.

As discussed above under Impacts LU-1 LU-2, LU-3, and LU-4, Scenarios 1-6 would be subject to a number of policies and actions that would: (1) include transportation investments and land use decisions that are mutually supportive; (2) provide mixed-use development that would locate housing and jobs near one another; (3) encourage transit-oriented development; and (4) promote new development that would facilitate a variety of travel choices, including automobile, bicycle, pedestrian, and mass-transit forms of transportation. Therefore, Scenarios 1-6 could all be found to be consistent with SCAG's Growth Visioning Report Principle 1.

Principle 2: Foster livability in all communities

- Promote infill development and redevelopment to revitalize existing communities.
- Promote developments, which provide a mix of uses.
- Promote "people scaled," walkable communities.
- Support the preservation of stable, single-family neighborhoods.

As discussed under Impact LU-1, Scenarios 1-6 would encourage intensification and reuse development within the existing urban areas of the City before development occurs outside of the existing City limits, and would promote development that meets the goals for single-family housing identified in the Housing Element. Moreover, as discussed under Impact LU-2, Coastal Act Article 6, and Impact LU-4, Scenarios 1-6 would be subject to a number of 2005 General Plan policies and actions that promote mixed-use development, as well as building and streetscape layout and design that promote walkable communities and development at a human scale.

Principle 3: Enable prosperity for all people

- Support educational opportunities that promote balanced growth.
- Ensure environmental justice regardless of race, ethnicity or income class.
- Support local and state fiscal policies that encourage balanced growth.
- Encourage civic engagement.

As discussed under Impact LU-1, Scenarios 1-6 would be subject to Action 3.10, which promotes a mix of housing to meet the needs of the community, as identified in the Housing Element. Moreover, as discussed in Section 4.11, Public Services, Scenarios 1-6 would be able to provide adequate school and library facilities for projected population growth through 2025. Finally, the 2005 General Plan has been a product of multiple public workshops and hearings where citizens were given the opportunity to participate in the planning process. With implementation of this goal and the supporting policies and actions, Scenarios 1-6 could be found to be consistent with SCAG's Growth Visioning Report Principle 3.

Principle 4: Promote sustainability for future generations

- Focus development in urban centers and existing cities.
- Develop strategies to accommodate growth that uses resources efficiently, eliminates pollution and significantly reduces waste.
- Utilize "green" development techniques.

As discussed under Impact LU-1, Scenarios 1-6 would be subject to various policies and actions that encourage new development, reuse, or intensification within existing urban areas prior to development outside of the existing City limits. Moreover, as discussed in Section 4.11, Public Services, Scenarios 1-6 would be subject to 2005 General Plan policies and actions that promote waste source reduction, recycling, and "green" development techniques. Therefore, Scenarios $1-6$ could be found to be consistent with SCAG's Growth Visioning Report Principle 4.

MITIGATION MEASURES

With implementation of the 2005 General Plan policies and actions, Scenarios 1-6 could be found to be consistent with SCAG's Visioning Report. No mitigation is required.

SIGNIFICANCE AFTER MITIGATION

Any of the six land use scenarios for the 2005 General Plan could be found to be consistent with SCAG's Visioning Report.

4.15 POPULATION AND HOUSING

This section analyzes the 2005 General Plan's potential environmental impacts related to population and housing.

4.15.1 Setting

a. Current Population, Housing, and Employment. Since its incorporation in 1866, the City of Ventura has grown from a small settlement of less than 1,000 residents to a city of over 104,000 residents in 2004. Ventura's population grew most dramatically during the 1950s and 1960s, and has slowed since 1970; the number of City residents increased by 27% in the 1970s and 24% in the 1980 s, in contrast to 76% and 99% in the 1950s and 1960s, respectively (City of San Buenaventura 2000-2006 Housing Element, 2004). The California Department of Finance (2004) estimated the City of Ventura's 2004 population at 104,952.

A variety of housing types are currently available in Ventura, including single-family homes, town homes, apartments, condominium developments, and mobile homes. According to the California Department of Finance, City/County Population and Housing Estimates (2004), in 2004 the City of Ventura had approximately 40,880 dwelling units, which consisted of the following: approximately 26,476 single family dwelling units; approximately 11,781 units within multifamily buildings; and, approximately 2,623 mobile homes.

Local and regional economic forces play a pivotal role in shaping the City's physical character and determining its tax and employment bases. Efforts to attract and retain businesses that can thrive in Ventura depend largely on the ability to find appropriate and affordable sites. The city's climate, location, and prominent visibility and accessibility along U.S. 101 and SR 126 appeal to a variety of commercial and industrial enterprises; however, the limited supply of larger parcels is a constraint for many companies. Major employers within the City of Ventura include local government (e.g., the County of Ventura, Ventura County Health Care Agency, and the City of Ventura), the Ventura Unified School District, Community Memorial Hospital, Ventura College, Southern California Edison, Bank of America, and Meditech Health Services, Incorporated.

b. Regulatory Setting.

2000-2006 Housing Element. The 2000-2006 Housing Element is one of nine elements of Ventura's Comprehensive Plan, which identifies and analyzes existing and projected housing needs and includes a statement of goals, policies, and scheduled programs for the preservation, improvement, and development of housing. The Housing Element identifies strategies and programs that focus on: (1) maintaining and improving existing housing and neighborhoods; (2) providing a range of housing types and adequate housing sites; (3) assisting in the provision of affordable housing; (4) removing governmental and other constraints to housing production and affordability; and (5) promoting fair and equal housing opportunities.

Pursuant to Government Code §65300.5, the policies, data, assumptions, and projections (e.g., for population, housing, and jobs) provided in the proposed 2005 General Plan must be consistent with those found in the Housing Element. Unlike other elements of the proposed

2005 General Plan, which cover a 20-year time period, Government Code $\$ 65588$ dictates that the Housing Element must be updated at least once every five years and, thus, the current Housing Element covers the period extending from 2000 to 2006. The geographic area covered by the Housing Element encompasses only the current City limits, while unincorporated areas within the City's planning area are covered by the Ventura County Housing element.

Residential Growth Management Program (Municipal Code Chapter 24R.115). In order to assist in implementing the Land Use Element of the 1989 Comprehensive Plan, the City Council adopted a Residential Growth Management Program (RGMP), which provides an allocation schedule for the review and evaluation of residential growth in the City of Ventura's Planning Area. The allocation schedule, which is adopted by resolution of the City Council at least once each year, is based on population data from the California Department of Finance and identifies how many dwelling units are potentially available for allocation in four categories of projects (i.e., "Larger Projects," "Downtown Projects," "Public Benefit Projects," and "Exempt Projects," as defined in the Municipal Code, §24R.115.210).

The RGMP allocation schedule specifies: (1) the overall number of dwelling units available through the year 2010 for Downtown and Exempt Projects; (2) the number of units available during two-year cycles for Larger Projects; and (3) allocations from the Larger Projects or Downtown Projects categories for Public Benefit Projects. The RGMP provides specific criteria for evaluating projects to determine eligibility for an allocation.

Southern California Association of Governments (SCAG). As discussed in Section 4.14, Land Use, the City of Ventura is located within the planning area of the Southern California Association of Governments (SCAG). SCAG functions as the Metropolitan Planning Organization for Los Angeles, Orange, San Bernardino, Riverside, Ventura and Imperial Counties, and is responsible for implementing the Regional Comprehensive Plan and Guide (RCPG), Regional Transportation Plan (RTP), and the Growth Visioning Report (GVR), each of which addresses regional issues associated with population growth, housing, and employment.

4.15.2 Impact Analysis

a. Methodology and Significance Thresholds. Impacts relating to population and housing are considered significant if growth accommodated under the 2005 General Plan would:

- Induce substantial population growth either directly or indirectly
- Create an imbalance of jobs and housing in the City
- Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere
- Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere

For purposes of analysis, "substantial" population growth is defined as growth exceeding SCAG or Ventura County APCD population projections for the City. "Substantial" displacement would occur if allowed land uses would displace more residences than would be accommodated through growth accommodated by the General Plan.
b. Project Impacts and Mitigation Measures. The matrix on the following page provides a summary comparison of impacts for each of the EIR scenarios. A detailed discussion of each environmental impact follows.

$$
\begin{array}{ll}
\text { Impact PH-1 } \quad \begin{array}{l}
\text { Scenarios 1-6 would not result in the displacement of } \\
\text { substantial numbers of people or housing. Any displacement } \\
\text { would be more than offset by new housing that would be } \\
\text { accommodated under the } 2005 \text { General Plan. Impacts would } \\
\text { be Class III, less than significant, for any of the General Plan } \\
\text { land use scenarios. }
\end{array}
\end{array}
$$

Scenarios 1-6, which are described in detail in Section 2.0, Project Description, all emphasize the intensification and reuse of lands that are already developed with urban uses. By emphasizing reuse of developed lands, any of the scenarios would have the potential to displace existing housing or people. However, the 2005 General Plan does not re-designate any areas currently designated for and developed with housing under the 1989 Comprehensive Plan to a nonresidential use. Moreover, the focal points for growth in the City under all six scenarios would be the nine districts and eight corridors shown on Figures 2-3 through 2-8 in Section 2.0, Project Description. All of these districts and corridors are designated for and primarily occupied by commercial and industrial uses, with only a limited amount of existing housing. Consequently, the primarily displacement would be of existing commercial and industrial uses rather than housing or people. Limited housing is present within several of the districts and corridors, notably the Downtown district and the Ventura Avenue, Main Street, and Thompson Boulevard corridors. It is possible that such housing could be displaced; however, the intent of the 2005 General Plan is to accommodate additional housing and mixed use development in these areas. Under any scenario, it is anticipated that the development of new housing would more than offset the minimal displacement of housing that could occur within the districts and corridors. For Scenario 1, it is anticipated that a net increase of about 8,300 housing units would occur citywide through 2025. For Scenarios 2-6, it is estimated that a net increase of about 11,000 housing units would occur citywide over that same time frame.

All of the expansion areas under consideration for Scenarios 2-6 are primarily in agricultural use or open grazing land. Housing within all of the expansion areas is limited to isolated farmhouses. As such, substantial displacement of people or housing would not occur as a result of development of any of the expansion areas.

MITIGATION MEASURES

No significant impacts relating to displacement would occur under any scenario. Mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Impacts relating to the displacement of people and housing would be less than significant for any of the six scenarios.

Summary Comparison of Impacts for EIR Scenarios

	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6
Displacement (Impact PH-1)	No substantial displacement of population or housing; Scenario 1 would accommodate substantially more new housing than would be displaced. Impacts are Class III, less than significant.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas are agricultural and include little existing housing.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas are agricultural and include little existing housing.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas are agricultural and include little existing housing.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas are agricultural and open space and include little existing housing.	Impacts similar to Scenario 1 and Class III, less than significant. Expansion areas are agricultural and include little existing housing.
SCAG Growth Projections (Impact PH-2)	Projected 2025 population (126,153 persons) exceeds SCAG projection of 123,645 persons. Though emphasis on intensification/reuse minimizes populationrelated impacts, exceedance of regional forecast is a Class I, unavoidably significant, impact.	Projected 2025 population (133,160 persons) exceeds SCAG projection of 123,645 persons. Though emphasis on intensification/reuse minimizes populationrelated impacts, exceedance of regional forecast is a Class I, unavoidably significant, impact.	Impacts identical to Scenario 2 and Class I, unavoidably significant.	Impacts identical to Scenario 2 and Class I, unavoidably significant.	Impacts identical to Scenario 2 and Class I, unavoidably significant.	Impacts identical to Scenario 2 and Class I, unavoidably significant.
SCAG Visioning Report Housing Needs (Impact PH-3)	Scenario 1 provides for a variety of housing types, thus complying with SCAG policy. Impact is Class III, less than significant.	Scenario 2 provides for a variety of housing types. Impact is Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.
Jobs/Housing Balance (Impact PH-4)	Growth projections result in jobs/housing ratio of 1.41 jobs/dwelling unit. This is considered a balanced ratio. Impacts are Class III, less than significant.	Growth projections result in jobs/housing ratio of 1.45 jobs/dwelling unit. This is considered a balanced ratio. Impacts are Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.	Impacts similar to Scenario 2 and Class III, less than significant.

> Impact PH-2 Proposed General Plan policies implement most SCAG policies relating to growth. However, growth accommodated under Scenarios 1-6 exceeds SCAG's Regional Comprehensive Plan and Guide and Ventura County AQMP population forecasts. This is largely because regional growth forecasts have not been updated to reflect current conditions in the City. Nevertheless, exceedance of regional forecasts is considered a Class I, unavoidably significant, impact of any of the six scenarios.

SCAG's Regional Comprehensive Plan and Guide (RCPG) serves as a framework for decisionmaking with respect to regional growth anticipated during the next 20 years. The RCPG includes growth management goals that seek to develop urban forms that minimize public and private development costs, enable firms to be more competitive, and stimulate the regional economy. These are discussed below.
3.01 The population, housing, and jobs forecasts, which are adopted by SCAG's Regional Council and that reflect local plans and policies, shall be used by SCAG in all phases of implementation and review.

The SCAG population, housing, and job forecasts, which are based on the RTP Population, Household, and Employment (April 2004) forecasts for the Ventura Council of Governments (VCOG) subregion and the City of Ventura are shown in Table 4.15-1.

Table 4.15-1
SCAG Population, Household, and Employment Forecasts for the Ventura Council of Governments (VCOG) Subregion

VCOG Subregion	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$
Population	758,054	821,045	865,149	897,295	929,181	960,025
Household	244,476	260,357	275,352	289,318	303,596	317,831
Employment	337,247	346,770	381,680	403,000	424,470	445,193
City of Ventura	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$
Population	101,002	109,087	116,959	119,247	121,488	123,645
Household	38,573	40,711	44,053	45,355	46,696	48,034
Employment	58,900	59,717	62,703	65,237	67,787	70,238

Source: Jeffrey M. Smith, AICP, Senior Regional Planner Intergovernmental Review, SCAG (2/18/04).

Figure 4.15-1 compares SCAG's projected 2025 population, housing, and employment totals for the City to the projections used for this EIR. Table 4.15-2 compares SCAG population, housing, and employment growth rate projections to those used in this EIR.

Figure 4.15-1
SCAG Population, Housing, and Employment Projections

SCAG projects a citywide population of 123,645 in 2025, which represents an annual growth rate of 0.78%. Both of the growth scenarios considered in this EIR assume higher average annual growth rates. For Scenario 1, an annual growth rate of 0.88% is assumed, which would result in a 2025 population of 126,153 . For Scenarios $2-6$, a 1.14% annual growth rate is assumed, which would result in a 2025 population of 133,160 . Because 2005 General Plan growth projections are higher than SCAG's forecasts, the population impact of any of the six land use scenarios could be found to be outside SCAG regional growth forecasts.

The exceedance of SCAG's population growth forecast is considered a significant population impact. It should be noted, however, that SCAG's growth forecast for the City assumes a slowdown in population growth in Ventura after 2015. From 2005-2010, SCAG actually forecasts a higher annual growth rate (1.4% annually) than is projected for any of the General Plan land use scenarios. By comparison, SCAG projects only a 0.35% growth rate for the City from 2020-2025. This rate is lower than the current annual "natural" growth rate (births minus deaths) for the area (which is about 0.6%). In addition, it should be recognized that the projections used in this EIR have been developed for analytical purposes only; actual growth rates may be higher or lower than the projections used for this analysis. It is important to recognize that growth could occur in the City regardless of whether or not the 2005 General Plan is adopted as the 1989 Comprehensive Plan that currently applies in the City could accommodate similar levels of growth as could be accommodated under any of the 2005 General Plan land use scenarios. To that end, one of the fundamental purposes of the 2005

Table 4.15-2
Comparison of Population, Housing, and Employment Growth Projections

	Population			Households			Employment		
Current (2004) Estimates	104,952			40,880			54,732		
	SCAG Projection	2005 General Plan Scenario 1 Projection	2005 General Plan Scenarios 2-6 Projection	SCAG Projection	2005 General Plan Scenario 1 Projection	2005 General Plan Scenarios 2-6 Projection	SCAG Projection	2005 General Plan Scenario 1 Projection	2005 General Plan Scenarios $2-6$ Projection
2025 Estimate	123,645	126,153	133,160	48,034	49,138	51,867	70,238	69,211	75,060
Projected Growth (2004-2025)	18,693	21,201	28,208	7,154	8,258	10,987	15,506	14,479	20,328
Annual \% Growth	0.78\%	0.88\%	1.14\%	0.77\%	0.88\%	1.14\%	1.19\%	1.12\%	1.51\%

Employment forecasts for the 2005 General Plan scenarios are from Stanley R. Hoffman Associates, 2003. Estimated growth from 2004-2025 is based upon the 2025 projections and the 2004 population, housing, and employment estimates shown in Tables 2-3 and 2-4 in Section 2.0, Project Description.

General Plan is to direct future development in such a way as to minimize the impacts of growth by, among other things, emphasizing the intensification and reuse of already developed areas, thus minimizing pressure to develop agricultural and undeveloped lands at the City's periphery, notably in the hillsides above the City.
3.24 Encourage efforts of local jurisdictions in the implementation of programs that increase the supply and quality of housing and provide affordable housing as evaluated in the Regional Housing Needs Assessment.
3.27 Support local jurisdictions and other service providers in their efforts to develop sustainable communities and provide, equally to all members of society, accessible and effective services such as: public education, housing, health care, social services, recreational facilities, law enforcement, and fire protection.

As stated above, Scenario 1 would accommodate an estimated 8,258 new dwelling units, bringing the citywide total to approximately 49,136 units by 2025 . Scenarios $2-6$ could accommodate an estimated 10,987 new dwelling units, for a total of approximately 51,867 units citywide by 2025. Any of the six scenarios would be subject to the following policies, and actions that would complement existing Housing Element goals, policies, and actions (20002006 Housing Element, Chapter 2) in providing affordable housing and housing equally to all members of society:

Policy 3C Maximize use of land in the city before considering expansion.
Action 3.14 Utilize infill development to accommodate the targeted number and type of housing units described in the Housing Element.
Action 3.15 Adopt new development code provisions to ensure compliance with Housing Element objectives.
Action 3.16 Renew and modify greenbelt agreements as necessary to direct development to already urbanized areas.

Action 3.17 Continue to support the Guidelines for Orderly Development as a means of implementing the General Plan, and encourage adherence to these Guidelines by all the cities, the County of Ventura, and the Local Agency Formation Commission (LAFCO); and work with other nearby cities and agencies to avoid sprawl and preserve the rural character in areas outside the urban edge.

The 2000-2006 Housing Element sets programs and initiatives for providing housing at affordable rates. The 2000-2006 Housing Element contains housing programs for preserving existing housing, assisting homebuyers, rehabilitating rental units, and facilitating the development of second units and non-traditional housing which will encourage the development of affordable housing in the City.

As discussed in Section 4.3, Air Quality, the 2005 General Plan includes numerous policies and actions aimed at reducing vehicle miles traveled and improving access to alternative transportation modes.

Section 4.11, Public Services, addresses the 2005 General Plan's potential environmental impacts under Scenarios 1-6 relating to education, recreational facilities, law enforcement, and fire protection. As discussed in Section 4.11, Scenarios 1-6 would not result in significant impacts relating to education, law enforcement, and fire protection. In addition, 2005 General Plan policies are specifically intended to help provide equal access to recreational resources Therefore, Scenarios 1-6 could be found to be consistent with SCAG RCPG Policies 3.20 and 3.27.

MITIGATION MEASURES

The 2005 General Plan includes various policies that encourage mixed use and infill development and would be expected to reduce vehicle miles traveled (VMT) and associated air pollutant emissions as compared to continued low density development at the City's periphery. Additional mitigation beyond restricting growth to SCAG forecasts is not available.

SIGNIFICANCE AFTER MITIGATION

Scenarios 1-6 could be found to be inconsistent with SCAG Policy 3.01 because citywide population growth projections for any of the six scenarios exceed SCAG forecasts. Though 2005 General Plan policies, in combination with mitigation measures recommended elsewhere in this EIR, would reduce the environmental effects associated with population growth to the degree feasible, the potential exceedance of SCAG's population forecast cannot be avoided outside of implementing a growth control policy that restricts growth to SCAG forecast levels.

Impact PH-3 The 2005 General Plan could be found to be consistent with the Southern California Association of Governments Growth Visioning Report. Impacts would be Class III, less than significant, for any of the six land use scenarios.

As discussed in detail in Section 4.14, Land Use, SCAG has prepared the Growth Visioning Report (GVP) to provide a framework for local and regional decision-making that improves the quality of life for all SCAG residents. Principle 3 of the GVP, which is related to potential population and housing impacts under Scenarios 1-6, states:

Principle 3: Enable prosperity for all people

- Provide, in each community, a variety of housing types to meet the housing needs of all income levels.

As discussed under Impact PH-2, SCAG RCPG Policies 3.24 and 3.27, the land use changes accommodated by the 2005 General Plan under Scenarios 1-6 encourage intensification and reuse development that would provide a variety of housing types and would complement the 2000-2006 Housing Element programs that encourage the preservation, redevelopment, and development of rental, assisted living, mobile home, and alternative housing types. Therefore, Scenarios 1-6 could be found to be consistent with Principle 3 of SCAG's GVP.

Though not a significant impact, it should be noted that because Scenario 1 would not accommodate development of any of the expansion areas, it may restrict the types of housing available as compared to Scenarios $2,3,4$, and 6 . By focusing almost exclusively on intensification and reuse within developed areas of the City and, in particular, in the districts and corridors identified on Figure 2-3 in Section 2.0, Project Description, it is likely that implementation of Scenario 1 would result in a higher proportion of multiple family housing than would occur under the other scenarios. To a lesser degree, implementation of Scenario 5 may also emphasize multiple family housing in the future by restricting the amount of land available for future single family residential development.

MITIGATION MEASURES

Impacts would be less than significant for any of the six scenarios. No mitigation measures are required.

SIGNIFICANCE AFTER MITIGATION

Impacts relating to consistency with SCAG's Growth Visioning Report would be less than significant for any of the six 2005 General Plan land use scenarios.

$$
\begin{array}{ll}
\text { Impact PH-4 } & \begin{array}{l}
\text { Any of the } 2005 \text { General Plan land use scenarios would } \\
\text { provide for a balance of jobs and housing through } 2025 .
\end{array} \\
& \text { Impacts relating to jobs/housing balances would be Class III, } \\
\text { less than significant, for any of the six land use scenarios. }
\end{array}
$$

Table 4.15-3 compares the current (2004) ratio of jobs and housing in Ventura to the projected ratios in 2025 under each of the 2005 General Plan land use scenarios. As indicated, the current ratio is estimated at 1.34 jobs per residential unit. Under either land use scenario, the number of jobs relative to housing is projected to rise slightly by 2025.

Table 4.15-3
Current and Projected Future Jobs/Housing Ratios

2004 Citywide Ratio of Jobs to Housing		1.34 jobs/unit
Projected 2025 Citywide Ratio of Jobs to Housing	Scenario 1	1.41 jobs/unit
	Scenarios 2-6	1.45 jobs/unit

Ratios are based on estimates of employment and housing in Table 4.15-2.

According to the California Employment Development Department (EDD), the current (January 2005) workforce in Ventura County is about 415,250 (www.labormarketinfo.edd). The California Department of Finance estimates the current (2004) number of housing units in the County at 264,583. This suggests that a "balance" of jobs and housing in the Ventura County
region is about 1.57 jobs/residential unit $(415,250$ divided by 264,583) as there are about 1.57 workers per housing unit countywide. The current ratio of jobs and housing in the City is roughly equivalent to the countywide ratio and would get incrementally closer to this countywide "balanced" ratio under either growth scenario. Any of the land use scenarios would accommodate residential and non-residential development that would maintain a balance of jobs and housing in the City. Thus, significant impacts are not anticipated for any of the six land use scenarios.

MITIGATION MEASURES

Impacts related to the jobs/housing balance would be less than significant for any of the six scenarios. Mitigation is not required.

SIGNIFICANCE AFTER MITIGATION

Significant impacts relating to the jobs/housing balance are not anticipated under any of the six 2005 General Plan land use scenarios.

5.0 OTHER CEQA-REQUIRED DISCUSSIONS

This section discusses other issues for which CEQA requires analysis in addition to the specific issue areas discussed in Section 4.0, Environmental Impact Analysis. These additional issues include: (1) the potential to induce growth; and (2) significant and irreversible impacts on the environment.

5.1 GROWTH INDUCING EFFECTS

Section 15126.2(d) of the CEQA Guidelines requires that EIRs discuss the potential for projects to induce population or economic growth, either directly or indirectly. CEQA also requires a discussion of ways in which a project may remove obstacles to growth.

As discussed in Section 2.0, Project Description, it is anticipated that between about 8,300 residential units (Scenario 1) and 11,000 residential units (Scenarios 2-6) could be added within the Ventura Planning Area through 2025 under the 2005 General Plan. This number of units would accommodate about 21,000-28,000 new residents in Ventura, which would bring the City's population to between about 126,000 and 133,000. Such growth represents an approximately $20-27 \%$ increase in population over the 20-year timeframe of the 2005 General Plan. As discussed in Sections 4.3, Air Quality, and 4.15, Population and Housing, the 2025 population projections considered in this EIR exceed the forecasts upon which SCAG's Regional Transportation Plan and the Ventura County APCD's Air Quality Management Plan are based. The exceedance of these forecasts is largely because the SCAG and APCD forecasts have not been updated to reflect current City conditions and planning policies. In addition, it is not expected that the level of population growth projected for the City would hinder attainment of state or federal air quality standards. Nevertheless, the exceedance of regional growth forecasts is identified as an unavoidably significant impact of any of the six land use scenarios.

The 2005 General Plan also includes various policies and actions intended to attract businesses to the City and any of the land use plans would accommodate economic and job growth through 2025. As discussed in Section 2.0, citywide job growth through 2025 is projected to range from about 14,000 to 20,000 jobs, which represents growth of about $26-37 \%$ over the current level of employment in the City. As discussed in Section 4.15, such job growth is similar to SCAG forecasts for the City. The economic growth that could be accommodated under the 2005 General Plan would have economic benefits in terms of jobs and City tax revenues, but would contribute to various environmental effects, including increased traffic, noise, and air pollution.

It is the specific purpose of the 2005 General Plan to accommodate the orderly development of Ventura. Therefore, by its nature, the General Plan is intended to reduce the potential for uncontrolled growth and associated environmental impacts. This intent would be reinforced by the anticipated future relocation of the Sphere of Influence (SOI) boundary to exclude the hillside areas above the City, which are currently designated for residential development under the 1989 Comprehensive Plan.

The 2005 General Plan is specifically intended to focus future development in certain areas of the Planning Area - primarily, in the districts and corridors shown on Figures 2-3 through 2-8 in

Section 2.0 and other areas already designated for urban development under the 1989 Comprehensive Plan. Plan implementation could therefore induce growth in these areas. This is expected to result in an overall intensification of land use within the districts and corridors, with the potential for compatibility conflicts relating to traffic, aesthetics, and noise. However, incorporation of appropriate design techniques on future developments is expected to minimize the potential for conflicts. In addition, by focusing on the intensification and reuse of already urbanized areas of the community, it is anticipated that implementation of any of the General Plan land use scenarios would reduce the potential for growth pressure in undeveloped areas at the periphery of the City. This would be expected to generally reduce the potential for impacts relating to such issues as biological resources, regional traffic, and air quality as compared to continued low density development on agricultural or open space lands. The reuse of industrial properties in certain areas of the City, particularly along Ventura Avenue, also offers the opportunity to remediate existing soil contamination and generally enhance aesthetic conditions.

Depending upon the land use scenario selected, the 2005 General Plan could potentially accommodate the future development of certain agricultural lands within the Planning Area that are currently designated for continued agricultural or open space use. These include the North Avenue, Olivas, Serra, Western Cañada Larga, and Poinsettia expansion areas. Inclusion of one or more of these areas on the General Plan land use map as an area for possible future development would indicate the intent to consider future conversion of these areas to nonagricultural uses. As discussed in Section 4.2, Agriculture, the conversion of agricultural lands within the expansion areas would be considered an unavoidably significant impact to agricultural resources. However, because all of the areas are to retain their current land use designations, a future General Plan amendment would be needed prior to conversion to another use. Such an amendment would require voter approval under the SOAR Ordinance. Annexation of any of these areas to the City would also require the approval of the Ventura County Local Agency Formation Commission (LAFCO).

Development of any of the expansion areas would require the extension of infrastructure to serve new development. Two of the expansion areas under consideration - Serra and Poinsettia - are essentially surrounded by urban areas on all sides. The Poinsettia area is also entirely within the current SOI and most of the Serra area is also within the SOI. As such, extension of infrastructure to these areas would not expand the geography of the area that is already planned to receive City services. The Olivas area is outside the SOI, but is between the urbanized Midtown and Arundell communities and Ventura Harbor. The North Avenue and Western Cañada Larga expansion areas are near the Planning Area's northern periphery and the Western Cañada Larga area is outside the current SOI. These areas would require expansion of City services, which may accommodate additional growth in areas between the current northern City limit and the expansion areas. However, road and other infrastructure are available to serve all three areas. With implementation of policies and actions proposed in the 2005 General Plan, in combination with additional actions recommended in this EIR, service and infrastructure needs could be met for all of the expansion areas. Moreover, it is a specific goal of any of the General Plan land use scenarios to accommodate new industrial park development in the North Avenue area.

5.2 IRREVERSIBLE ENVIRONMENTAL EFFECTS

The CEQA Guidelines require that EIRs evaluating projects involving amendments to public plans, ordinances, or policies contain a discussion of significant irreversible environmental changes. CEQA also requires decisionmakers to balance the benefits of a proposed project against its unavoidable environmental risks in determining whether to approve a project. This section addresses non-renewable resources, the commitment of future generations to the proposed uses, and irreversible impacts associated with the proposed development.

Construction activity that would be accommodated under any of the 2005 General Plan land use scenarios would involve the use of building materials and energy, some of which are non-renewable resources. Consumption of these resources would occur with any development in the region and are not unique to the City of Ventura or the General Plan. The addition of new residential and non-residential development in the City through 2025 would irreversibly increase local demand for non-renewable energy resources such as petroleum and natural gas. Increasingly efficient building fixtures and automobile engines, as well as implementation of policies included in the 2005 General Plan, are expected to offset the demand to some degree. It is not anticipated that growth accommodated under the General Plan would significantly affect local or regional energy supplies.

As discussed in Section 4.2, Agriculture, implementation of any of the General Plan land use scenarios would accommodate the conversion of Prime agricultural lands to non-agricultural uses. Scenario 1 (Intensification/Reuse) would have the least impact to agriculture and would limit conversion to lands already designated for non-agricultural uses. Scenarios 2-6 would all also accommodate the possible future conversion of agricultural lands that are currently designated "Agricultural Use," though any future change in land use designation would require a public vote under the SOAR Initiative. For Scenarios 2 and 3, the possible conversion of agricultural land within the Olivas expansion area may also conflict with California Coastal Act policy since that expansion area is within the coastal zone. Impacts to agriculture are considered unavoidably significant for any of the six land use scenarios. Though any of the six land use scenarios are expected to generally enhance visual conditions in much of the City, this conversion of agricultural land that is highly visible from important view corridors (including U.S. 101, SR 126, and SR 33) is also considered an unavoidably significant aesthetic impact of any of the six scenarios.

Growth accommodated under any of the land use scenarios would require an irreversible commitment of law enforcement, fire protection, water supply, wastewater treatment, and solid waste disposal services. As discussed in Sections 4.11 and 4.13, impacts to public services and utilities generally can be reduced to a less than significant level with implementation of policies included in the 2005 General Plan and additional actions recommended in this EIR. However, because the lifespan of solid waste disposal facilities that currently serve the City is less than the 20-year timeframe of the General Plan, the availability of solid waste disposal facilities cannot be assured. This is considered an unavoidably significant impact under any of the six scenarios.

The additional vehicle trips associated with growth through 2025 would incrementally increase local traffic and noise levels and regional air pollutant emissions. As discussed in Section 4.10,

Noise, implementation of proposed policies and actions, in combination with the additional recommended action, could reduce the noise impacts associated with future growth to a less than significant level. As discussed in Section 4.12, Transportation/Traffic, proposed intersection level of service performance standards could be met at all locations for Scenarios 1, 3, 4, 5, and 6 with implementation of recommended circulation improvements and 2005 General Plan policies and actions. However, for Scenario 2, the proposed performance standard of D could not be achieved at the Johnson Drive/North Bank Drive intersection even with implementation of feasible improvements; therefore, the impact at that location would be unavoidably significant under Scenario 2. As discussed in Section 4.3, Air Quality, the continued collection of transportation demand management (TDM) fees on new development for implementation of regional air pollution programs could reduce the air pollutant emissions associated with individual future development projects to below significance thresholds. However, because the projected increase in population through 2025 exceeds SCAG and Ventura County APCD forecasts, growth accommodated under the General Plan is outside the parameters of the Ventura County AQMP and SCAG's Regional Transportation Plan. Although the 1989 Comprehensive Plan could potentially accommodate similar levels of population growth, this is considered a significant effect of implementation of the any of the 2005 General Plan scenarios.

6.0 ALTERNATIVES

As required by Section 15126.6 of the State CEQA Guidelines, this EIR examines a range of alternatives to the 2005 General Plan. Included in this analysis are two versions of the CEQArequired "no project" alternative (no further development and growth in accordance with the 1989 Comprehensive Plan), one alternative that addresses possible impacts if all expansion areas were developed, and four alternative plans that would address issues raised in NOP responses or impacts associated with one or more of the General Plan scenarios described in Section 2.0, Project Description, and analyzed in Section 4.0, Environmental Impact Analysis. The alternatives are listed below:

- No Project (no further development)
- No Project (1989 Comprehensive Plan)
- Restricted Growth (0.78% annual growth rate)
- No Important Farmland Conversion
- Upper North Avenue District Housing
- Intensification/Reuse + Minor Map Clean-up
- All Expansion Areas

Table 6-1 provides a summary comparison of the development characteristics of the four alternatives. A more detailed description of the various alternatives is included in the impact analysis for each alternative.

As required by CEQA, this section also includes a discussion of the "environmentally superior alternative" among those studied.

6.1 NO PROJECT (NO FURTHER DEVELOPMENT)

6.1.1 Description

This version of the "no project" alternative assumes that no further residential or nonresidential development would occur in the City and that environmental conditions would not change. No new roadway infrastructure improvements, parks, or other City facilities would be constructed. It is assumed that the current population (approximately 105,000) would not change, though it should be recognized that the City cannot in reality control whether or not population growth occurs. Absent additional housing, any population growth in the City would be accommodated through increasing the number of persons per household.

6.1.2 Impact Analysis

Implementation of this alternative would not result in any physical changes as it would not accommodate any new development. As such, it would not have any of the positive changes anticipated to occur as a result of development under the 2005 General Plan or any of the significant adverse effects associated with new development. This alternative would avoid the unavoidably significant impacts of the 2005 General Plan relating to aesthetics, exceedance of the Ventura County AQMP and SCAG population forecasts, solid waste disposal facilities, traffic (Scenario 2 only), inconsistency with the Guidelines for Orderly Development (Scenario

Table 6-1
Comparison of Alternatives' 2025 Development Characteristics

	Alternative						
Characteristic	No Project (no further development)	No Project (1989 Comprehensive Plan)	Restricted Growth (0.78\% Annual Growth)	No Important Farmland Conversion	Upper North Avenue Housing	Intensification/ Reuse + Minor Map Cleanup	All Expansion Areas
Estimated Annual Population Growth Rate	0%	1.14%	0.78%	0.88%	1.14%	1.14%	1.6%
Projected 2025 Population	105,000	133,160	123,645	126,153	133,160	126,153	146,329
Projected New Housing Units in 2025	0	11,000	7,200	8,300	11,000	8,300	16,100
Expansion Areas Included	None	None, but development accommodated in hillsides	None	None	North Avenue, Western Cañada Larga	None	North Avenue, Olivas, Serra, Western Cañada Larga, Poinsettia

5 only), and inconsistency with the California Coastal Act policy regarding conversion of Prime farmland (Scenarios 2 and 3 only). On the other hand, this alternative would not address any of the infrastructure deficiencies in the City or address possible impacts relating to regional traffic growth, which the City does not control. Failure to provide additional housing and nonresidential development could result in overcrowded conditions within the existing housing stock and lack of jobs for local residents.

6.2 NO PROJECT (1989 COMPREHENSIVE PLAN)

6.2.1 Description

This version of the "no project" alternative is assumed to be growth accommodated through 2025 under the 1989 Comprehensive Plan. The land use map for the 1989 Comprehensive Plan is shown on Figure 2-2 in Section 2.0, Project Description. This map works in conjunction with the current zoning map.

Based on recent observed growth rates (see section 2.5.5), it is presumed that the 1989 Comprehensive Plan would accommodate a level of growth and development through 2025 similar to that which could occur under Scenarios 2-6. The difference between Scenarios 2-6 and continued implementation of the 1989 Comprehensive Plan would be not in how much growth could occur, but rather where and how growth might occur. The key differences between the 1989 Comprehensive Plan land use map and the 2005 General Plan land use map are as follows:

- The 1989 Comprehensive Plan land use map does not include the districts, corridors, or neighborhood centers that are part of all six 2005 General Plan land use scenarios. The districts, corridors, and neighborhood centers may be less of a focal point for future development under this scenario and live/work housing would not be allowed within industrial districts. However, this alternative does include the Downtown Specific Plan designation, which calls for a mix of uses in the Downtown area. In addition, because the current Zoning Code allows multi-family residential development within commercially zoned areas, many of the areas anticipated to be the focal point of future intensification and reuse (e.g., Ventura Avenue, Main Street, and Thompson Boulevard corridors) could also undergo similar intensification under the 1989 Comprehensive Plan.
- The 1989 Comprehensive Plan land use map designates the North Avenue, Olivas, Serra, and Poinsettia expansion areas as Agricultural Use and does not contemplate their conversion to non-agricultural use. The Western Cañada Larga expansion area is outside the current SOI and also is not contemplated for conversion. Therefore, it is anticipated that all of these areas would remain in their current agricultural/open space use.
- The 1989 Comprehensive Plan land use map includes over 3,000 thousand acres of hillside land above the City within the SOI and designates the entire area as Hillside Planned Residential, a designation that could accommodate residential development at varying densities. Although the hillside area is subject to voter approval under Measure P, residential development could be approved in any portion of this area (similar to the voter approval needed for four of the five expansion areas under the SOAR Ordinance).

It is assumed that the 1989 Comprehensive Plan could accommodate about 11,000 residential units and a similar amount of non-residential development as could be accommodated under Scenarios 2-6 of the 2005 General Plan. It is anticipated that 8,300 units would be built within the general boundaries of the SOI included in 2005 General Plan Scenario 1 and that the remaining 2,700 units would be built in the hillsides above the City rather than in one or more of the expansion areas.

6.2.2 Impact Analysis

Aesthetics

This alternative would convert a similar amount of agricultural land as would be converted under 2005 General Plan Scenario 1 and less agricultural land than would be converted under Scenarios 2-6. Impacts to freeway view corridors may be lower from some vantage points, depending upon the 2005 General Plan scenario selected. However, this alternative would accommodate up to 2,700 residences in the hillsides above the City. Although development could be partially hidden from view, it is anticipated that grading and development in the hillsides would have unavoidably significant visual impacts.

Agriculture

Impacts relating to agricultural conversion would be similar to those of 2005 General Plan Scenario 1. An estimated 674 acres of Prime, Unique, and Statewide Importance farmlands could be converted. Impacts would be unavoidably significant, but this alternative would involve less agricultural conversion than would occur under Scenarios 2-6. On the other hand, the compatibility conflicts relating to agricultural-urban interface associated with the expansion areas - the Serra and Poinsettia areas, in particular - would remain under this alternative.

Air Quality

Long-term air quality impacts would be generally similar to those of 2005 General Plan Scenarios 2-6. Overall vehicle miles traveled and associated air pollutant emissions may be incrementally higher due to increased travel distances. In addition, construction activity in the hillsides could generate greater amounts of construction-related dust.

Biological Resources

By accommodating development in the hillsides, this alternative would have greater potential to disturb sensitive plant and animals species and habitats than any of the six 2005 General Plan land use scenarios. In addition, development in the hillsides would likely have substantially greater impacts to wildlife movement. This alternative would be expected to have unavoidably significant biological resource impacts.

Cultural Resources

By potentially accommodating substantial hillside development, this alternative may have somewhat greater potential to disturb as yet undiscovered cultural resource remains than the 2005 General Plan scenarios. However, as with the 2005 General Plan, implementation of
appropriate historic and archaeological resource policies could avoid significant impacts to cultural resources.

Geologic Hazards

By potentially accommodating substantial hillside development, this alternative would potentially entail greater levels of grading and associated topographical changes than could occur under the 2005 General Plan land use scenarios. Adding up to 2,700 residences in the hillsides above the City would also increase the potential for property damage associated with landslides, mudslides, and seismic activity.

Hazards and Hazardous Materials

Impacts relating to hazards would be similar to those of the 2005 General Plan land use scenarios. It is presumed that standard practices to address soil and groundwater contamination issues would continue to be implemented and that the City would continue to pursue funding for remediation of brownfield sites. Though potential impacts relating to industrial-residential compatibility associated with the 2005 General Plan land use scenarios can be addressed on a case-by-case basis, this alternative would be expected to reduce the potential for such conflicts since live/work residential components would not be allowed within industrially-designated properties.

Hydrology and Water Quality

Hydrology and water quality impacts would be similar to those associated with the 2005 General Plan land use scenarios and could be addressed through standard engineering practices. Development in the hillsides would, however, be subject to greater erosion potential than development that could be accommodated under the 2005 General Plan.

Mineral Resources

Similar to the 2005 General Plan scenarios, this alternative would not create conflicts with existing mineral resource extraction activity. This alternative would not create compatibility conflicts with oil production in the North Avenue area as residential development would not be allowed within industrially designated areas.

Noise

Overall increases in noise and exposure to noise would be similar to those associated with General Plan Scenarios 2-6. However, the hillside areas that would accommodate 2,700 units under this alternative are not subject to significant noise constraints, whereas all of the expansion areas under consideration are subject to noise constraints associated with roadways and/or railroads. Therefore, although implementation of proposed 2005 General Plan policies and actions, in combination with the additional action recommended in this EIR, could achieve City noise standards, the potential for noise conflicts associated with future development may be incrementally lower under this alternative.

Public Services

The overall increase in demand for public services would be about the same as under Scenarios 2-6. Impacts relating to police protection service, solid waste, libraries would be the same as those described for Scenarios 2-6 in Section 4.11, Public Services. Solid waste impacts would be unavoidably significant.

With respect to fire protection, a new fire station in the North Avenue area likely would not be needed; however, a new station in or adjacent to the hillsides likely would be needed. The addition of up to 2,700 residences in the hillside areas above the City, which have high wildland fire risk, would also substantially increase the risk of fire-related property damage and loss of life as compared to the 2005 General Plan land use scenarios.

Similar to 2005 General Plan Scenario 2, this alternative provides ample acreage to meet future citywide school and park needs as the hillside areas include more than 3,000 acres. The possible locations of future park facilities may not be convenient for current City residents, but this alternative would not have the land constraints for new facilities that would occur under 2005 General Plan Scenarios 1 and 5.

Transportation and Circulation

Overall traffic increases would be similar to those associated with 2005 General Plan Scenarios $2-6$. It is generally anticipated that planned enhancements to the circulation system would generally achieve the City's level of service standards. The roadway that may experience significantly greater impacts under this alternative is Foothill Road, which would likely accommodate much of the traffic generated by hillside residential development. It is anticipated that service levels on Foothill Road would drop below City standards if this alternative were implemented, possibly warranting widening or other capacity enhancements.

Utilities and Service Systems

Although the increase in urban water demand would be similar to Scenarios 2-6, this alternative would convert undeveloped hillside land (which currently does not consume water) rather than irrigated agricultural land. Thus, it would receive less agricultural water credit and net 2025 demand within Planning Area would be somewhat higher than for Scenarios 2-6. Nevertheless, it is anticipated that future water demand would remain within the City's projected water supplies. As with Scenarios 2, 3, 4, and 6, this alternative would not be expected to result in wastewater generation increases exceeding local treatment plant capacity.

Land Use and Planning

Like 2005 General Plan Scenarios 2-6, this alternative would generally be consistent with most regional land use plans and policies. This alternative would not pose the potential conflict with Coastal Act policies pertaining to the preservation of Prime farmland that would occur under 2005 General Plan Scenarios 2 and 3. On the other hand, this alternative could be found to be inconsistent with SCAG Regional Comprehensive Plan and Guide policies (which were adopted after the 1989 Comprehensive Plan) relating to developing compact communities, preservation
of biological resources, and focusing development in areas that are not subject to significant geologic or wildland fire hazards.

Population and Housing

Population and housing growth would be similar to that of General Plan Scenarios 2-6. The 2025 population is projected to exceed SCAG and Ventura County AQMP forecasts. Like the 2005 General Plan scenarios, it is anticipated that implementation of this alternative would maintain a balance of jobs and housing.

6.3 RESTRICTED GROWTH (0.78\% ANNUAL GROWTH RATE)

6.3.1 Description

This alternative envisions a slower population growth rate than would occur under Scenarios 16 . The 0.78% annual growth rate would result in a 2025 population of 123,645 , which is equivalent to SCAG's 2025 population forecast for the City. The purpose of considering this growth rate is to assess an alternative that would be consistent with the growth projections upon which SCAG's Regional Transportation Plan and the Ventura County AQMP are based.

It is assumed that this alternative would not include any of the expansion areas under consideration. The land use map would be identical to the Scenario 1 map (see Figure 2-3 in Section 2.0, Project Description). Therefore, agricultural lands within the proposed SOI that are currently designated for non-agricultural uses could be converted under this alternative.

6.3.2 Impact Analysis

Aesthetics

This alternative would convert a similar amount of agricultural land as would be converted under 2005 General Plan Scenario 1 and less agricultural land than would be converted under Scenarios 2-6. Impacts to freeway view corridors would be about the same as those of Scenario 1. The overall intensity of development in the districts and corridors may be incrementally lower than under Scenario 1, but the overall magnitude of change would be about the same as would occur under any of the General Plan scenarios.

Agriculture

Impacts relating to agricultural conversion would be similar to those of 2005 General Plan Scenario 1. An estimated 674 acres of Prime, Unique, and Statewide Importance farmlands could be converted. Impacts would be unavoidably significant, but this alternative would involve less agricultural conversion than would occur under Scenarios 2-6. As with Scenario 1, the compatibility conflicts relating to agricultural-urban interface associated with the expansion areas - the Serra and Poinsettia areas, in particular - would remain under this alternative.

Air Quality

The overall increase in air pollutant emissions associated with this alternative would be generally similar to, but slightly lower than what would occur under 2005 General Plan Scenario 1. Overall vehicle miles traveled and associated air pollutant emissions would be incrementally lower due to the reduction in population growth. Because the projected population growth associated with this alternative would be within SCAG and Ventura County APCD forecasts, this alternative would be consistent with the Ventura County AQMP. Therefore, the unavoidably significant impact relating to the potential inconsistency with the AQMP would not occur under this alternative.

Biological Resources

This alternative's impacts to biological resources would be similar to those of 2005 General Plan Scenario 1. Implementation of proposed General Plan policies and actions would reduce biological resource impacts to a less than significant level.

Cultural Resources

This alternative's impacts to cultural resources would be similar to those of 2005 General Plan Scenario 1. Implementation of proposed 2005 General Plan policies and actions would reduce cultural resource impacts to a less than significant level.

Geologic Hazards

This alternative's impacts related to geologic hazards would be similar to those of 2005 General Plan Scenario 1. Implementation of proposed 2005 General Plan policies and actions would reduce geologic hazard impacts to a less than significant level.

Hazards and Hazardous Materials

This alternative's impacts related to hazardous materials would be similar to those of 2005 General Plan Scenario 1. Implementation of proposed 2005 General Plan policies and actions would reduce impacts relating to hazardous materials to a less than significant level.

Hydrology and Water Quality

This alternative's impacts related to hydrology and water quality would be similar to those of 2005 General Plan Scenario 1. Implementation of proposed 2005 General Plan policies and actions would reduce impacts to hydrological conditions and water quality to a less than significant level.

Mineral Resources

Similar to the 2005 General Plan scenarios, this alternative would not create conflicts with existing mineral resource extraction activity. Residential development in the North Avenue community could create conflicts with oil extraction activity, though implementation of
proposed 2005 General Plan policies/actions and appropriate safety and noise controls on a case-by-case basis would reduce potential impacts to a less than significant level.

Noise

Overall increases in noise and exposure to noise would be similar to, but slightly lower than, those associated with 2005 General Plan Scenario 1. The overall potential for exposure to noise would be incrementally lower since overall population growth would be lower. As with the 2005 General Plan scenarios, noise impacts could be addressed through implementation of 2005 General Plan policies/actions, the additional action recommended in this EIR, and incorporation of noise attenuation features into new development on a case-by-case basis.

Public Services

The overall increase in demand for public services would be similar to, but slightly lower than, that of 2005 General Plan Scenario 1 since the population increase through 2025 would be about 13% lower. The new station near Ventura Harbor would be needed, but a new fire station in the North Avenue area likely would not be needed. An estimated 23 new police officers would be needed to maintain the current officers/residents ratio and expansion of the police department headquarters would be needed.

The citywide increase in solid waste generation sent to landfills through 2025 is estimated at 74 tons per day for this alternative. This is within the currently available capacity of area landfills. However, because Toland Road and Simi Valley landfills are projected to close by 2027, alternate disposal facilities or methods will be needed.

Growth accommodated under this alternative would generate an estimated 3,024 new students at the VUSD (assuming 7,200 new housing units) and generate demand for an estimated 187 acres of parks based on the 10 acres $/ 1,000$ residents standard. Continued collection of school and park impact fees would reduce school and park impacts to less than significant under CEQA. However, it should be noted that, similar to 2005 General Plan Scenario 1, this alternative does not include large tracts of land that could be used for the development of new parks and schools.

Transportation and Circulation

Overall traffic increases would be about 13% lower than under 2005 General Plan Scenario 1 and traffic impacts would be commensurately lower. It is generally anticipated that planned enhancements to the circulation system would continue to achieve the City's level of service standards.

Utilities and Service Systems

Overall water demand and wastewater generation would be about 13\% than that associated with 2005 General Plan Scenario 1. Similar to Scenario 1, it is anticipated that projected water supplies and the current capacity of the City's wastewater treatment plant would be adequate to serve development anticipated under this alternative.

Land Use and Planning

Like 2005 General Plan Scenario 1, this alternative would generally be consistent with most regional land use plans and policies. This alternative would not pose the potential conflict with the Guidelines for Orderly Development associated with Scenario 5 or the potential conflict with Coastal Act policies pertaining to the preservation of Prime farmland that would occur under Scenarios 2 and 3.

Population and Housing

Population and housing growth would be about 13\% lower than under 2005 General Plan Scenario 1. The 2025 population would not exceed SCAG and Ventura County AQMP forecasts; therefore, the significant impact associated with exceedance of these forecasts that would occur under any of the 2005 General Plan scenarios would not occur. However, some form of growth control, such as the City's current RGMP would have to be established to keep population growth within these forecasts. As with the 2005 General Plan scenarios, implementation of this alternative would be expected to maintain a balance of jobs and housing, with a concomitant reduction in the overall number of jobs generated. Like Scenario 1, this alternative would be expected to accommodate mainly medium to high density multiple family housing, with new single family housing primarily limited to remnant agricultural properties in the Saticoy and Thille communities.

6.4 NO IMPORTANT FARMLAND CONVERSION

6.4.1 Description

Under this alternative, no agricultural lands within the Planning Area would be converted to a non-agricultural use. Therefore, none of the expansion areas would be included and all lands within the Planning Area that are have important farmlands (Prime, Statewide Importance, or Unique) and are currently in agricultural use, but designated for a non-agricultural use would be redesignated "Agricultural Use" and retained in agriculture. A total of approximately 674 acres would be redesignated. Affected areas include more than 300 acres in the Saticoy area, the 75 -acre McGrath property in the Arundell community, a 25 -acre agricultural property in the Thille community near the U.S. 101/SR 126 interchange, and other smaller agricultural lands throughout the Planning Area.

This alternative is essentially a derivative of 2005 General Plan Scenario 1. Its purpose is to provide an alternative that eliminates the unavoidably significant impact of the 2005 General Plan with respect to agricultural land conversion. It is assumed that the citywide growth rate would be 0.88% annually, similar to that described for Scenario 1. Thus, an estimated 8,300 residences are assumed to be added by 2025. Because the overall amount of land available for future development would be lower than under Scenario 1, it is assumed that greater levels of intensification would occur within the districts, corridors, and neighborhood centers.

6.4.2 Impact Analysis

Aesthetics

No agricultural land would be converted under this scenario. Impacts to views from freeways and other corridors would therefore be lower from some vantage points. By retaining all agricultural lands, it is anticipated that this alternative would eliminate the unavoidably significant aesthetic impacts relating to visual character of alteration of views. On the other hand, this alternative would be expected to result in higher intensity development in some parts of the City than would occur under the 2005 General Plan. Though careful site design would minimize potentially negative aesthetic effects, this alternative would be expected to create a somewhat more urban character in the districts and corridors.

Agriculture

No agricultural land within the Planning Area would be converted under this alternative. Thus, the unavoidably significant impact relating to agricultural land conversion would be eliminated. On the other hand, the compatibility conflicts relating to existing agricultural-urban interface that are present in portions of the community would remain, whereas conversion of agricultural lands that are surrounded by urban uses, as could occur under any of the 2005 General Plan scenarios, would eliminate many of the current conflicts.

Air Quality

Long-term air quality impacts would be generally similar to those of 2005 General Plan Scenario 1. Population growth projected for this alternative exceeds the growth forecast upon which the Ventura County AQMP is based. Overall vehicle miles traveled and associated air pollutant emissions may be incrementally lower than under Scenario 1 due to the generally higher density development and lower travel distances. On the other hand, the higher intensity of development may increase traffic congestion and associated emissions in certain parts of the City, notably Downtown and the Ventura Avenue corridor.

Biological Resources

By concentrating development in already developed areas, this alternative would largely avoid impacts to biological resources. The agricultural lands that would be preserved under this alternative generally do not have high biological resource value. Impacts would be similar to, but slightly lower than, those of 2005 General Plan Scenario 1.

Cultural Resources

The agricultural areas to be preserved under this alternative do not include known historic resources. Because they have been disturbed by agricultural activity, they are not expected to include significant archaeological resources. Nevertheless, because the agricultural lands in Saticoy are within an area of archaeological significance, the potential to disturb archaeological resources would be incrementally lower than under 2005 General Plan Scenario 1. As with the 2005 General Plan, implementation of appropriate historic and archaeological resource policies could avoid significant impacts to cultural resources.

Geologic Hazards

Geologic hazard impacts would be similar to those of 2005 General Plan Scenario 1. Compliance with 2005 General Plan policies/actions and UBC requirements on new development would reduce impacts to a less than significant level.

Hazards and Hazardous Materials

Impacts relating to hazards would be similar to those of the 2005 General Plan land use scenarios. It is presumed that standard practices to address soil and groundwater contamination issues would continue to be implemented and that the City would continue to pursue funding for remediation of brownfield sites.

Hydrology and Water Quality

Hydrology and water quality impacts generally would be similar to those associated with the 2005 General Plan land use scenarios and could be addressed through standard engineering practices and compliance with federal, state, and local runoff control requirements. However, leaving additional land in agricultural use may reduce the City's ability to control sedimentation and water quality as compared to General Plan Scenario 1.

Mineral Resources

Impacts relating to mineral resources would be similar to those of the 2005 General Plan scenarios. The agricultural lands that would be preserved under this scenario do not include any mineral resource extraction activity.

Noise

Overall increases in noise and exposure to noise would be similar to that associated with General Plan Scenario 1. The slightly higher intensity of development anticipated for the districts and corridors may incrementally increase noise levels on some roads and expose more new residences to urban noise. However, implementation of proposed 2005 General Plan policies/ actions, the additional action recommended in this EIR, and incorporation of appropriate noise attenuation features on new development could achieve City noise standards.

Public Services

The overall increase in demand for public services would be about the same as under 2005 General Plan Scenario 1. Impacts relating to police protection service, solid waste, libraries would be the same as those described for Scenario 1 in Section 4.11, Public Services. With respect to fire protection, a new fire station in the North Avenue area likely would not be needed under this alternative.

Continued collection of school and park impact fees would reduce school and park impacts to less than significant under CEQA. However, it should be noted that, similar to 2005 General Plan Scenario 1, this alternative does not include large tracts of land that could be used for the development of new parks and schools.

Transportation and Circulation

Overall traffic increases would be similar to those associated with 2005 General Plan Scenario 1. Planned enhancements to the circulation system would generally achieve the City's level of service standards, though the anticipated higher intensity of development in districts, corridors, and neighborhood centers may increase overall congestion along main City thoroughfares. On the other hand, the generally more compact development associated with this alternative may reduce overall vehicle miles traveled and increase transit use to some degree.

Utilities and Service Systems

Future urban water demand would be similar to that of Scenario 1. However, because an additional 674 acres of agricultural lands would remain in agricultural production, the net increase in Planning Area water demand would be about 1,278 AFY higher than for Scenario 1. Nevertheless, water demand would remain within projected future supply. Wastewater treatment plant capacity impacts would be similar to those of Scenario 1. No exceedance of plant capacity is anticipated.

Land Use and Planning

Like 2005 General Plan Scenarios 1, this alternative would generally be consistent with most regional land use plans and policies. This alternative would not pose the potential conflicts with the Guidelines for Orderly Development that would occur under Scenario 5 or with the Coastal Act policies pertaining to the preservation of Prime farmland that would occur under Scenarios 2 and 3.

Population and Housing

Population and housing growth would be similar to that of General Plan Scenario 1. The 2025 population is projected to exceed SCAG and Ventura County AQMP forecasts. It is anticipated that, like the 2005 General Plan scenarios, implementation of this alternative would maintain a balance of jobs and housing. To an even greater degree than under Scenario 1, this alternative would likely emphasize high density multiple family housing to meet future housing needs rather than single family housing since new housing development would be restricted almost exclusively to districts, corridors, and neighborhood centers.

6.5 UPPER NORTH AVENUE DISTRICT HOUSING

6.5.1 Description

This alternative is a variation of 2005 General Plan Scenario 5, the Intensification/Reuse + North Avenue + Western Cañada Larga scenario. As discussed in Section 2.0, Project Description, the two expansion areas included in Scenario 5 do not provide sufficient acreage to accommodate a mix of housing types or to accommodate parks, schools, or other public facilities. Consequently, this alternative considers a more realistic scenario in which some of the development that would occur within the North Avenue and Western Cañada Larga areas would instead occur within the Upper North Avenue District, adjacent to the Brooks Institute
and on the Petrochem Refinery site. This would entail changing the land use designation for these areas from Industrial to Residential.

It is anticipated that the Upper North Avenue District would accommodate the following development under this alternative in addition to the level of development anticipated for that area under Scenario 5:

- 300,000 square feet of office/retail development adjacent to Brooks Institute
- 300 units of student/rental housing adjacent to Brooks Institute
- 750 residences on the Petrochem site

Because this amount of development would be accommodated within the Upper North Avenue District, it is assumed that the amount of development within the North Avenue and Western Cañada Larga expansion areas would be reduced commensurately. This would leave the following amount of development within the two expansion areas combined:

- 1,650 residences
- Approximately 250,000 square feet of office/retail development

Other than this change, this alternative would be the same as 2005 General Plan Scenario 5.

6.5.2 Impact Analysis

Aesthetics

This alternative would convert a similar amount of agricultural land as would be converted under Scenario 5. The overall intensity of development within the North Avenue and Western Cañada Larga expansion areas would be lower under this alternative and more commensurate with the intensity of existing development in the area. This alternative would increase the intensity of development within the Upper North Avenue District, which may be considered an adverse effect. However, the visibility of most of this area from the SR 33 corridor is relatively low and implementation of this alternative would be expected to improve the visual character of the Petrochem site.

Agriculture

Impacts relating to agricultural conversion would be similar to those of 2005 General Plan Scenario 5. An estimated 681 acres of Prime, Unique, and Statewide Importance farmlands could be converted. Impacts would be unavoidably significant, but this alternative would involve less agricultural conversion than would occur under Scenarios 2, 3, 4, or 6.

Air Quality

Long-term air quality impacts would be generally similar to those of Scenarios 2-6. As with all of the 2005 General Plan Scenarios, projected population growth under this alternative exceeds the Ventura County AQMP forecast and therefore could be found to be inconsistent with the AQMP. The higher intensity of development in the North Avenue area as compared to 2005

General Plan Scenarios 1-4 and 6 may incrementally increase the transport of pollutants to the Ojai Valley.

Biological Resources

By reducing the overall intensity of development in the North Avenue and Western Cañada Larga areas as compared to 2005 General Plan Scenario 5, this alternative would incrementally reduce the potential for impacts to riparian resources in the these areas, including Cańada Larga and Manuel Creeks. On the other hand, development intensity in this areas would remain higher than would occur under Scenarios 1-4 and 6. In addition, this alternative could accommodate greater levels of human activity adjacent to the biologically sensitive Ventura River, with increased potential for impacts to riparian resources and associated sensitive species (e.g., Least Bell's vireo, steelhead trout).

Cultural Resources

The areas subject to future development are the same as those of 2005 General Plan Scenario 5. As with the 2005 General Plan scenarios, implementation of appropriate historic and archaeological resource policies could avoid significant impacts to cultural resources.

Geologic Hazards

Geologic hazard impacts would be similar to those of 2005 General Plan Scenario 5. Residential development in the Upper North Avenue area would potentially be subject to liquefaction and expansive soil hazards. However, compliance with 2005 General Plan policies/actions and UBC requirements on new development would reduce impacts to a less than significant level.

Hazards and Hazardous Materials

Hazard impacts would be similar to those of 2005 General Plan Scenario 5. This alternative could potentially increase safety conflicts relating to the placement of residential development in proximity to oil production in the Upper North Avenue area. On the other hand, redevelopment of the Petrochem refinery site would eliminate an existing brownfield. Compliance with 2005 General Plan policies and standard safety requirements on new development would reduce impacts relating to hazardous materials to a less than significant level.

Hydrology and Water Quality

Residential development within the Upper North Avenue District would be within the 100-year flood zone and would therefore be subject to the requirements of FEMA and the City's Floodplain Ordinance. Placing residential development within the Upper North Avenue district adjacent to the Ventura River would incrementally increase the potential for water quality impacts within the river. However, possible impacts could be addressed on a case-bycase basis through compliance with standard engineering practices and runoff control requirements. Overall, hydrology and water quality impacts would be somewhat greater than those associated with 2005 General Plan Scenario 5, but could be reduced to a less than significant level.

City of Ventura

Mineral Resources

Similar to the 2005 General Plan scenarios, this alternative would not create conflicts with existing mineral resource extraction activity. This alternative could potentially increase compatibility conflicts with oil production in the Upper North Avenue area by adding accommodating residential development. However, as discussed under "Hazards and Hazardous Materials," compliance with 2005 General Plan policies and standard safety requirements on new development would reduce such conflicts to a less than significant level.

Noise

Overall increases in noise and exposure to noise would be similar to those associated with General Plan land use scenarios 2-6. Residential development within the Upper North Avenue area would be subject to noise from SR 33 and potentially from area industrial activity. However, implementation of 2005 General Plan actions and incorporation of appropriate noise attenuation on a case-by-case basis could achieve City noise standards.

Public Services

The overall increase in demand for public services would be about the same as under Scenarios 2-6. Impacts relating to police protection service, solid waste, libraries would be the same as those described for Scenarios 2-6 in Section 4.11, Public Services. A new fire station would likely be needed in the North Avenue area.

Continued collection of school and park impact fees would reduce school and park impacts to less than significant under CEQA. As compared to 2005 General Plan Scenario 5, this alternative would have somewhat more acreage available within the North Avenue and Western Cañada Larga expansion areas for schools and parks.

Transportation and Circulation

Overall traffic increases would be similar to those associated with 2005 General Plan Scenario 5. Feasible improvements such as those described for Scenario 5 in Section 4.12, Transportation and Circulation, are available to meet proposed traffic system performance standards. New residential development in the Upper North Avenue District would be expected to utilize the Cañada Larga and Shell Road interchanges on SR 33. With improvements to the Shell Road interchange identified in Section 4.12, these two interchanges have adequate capacity to accommodate traffic flows associated with Scenario 5 and would maintain extra capacity to meet the additional demand associated with this alternative.

Utilities and Service Systems

Overall water demand and wastewater generation would be similar to that associated with 2005 General Plan Scenario 5. Water supplies would be adequate to serve projected growth. No impact to the Ventura wastewater treatment plant is anticipated. The capacity of the Ojai Valley Sanitary District Plant could be exceeded, but impacts to that facility can be mitigated through implementation of a measure similar to Measure U-2(b) in Section 4.13, Utilities, which
allows development of the North Avenue area only at such time as adequate treatment capacity is available at the Ojai Valley Sanitary District plant.

Land Use and Planning

Like 2005 General Plan Scenarios 2-6, this alternative would generally be consistent with most regional land use plans and policies. This alternative would pose the same potential conflict with the Guidelines for Orderly Development associated with Scenario 5, but would not pose the potential conflict with Coastal Act policies pertaining to the preservation of Prime farmland that would occur under Scenarios 2 and 3.

Population and Housing

Population and housing growth would be similar to that of General Plan Scenarios 2-6. The 2025 population is projected to exceed SCAG and Ventura County AQMP forecasts. As with the 2005 General Plan scenarios, implementation of this alternative would be expected to maintain a balance of jobs and housing in the City.

6.6 INTENSIFICATION/REUSE + MINOR MAP CLEAN-UP

6.6.1 Description

This alternative is a variation of 2005 General Plan Scenario 15, the Intensification/Reuse Only scenario. The purpose of this alternative is to address three minor map clean-up issues identified following receipt of City Council direction on the recommended 2005 General Plan land use map. The first of these involves the re-designation of approximately five acres along the south side of Rosal Lane in the unincorporated area of Saticoy (APNs 90-142-11, 90-142-14, 90-143-13, and 90-143-17) that are designated "Industrial" on the draft General Plan land use map, but are designated "Residential Two Family" in the County of Ventura's Saticoy Area Plan. To achieve consistency with the Saticoy Area Plan, these lots would be redesignated "Residential Medium Density" under this alternative. The second change involves properties located on the Westside between Ramona (north), Simpson Street (south) and straddling Sheridan Way. This map change would include changing the proposed land use designation from low to high density residential to be consistent with the neighborhood and existing uses on the properties. A third change involves properties located in the Simpson Historic District located to the south of Simpson Street in generally the same area. The land use map would be changed from high to medium density, which is consistent with existing development in the Simpson Historic District and would generally allow 2 units per parcel.

Other than the three changes described above, this alternative is identical to 2005 General Plan Scenario 1. An estimated 8,300 residential units are projected to be added through 2025.

6.6.2 Impact Analysis

Other than issues pertaining to land use compatibility (aesthetics, noise, hazards), this alternative's impacts would be identical to those of Scenario 1. Re-designation of the five-acre area in Saticoy may incrementally increase the potential for compatibility conflicts with existing and future industrial uses in the area as properties to the south are designated "Industrial."

City of Ventura

However, potential conflicts relating to lighting, noise, and hazards can be addressed through appropriate design, including, if necessary, the construction of solid block walls between residential and industrial uses. In addition, it should be noted that the properties along the north side of Rosal Lane, immediately across the street, are designated "Residential Medium Density." As such, developing the site along the south side of Rosal Lane with residential uses may reduce the potential for compatibility conflicts for those properties. In addition, the inclusion of additional residential land within the Saticoy district may provide a better mix of jobs and housing within the primarily industrial district. This re-designation would not create any significant environmental effects.

The two land use map changes in the West Ventura area would reflect the current development within the affected properties as well as the type of development in the surrounding area. The change to high density residential for the properties between Ramona and Simpson Street could theoretically allow for higher density development in the future; however, because such development would be consistent with the character of the area, no significant impacts would occur.

6.7 ALL EXPANSION AREAS

6.7.1 Description

This alternative includes all of the five expansion areas considered in the six 2005 General Plan land use scenarios. As such, it includes an estimated 1,977 acres of expansion areas. Because this alternative includes more land than any of the General Plan scenarios, it is presumed that it would accommodate more overall growth through 2025. It is assumed that the growth within the North Avenue, Olivas, Serra, and Poinsettia expansion areas would be similar to that assumed for Scenarios 3, 4, and 6 and that development in the Western Cañada Larga area would be similar to the North Avenue area. Overall expansion area development is assumed to be as follows:

- North Avenue - 300 residences
- Olivas - 2,400 residences
- Serra - 2,400 residences
- Western Cañada Larga - 300 residences
- Poinsettia - 2,400 residences

This results in a combined total of 7,800 expansion area residences. When added to the 8,300 intensification/reuse units, it is assumed that this alternative could accommodate about 16,100 new residences through 2025. This number of units would accommodate an estimated 41,377 additional residents, bringing the citywide population to 146,329 . This represents an average annual growth rate of about 1.6%. It is assumed that non-residential growth would increase commensurately.

6.7.2 Impact Analysis

Aesthetics

This alternative would convert more agricultural land than would be converted under any of the General Plan scenarios and increase the overall intensity of development within the Plannin Area. As such, the overall change in the aesthetic character of the community would be greater. Aesthetic impacts would be greater than for Scenarios 1-6 and unavoidably significant.

Agriculture

Implementation of this alternative could convert nearly 2,500 acres of Prime, Statewide Importance, and Unique farmlands. Impacts relating to agricultural conversion would be greater than those of the General Plan scenarios and would be unavoidably significant. On the other hand, conversion of additional agricultural lands may reduce the potential for conflicts relating to the interface between agricultural and urban uses.

Air Quality

The overall increase in air pollutant emissions associated with this alternative would slightly higher than what would occur under the General Plan scenarios. Overall vehicle miles traveled and associated air pollutant emissions would be incrementally higher due to the increased population growth. As with Scenarios 1-6, the projected population growth associated with this alternative would exceed SCAG and Ventura County APCD forecasts, but to an even greater degree.

Biological Resources

This alternative's overall impacts to biological resources would be similar to those of 2005 General Plan scenarios, though the increased population and level of development may incrementally increase the potential for indirect impacts. Implementation of proposed General Plan policies and actions would reduce biological resource impacts to a less than significant level.

Cultural Resources

This alternative's impacts to cultural resources would be similar to those of the General Plan scenarios. Implementation of proposed 2005 General Plan policies and actions would reduce cultural resource impacts to a less than significant level.

Geologic Hazards

This alternative's impacts related to geologic hazards would be similar to those of the General Plan scenarios. Implementation of proposed 2005 General Plan policies and actions would reduce geologic hazard impacts to a less than significant level.

Hazards and Hazardous Materials

This alternative's impacts related to hazardous materials would be similar to those of the General Plan scenarios. Implementation of proposed 2005 General Plan policies and actions would reduce impacts relating to hazardous materials to a less than significant level.

Hydrology and Water Quality

Hydrology and water quality impacts generally would be similar to those associated with the 2005 General Plan land use scenarios and could be addressed through standard engineering practices and compliance with federal, state, and local runoff control requirements. Removing additional land in agricultural use may increase the City's ability to control sedimentation and water quality as compared to the General Plan scenarios.

Mineral Resources

Similar to the 2005 General Plan scenarios, this alternative would not create significant conflicts with existing mineral resource extraction activity.

Noise

Overall increases in noise and exposure to noise would be somewhat greater than those associated with the General Plan scenarios. For most areas, noise increases would not be significant, though potentially significant impacts would occur along portions of North Ventura Avenue and Johnson Drive. Other roadways, such as Harbor Boulevard, may also experience significant noise level increases. Implementation of 2005 General Plan actions and incorporation of appropriate noise attenuation on a case-by-case basis could achieve City noise standards.

Public Services

The overall increase in demand for public services would higher than for any of the General Plan scenarios since this alternative would result in a 2025 population that is about 16% higher than the projected population under Scenario 1 and 10% higher than the projected population under Scenarios 2-6. Impacts relating to police protection service, solid waste, libraries would be similar to, but somewhat greater than, those described for Scenarios 2-6 in Section 4.11, Public Services. A new fire station would likely be needed in the North Avenue area.

Continued collection of school and park impact fees would reduce school and park impacts to less than significant under CEQA. As compared to the General Plan scenarios, this alternative would have more overall acreage available for the development of schools and parks.

Transportation and Circulation

Overall traffic increases would be greater than those associated with any of the 2005 General Plan scenarios since the 2025 population would be about 16% greater than under Scenario 1 and 10% greater than under Scenarios 2-6. It is anticipated that the unavoidably significant impact
at Johnson Drive/North Bank Drive associated with Scenario 2 would occur. Additional unavoidably significant impacts may also occur due to the increased level of traffic citywide.

Utilities and Service Systems

Overall water demand and wastewater generation would be higher than that associated with any of the General Plan scenarios. Overall urban water demand would be higher for this alternative than for any of the General Plan scenarios - approximately 10,700 AFY; however, this alternative would also receive greater water credits for eliminating existing agricultural demand - approximately 5,900 AFY. The net increase in demand is within the projected City water supply. No impact to the Ventura wastewater treatment plant is anticipated. The capacity of the Ojai Valley Sanitary District Plant could be exceeded, but impacts to that facility can be mitigated through implementation of a measure similar to Measure U-2(b) in Section 4.13, Utilities, which allows development of the North Avenue area only at such time as adequate treatment capacity is available at the Ojai Valley Sanitary District plant.

Land Use and Planning

Like 2005 General Plan Scenarios 1-6, this alternative would generally be consistent with most regional land use plans and policies. However, this alternative would pose the potential conflict with the Guidelines for Orderly Development associated with Scenario 5 and the potential conflict with Coastal Act policies pertaining to the preservation of Prime farmland associated with Scenarios 2 and 3.

Population and Housing

Population and housing growth would be higher than that of any of the General Plan scenarios. As such, the 2025 population is projected to exceed SCAG and Ventura County AQMP forecasts by an even greater amount than under Scenarios 1-6. Similar to the 2005 General Plan scenarios, implementation of this alternative would be expected to maintain a balance of jobs and housing in the City.

6.8 ENVIRONMENTALLY SUPERIOR ALTERNATIVE

As required by CEQA, this section discusses the environmentally superior alternative. Each of the alternatives discussed in this section has certain advantages and disadvantages as compared to the 2005 General Plan, as summarized below.

- The No Project (no further development) alternative could be considered environmentally superior because it would result in no increase in traffic, air pollution or noise, and no increase in demand for utilities or services. It would result in no physical impacts. On the other hand, this alternative would not meet many of the 2005 General Plan objectives or address current service/infrastructure deficiencies, nor would it provide housing and jobs to meet projected growth.
- The No Project ($\mathbf{1 9 8 9}$ Comprehensive Plan) alternative would reduce agricultural land impacts as compared to 2005 General Plan Scenarios 1-6, but would be expected to substantially increase impacts relating to biological
resources, wildland fire, geologic hazards, and hydrology due to the potential for future development in the hillsides above the City.
- The Restricted Growth alternative would incrementally reduce traffic and noise impacts as well as future demand for utilities and services. It would also eliminate the unavoidably significant impact of the 2005 General Plan relating to exceedance of growth projections contained in the Ventura County AQMP and SCAG Regional Transportation Plan. On the other hand, this alternative may not provide sufficient additional housing to meet projected demand through 2025.
- The No Important Farmland Conversion alternative would eliminate the significant impact of the 2005 General Plan relating to the conversion of Prime, Statewide Importance, and Unique farmland. On the other hand, by focusing even more development in districts and corridors, it would not be expected to accommodate as broad a mix of housing types, nor would it provide adequate jobs/housing balance or meet the City's economic development objectives. In addition, all of the existing Planning Area conflicts relating to agricultural/urban interface would remain under this alternative.
- The Upper North Avenue District Housing alternative would reduce the development intensity in the North Avenue and Western Cañada Larga expansion areas as compared to General Plan Scenario 5 and would redevelop the Petrochem plant and other properties in the Upper North Avenue district. On the other hand, residential development within the Upper North Avenue district could be exposed to conflicts with adjacent industrial activity and SR 33.
- The Intensification/Reuse + Minor Map Clean-Up alternative could create the potential for residential-industrial compatibility conflicts in the Saticoy area, but such impacts can be addressed through site design and the property re-designation would achieve consistency with the Saticoy Area Plan.
- The All Expansion Areas alternative would provide the greatest flexibility for future City expansion and would provide options for meeting projected housing demand. However, by accommodating higher population growth and land development, it would result in generally greater environmental impacts than any of the 2005 General Plan land use scenarios.

Although the No Project (no further development) alternative is not feasible (from either a legal or practical standpoint) and may not be desirable in many respects, it can be considered environmentally superior overall since it would avoid all impacts associated with future growth. However, it would not meet RHNA requirements or housing needs identified in the City's Housing Element. Among the remaining alternatives, either the Restricted Growth or No Important Farmland Conversion alternative would be environmentally superior, depending upon which issue(s) are deemed most important. The Restricted Growth alternative would incrementally reduce impacts in most issues areas due to the overall reduction in future development and would avoid the significant impact of the 2005 General Plan relating to exceedance of Ventura County AQMP and SCAG Regional Transportation Plan population forecasts. It would, however, still result in significant agricultural resource impacts, similar to General Plan Scenario 1. The No Important Farmland Conversion alternative would avoid the significant impact relating to conversion of agricultural lands to urban uses. On the other hand,

City of Ventura
the exceedance of regional population forecasts would still occur and all existing conflicts relating to the interface between agricultural and urban uses would remain. A combination of the Restricted Growth alternative and the No Important Farmland Conversion alternative would achieve both a reduction of agricultural land impacts, as well as AQMP and SCAG consistency.

Though not environmentally superior overall, it should be noted that 2005 General Plan Scenario 1 is considered the environmentally superior scenario among the six General Plan land use scenarios described in Section 2.0. This is due to the lower overall projected population growth as compared to the other scenarios and consequent reduction in impacts relating to traffic, noise, utilities and services, as well as the reduced amount of agricultural land conversion as compared to the other scenarios.

7.0 REFERENCES AND REPORT PREPARERS

7.1 REFERENCES

7.1.1 Bibliography

Allen, E., Anderson, G., \& Schroeer, W., "The Impacts of Infill vs. Greenfield Development: A Comparative Case Study Analysis," U.S. Environmental Protection Agency, Office of Policy, EPA Publication \#231-R-99-005, September 2, 1999.

AMEC, Santa Clara River Enhancement \& Management Plan, available on-line at ftp://ftp2.na.amec.com/ accessed March 2005.

Boyle Engineering Corporation, Water System Operational Evaluation and Improvement Program, June 1993.

Boyle Engineering Corporation, East Ventura Sanitary Sewer Collector Study, August 1995.
California Administrative Code Title 22; Division 4, Environmental Health.
California Air Resources Board Official Homepage (www.arb.ca.gov), 2005.
California Department of Conservation, Farmland Mapping and Monitoring Program, 2003. Map of Important Farmlands.

California Department of Finance, Demographic Research Unit, available at: http://www.dof.ca.gov.

California Employment Development Department, www.labormarketinfo.edd.
California, State of. California Code of Regulations, available on-line at http://www.leginfo.ca.gov/calaw.html, accessed May 2005.

Cao, T, Bryant, W.A., Rowshandel, B., Branum, D., and Wills, C. (2003), "The Revised 2002 California Probabilistic Seismic Hazard Maps June 2003." California Geologic Survey, (http://www.consrv.ca.gov/CGS/rghm/psha/fault_parameters/pdf/2002_CA_Hazard_ Maps.pdf).

Holtzclaw, Dr. John, "How Compact Neighborhoods Affect Modal Choice - Two Examples," 1991.

Los Angeles Regional Water Quality Control Board, Interim Site Assessment and Cleanup Guidebook, May 1996.

Los Angeles Regional Water Quality Control Board, 2002 Clean Water Act Section 303(d) List of Water Quality Limited Segments.

Montgomery Watson, Ventura Water Renovation Facility Master Plan, September 1993.
Stanley R. Hoffman Associates, Inc., Land Supply and Demand Analysis, 2000 To 2025: Implications for the Comprehensive Plan, City of San Buenaventura, August 2003.

Transportation Research Board, National Research Council, Highway Capacity Manual 2000.
Uniform Building Code, 1997, International Conference of Building Officials, Whittier, California.
U.S. Department of Agriculture Soil Survey for Ventura County, 1970.

United States Environmental Protection Agency, "Our Built Environments: a Technical Review of the Interactions between Land Use, Transportation and Environmental Quality," Publication EPA 231-R-00-005, November 2000.

United States Environmental Protection Agency, Noise from Construction Equipment and Operations, Building Equipment, and Home Appliances, 1971.

United States Environmental Protection Agency (Region IX), "Preliminary Remediation Goals Tables," 2002.

United States Census Bureau, 2000 Census (www.census.gov).
Ventura, City of, Official Homepage (www.ci.ventura.ca.us), 2005.
Ventura, City of, Comprehensive Plan Update to the Year 2010, Final Master Environmental Impact Report and Technical Appendices, City of San Buenaventura, April 1989.

Ventura, City of, City of Ventura, Comprehensive Plan Update, Draft Baseline Conditions Report, 2002.

Ventura, City of, Master Drainage Needs Assessment Study, Potential Project Locations. April 3, 2001

Ventura, City of, Drainage Map Tiles. 1990.
Ventura, City of, The Wells and Saticoy Communities Capital Improvement Deficiency Study Update. December 1996.

Ventura, City of, Draft Capital Improvement Plan Wastewater Database maintained by Dan Pfeifer - Wastewater Superintendent

Ventura, City of, Standardized Emergency Management System (SEMS) Multihazard Functional Response Plan, 1999.

Ventura, City of, Standards and Design Manual, 2000.

Ventura, City of, Wells and Saticoy Communities Capital Improvement Deficiency Study Update, November 1996.

Ventura, City of, 2000 Biennial Water Supply Report.
Ventura, City of, 2000-2006 Housing Element, 2004.

Ventura, City of, Urban Water Management Plan, December 2000.

Ventura, City of, Wells and Saticoy Communities Capital Improvement Deficiency Study Update" November 1996.

Ventura, City of, Comprehensive Water Resources Management Plan, December 1994)

Ventura, City of, Master Plan for Reclaimed Water System, August 1992.
Ventura, City of, Draft Capital Improvement Plan Wastewater Database maintained by Dan Pfeifer - Wastewater Superintendent

Ventura, City of, Master Drainage Needs Assessment Study Potential Project Locations, April 3, 2001.

Ventura Standards and Design Manual, 2000.

Ventura, City of, Section 308 Information Request to RWQCB Los Angeles, June 2001.
Ventura, City of, 2004 Biennial Water Supply Report, Fall 2004.

Ventura, City of, Comprehensive Water Resources Management Plan, December 1994.

Ventura, City of, Annual Transportation Report, October 2003.
Ventura, County of, General Plan.

Ventura County Air Pollution Control District, Ventura County Air Quality Management Plan, 1994 (Revised 2004).

Ventura County Air Pollution Control District, Air Quality Assessment Guidelines, October 2003.

Ventura, County of, Initial Study Assessment Guidelines, 2000.

Ventura, County of, Adopted County S.O.A.R. Ordinance, November 3, 1998.

Ventura County Agricultural Commissioner, Annual Crop Report - 2003, August 5, 2004.
Ventura Unified School District, Westside Elementary School Final EIR, 2002.

West Coast Environmental and Engineering, Historical Overview: The Ventura Brownfield
Project: A Look at the Environmental History of Ventura's Westside, Februrary 2001.

7.1.2 Persons Contacted

Brown, Andrew, Ventura County Air Pollution Control District
Correa, John, General Manager, Ojai Valley Sanitary District
Davis, Don, Utilities Manager, City of Ventura Public Works Department
Fenwick, Quinn, Lieutenant, Ventura Police Department
Frey, Linda, Management Analyst, City of Ventura Parks Department
Gutierrez, Jorge, Director of Facilities, Ventura Unified School District
Haden, Gary, Toland Road Landfill
Hocking, Kim, Cultural Heritage Planner County of Ventura, Planning Division
Hutton, Lynn, Human Resources Manager, Oxnard Police Department
Jonasson, Tim, City of Ventura Land Development Planning Division
Kreissman, Starrett, Director, Ventura County Library System
Lavery, Mike, Chief, City of Ventura Fire Department
Lewis, Wayne, Business Services Officer, Ventura Police Department
Martinez, Juan, Associate Planner, City of Oxnard, Development Services Department
McChesney, Charles, Officer, Santa Barbara Police Department
Minjares, Javier, Southern California Association of Governments
Musgrove, Vicki, City of Ventura Maintenance Services Division
Pacala, Reddy, P.E., Director Water and Sanitation, County of Ventura Public Works Department

Passanisi, Jim, City of Ventura Public Works Department
Pfeifer, Dan, Waste Water Superintendent, City of Ventura Public Works Department
Preston, Frank, City of Ventura Maintenance Services Division

Rungren, Susan, Utilities Planning Engineer, City of Ventura Public Works Department
Thomas, Terri, Ventura County Air Pollution Control District
Tignac, Scott, Simi Valley Landfill
Yahner, Joe, Environmental Services Specialist, City of Ventura Public Works Department, Environmental Services Office

7.2 REPORT PREPARERS

This EIR was prepared by the City of Ventura with the assistance of Rincon Consultants, Inc., Austin-Foust Associates, Inc., and Psomas Associates, Inc. Kari Gialketsis, Senior Planner, managed the preparation of the EIR for the City. Consultant staff involved in the preparation of the EIR are listed below.

Rincon Consultants, Inc.
Joe Power, AICP, Principal
Duane Vander Pluym, D.ESE, Principal
Joanne Dramko, Senior Planner/Graphics Coordinator
Jamie King, Senior Biologist
Dan Klemann, Associate
Hilary Hodges, Associate (former)
Kathy Babcock, Graphics Technician
Katherine Warner, Graphics Technician/GIS Specialist
Austin-Foust Associates (traffic)
Terry Austin, Principal
Kendall Elmer, Associate
Cassandra Carlin, Transportation Planner
Phong Le, Traffic Analyst
Psomas Associates (utilities, hydrology)
Mike Swan, P.E., Project Manager
Greg Watanabe, P.E., Project Engineer
Brett Bennetts, Staff Engineer

Appendix A
Notice of Preparation and Responses

Notice of Preparation

TO: \qquad
\qquad
\qquad
FROM:
City of San Buenaventura
Community Development Department
501 Poli Street
Ventura, CA 93001

Subject: Notice of Preparation of a Draft Environmental Impact Report

The City of San Buenaventura (Ventura) will be the Lead Agency for the preparation of an environmental impact report (EIR) for a proposed update of the City of Ventura Comprehensive Plan. The proposed project involves the update of the 1989 Comprehensive Plan that currently serves as the blueprint for the development of the City. Each of the Comprehensive Plan elements other than the Housing Element (an update of which was approved earlier this year) will be updated with goals, policies, and objectives that reflect the current needs and preferences of the community. The land use map will also be updated.

The City intends to emphasize infill development and reuse of developed lands within the current Sphere of Influence over the life of the Comprehensive Plan Update (through 2025) and has identified a number of growth districts and corridors where infill/reuse is to be focused. However, as part of the Comprehensive Plan update, the City is also considering inclusion of certain areas outside the current Sphere of Influence for future development. These include:

- North Avenue - an approximately 55-acre area on the east side of N. Ventura Avenue that is currently used as an orchard
- Olivas - an approximately 930-acre area between U.S. 101 and Harbor Boulevard that is currently used for row crops
- Serra - an approximately 464-acre area between Telephone Road and Bristol Road that is currently used for row crops and orchards
- Western Cańada Larga - an approximately 121-acre area along both sides of State Route 33 in the North Ventura Avenue area that is primarily open grazing land
- Poinsettia - an approximately 418-acre area between Foothill Road and State Route 126 that is currently an orchard

The potential growth districts and corridors and the potential expansion areas are shown on the attached land use diagram.

The Draft EIR will be a program EIR that examines each of the issue areas on the City's environmental checklist. Issues to be examined include:

- Aesthetics
- Land Use and Planning
- Air Quality
- Agricultural Resources
- Noise
- Population/Housing
- Biological Resources
- Cultural Resources
- Energy/Mineral Resources
- Geology/Soils
- Hazards/Hazardous Materials (including wildland fire hazards)
- Public Services (police, fire, schools)
- Recreation
- Utilities/Service Systems
- Transportation/Traffic
- Water (including Water Supply, Hydrology/Flooding, and Water Quality)

In addition to the CEQA-required "no project" alternative, the Draft will examine a minimum of four land use scenarios. These include:

1. Staff Recommended Scenario - This scenario assumes an emphasis on infill development, but includes the following expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)
- Serra (464 acres)

2. Infill/Reuse Only Scenario - This scenario assumes infill/reuse of higher intensity than the Staff Recommended Scenario with no expansion beyond the current Sphere of Influence.
3. Staff Recommended + Cańada Larga Scenario - This scenario assumes less intensive infill development than the "Staff Recommended Scenario" and includes the following expansion areas:

- Western Cańada Larga (121 acres)
- North Avenue (55 acres)
- Olivas (930 acres)
- Serra (464 acres)

4. Staff Recommended + Poinsettia Scenario - This scenario assumes less intensive infill development than the "Staff Recommended Scenario" and includes the following expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)
- Serra (464 acres)
- Poinsettia (418 acres)

The EIR analysis will be based on growth projections through the year 2025. The EIR will consider two possible growth scenarios: (1) 1.14% annual population growth, which is equivalent to the annual growth rate in the City over the past 20 years; and (2) 0.88% annual population growth, which is equivalent to the annual growth over the past 10 years. The 2025 population and housing growth estimates for each of these scenarios are shown in the table on the following page.

We need to know the views of your agency as to the scope and content of the environmental information that is germane to your agency's statutory responsibilities in connection with the proposed project. Your agency may need to use the EIR prepared by our agency when considering your permit or other approval of certain aspects of the project.

Due to the time limits mandated by State law, your response must be sent at the earliest possible date but not later than 30 days after receipt of this notice.

Population Growth Projections

	2004 Levels $^{\mathrm{a}}$	2025 Estimates		Change from 2004-2025	
		$\mathbf{0 . 8 8 \%}$ Annual Growth	1.14% Annual Growth	$\mathbf{0 . 8 8 \%}$ Annual Growth	$\mathbf{1 . 1 4 \%}$ Annual Growth
Population	104,952	126,153	133,160	21,201	28,208
Housing Units $^{\mathrm{b}}$	40,880	49,138	51,867	8,258	10,987

${ }^{a}$ Source: California Department of Finance, City/County Population and Housing Estimates, 1/1/2004.
${ }^{5}$ Housing unit estimates assume that the current ratio of 2.57 persons per household remains constant through 2025. In reality, the number of persons per unit could go up or down, depending upon housing costs, the types of housing built in the City, population growth, and other factors.

Please send your response to Lisa Porras, Senior Planner, at the address shown above. Ms. Porras can be reached at (805) 654-7811. We will need the name for a contact person in your agency. Materials related to the Comprehensive Plan Update EIR are available for review at the City of Ventura Community Development Department, Ventura City Hall, 501 Poli Street in Ventura. Background materials can also be viewed online at http://www.ci.ventura.ca.us/depts/cd/cp/cp.asp.

The City will hold an EIR scoping meeting on the Comprehensive Plan Update on Wednesday, October 13 at the Community Meeting Room at Ventura City Hall, 501 Poli Street. The meeting will begin at 6 PM . The purpose of the meeting is to solicit input on the scope and content of the environmental analysis that will be included in the Draft EIR.

Project Title: \quad City of Ventura Comprehensive Plan Update
Project Sponsor: City of Ventura
Date $9 / 30 / 04$

Signature

Title	Planning Manager, Rincon Consultants, Inc. (consultant to the City of Ventura
Telephone	$(805) 641-1000 \times 12$

Revised Notice of Preparation

TO: \qquad FROM
City of San Buenaventura
Community Development Department
501 Poli Street
Ventura, CA 93001

Subject: Revised Notice of Preparation of a Draft Environmental Impact Report

The City of San Buenaventura (Ventura) will be the Lead Agency for the preparation of an environmental impact report (EIR) for a proposed update of the City of Ventura Comprehensive Plan. The City issued a Notice of Preparation (NOP) in September 2004. The original NOP described five alternative land use scenarios that were to be considered in the EIR; however, since that time, the way the alternatives are to be organized has changed and the number of alternative land use scenarios to be studied has increased from five to six. Therefore, although the areas under consideration and general approach to accommodating future development have not changed since the circulation of the original NOP, the City has reissued the NOP in order provide an opportunity to comment on the new EIR land use scenarios.

The proposed project involves the update of the 1989 Comprehensive Plan that currently serves as the blueprint for the development of the City. Each of the Comprehensive Plan elements other than the Housing Element (an update of which was approved earlier this year) will be updated with goals, policies, and objectives that reflect the current needs and preferences of the community. The land use map will also be updated.

The City intends to emphasize infill development and reuse of developed lands within the current Sphere of Influence over the life of the Comprehensive Plan Update (through 2025) and has identified a number of growth districts and corridors where infill/reuse is to be focused. However, as part of the Comprehensive Plan update, the City is also considering inclusion of certain areas outside the current Sphere of Influence for future development. These include:

- North Avenue - an approximately 55-acre area on the east side of N. Ventura Avenue that is currently used as an orchard
- Olivas - an approximately 930-acre area between U.S. 101 and Harbor Boulevard that is currently used for row crops
- Serra - an approximately 464-acre area between Telephone Road and Bristol Road that is currently used for row crops and orchards
- Western Cańada Larga - an approximately 121-acre area along both sides of State Route 33 in the North Ventura Avenue area that is primarily open grazing land
- Poinsettia - an approximately 418-acre area between Foothill Road and State Route 126 that is currently an orchard

The potential growth districts and corridors and the potential expansion areas are shown on the attached land use diagram.

The Draft EIR will be a program EIR that examines each of the issue areas on the City's environmental checklist. Issues to be examined include:

- Aesthetics
- Air Quality
- Agricultural Resources
- Biological Resources
- Cultural Resources
- Energy/Mineral Resources
- Geology/Soils
- Hazards/Hazardous Materials (including wildland fire hazards)
- Land Use and Planning
- Noise
- Population/Housing
- Public Services (police, fire, schools)
- Recreation
- Utilities/Service Systems
- Transportation/Traffic
- Water (including Water Supply, Hydrology/Flooding, and Water Quality)

In addition to the CEQA-required "no project" alternative, the Draft will examine a minimum of six land use scenarios. These include:

1. Intensification/Reuse Only Scenario - This scenario assumes that future development will be limited to areas within the current Sphere of Influence and that none of the possible expansion areas would be considered.
2. City Council Preferred Scenario - This scenario, which was selected by the City Council as the preferred scenario, assumes an emphasis on infill development at an intensity level similar to that of the Intensification/Reuse Only, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)
- Serra (464 acres)

3. Intensification/Reuse + North Avenue + Western Cańada Larga Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Western Cańada Larga (121 acres)

4. Intensification/Reuse + North Avenue + Serra Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Serra (464 acres)

5. Intensification/Reuse + North Avenue + Olivas Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Olivas (930 acres)

6. Intensification/Reuse + North Avenue + Poinsettia Scenario - This scenario assumes intensification/reuse at a level similar to the other scenarios, but includes the following potential expansion areas:

- North Avenue (55 acres)
- Poinsettia (418 acres)

The EIR analysis will be based on growth projections through the year 2025. The EIR will consider two possible growth scenarios: (1) 1.14% annual population growth, which is equivalent to the annual growth rate in the City over the past 20 years; and (2) 0.88% annual population growth, which is equivalent to the annual growth over the past 10 years. For all six EIR scenarios, it is assumed that intensification/reuse within the current Sphere of Influence would accommodate growth through 2025 equivalent to the 0.88% annual growth rate. For Scenario 1 (Intensification/Reuse Only), it is assumed that growth through 2025 would be limited to an annual average of 0.88%. For the five scenarios that include expansion areas (Scenarios 2 through 6), it is assumed that the expansion areas would accommodate additional growth through 2025 equivalent to the 1.14% annual rate (i.e., the additional 0.26% annual growth beyond what is anticipated to occur within the current Sphere of Influence). The 2025 population and housing growth estimates for each of these scenarios are shown in the following table.

Population and Housing Growth Projections

	2004 Levels $^{\mathrm{a}}$	2025 Estimates		Change from 2004-2025	
		$\mathbf{1 . 1 4 \%}$ Annual Growth	$\mathbf{0 . 8 8 \%}$ Annual Growth	$\mathbf{1 . 1 4 \%}$ Annual Growth	
Population	104,952	126,153	133,160	21,201	28,208
Housing Units $^{\mathrm{b}}$	40,880	49,138	51,867	8,258	10,987

${ }^{a}$ Source: California Department of Finance, City/County Population and Housing Estimates, 1/1/2004.
${ }^{0}$ Housing unit estimates assume that the current ratio of 2.57 persons per household remains constant through 2025. In reality, the number of persons per unit could go up or down, depending upon housing costs, the types of housing built in the City, population growth, and other factors.

We need to know the views of your agency as to the scope and content of the environmental information that is germane to your agency's statutory responsibilities in connection with the proposed project. Your agency may need to use the EIR prepared by our agency when considering your permit or other approval of certain aspects of the project.

Due to the time limits mandated by State law, your response must be sent at the earliest possible date but not later than 30 days after receipt of this notice.

Please send your response to Lisa Porras, Senior Planner, at the address shown above. Ms. Porras can be reached at (805) 654-7811. We will need the name for a contact person in your agency. Materials related to the Comprehensive Plan Update EIR are available for review at the City of Ventura Community Development Department, Ventura City Hall, 501 Poli Street in Ventura. Background materials can also be viewed online at http://www.ci.ventura.ca.us/depts/cd/cp/cp.asp.

The City will hold an EIR scoping meeting on the Comprehensive Plan Update at 6 PM on Wednesday, January 12, 2005. The meeting will be held in the Santa Cruz Conference Room at Ventura City Hall, 501 Poli Street. The purpose of the meeting is to solicit input on the scope and content of the environmental analysis that will be included in the Draft EIR.

Project Title: \quad City of Ventura Comprehensive Plan Update
Project Sponsor: City of Ventura

Date	12/17/04	Signature Name Title	
			Joe Power, AICP
			Planning Manager, Rincon Consultants, Inc. (consultant to the City of Ventura
		Telephone	(805) 641-1000 12

Certificate of Publication

Ad No. 779003
Notice of Preparation of a Draft Environment Impact

State of California)

County of Ventura)
I, Angelica Garay, hereby certify that the Ventura County Star, Thousand Oaks Star, Oxnard Star, Simi Valley Star, Moorpark Star, Camarillo Star has been adjudged a newspaper of general circulation by the Superior Court the provisions of the Government Code of the State of California, printed and published in the City of San Buenaventura, County of Ventura, State of California; that I am the a clerk of the printer of said paper; that the annexed clipping is a true printed copy and publishing in said newspaper on the following dates to wit: Oct 6, 10, 2004

I, Angelica Garay certify under penalty of perjury, that the foregoing is true and correct.

Dated this Oct 15, 2004 in San Beunaventura, California

ASSOCIATION of GOVERNMENTS

Main Office
818 West Seventh Street
12th Floor
Los Angeles, California
90017-3435
$t(213)$ 236-1800
f (213) 236-1825

www.scag.ca.gov

ficers: President: Councilmember Ron Roberts, mecula - First Vice President: Supervisor Hank riper, Imperial County - Second Vice President: ayor Toni Young, Port Hueneme - Immediate st President: Councilmember Rev Perry, Area imperial County: Hank Kuiper, imperial County • Shields, Brawley
s Angeles County: Yvonne Brathwaite Burke, 5 Angeles County - Rev Yaroslavsky, Los Angeles aunty - Jim Aidinger, Manhattan Beach - Harry admin, San Gabriel - Paul Bowen, Ceritos ny Cardenas, Los Angeles - Margaret Clark, semead - Gene Daniels, Paramount - Mike spenza, Palmdale • Judy Dunlap, Inglewood te Gabelich, Long Beach * Eric Garcetti, Los angeles - Wendy Greurel, Los Angeles • Frank urulé, Cudahy - James Hahn, Los Angeles nice Hahn, Los Angeles • Isadore Hall, Compton nice Hahn, Los Angeles • isadore Hall, Compton
tom LaBonge, Los Angeles - Martin Ludlow, Los angeles : Keith McCarthy, Downy - Llewellyn angeles : Keith McCarthy, Downey * Llewellyn
tiller, Claremont - Cindy Míscikowski, Los angeles - Paul Nowatka, Torrance - Pam Connors, Santa Monica. Alex Padilla, Los rgeles - Bernard Parks, Los Angeles * Jan Perry, 5 Angeles - Beatrice Proc, Piso Rivera - Ed yes, Los Angeles • Greig Smith, Los Angeles • ck Stanford, Azana • Tom Sykes, Walnut • Paul bot, Alhambra - Sidney Tyler, Pasadena - Tonia yes Uranga, Long Beach • Antonio Villaraigosa, 5 Angeles - Dennis Washburn, Calabasas - Jack 5 Angeles - Dennis Washburn, Catabasis • Jack
iss, Los Angeles - Bob Youseffan, Glendale dis, Los Angeles • Bob Yousefian, Glendale •
ennis Zine, Los Angeles anis Zine, Los Angeles
range County: Chris Nobby, Orange County u Bone, Justin = Art Brown, Buena Park • chard Chavez, Anaheim - Debbie Cook, mintingtan Beach - Cathryn DeYoung, Laguna intingtan Beach - Cathryn DeYoung, Laguna
gael - Richard Dixon, Lake Forest - Alta Duke, La gre - Richard Dixon, Lake Forest • Alta Duke, La Ina - Bey Perry, Brea • Marilyn Poe,
amitos - Tod Ridgeway, Newport Beach
verside County: Marion Ashley, Riverside aunty * Thomas Buckley, Lake Elsinore - Bonnie ickinger, Moreno Valley " Ron Loveridge, verside - Greg Yetis, Cathedral City - Ron verside • Greg
berth, Temecula
an Bernardine County: Paul Bane, San anardino County - Bill Alexander, Rancho acamonga - Edward Burgnon, Town of Apple Hey - Lawrence Dale, Barstow - Lee Ann Garcia, and Terrace - Susan Longville, San Bernardino ry Ovitt, Ontario • Deborah Robertson, Rialto
entura County: Judy Mikes, Ventura County en Becerra, Simi Valley • Carl Morehouse, S
range County Transportation Authority: arles 5 mitt, Orange County
verside County Transportation Commission: bin Lowe, Hemet wis, Simp Valley

October 18, 2004

Ms. Lisa Porras
Senior Planner
Community Development Department
City of San Buenaventura
501 Poi Street
Ventura, CA 93001
RE: Comments on the Notice of Preparation for a Draft Environmental Impact Report for the City of Ventura Comprehensive Plan - SCAG No. 120040669

Dear Ms. Porras:
Thank you for submitting the Notice of Preparation for a Draft Environmental Impact Report for the City of Ventura Comprehensive Plan to SCAG for review and comment. As areawide clearinghouse for regionally significant projects, SCAG reviews the consistency of local plans, projects, and programs with regional plans. This activity is based on SCAG's responsibilities as a regional planning organization pursuant to state and federal laws and regulations. Guidance provided by these reviews is intended to assist local agencies and project sponsors to take actions that contribute to the attainment of regional goals and policies.

We have reviewed the aforementioned Notice of Preparation and have determined that the proposed Project is regionally significant per California Environmental Quality Act (CEQA) Guidelines (Section 15206). The proposed Project considers a local general plan, element, or amendment for which an environmental impact report is being prepared. CEQA requires that EARs discuss any inconsistencies between the proposed project and applicable general plans and regional plans (Section 15125 [d]). If there are inconsistencies, an explanation and rationalization for such inconsistencies should be provided.

Policies of SCAG's Regional Comprehensive Plan and Guide and Regional Transportation Plan, which may be applicable to your project, are outlined in the attachment. We expect the Draft EIR to specifically cite the appropriate SCAG policies and address the manner in which the Project is consistent with applicable core policies or supportive of applicable ancillary policies. Please use our policy numbers to refer to them in your Draft EIR. Also, we would encourage you to use a side-by-side comparison of SCAG policies with a discussion of the consistency or support of the policy with the Proposed Project.

Please provide a minimum of 45 days for SCAG to review the Draft EIR when this document is available. If you have any questions regarding the attached comments, please contact me at (213) 236-1867. Thank you.

October 18, 2004
Ms. Lisa Porras
Page 2

COMMENTS ON THE PROPOSAL TO DEVELOP A DRAFT ENVIRONMENTAL IMPACT REPORT FOR THE
 CITY OF VENTURA COMPREHENSIVE PLAN SCAG NO. I 20040669

PROJECT DESCRIPTION

The proposed Project considers an update of the City of Ventura Comprehensive Plan.

CONSISTENCY WITH REGIONAL COMPREHENSIVE PLAN AND GUIDE POLICIES

The Growth Management Chapter (GMC) of the Regional Comprehensive Plan and Guide (RCPG) contains the following policies that are particularly applicable and should be addressed in the Draft EIR for the City of Ventura Comprehensive Plan.
3.01 The population, housing, and jobs forecasts, which are adopted by SCAG's Regional Council and that reflect local plans and policies, shall be used by SCAG in all phases of implementation and review.

Regional Growth Forecasts

The Draft EIR should reflect the most current SCAG forecasts which are the 2004 RTP (April 2004) Population, Household and Employment forecasts for the Ventura Council of Governments (VCCOG) subregion and the City of Ventura. These forecast follows:

VCOG						
SUBREGION	$\mathbf{2 0 0 0}$	$\underline{2005}$	$\mathbf{2 0 1 0}$	$\underline{2015}$	$\mathbf{2 0 2 0}$	$\mathbf{2 0 2 5}$
POPULATION	758,054	821,045	865,149	897,295	929,181	960,025
HOUSEHOLD	244,476	260,357	275,352	289,318	303,596	317,831
EMPLOYMENT	337,247	346,770	381,680	403,000	424,470	445,193
CITY OF						
VENTURA	$\underline{2005}$	$\underline{2010}$	$\underline{2015}$	$\underline{2020}$	$\underline{2025}$	
POPULATION	101,002	109,087	116,959	119,247	121,488	123,645
HOUSEHOLD	38,573	40,711	44,053	45,355	46,696	48,034
EMPLOYMENT	58,900	59,717	62,703	65,237	67,787	70,238

3.03 The timing, financing, and location of public facilities, utility systems, and transportation systems shall be used by SCAG to implement the region's growth policies.

GMC POLICIES RELATED TO THE RCPG GOAL TO IMPROVE THE REGIONAL STANDARD OF LIVING

The Growth Management goals to develop urban forms that enable individuals to spend less income on housing cost, that minimize public and private development costs, and that enable firms to be more competitive, strengthen the regional strategic goal to stimulate the regional economy. The evaluation of the proposed project in relation to the following policies would be intended to guide efforts toward achievement of such goals and does not infer regional interference with local land use powers.
3.05 Encourage patterns of urban development and land use, which reduce costs on infrastructure construction and make better use of existing facilities.
3.09 Support local jurisdictions' efforts to minimize the cost of infrastructure and public service delivery, and efforts to seek new sources of funding for development and the provision of services.
3.10 Support local jurisdictions' actions to minimize red tape and expedite the permitting process to maintain economic vitality and competitiveness.

GMC POLICIES RELATED TO THE RCPG GOAL TO IMPROVE THE REGIONAL QUALITY OF LIFE

The Growth Management goals to attain mobility and clean air goals and to develop urban forms that enhance quality of life, that accommodate a diversity of life styles, that preserve open space and natural resources, and that are aesthetically pleasing and preserve the character of communities, enhance the regional strategic goal of maintaining the regional quality of life. The evaluation of the proposed project in relation to the following policies would be intended to provide direction for plan implementation, and does not allude to regional mandates.
3.12 Encourage existing or proposed local jurisdictions' programs aimed at designing land uses which encourage the use of transit and thus reduce the need for roadway expansion, reduce the number of auto trips and vehicle miles traveled, and create opportunities for residents to walk and bike.
3.13 Encourage local jurisdictions' plans that maximize the use of existing urbanized areas accessible to transit through infill and redevelopment.
3.16 Encourage developments in and around activity centers, transportation corridors,

October 18, 2004
Ms. Lisa Porras
Page 4
underutilized infrastructure systems, and areas needing recycling and redevelopment.
3.18 Encourage planned development in locations least likely to cause environmental impact.
3.20 Support the protection of vital resources such as wetlands, groundwater recharge areas, woodlands, production lands, and land containing unique and endangered plants and animals.
3.21 Encourage the implementation of measures aimed at the preservation and protection of recorded and unrecorded cultural resources and archaeological sites.
3.22 Discourage development, or encourage the use of special design requirements, in areas with steep slopes, high fire, flood, and seismic hazards.
3.23 Encourage mitigation measures that reduce noise in certain locations, measures aimed at preservation of biological and ecological resources, measures that would reduce exposure to seismic hazards, minimize earthquake damage, and to develop emergency response and recovery plans.

GMC POLICIES RELATED TO THE RCPG GOAL TO PROVIDE SOCIAL, POLITICAL, AND CULTURAL EQUITY

The Growth Management Goal to develop urban forms that avoid economic and social polarization promotes the regional strategic goal of minimizing social and geographic disparities and of reaching equity among all segments of society. The evaluation of the proposed project in relation to the policy stated below is intended guide direction for the accomplishment of this goal, and does not infer regional mandates and interference with local land use powers.
3.24 Encourage efforts of local jurisdictions in the implementation of programs that increase the supply and quality of housing and provide affordable housing as evaluated in the Regional Housing Needs Assessment.
3.27 Support local jurisdictions and other service providers in their efforts to develop sustainable communities and provide, equally to all members of society, accessible and effective services such as: public education, housing, health care, social services, recreational facilities, law enforcement, and fire protection.

REGIONAL TRANSPORTATION PLAN

The 2004 Regional Transportation Plan (RTP) also has goals and policies that are pertinent to this proposed project. This RTP links the goal of sustaining mobility with the goals of fostering economic development, enhancing the environment, reducing energy consumption, promoting transportation-friendly development patterns, and encouraging fair and equitable access to residents affected by socio-economic, geographic and commercial limitations. The RTP continues to support all applicable federal and state laws in implementing the proposed project. Among the relevant goals and policies of the RTP are the following:

Regional Transportation Plan Goals

- Maximize mobility and accessibility for all people and goods in the region.
- Ensure travel safety and reliability for all people and goods in the region.
- Preserve and ensure a sustainable regional transportation system.
- Maximize the productivity of our transportation system.
- Protect the environment, improve air quality and promote energy efficiency.
- Encourage land use and growth patterns that complement our transportation investments.

Regional Transportation Plan Policies

- Transportation investments shall be based on SCAG's adopted Regional Performance Indicators.

October 18, 2004
Ms. Lisa Porras
Page 6

- Ensuring safety, adequate maintenance, and efficiency of operations on the existing multi-modal transportation system will be RTP priorities and will be balanced against the need for system expansion investments.
- RTP land use and growth strategies that differ from currently expected trends will require a collaborative implementation program that identifies required actions and policies by all affected agencies and sub-regions.
- HOV gap closures that significantly increase transit and rideshare usage will be supported and encouraged, subject to Policy \#1.

October 18, 2004
Ms. Lisa Porras
Page 7

AIR QUALITY CHAPTER CORE ACTIONS

The Air Quality Chapter core actions related to the proposed project includes:
5.07 Determine specific programs and associated actions needed (e.g., indirect source rules, enhanced use of telecommunications, provision of community based shuttle services, provision of demand management based programs, or vehicle-milestraveled/emission fees) so that options to command and control regulations can be assessed.
5.11 Through the environmental document review process, ensure that plans at all levels of government (regional, air basin, county, subregional and local) consider air quality, land use, transportation and economic relationships to ensure consistency and minimize conflicts.

OPEN SPACE CHAPTER ANCILLARY GOALS

Outdoor Recreation

9.01 Provide adequate land resources to meet the outdoor recreation needs of the present and future residents in the region and to promote tourism in the region.
9.02 Increase the accessibility to open space lands for outdoor recreation.
9.03 Promote self-sustaining regional recreation resources and facilities.

Public Health and Safety

9.04 Maintain open space for adequate protection of lives and properties against natural and man-made hazards.
9.05 Minimize potentially hazardous developments in hillsides, canyons, areas susceptible to flooding, earthquakes, wildfire and other known hazards, and areas with limited access for emergency equipment.
9.06 Minimize public expenditure for infrastructure and facilities to support urban type uses in areas where public health and safety could not be guaranteed.

October 18, 2004
Ms. Lisa Porras
Page 8

Resource Production

9.07 Maintain adequate viable resource production lands, particularly lands devoted to commercial agriculture and mining operations.

Resource Protection

9.08 Develop well-managed viable ecosystems or known habitats of rare, threatened and endangered species, including wetlands.

WATER QUALITY CHAPTER RECOMMENDATIONS AND POLICY OPTIONS

The Water Quality Chapter core recommendations and policy options relate to the two water quality goals: to restore and maintain the chemical, physical and biological integrity of the nation's water; and, to achieve and maintain water quality objectives that are necessary to protect all beneficial uses of all waters.
11.07 Encourage water reclamation throughout the region where it is cost-effective, feasible, and appropriate to reduce reliance on imported water and wastewater discharges. Current administrative impediments to increased use of wastewater should be addressed.

GROWTH VISIONING

The fundamental goal of the Growth Visioning effort is to make the SCAG region a better place to live, work and play for all residents regardless of race, ethnicity or income class. Thus, decisions regarding growth, transportation, land use, and economic development should be made to promote and sustain for future generations the region's mobility, livability and prosperity. The following "Regional Growth Principles" are proposed to provide a framework for local and regional decision making that improves the quality of life for all SCAG residents. Each principle is followed by a specific set of strategies intended to achieve this goal.

Principle 1: Improve mobility for all residents

- Encourage transportation investments and land use decisions that are mutually supportive.
- Locate new housing near existing jobs and new jobs near existing housing.
- Encourage transit-oriented development.
- Promote a variety of travel choices

Principle 2: Foster livability in all communities

- Promote infill development and redevelopment to revitalize existing communities.
- Promote developments, which provide a mix of uses.
- Promote "people scaled," walkable communities.
- Support the preservation of stable, single-family neighborhoods.

Principle 3: Enable prosperity for all people

- Provide, in each community, a variety of housing types to meet the housing needs of all income levels.
- Support educational opportunities that promote balanced growth.
- Ensure environmental justice regardless of race, ethnicity or income class.
- Support local and state fiscal policies that encourage balanced growth
- Encourage civic engagement.

Principle 4: Promote sustainability for future generations

- Preserve rural, agricultural, recreational and environmentally sensitive areas.
- Focus development in urban centers and existing cities.
- Develop strategies to accommodate growth that uses resources efficiently, eliminate pollution and significantly reduce waste.
- Utilize "green" development techniques.

CONCLUSIONS

All feasible measures needed to mitigate any potentially negative regional impacts associated with the proposed project should be implemented and monitored, as required by CEQA.

SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS

Roles and Authorities

THE SOUTHERN CALIFORNIA ASSOCIATION OF GOVERNMENTS (SCAG) is a Joint Powers Agency established under California Government Code Section 6502 et seq. Under federal and state law, SCAG is designated as a Council of Governments (COG), a Regional Transportation Planning Agency (RTPA), and a Metropolitan Planning Organization (MPO). SCAG's mandated roles and responsibilities include the following:

SCAG is designated by the federal government as the Region's Metropolitan Planning Organization and mandated to maintain a continuing, cooperative, and comprehensive transportation planning process resulting in a Regional Transportation Plan and a Regional Transportation Improvement Program pursuant to 23 U.S.C. '134, 49 U.S.C. '5301 et seq., 23 C.F.R. ' 450 , and 49 C.F.R. ' 613 . SCAG is also the designated Regional Transportation Planning Agency, and as such is responsible for both preparation of the Regional Transportation Plan (RTP) and Regional Transportation Improvement Program (RTIP) under California Government Code Section 65080 and 65082 respectively.

SCAG is responsible for developing the demographic projections and the integrated land use, housing, employment, and transportation programs, measures, and strategies portions of the South Coast Air Quality Management Plan, pursuant to California Health and Safety Code Section 40460(b)-(c). SCAG is also designated under 42 U.S.C. '7504(a) as a Co-Lead Agency for air quality planning for the Central Coast and Southeast Desert Air Basin District.

SCAG is responsible under the Federal Clean Air Act for determining Conformity of Projects, Plans and Programs to the State Implementation Plan, pursuant to 42 U.S.C. '7506.

Pursuant to California Government Code Section 65089.2, SCAG is responsible for reviewing all Congestion Management Plans (CMPs) for consistency with regional transportation plans required by Section 65080 of the Government Code. SCAG must also evaluate the consistency and compatibility of such programs within the region.

SCAG is the authorized regional agency for Inter-Governmental Review of Programs proposed for federal financial assistance and direct development activities, pursuant to Presidential Executive Order 12,372 (replacing A-95 Review).

SCAG reviews, pursuant to Public Resources Code Sections 21083 and 21087, Environmental Impacts Reports of projects of regional significance for consistency with regional plans [California Environmental Quality Act Guidelines Sections 15206 and 15125(b)].

Pursuant to 33 U.S.C. '1288(a)(2) (Section 208 of the Federal Water Pollution Control Act), SCAG is the authorized Areawide Waste Treatment Management Planning Agency.

SCAG is responsible for preparation of the Regional Housing Needs Assessment, pursuant to California Government Code Section 65584(a).

SCAG is responsible (with the Association of Bay Area Governments, the Sacramento Area Council of Governments, and the Association of Monterey Bay Area Governments) for preparing the Southern California Hazardous Waste Management Plan pursuant to California Health and Safety Code Section 25135.3.

SATICOY SANITARY DISTRICT 1001 PARTRIDGE DRIVE, SUITE 150 VENTURA, CALIFORNIA 93003-0704
 805-658-4605

DIRECTORS

James Acosta, President
Raul Morales
Jess Arroyo
Gerardo Claudio
Regal L. Morales
October 19, 2004

Lisa Porras, Community Development Department
City of San Buenaventura
501 Poi Street
Ventura, CA 93001

COMPREHSIVE PLAN UPDATE - RECYCLED WATER

The City of San Buenaventura (City) and the Saticoy Sanitary District (Saticoy) are cooperating in a water recycling effort. The long-range plan is for the City to send up to 700,000 gallons per day of its raw wastewater to the Jose Flores Wastewater Treatment Plant. Saticoy will remove the contaminants, including salt, and provide clean water for unrestricted irrigation uses, crops, parks, schools, etc.

The Comprehensive Plan could include a requirement to use recycled water wherever it is available.
If you have any questions, please call me at 647-6477 or Kelly Polk, District Manager, at 512-1363.

SATICOY SANITARY DISTRICT

1001 PARTRIDGE DRIVE, SUITE 150
VENTURA, CALIFORNIA 93003-0704
805-658-4605

DIRECTORS
James Acosta, President
Raul Morales
Jess Arroyo
Gerardo Claudio
Regal L. Morales
October 19, 2004
Brian Brennan, Mayor
City of San Buenaventura

501 Poi Street
Ventura, CA 93001

COMPREHSIVE PLAN DISCONTIUITY

The City of San Buenaventura (City) is enforcing an industrial land use designation outside its boundaries where the County of Ventura has a residential designation. That is a small strip of land along the south side of Rosal Lane in old Saticoy. Please, acknowledge the County of Ventura's jurisdictional priority and remove blockage within your staff on residential development per the County Plan.

The Saticoy Sanitary District (Saticoy) is harmed by the City's actions. Saticoy relied on the County Plan when sizing the new treatment plant. It was only after Saticoy's new treatment plant was built that the conflicting land use plans were recognized.

The City and Saticoy are cooperating in a water recycling effort. The City's help in this area will further the City's interest in recycling water.

At the very least, consider this as a comment on your comprehensive plan update. If you have any questions, please call me at 647-6477 or Kelly Polk, District Manager, at 512-1363.

Cc: Everett Millias, LAFCO
-Lisa Porras, Community Development Department

Lisa Porras, Senior Planner
City of San Buenaventura
PO Box 99
Ventura, CA 93002
\section*{RECEIVED

OCT 282004

Planning div.}
\section*{RE: NOTICE OF PREPARATION - COMPREHENSIVE PLAN UPDATE EIR}

Dear Ms Porras:

Thank you for the opportunity to respond to the Notice of Preparation (NOP) for the program environmental impact report (EIR) for the proposed update of the City's Comprehensive Plan. To the extent the City will use this program EIR as a basis for initiating boundary changes, such as annexations, detachments or reorganizations, or requesting sphere of influence changes or out-of-agency service agreement approvals, the Ventura LAFCO will be a responsible agency under CEQA.

On behalf of the Ventura LAFCO comments about the scope and content of the EIR are:

1. As required by law, the Ventura LAFCO has adopted written policies. These policies are compiled in the Ventura LAFCO "Commissioner's Handbook." A complete version is posted as a PDF file on the Ventura LAFCO web site (see URL below). The EIR should consider all relevant LAFCO policies. Specifically, the EIR should address the consistency, or lack thereof, of each of the four growth scenarios (and any other growth scenario proposed as a result of responses to the NOP) with the following LAFCO policies:
a. Consistency with ordinances requiring voter approval
"For cities that have enacted ordinances that require voter approval for the extension of services or for changing general plan designations, LAFCO will not approve a proposal unless it is consistent with such ordinances and voter approval has first been granted, or unless exceptional circumstances are shown to exist."
(Commissioner's Handbook Section 2.5.1.2)
Except for the Infill/Reuse Only Scenario, the other three growth scenarios listed in the NOP involve properties covered by one or more City ordinances requiring voter approval for the extension of services or for changing existing general plan designations. To the extent the EIR may be used as a basis for future ballot measures by the City and/or private property owners to seek voter approved general plan and/or service extension changes, it should fully addresses the impacts of agricultural and/or open space land conversion and/or service extensions for each property now covered by the City's SOAR and Hillside Voter Protection Act ordinances, and, as may be appropriate, the County of Ventura's SOAR ordinance.

[^12]b. Greenbelts
"The County of Ventura and various cities in the County have adopted Greenbelt Agreements for the purposes of preserving agriculture and/or open space, providing separation between cities, and/or limiting the extension of urban services. The Ventura LAFCO is not a direct party to these Greenbelt Agreements, but has endorsed them as statements of local policy. As such, LAFCO will not approve a proposal from a city that is in conflict with any Greenbelt Agreement unless exceptional circumstances are shown to exist. A Greenbelt Agreement shall be amended by all parties involved prior to any proposal which mav be in conflict with the Agreement is considered by LAFCO." (Commissioner's Handbook Section 2.5.3; underlining emphasis added)

Note that any growth scenario that involves what the NOP calls the "Olivas Potential Expansion Area" affects the Ventura/Oxnard Greenbelt. The County of Ventura and the City of Oxnard have also adopted this Greenbelt. To the extent the EIR may be used as a basis for seeking to amend this Greenbelt, the County of Ventura and the City of Oxnard may also be responsible agencies.
c. Sphere of Influence consistent with voter approved growth boundaries
"For cities that have enacted ordinances that require voter approval for the extension of services or for changing general plan designations, sphere of influence boundaries should coincide with, or cover lesser area than, voter approved growth boundaries." (Commissioner's Handbook Section 4.1.2.3; underlining emphasis added)

LAFCO is now mandated to review and update, as necessary, the spheres of influence for each city and special district every five years. Based on the current schedule LAFCO will be updating the sphere of influence of the City of Ventura in late 2005 , possibly in early 2006 . The policy noted above will be the basis for this update. It is clear that the existing sphere of influence is not consistent with this policy in many areas, including the North Ventura Avenue area, the area covered by the Hillside Voter Protection Act, areas west of the Ventura River, the area south of the Ventura Auto Center, the Poinsettia Potential Expansion Area and the Serra potential Expansion Area listed in the NOP, the City owned property east of Petit Avenue between Telegraph and Foothill Roads, and areas northerly and easterly of the Southern California Edison property on Telegraph Road. To the extent that the EIR may be used as a basis for the City to request LAFCO to amend the City's sphere of influence to include any area outside voter approved growth boundaries, it should fully address the consistency with the above-noted LAFCO policy and impacts related to each issue area noted in the NOP, with special emphasis on agricultural resources, land use and planning, population/housing, public services, utilities/service systems and water.

Additionally, the Proposed Land Use Diagram attached to the NOP identifies a "Proposed Sphere of Influence Boundary." It is unclear which of the four growth scenarios this "Proposed Sphere of Influence Boundary" relates to or whether or not
it is intended to apply to all four growth scenarios or even the No Project scenario. This should be clarified. Specifically,
i. The EIR should address the impacts of different possible proposed sphere of influence boundaries based on each of the different growth scenarios based on their consistency with the above noted LAFCO policy.
ii. The EIR should address the policy basis, impacts and consistency with the above-noted LAFCO policy for any areas to be included in the City's proposed sphere of influence that are not being considered as potential expansion areas. These areas include portions of the North Ventura Avenue area, areas west of the Ventura River, areas in the flood plain southerly of the Ventura Auto Center, the City owned property east of Petit Avenue between Telegraph and Foothill Roads, and areas northerly and easterly of the Southern California Edison property on Telegraph Road.
d. Agriculture and Open Space Preservation "Findings and criteria for prime agricultural and open space land conversion: LAFCO will approve sphere of influence amendments and updates which are likely to result in the conversion of prime agricultural or open space land use to other uses only if the Commission finds that the amendment or update will lead to planned, orderly, and efficient development. For the purposes of this policy, a sphere of influence amendment or update leads to planned, orderly, and efficient development only if all of the following criteria are met:
i. The territory is likely to be developed within 5 years and has been designated for non-agricultural or open space use by applicable general and specific plans.
ii. Insufficient non-prime agricultural or vacant land exists within the sphere of influence of the agency that is planned and developable for the same general type of use.
iii. The proposal will have no significant adverse effects on the physical and economic integrity of other prime agricultural or open space lands.
iv. The territory is not within an area subject to a Greenbelt Agreement adopted by a city and the County of Ventura. If a City proposal involves territory within an adopted Greenbelt area, LAFCO will not approve the proposal unless all parties to the Greenbelt Agreement amend the Greenbelt Agreement to exclude the affected territory.
v. The use or proposed use of the territory involved is consistent with local plan and policies." (Commissioner's Handbook Section 4.1.5.1)
"Findings that insufficient non-prime agricultural or vacant land exists: The Commission will not make affirmative findings that insufficient non-prime agricultural or vacant land exists within the sphere of influence of the agency unless the applicable jurisdiction has prepared a detailed alternative site analysis which at a minimum includes:
i. An evaluation of all vacant, non-prime agricultural lands within the sphere of influence and within the boundaries of the jurisdiction that could be developed for the same or similar uses.
ii. An evaluation of the re-use and redevelopment potential of developed areas within the sphere of influence and within the boundaries of the jurisdiction for the same or similar uses.
iii. Determinations as to why non-prime agricultural and vacant lands and potential re-use and redevelopment sites are unavailable or undesirable for the same or similar uses, and why conversion of prime agricultural or open space lands are necessary for the planned, orderly, and efficient development of the jurisdiction." (Commissioner's Handbook Section 4.1.5.2)
"Impacts on adjoining prime agricultural or open space lands: In making the determination whether conversion will adversely impact adjoining prime agricultural or open space lands, the Commission will consider the following factors:
i. The prime agricultural and open space significance of the territory included in the sphere of influence amendment or update relative to other agricultural and open space lands in the region.
ii. The economic viability of the prime agricultural lands to be converted.
iii. The health and well being of any urban residents adjacent to the prime agricultural lands to be converted.
iv. Whether public facilities related to the proposal would be sized or situated so as to facilitate the conversion of prime agricultural or open space land outside of the agency's proposed sphere of influence, or will be extended through prime agricultural or open space lands outside the agency's proposed sphere of influence.
v. Whether natural or man-made barriers serve to buffer prime agricultural or open space lands outside of the agency's sphere of influence from the effects of the proposal.
vi. Applicable provisions of local general plans, applicable ordinances that require voter approval prior to the extension of urban services or changes to general plan designations, Greenbelt Agreements, applicable growthmanagement policies, and statutory provisions designed to protect agriculture or open space.
vii. Comments and recommendations by the Ventura County Agricultural Commissioner." (Commissioner's Handbook Section 4.1.5.3)
e. Criteria for city sphere of influence amendments relating to schools
"City and School District Collaborative Planning: To ensure that the affected city and school district(s) have engaged in good faith, collaborative long range planning for school sites, LAFCO will consider the following criteria when reviewing proposals for city sphere of influence amendments:
i. Whether a school site committee, made up of the affected city and school officials have been meeting to engage in discussions and long range planning and the meetings are ongoing.
ii. Whether the affected city has discussed all major development proposals with the school district.
iii. Whether the affected city has a policy of considering school capacity and location when reviewing major development proposals and long range plans.
iv. Whether an official inventory of all potential sites has been evaluated and has been subject to public review.
v. Whether the affected city general plan and specific plans include adequate and appropriate school locations.
vi. Whether school siting has been addressed in the last five years of development in the affected city.
vii. Whether the proposed sphere of influence change may be unnecessary if the affected city is considering expansions to the sphere of influence or city urban growth boundary." (Commissioner's Handbook Section 4.1.6.1)
"Options Exhausted: To ensure that the affected school district(s) have exhausted options within the existing sphere of influence or city urban growth boundary, LAFCO will consider the following criteria when reviewing proposals for city sphere of influence amendments:
i. Whether the affected school district(s) has a long-range facility plan.
ii. Whether the affected school district(s) has prepared an inventory and evaluation of all district-owned facilities.
iii. Whether the affected school district(s) has considered joint use facilities with other entities, cities, parks, and other public institutions.
iv. Whether the affected school district(s) has evaluated all undeveloped land within the affected city's sphere of influence or city urban growth boundary.
v. Whether the affected school district(s) has, after consideration of the safety and health of the children, considered asking for any appropriate exceptions from State of California school size guidelines.
vi. Whether the school district has considered and eliminated multi-story school buildings as an option." (Commissioner's Handbook Section 4.1.6.2)
"Overall Planning Issues Addressed: To ensure that the affected city and school district(s) have addressed overall planning issues, LAFCO will consider the following criteria when reviewing proposals for city sphere of influence amendments:
i. Whether there are unique safety and health concerns of the proposal.
ii. Whether the proposed new school site is considered growth inducing.
iii. Whether the proposal adversely affects agriculture and/or provides buffers between the school site and adjacent agriculture.
iv. Whether the proposed school site is the best site available when considering logical, orderly, and efficient city boundaries and adopted greenbelts.
v. Whether the affected city is willing to support expanding the urban growth boundary to accommodate the development site, including requesting a citizen's vote if necessary.
vi. Whether the affected school district(s), after an unsuccessful vote for approval, indicates that the school site must be sited outside the existing urban growth boundary." (Commissioner's Handbook Section 4.1.6.3
2. Services outside boundaries and existing or proposed sphere of influence - The City provides some services outside its boundaries and outside the existing and proposed sphere of influence. With limited exceptions Government Code Section 56133 precludes any city or special district from providing new or extended services outside their
boundaries and spheres of influence. The program EIR should clearly identify the City's existing and proposed service areas for each City service, and analyze the impacts of providing any "out of boundary" services and the City's obligations for expanding these services. Of special interest to LAFCO is the provision of City water service outside the existing City boundary in the Saticoy community and to areas outside the existing and any proposed sphere of influence, especially east of Wells Road north of Telegraph Road and to the Saticoy Country Club. The program EIR should address the City's obligations, if any, to provide new connections in terms of capacity and consistency with Government Code Section 56133.
3. Services by other agencies within the existing and proposed sphere of influence The Ojai Valley Sanitary District, and, to a limited extent, the Casitas Municipal Water District provide service to the North Ventura Avenue Area that is currently outside the City boundaries. The program EIR should address the overlap in boundaries and spheres of influence, and the service capacities for these Districts in this area. Included should an analysis of the service impacts of any agreements that may exist between the City and these Districts.

The Montalvo Municipal Improvement District provides sanitary sewer collection and treatment services to areas within the City and areas outside the current City boundaries, but within the existing and proposed sphere of influence. The program EIR should address the boundary and sphere of influence overlaps, the service area and capacities of this District, and should analyze the service impacts of any agreements that may exist between the City and this District.

The Saticoy Sanitary District provides sanitary sewer collection and treatment services to areas outside the current City boundaries, but within the existing and proposed sphere of influence. The program EIR should address the sphere of influence overlap and service area and capacities of this District, and should analyze the service impacts of any agreements that may exist between the City and this District.

Thank you again for the opportunity to review and comment on this NOP.
Sincerely,

Everett Millais
Executive Officer

cc: County of Ventura Planning Department
City of Oxnard Development Services Department
Ventura Unified School District
Ojai Valley Sanitary District
Casitas Municipal Water District
Montalvo Municipal Improvement District
Saticoy Sanitary District

DEPARTMENT OF TRANSPORTATION

DISTRICT 7, REGIONAL PLANNING
IGR/CEQA BRANCH
120 SO. SPRING ST.
LOS ANGELES, CA 90012
PHONE (213) 897-6536
FAX (213) 897-1337
E-Mail:NersesYerjanian@dot.ca.gov

Flex your power! Be energy efficient!

Ms. Lisa Porras
City of San Buenaventura
501 Polis St.
San Buenaventura, CA. 93001

IGR/CEQA\# 041016/NY
NOP/Comprehensive Plan Update
SCH \#2004101014
VEN/101,118,126,33

October 28, 2004
Dear Ms. Porras:
Thank you for including the California Department of Transportation in the review process for the proposed update of the City's Comprehensive Plan Update. The Plan includes updates to the Transportation, Land Use and Planning, Population/Housing Balance Elements. We have reviewed the information provided and offer the following comments.

This Department as the State agency responsible for planning, operations, and maintenance of State highways shares the same transportation goals with the City. We hope to continue to work together in improving mobility in the region.

Caltrans is particularly interested in the transportation planning roles of local jurisdictions and suggests that the following areas be emphasized.

- Coordination of planning efforts between local agencies and Caltrans district 7.
- Preservation of transportation corridors for future system improvements; and
- Development of coordinated transportation system management plans that achieve the maximum use of present and proposed infrastructure."

TRANSPORTATION/TRAFFIC ELEMENT

It is widely known that Southern California highways are heavily congested especially during morning and evening peak periods. We realize that to improve mobility there is a need for capacity enhancing project as well as other innovative alternatives.

New development will continue to increase use of local and regional roadways. We ask that the Transportation/Traffic element identify strategies the City will pursue to maintain good levels of service.

As in the past, we look forward to being a part of the environmental review process for projects that have the potential to significantly impact traffic conditions on State highways. To assist us in evaluating impacts to the State highway system, we ask that traffic studies be prepared and include analysis of the nearest State highway facilities.

For State thresholds and guidance on the preparation of acceptable traffic studies, please refer to the Statewide Guide for the preparation of Traffic Impact Studies at: http://www.dot.ca.gov/hq/traffops/developserv/operationalsystems/reports/tisguide.pdf

If significant impacts are anticipated on the State highway system, the Department would work with the City and applicants to identify appropriate traffic mitigation measures.

We encourage the City to consider vehicular demand-reducing strategies. These include: incentives for commuters to use transit i.e. park-and-ride lots, discounts on monthly bus and rail passes, vanpools, etc. Other strategies may include transit- oriented development.

LAND-USE ELEMENT

As you are aware, there is a critical relationship between land use and transportation. The quality of the State transportation system operation can affect the quality of the local circulation system operation.

We ask that special attention be given to the jobs- and-housing balance concept. Communities with predominantly residential allocations should be encouraged to set aside areas for office, commercial/retail, and open space uses. Benefits of balanced communities include: reduction of long morning and evening commutes on State highways, shorter trips which in turn would reduce the consumption of fuel and air poliutants. It may ailso change direction of trips. Instead off most traffic traveling in one direction during peak periods, some trips may be diverted in the opposite direction.

BIOLOGICAL RESOURCES

We ask for consideration of natural corridors for dispersion of plant and animal wildlife on a regional basis. Of particular interest to Caltrans is some identification of and planning for locations where such corridors might run across or along transportation corridors

HOUSING ELEMENT

For large development projects, we ask that efforts be made to provide affordable housing for young workers and seniors to ensure that substantial numbers of employees can afford to purchase homes and live in proposed projects. We also ask that project proponents be encouraged to provide information on jobs along with housing development phases.

If you have any questions regarding our comments, you may contact the Project Engineer/Coordinator Mr. Yerjanian at (213) 897-6536 and refer to IGR/CEQA record number 041016NY. As the Comprehensive Plan Update program continues, we may offer additional comments. We look forward to discussing and/or meeting with you in the near future.

CHERYL J. POWELL
IGR/CEQA Program Manager
California Department of Transportation
District 07

Ventura County

Watershed Protection District

SUBJECT: RMA 04-086, Notice of Preparation of Draft Environmental Impact Report Update of 1989 Comprehensive Plan

Dear Ms Porras :

The subject document has been reviewed with respect to issues under the purview of the Ventura County Watershed Protection District (District). Development generally causes an increase in the rate and volume of stormwater flow in downstream facilities. The EIR needs to discuss stormwater management in such a manner as to prevent potentially significant environmental impacts which might arise downstream of any future development.
The EIR should explore the impacts future development will have on surface water quality and quantity both during the construction phase and throughout the life of developed projects. Specific surface water quality issues that need to be addressed in the EIR include the following :

1. Coverage of all future development projects under the National Pollution Discharge Elimination System (NPDES) State General Construction Permit and the requirement for a Stormwater Pollution Control Plan, or equivalent document, covering water quality protection during the construction phase of future projects.
2. Future project designs need to incorporate applicable Best Management Practices (BMPs) that intercept stormwater and effectively prohibit pollutants from discharging to the storm drain system. Permanent BMPs, including those developed by the Ventura Countywide Stormwater Quality Management Program, should be evaluated for appropriateness on all future projects.

Any future development projects that include existing or proposed direct drain connections to District jurisdictional facilities or encroach into District rights-of-way will be subject to District review and permitting. District jurisdictional areas within the City and the SOI should be mapped and the maps should be included in the EIR and labeled as Protective Overlay Zones.

If you have questions regarding this review, please call the undersigned at 654-2906.
Very truly yours,

Manager, Permit Section
Watershed Protection District
TT/tt
c: Carl Morehouse, RMA Planning, County of Ventura

RESOURCE MANAGEMENT AGENCY

Planning Division
Christopher Stephens

November 3, 2004

Lisa Porras

Community Development Department
Advance Planning Section

City Hall
501 Poli Street
P. O. Box 99

Ventura, CA 93002-0099

FAX \#: (805) 653-0763
Subject: Update of 1989 Comprehensive Plan, NOP

Thank you for the opportunity to review and comment on the subject document. Attached are the comments that we have received resulting from intra-county review of the subject document.

Your proposed responses to these comments should be sent directly to the commentator, with a copy to Carl Morehouse, Ventura County Planning Division, L\#1740, 800 S. Victoria Avenue, Ventura, CA 93009.

If you have any questions regarding any of the comments, please contact the appropriate respondent. Overall questions may be directed to Carl Morehouse at (805) 654-2476.

Sincerely,

Christopher Stephens
County Planning Director
G:IWPCIWINWORDI1K1-7.04.doc
Attachment
County RMA Reference Number 04-086

COUNTY OF VENTURA

RESOURCE MANAGEMENT AGENCY PLANNING DIVISION

MEMORANDUM

DATE: \quad November 3, 2004

TO:
 Carl Morehouse

FROM:
SUBJECT:

BS
Bruce Smith, Manager, General Plan Section
Notice of Preparation for Update of City of San Buenaventura Comprehensive Plan

The City of Ventura is involved in an update to its Comprehensive Plan. We suggest that the EIR for this project include a jobs/housing analysis that would determine whether or not the new employment created would be appropriately balanced with new housing at commensurately affordable rates. An appropriate jobs/housing balance will result in positive benefits with respect to transportation and air quality impacts of the Comprehensive Plan, whereas an imbalance between jobs and housing would result in significant environmental impacts (increases vehicle miles traveled, increased air pollution, waste of energy resources, etc.).

Secondly, we have recently become aware of an inconsistency between the County's Saticoy Area Plan and the City's plan for this area, For many years, the County has planned an approximately 5acre area south of Rosal Lane (APNs 90-142-11 and 90-043-13) as "Residential Two Family" and zoned the site as " R -2" (Two-Family Residential). The City plan designates this property as "Industrial". The property is not contiguous with the City and therefore cannot be annexed at this time. The City provides water service and apparently cannot or will not provide water service for residential development. The County is reluctant to re-designate the site to industrial because of an existing jobs/housing imbalance in the area and because of the County's need for additional affordable housing sites (Housing Element requirement). In addition, existing industrial development south of the site was conditioned to provide a buffer in anticipation of future residential development to the north. Thus we request that as part of your Comprehensive Plan Update project, the City re-evaluate the residential/industrial boundary in this area to be consistent with the County's Saticoy Area Plan,

PUBLIC WORKS AGENCY
 TRANSPORTATION DEPARTMENT
 Traffic, Advance Planning \& Permits Division

DATE: November 1, 2004
TO: \quad Resource Management Agency, Planning Division Attention: Carl Morehouse

FROM: Nazir Lalani, Deputy Director ハL

SUBJECT: Review of Document 04-086, Notice of Preparation of an EIR Update of the 1989 Comprehensive Plan for the City of Ventura Project involves updating the 1989 plan through the year 2025 with the current goals, policies and objectives that reflect the current needs and preferences of the community. The plau will also consider inclusion of certain areas outside the current Spherc of Influence for development. Project Applicant: City of San Bucnaventura Lead Agency: City of San Buenaventura

The Transportation Department has revicwed the notice of preparation for a Draft Environmental Impact Report to update the City of Ventura Comprehensive Plan which serves as a blue print for development in the City. The EIR should address the following comments:

1. In accordance with the Ventura LAFCO Commissioner's Handbook, section 3.2.1, cities shall annex entire roadway sections adjacent to territory proposed to be annexed and shall include complete intersections. The EIR should require conditions for anncxing county roadway section adjacent to the development, when the proposed expansion areas are developed.
2. The updated year 2025 comprehensive plan for the City should incorporate the island areas of the unincorporated area of the County within the City.
3. The cumulative impacts of the development of this project when considered with the cumulative impact of all other approved (or anticipated) development projects in the County will be potentially significant. To address the cumulative adverse impacts of traffic on the County Regional Road Network, the appropriate Traffic Impact Mitigation fees should be paid to the County when development occurs. With payment of the Traffic Impact Mitigation Fees, the Level of Service and safcty of the existing roads would remain consistent with the County's General Plan.
4. Please provide us a copy of the draft EIR for review, when it becomes available.

Our revicw of this project is limited to the impacts this project may have on the County's Regional Road Network.

VENTURA COUNTY AIR POLLUTION CONTROL DISTRICT

FROM: Andy Brown
$\begin{array}{ll}\text { SUBJECT: } & \text { Review of a Notice of Preparation (NOP) for a proposed Draft Environmental } \\ & \text { Impact Report (EIR) for an update of the } 1989 \text { City of Ventura Comprehensive } \\ & \text { Plan (Reference No. 04-086) }\end{array}$

Project Description

District staff has reviewed the subject project NOP of a Draft EIR for the proposed update to the City of Ventura's Comprehensive Plan. The proposed project involves the update of the 1989 Comprehensive Plan, which serves as the blueprint for the development of the City. Each of the Comprehensive Plan elements other than the Housing Element (an update of which was approved earlier this year) will be updated with goals, policies, and objectives that reflect the current needs and preferences of the community. The land use map will also be updated.

The City intends to emphasize infill development and rcuse of developed lands within he current Sphere of Influence over the life of the Comprehensive Plan Update (through 2025), and has identified a number of growth districts and comidors where infill/reuse is to be focused. However, as part of the Comprehensive Plan update, the City is also considering inclusion of certain areas outside the current Sphere of Influence for future development.

Ventura County Air Quality Assessment Guidelines (2003 Guidelines)

APCD staff recommends that the air quality section of the Draft EIR be prcpared in accordance with the Ventura County Air Quality Assessment Guidelines (2003 Guidelines). Please note that the 2003 Guidelines is the current advisory document for preparing air quality evaluations of environmental documents.

The air quality assessment should consider Reactive Organic Gases (ROG) and Nitrous Oxides (NO_{x}) emissions from all project-related motor vehicle trips. Additionally, the air quality assessment should consider potential impacts from fugitive dust, including PM_{10} that will be generated by construction activities. A copy of the 2003 Guidelines can be accessed from the downloadable materials section of the APCD website at www.vcaped.org.

City of Ventura Comprehensive Plan Update/04-086
Ocrober 19, 2004
Page 2

Local Air Quality Impacts

APCD recommends that the Draft EIR discuss potential local air quality impacts, and provide appropriate mitigation mcasurcs, if any are projected to be significant.

AQMP Consistency

The Draft EIR should address the project's consistency with the Ventura County Air Quality Management Plan (AQMP). A project that is determined to be inconsistent with the AQMP is also determined to have a significant cumulative adverse air quality impact. Chapter 4 - Air Quality Management Plan Consistency, of the District's 2003 Guidelines, provides guidance on determining a project's AQMP consistency.

Mitigation Measures

If the project is determined to have a significant impact on regional and/or local air quality, the Draft EIR should include all feasible mitigation measures, including project design features. Chapter 7 of the District's 2003 Guidelines discusses a number of mitigation measures that may be appropriate for this project. In addition, the District encourages other mitigation measures not currently included in the 2003 Guidelines be considered.

The Draft EIR should explicitly state that air quality mitigation measures would be implemented unless a feasibility analysis shows them to be infeasible or other, more effective, air quality mitigation measures become available and are applied to the project. All of the mitigation measures and project design elements that are incorporated into the project should be considered when evaluating and presenting the air quality impacts of the project in the Draft EIR. Mitigation of the project's impacts shall apply to all portions of the project.

If you have any questions, contact me by telephone at (805) 645-1439 or by email at andy(Q) veaped.org.

Office Of

AGRICULTURAL COMMISSIONER

Chief Deputy

David B. Buetiner

P.O. Box 889, Santa Paula, CA 93061 815 East Santa Barbara Street Telephone: (805) 933-3165
(805) 647-6931
\section*{FAX: (806) 626-8922}
$007 \div 82004$

To: Carl Morehouse, Resource Management Agency
From Susan Johnson. Deputy Agricultural Commissioner
CC: Julie Bulla
Date: October 7, 2004
Re: Update of 1989 Comprehensive Plan RMA Reference Number 04-086

The Agricultural Commissioner has commented extensively to the county and to the City of Ventura regarding what we consider essential elements in the Comprehensive Plan Update of the City of Ventura. We will consider the Environmental Impact Report when and if it is developed to comment on certain aspects of the project. Just as a reminder the Agricultural Commissioner's primary concern continues to be the effect that any proposed development would have on the continued viability of surrounding agricultural parcels. Development proposed in the General Plan Update should adequately buffer existing agricultural operations from incompatible uses and no development should create further conflicts at the agricultural urban interface. We would support aspects of the projed that propose expansion into areas where that expansion would mitigate existing areas of conflict and or would remove parcels from production that are no longer viable due to encroaching non-compatible uses.

October 28, 2004
City of San Buenaventura
Planning Division
Attn: Ms Lisa Porras, Senior Planner
501 Poli Street, P.O. Box 99
Ventura, California 93002-0099

Jeft Pratt
District Director
Lawrence Jackson, Deputy
Water Dualit//Environmental
Peler Sheydayi, Deputy

SUBJECT: RMA 04-086, Notice of Preparation of Draft Environmental Impact Report Update of 1989 Comprehensive Plan

Dear Ms Porras :

The subject document has been reviewed with respect to issues under the purview of the Ventura County Watershed Protection District (District). Development generally causes an increase in the rate and volume of stormwater flow in downstream facilities. The EIR needs to discuss stormwater management in such a manner as to prevent potentially significant environmental impacts which might arise downstream of any future development,
The EIR should explore the impacts future development will have on surface water quality and quantity both during the construction phase and throughout the life of developed projects. Specific surface water quality issues that need to be addressed in the EIR include the following :

1. Coverage of all future development projects under the National Pollution Discharge Elimination System (NPDES) State General Construction Permit and the requirement for a Stormwater Pollution Control Plan, or equivalent document, covering water quality protection during the construction phase of future projects.
2. Future project designs need to incorporate applicable Best Management Practices (BMPs) that intercept stormwater and effectively prohibit pollutants from discharging to the storm drain system. Permanent BMPs, including those developed by the Ventura Countywide Stormwater Quality Management Program, should be evaluated for appropriateness on all future projects.

Any future development projects that include existing or proposed direct drain connections to District jurisdictional facilities or encroach into District rights-of-way will be subject to District review and permitting. District jurisdictional areas within the City and the SOI should be mapped and the maps should be included in the EIR and labeled as Protective Overlay Zones.

If you have questions regarding this review, please call the undersigned at 654-2906.
Very truly yours,

Kevin Keivanfar, P.E.
Manager, Permit Section
Watershed Protection District

TT/t

2.. Carl Morehouse, RMA Planning, County of Ventura

LOG NO. 20041007-004

RE: City of Ventura Comprehensive Plan Update

Dear Ms. Porras:

The Native American Heritage Commission has reviewed the Notice of Preparation (NOP) regarding the above referenced project. To adequately comply with this provision and mitigate project-related impacts on archaeological resources, the Commission recommends the following actions be required:
\checkmark Contact the appropriate Information Center for a record search to determine:

- Il a part or all of the area of project effect (APE) has been previously surveyed for cultural resources.
- If any known cultural resources have already been recorded on or adjacent to the APE.
- If the probability is low, moderate, or high that cultural resources are located in the APE.
\checkmark. Contact the Native American Heritage Commission Jor:
- A Sacred Lands File Check.
- A list of appropriate Native American Contacts for consultation concerning the project site and to assist in the mitigation measures. Native American Contacts Leal attached
\checkmark Lack of surface evidence of archeological resources does not preclude their subsurface existence.
- Lead agencies should include in their mitigation plan provisions for the identification and evaluation of accidentally discovered archeological resources, per California Environmental Quality Act (CEQA) $\$ 15064.5(f)$. In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American, with knowledge in cultural resources, should monitor all ground-disturbing activities.
- Lead agencies should include in their mitigation plan provisions for the disposition of recovered artifacts, in consultation with culturally affiliated Native Americans.
- Lead agencies should include provisions for discovery of Native American human remains in their mitigation plan. Health and Safety Code 97050.5 , CEQA $\$ 15064.5(\mathrm{e})$, and Public Resources Code §5097.98 mandates the process to be followed in the event of an accidental discovery of any human remains in a location other than a dedicated cemetery.

Sincerely,

Rob Wood
Environmental Specialist III
(916) 653-4040

CC: State Clearinghouse

Chief Joseph Ballesteros 5811 Lone Pine Place Paso Robles , CA 93446 (805) 238-2784

Julie Lynn Tumamait
Chumash $\quad 365$ North Pole Ave
Salinan
Ojai , CA 93023
365 North Pole Ave Chumash

Jtumamalt@hotmall.com
(805) 646-6214

Patrick Tumamait
Chumash
Fernandeno
Tataviam
Kitanemuk
992 El Camino Corto Chumash
Ola 93023
yanahea2@aol.com
(805) 640-0481
(B05) 216-1253 Cell

San Luis Obispo County Chumash Council
Chief Mark Steven Vigil
Beverly Salazar Folkes 1931 Shadybrook Drive Thousand , CA 91362

805 492-7255

Owl Clan
Dr. Kote \& Lin A-Lul'Koy Lotah 48825 Sapaque Road
Bradley , CA 93426
(805) 472-9536

1030 Ritchie Road Chumash
Grover Beach , CA 93433
chiefmvigil@fix.net
(805) 481-2461
(805) 474-4729 - Fax

Chumash
Owl Clan
Qun-tan Shup
48825 Sapaque Road Chumash
Bradley , CA 93426
(805) 472-9536

Tataviam
Fernandeño

Stephen William Miller
189 Cartagena
Chumash
Camarillo , CA 93010
(805) 484-2439

Santa Ynez Band of Mission Indians
Vincent Armenta, Chairperson
P.O. Box 517

Chumash
Santa Ynez
CA 93460
varmenta@santaynezchumash
(805) 688-7997
(805) 686-9578 Fax

Thle list le current only as of the date of this document.
Dlatribution of thla liat doss not relleve ony person of stalutory responslbility as defined In Sectlon 7050,5 of the Hoalth and Bafety Code, Boctlon 5097.94 of this Publlc Resources Code and Becilon 5097.98 of the Publle Resources Code.

Native American Contacts

December 27, 2004
Santa Ynez Tribal Elders Council
Adelina Alva-Padilla, Chair Woman
P.O. Box 365 Chumash
Santa Ynez , CA $93480 \quad$
elders@santaynezchumash.
(805) 688-8446
(805) 693-1768 FAX

Carol A. Pulido
15011 Lockwood Valley Rd. Chumash
Frazier Park . CA 93225
(661) 245-3081

Santa Ynez Band of Mission Indians Laura Ray, Tribal Administrator
P.O. Box 517 Chumash

Santa Ynez , CA 93460
Iray@santaynezchumash.net (805) 688-7997
(805) 686-9578 Fax

Randy Guzman - Folkes 3044 East Street Sirni Valley , CA 93065-3929 traditional75@hotmall.com (805) 579-9206 (805) 797-5605 (cell)

Charles S. Parra
P.O. Box 6612

Oxnard
93031

- CA
(805) 340-3134 (Cell)
(805) 488-0481 (Home)

Chumash
Fernandeño
Tataviam
Shoshone Paiute
Yaqui

Chumash

Richard Angulo 1222 Potter Avenue Thousand Oaks 91360
. CA
(805) 493-2863 (Work)
(805) 493-2163 Fax

Thie liat is current only as of the dete of thif document.

Office of
AGRICULTURAL COMMISSIONER
Agricultural Commissioner W. Earl McPhail

P.O. Box 889, Santa Paula, CA 93061

815 East Santa Barbara Street
Chief Deputy
Telephone: (805) 933-3165
David Buettner
(805) 647-5931

FAX: (805) 525-8922

Lisa Porras
City of San Buenaventura
Community Development Department
501 Pori Street
Ventura, CA 93001

RE: Update of 1988 Comprehensive Plan Revised Notice of Preparation: RMA \#04-086-1

In reviewing the alternative potential expansion areas under consideration we have the following observations:

1. The city's current Sphere of Influence encompasses expansion areas identified as Poinsettia, Serra, and North Avenue, a total of 937 acres, currently also covered under SOAR. These agricultural properties are surrounded by residential, school and outdoor recreation uses that have given rise to complaints about farming activity. It may be appropriate for the SOAR effecting these properties to be lifted, creating a more natural progression of development for the city and enabling the compromised farming activities to be turned to more compatible land uses within the existing urban area.
2. Expansion of the SOI to 2025 beyond the above listed areas, into a large expanse of Prime Agriculture soils, specifically the area identified as Olives (930 acres), is not in keeping with the city's stated infill and redevelopment policies for the central core, downtown, and Ventura Avenue. Nor would it be in keeping with the adopted Greenbelt (which the City of Oxnard intends to preserve), or the County policies for the preservation of agriculture. The removal of 930 acres of prime farmland does not appear to be justified and is in conflict with city, county, Coastal Commission and state adopted policies.
3. Alternative \#3 appears to be most in keeping with all stated policies and goals of both the city and the County of Ventura. This scenario requires minimum expansion of the SOI , limited removal of prime agricultural soils and land protected under SOAR, and provides direction for growth to 2025.
4. The Agricultural Commissioners Office also supports alternatives \#4 and/or \#6. While removing active farm activity, as noted above, continuing to farm inside the existing urbanized area has become increasingly difficult, and in the long run, these areas provide the most logical loss of prime soils to urban development.

The Agricultural Policy Advisory Committee and the County Agricultural Commissioners Office have kept the position that normal farming activity is not compatible with residential, school and outdoor recreational uses if adequate buffers are not in place. The city needs to consider if it has a long-term desire to surround active farmland, and if so, the entirety of that land should remain intact, and not developed on a piecemeal basis. Additionally, adjacent property owners need to be informed about the "right-to-farm" ordinance and adequate distance and vegetative buffers need to be secured and maintained by neighboring urban uses.

Rincon:641-1072 FAx

January 19, 2005

Lisa Porras, Senior Planner
Community Development Department
City of San Buenaventura
501 Poi Street, P.O. Box 99
Ventura, CA 93002-0099
FAX \#: (805) 653-0763

SUBJECT: Revised Notice of Preparation of Draft EIR for Comp. Plan Update

Thank you for the opportunity to review and comment on the above subject document. Attached are the comments that we have received resulting from an intra-county review of the projects.

Any responses to these comments should be sent directly to the commenter, with a copy to Carl Morehouse, Ventura County Planning Division, L\#1740, 800 S. Victoria Avenue, Ventura, CA 93009.

If you have any questions regarding any of the comments, please contact the appropriate respondent. Overall questions may be directed to Carl Morehouse at (805) 654-2476.

Sincerely,

Christopher Stephens
County Planning Director
Attachment
County RMA Reference Number 04-086-1

VENTURA COUNTY AIR POLLUTION CONTROL DISTRICT

Memorandum

SUBJECT: Review of a Revised Notice of Preparation (NOP) for a proposed Draft Environmental Impact Report (EIR) for an update of the 1989 City of Vantura Comprchensive Plan (Reference No. 04-086-1)

Revised Project Description

The Ciry issued a NOP in September 2004. The original NOP described five alternative land use strategies that were to be considered in the ERR. However, since then the way the alcermatives are organized has changed, and the number of altemative land use strategies to be studied has increased from five to six.

The proposed project involves the update of the 1989 Comprehensive Plan, which serves as the blueprint for the development or the City. Each of the Comprehensive Plan elements other than the Housing Element (an update of which was approved carlier this year) will be updated with goals, policies, and objectives that reflect the current needs and preferences of the community. The land use map will also be updated.

The City intends to emphasize infill dovelopment and reuse of developed lands within he current Sphere of Influence over the life of the Comprehensive Plan Update (through 2025), and has identified a number of growth districts and corridors where infill/reuse is to be focused. However, as part of the Comprehensive Plan update, the City is also considering inclusion of certain areas outside the current Sphere of Influence for future development.

Ventura County Air Quality Assessment Guidelines (2003 Guidelines)

APCD staff recommends that the air quality section of the Draft EIR be prepared in accordance with the Ventura County Air Quality Assessment Guidelines (2003 Guidelines). Please note that the 2003 Guidelines is the current advisory document for preparing air quality evaluations of environmental documents.

The air quality assessment should consider Reactive Organic Gases (ROG) and Nitrous Oxides (NO_{x}) emissions from all project-related motor vehicle trips. Additionally, the air quality assessment should consider potential impacts from fugitive dust, including PM_{10} that

Revised City of Ventura Comprehensive Plan Updale NOP/04-086
December 2B, 2004
Page 2
will be generated by construction activities. A copy of the 2003 Guidelines can be accessed from the downloadable materials section of the APCD website at www.vcaped.org.

Local Air Ouality Impacts

APCD recommends that the Draft ERR discuss potential local air quality impacts, and provide appropriate mitigation measures, if any are projected to be significant.

A OMP Consistency

The Draft ERR should address the project's consistency with the Ventura County Air Quality Management Plan (AQMP). A project that is determined to be inconsistent with the AQMP is also determined to have a significant cumulative adverse air quality impact. Chapter 4-Air Quality Management Plan Consistency, of the District's 2003 Guidclines, provides guidance on determining a project's AQMP consistency.

Mitigation Measures

If the project is determined to have a significant impact on regional and/or local air quality, the Draft ER should include all fcasible mitigation measures, including project design features. Chapter 7 of the District's 2003 Guidelincs discusses a aumber of mitigation measures that may be appropriate for this project. In addition, the District encourages other mitigation measures not currently incluled in the 2003 Guidelines be considered.

The Drafl EIR should explicitly state that air quality mitigation measures would be implemented unless a feasibility analysis shows them to be infeasible or other, more effective, air quality mitigation measures become available and are applied to the project. All of the mitigation measures and project design elements that arc incorporated into the project should be considered when evaluating and presenting the air quality impacts of the project in the Drafl EIR. Mitigation of the project's impacts shall apply to all portions of the project.

If you have any questions, contact me by telcphone at (805) 645 -1439 or by email at andy@ucauped.org.

PUBLIC WORKS AGENCY
 TRANSPORTATION DEPARTMENT
 Traffic, Advance Planning \& Permits Division
 MEMORANDUM

DATE: January 20, 2005
TO: Resource Management Agency, Planning Division Attention: Carl Morehouse

FROM: Nazir Lalani, Deputy Director

SUBJECT: Review of Document 04-086-1, Revised Notice of Preparation of an EIR Update of the 1988 Comprehensive Plan for the City of Ventura Project involves updating the 1988 plan through the year 2025 with the current goals, policies and objectives that reflect the current needs and preferences of the community. The plan will also consider inclusion of certain areas outside the current Sphere of Influence for development. Project Applicant/ Lead Agency: City of San Buenaventura

The Transportation Department has reviewed the revised notice of preparation for a Draft Environmental Impact Report to update the City of Ventura Comprehensive Plan which serves as a blue print for development in the City. Our comments are the same as in our memo dated November 1,2004 and are as follows:

The EIR should address the following comments:

1. In accordance with the Ventura LAFCO Commissioner's Handbook, section 3.2.1, cities shall annex entire roadway sections adjacent to territory proposed to be annexed and shall include complete intersections. The EIR should require conditions for annexing county roadway section adjacent to the development, when the proposed expansion areas are developed.
2. The updated year 2025 comprehensive plan for the City should incorporate the island areas of the unincorporated area of the County within the City.
3. The cumulative impacts of the development of this project when considered with the cumulative impact of all other approved (or anticipated) development projects in the County will be potentially significant. To address the cumulative adverse impacts of traffic on the County Regional Road Network, the appropriate Traffic Impact Mitigation fees should be paid to the County when development occurs. With payment of the Traffic Impact Mitigation Fees, the Level of Service and safety of the existing roads would remain consistent with the County's General Plan.
4. Please provide us a copy of the draft EIR for review, when it becomes available.

Our review of this project is limited to the impacts this project may have on the County's Regional Road Network.

State of California-Health and Hurnan Services Agency Department of Health Services

January 20, 2005

Lisa Paras
City of San Buenaventura
501 Polis Street
San Buenaveñtüă, CA 93001

RE: City of Ventura Comprehensive Plan Update: SCH 2004101014

The California Department of Health Services (CDHS) Environmental Review Unit is in receipt of the Notice of Preparation for the above project. As a "responsible agency" under the California Environmental Quality Act (CEQA), we appreciate the opportunity to comment.

If the City finds it necessary to develop new water supply wells and/or make modifications to an existing domestic water system to serve the proposed developments, an application to amend the existing water system permit must be submitted to the CDHS Santa Barbara District Office.

These future developments and future infrastructure improvements may be subject to further environmental review pursuant to the requirements of CEQA as a result of this separate permitting process.

If you have any questions, please contact the Field Office at (805) 566-1326. We look forward lo working with you in the future.

Sincerely,
Vermin \mathcal{I}
Veronica L. Ramirez
California Department of Health Services
Environmental Review Unit
Cc:
CDHS Santa Barbara District Office State Clearinghouse

RE: REVISED NOTICE OF PREPARATION - COMPREHENSIVE PLAN UPDATE EIR

 LiaDear Ms Prorras:
Earlier today we discussed the Revised Notice of Preparation (NOP) for the program environmental impact report (EIR) for the City's Comprehensive Plan update. Specifically, I inquired about the "Intensification/Reuse Only Scenario" listed in the revised NOP and the reference in the description to the current Sphere of Influence. You indicated that you thought it meant the proposed Sphere of Influence and would verify this with the City's EIR consultants. A short while later you called me back and left a message indicating that in fact the Intensification/Reuse Only Scenario in the Revised NOP applies to the proposed Sphere of Influence.

When we spoke about the lintensification/Reuse Only Scenario I did not intend to comment further about the NOP as at that timell thought that my October 25, 2004 comment letter would be gufficient. However, after reviewing the revised NOP in more detail, please consider the following additional comments in preparing the EIR:

1. The description of the Intensification/Reuse Only Scenario should be entirely revised for clarity. There is a substantial difference between the City's current sphere of influence and the proposed Sphere of Influence shown on the Proposed Land Use Diagram that accompanied both the original and revised NOPs. The City's current Sphere of Influence includes a large portion of the hillsides covered by the Hillside Voter Protection Act (HVPA), but does not include the "Olivas Potential Expansion Area." This difference is several thousand acres in area.

If the Intensification/Reuse Only Scenario description is simply modified to substitute the word "proposed" for the word "current" when referring to the Sphere of Influence, I believe this will still be confusing. The description would then state that future development will be limited to areas within the proposed Sphere of Influence and that none of the possible expansion areas would be considered. This leaves the reader to figure out that this scenario does not include the North Avenue Potential Expansion Area, the Olivas Potential Expansion Area, the Poinsettia Potential Expansion Area, and/or the Serra Potential Expansion Area, and having to note that the Western Cañada Large Potential Expansion Area is not in the proposed Sphere of Influence. Even though not mentioned, there are a number of properties covered by the City's SOAR Ordinance that are within the proposed Sphere of Influence that cannot readily be developed. The

[^13]description should be re-written so it is clear where future development will occur under this scenario and if areas covered by the City's SOAR Ordinance are included.
2. The first page of the revised NOP indicates the City is, "...considering inclusion of certain areas outside the current Sphere of Influence for future development." (emphasis added). This statement is followed by a list of five areas. It should be clearly noted that of these five areas, three - North Avenue, Serra and Poinsettia - are entirely within the current Sphere of Influence. Thus, the revised NOP is repeating an error from the original NOP. This error should not be repeated in the EIR. The EIR needs to clearly identify what is in the City's current Sphere of Influence and what is to be in the City's proposed Sphere of Influence.
3. The Western Cañada Larga Potential Expansion Area is outside both the current and the proposed Sphere of Influence. Scenario no. 3 in the revised NOP, the Intensification/Reuse + North Avenue + Western Cañada Larga Scenario - should discuss the effects and impacts, especially the service impacts, of having this area remain outside the City's Sphere of Influence. Note that with very limited exceptions the City cannot provide services to any area outside its Sphere of Influence unless it is already doing so.
4. Spheres of Influence are set by LAFCO, not the City. Amending or updating Spheres of Influence are projects under CEQA. If the City wants LAFCO, as a responsible agency, to utilize the Comprehensive Plan Update EIR to amend or update the City's current Sphere of Influence, or to use this EIR in the future for any City boundary change proposals, it is critical that the proposed Sphere of Influence be discussed in the context of the current Sphers of Influence and in the context of each scenario, including the no project scenario. In other words, what is the difference between the current Sphere of Influence and the proposed Sphere of Influence for each scenario, how is each consistent with the LAFCO policies identified in my October 25, 2004 comment letter, and what are the impacts associated with the Sphere of Influence changes proposed for each scenario?
5. None of the scenarios in the revised NOP include the Poinsettia Potential Expansion Area. Thus, based on the revised NOP the EIR will apparently not discuss any development or service extension impacts that may be associated with the Poinsettia area. This area is, however, apparently proposed to remain within the City's Sphere of Influence. Given this fact, the EIR should contain another scenario to provide for a discussion of the impacts of having the Poinsettia area, and any similar non-expansion or non-growth areas, remain in the City's Sphere of Influence contrary to the LAFCO policies noted in my October 25, 2005 comment letter.

While it may not be possible as a matter of policy at this time, it would be preferable and easier in terms of the necessary CEQA analyses to revise the basic project description to have the proposed Sphere of Influence coincide with the boundaries of each scenario to be reviewed. Based on both the original and revised NOP, however, there is apparently only one proposed Sphere of Influence to be analyzed and it is independent of any of the scenarios. If this remains to be true, the EIR will need to discuss the related

```
Lisa Porras, Senior Planner
City of San Buenaventura
Revised Notice of Preparation - Comprehensive Plan Update EIR January 20, 2005
Page 3 of 3
```

impacts not just for the Poinsettia area, but also for any other area proposed to remain in the Sphere of Influence but where no growth is to occur or City services provided.
6. For overall clarity and analysis there should be a separate map or maps prepared for each scenario reviewed. Each such map or maps should clearly indicate the City's existing boundary, the current Sphere of Influence and the proposed Sphere of Influence.

Please accept these additional comments as being meant to assist in the preparation of an accurate, complete, clearly understandable and useable EIR.

Sincerely.

Everett Millais
Executive Officer

cc: County of Ventura Planning Department

28 January 2005
City of Ventura
Lisa Porras, Senior Planner
501 Poli Street
Ventura, CA. 93001
Re: EIR Scoping Meeting held on January 12, 2005
Dear Lisa,
Please find below a few comments from Ventura Citizens for Hillside Preservation on the scope of the EIR for the updated Comp Plan.

Given that the meeting was not noticed like the prior Comp Plan meetings would you mind if we submit further comments next week if we have any? Not everyone in our group has PowerPoint so very few of our directors could open the attachment I forwarded from you. I do not know if we will have further comments, but would like to know that you will accept them if we do.

1. We need to be noticed about any future meetings on the EIR or other topics related to the Comp Plan update.
2. The Intensification/Reuse scenario including Canada Larga should be removed from consideration since the area lies in a flood plain. Recent flooding in that area indicates that other scenarios would be more preferable for any required expansion.
3. Where is the Hillside Management Plan discussed? Will its implementation be the same? Will it be incorporated into the Comp Plan in this update?
4. What are the environmental impacts of compressing the old land-use categories (24+) down to the handful recommended by staff? What are the impacts on future development?
5. The EIR must examine any changes to the Comp Plan that will affect development in any hillside areas.

This is direct input from our meeting last evening. I hope to have a few more comments from everyone next week now that they've had a chance to review the PowerPoint presentation at our meeting. If I receive further comments I will pass them on to you. Please let me know if you will still be accepting comments through the first week of February.

Thank you.
Regards, Kathy Bremer
VENTURA CITIZENS FOR HILLSIDE PRESERVATION

Appendix B
2005 General Plan Actions

KEY TO ABBREVIATIONS AS = Administrative Services Department AS $[P]=$ Purchasing CA = City Attorney CD = Community Development Department CD [A] = Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		$\begin{aligned} & \text { CS [CA] = Cultural Affairs } \\ & \text { CS [GS/AS] = Golf Services/Adult Sports } \\ & \text { CS [SS] = Social Services } \\ & \text { FD = Fire Department } \\ & \text { FD [IS] = Inspection Services } \\ & \text { HR = Human Resources Department } \\ & \text { PD = Police Department } \\ & \text { PW = Public Works Department } \\ & \text { PW [E] = Engineering } \\ & \text { PW [P] = Parks } \\ & \text { PW [MS] = Maintenance Services } \\ & \text { PW [U] = Utilities } \end{aligned}$		
(c) = Action included in the Land Use Plan of the City's Local Coastal Program				
Number		Action	Lead Entity	Timeframe
1. OUR NATURAL COMMUNITY				
1.1	Adhere to the policies and directives of the California Coastal Act in reviewing and permitting any proposed development in the Coastal Zone.		CD [CP]	Ongoing
1.2	Prohibit non-coastal-dependent energy facilities within the Coastal Zone, and require any coastaldependent facilities including pipelines and public utility structures to avoid coastal resources (including recreation, habitat, and archaeological areas) to the extent feasible, or to minimize any impacts if development in such areas is unavoidable.		CD [CP]	Ongoing
1.3	Work with the State Department of Parks and Recreation, Ventura County Watershed Protection Agency, and the Ventura Port District to determine and carry out appropriate methods for protecting and restoring coastal resources, including by supplying sand at beaches under the Beach Erosion Authority for Control Operations and Nourishment (BEACON) South Central Coast Beach Enhancement program.		PW [E]	Ongoing
1.4	Require new coastal development to provide non-structural shoreline protection that avoids adverse impacts to coastal processes and nearby beaches.		CD [CP]	Ongoing
1.5	Collect suitable material from dredging and development, and add it to beaches as needed and feasible. Support continued efforts to decommission Matilija Dam to improve the sand supply to local beaches. Update the Hillside Management Program to address and be consistent with the Planning Designations as defined and depicted on the General Plan Diagram.		PW [E]	Ongoing
1.6			PW [U]	Long-term
1.7			CD [LRP]	Short-term

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD = Community Development Department	FD [IS = Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	PW [P] = Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	

```
CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
PD = Police Department
PW = Public Works Department
PW [E] = Engineering
PW [MS]= Maintenance Services
PW [U] = Utilities
```

CC = City Council
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation

Short-term $=0-5$ years Mid-term = 5-10 year Long-term $=10-20$ years Ongoing = May require short-, mid-, and long-term action
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
1.8	Buffer barrancas and creeks that retain natural soil slopes from development according to state and Federal guidelines.	CD [LD]	Ongoing
1.9	Prohibit placement of material in watercourses other than native plants and required flood control structures, and remove debris periodically.	PW [MS/P]	Ongoing
1.10	Remove concrete channel structures as funding allows, and where doing so will fit the context of the surrounding area and not create unacceptable flood or erosion potential.	PW [MS/P]	Long-term
1.11	Require that sensitive wetland and coastal areas be preserved as undeveloped open space wherever feasible and that future developments result in no net loss of wetlands or "natural" areas.	CD [LRP]	Short-term
1.12	Update the provisions of the Hillside Management Program as necessary to ensure protection of open space lands.	CD [LRP]	Mid-term
1.13	Recommend that the City's Sphere of Influence be coterminous with existing City limits in the hillsides in order to preserve the hillsides as open space.	CD [LRP]	Short-term
1.14	Work with established land conservation organizations toward establishing a Ventura hillsides preserve.	PW [P]	Long-term
1.15	Actively seek local, state, and Federal funding sources to achieve preservation of the hillsides.	PW [P]	Mid-term
1.16	Comply with directives from regulatory authorities to update and enforce stormwater quality and watershed protection measures that limit impacts to aquatic ecosystems and that preserve and restore the beneficial uses of natural watercourses and wetlands in the city.	PW	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
$C D=$ Community Development Department	FD [IS] = Inspection Services
$C D[A]=$ Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	$\mathrm{PWW}[\mathrm{E}]=$ Engineering
CD [LD] = Land Development	$\mathrm{PWW}[\mathrm{P}]=$ Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	Short-term $=0-5$ years
CM [CE] = Civic Engagement	Mid-term $=5-10$ years
CS = Community Services Department	Long-term $=10-20$ years
CS [CR] = Community Recreation	Ongoing = May require short-, mid-, and long-term action

Number	Action	Lead Entity	Timeframe
1.17	(2) Require development to mitigate its impacts on wildlife through the development review process.	CD [CP]	Ongoing
1.18	Require new development adjacent to rivers, creeks, and barrancas to use native or non-invasive plant species, preferably drought tolerant, for landscaping.	$\begin{gathered} \mathrm{CD}[\mathrm{CP}] \\ \mathrm{PW}[\mathrm{P}] \end{gathered}$	Ongoing
1.19	Require projects near watercourses, shoreline areas, and other sensitive habitat areas to include surveys for State and/or federally listed sensitive species and to provide appropriate buffers and other mitigation necessary to protect habitat for listed species.	CD [LRP]	Long-term
1.20	Conduct coastal dredging in accordance with the U.S. Army Corps of Engineers and California Department of Fish and Game requirements in order to avoid impacts to sensitive fish and bird species.	PW [E]	Ongoing
1.21	(c.) Work with State Parks on restoring the Alessandro Lagoon and pursue funding cooperatively.	PW [P]	Long-term
1.22	Adopt development code provisions to protect mature trees as defined by minimum height, canopy, and/or tree trunk diameter.	CD [LRP]	Short-term
1.23	Require, where appropriate, the preservation of healthy tree windrows associated with current and former agricultural uses, and incorporate trees into the design of new developments.	CD [CP]	Short-term
1.24	Require new development to maintain all indigenous tree species or provide adequately sized replacement native trees on a 3:1 basis.	CD [CP]	Ongoing
1.25	Purchase and use recycled materials and alternative and renewable energy sources as feasible in	AS [P]	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
$C D=$ Community Development Department	FD [IS] = Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	$\mathrm{PW}[\mathrm{E}]=$ Engineering
CD [LD] = Land Development	PW [P] = Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	Short-term = 0-5 years
CM [CE] = Civic Engagement	Mid-term $=5-10$ years
CS = Community Services Department	Long-term $=10-20$ years
CS [CR] = Community Recreation	Ongoing = May require short-, mid-, and long-term action

Number		Action	Lead Entity	Timeframe
		City operations.		
1.26	(c)	Reduce pesticide use in City operations.	PW [P]	Mid-term
1.27		Utilize green waste as biomass/compost in City operations.	PW [P]	Mid-term
1.28		Purchase low-emission City vehicles, and convert existing gasoline-powered fleet vehicles to cleaner fuels as technology becomes available.	PW [MS]	Mid-term
1.29		Require all City funded projects that enter design and construction after January 1, 2006 to meet a design construction standard equivalent to the minimum U.S. Green Building Council LEED ${ }^{\text {TM }}$ Certified rating in accordance with the City's Green Building Standards for Private and Municipal Construction Projects.	FD [IS]	Short-term
1.30		Provide information to businesses about how to reduce waste and pollution and conserve resources.	PW [MS]	Short-term
1.31		Provide incentives for green building projects in both the public and private sectors to comply with either the LEED ${ }^{\text {TM }}$ Rating System, California Green Builder, or the Residential Built Green program and to pursue registration and certification; incentives include "Head-of-the-Line" discretionary processing and "Head-of-the-Line" building permit processing.	FD [IS]	Short-term
1.32	(c)	Apply for grants, rebates, and other funding to install solar panels on all City-owned structures to provide at least half of their electric energy requirements.	PW	Ongoing

KEY TO ABBREVIATIONS AS = Administrative Services Department AS $[P]=$ Purchasing CA = City Attorney $C D=$ Community Development Department CD [A] = Administration CD $[C P]=$ Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation			CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW [E] = Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	uire short-,	erm $=0-5$ years rm $=5-10$ years $m=10-20$ years long-term action
(c.) = Action included in the Land Use Plan of the City's Local Coastal Program					
Number		Action		Lead Entity	Timeframe
1.33		Publicly acknowledge individuals and businesses that implement green construction and building practices.		FD [IS]	Ongoing
2. OUR Prosperous Community					
2.1		Track economic indicators for changes that may affect City land resources, tax base, or employment base, such as terms and conditions of sale or lease of available office, retail, and manufacturing space.		CD [ED]	Ongoing
2.2		Prepare an economic base analysis that identifies opportunities to capture retail sales in sectors where resident purchasing has leaked to other jurisdictions.		CD [ED]	Short-term
2.3		Maintain and update an Economic Development Strategy to implement City economic goals and objectives.		CD [ED]	Ongoing
2.4		Map priority locations for commercial and industrial development and revitalization, including a range of parcel sizes targeted for high-technology, non-durables manufacturing, finance, business services, tourism, and retail uses.		CD	Short-term
2.5		Share economic and demographic information with organizations that may refer businesses to Ventura.		CD [ED]	Ongoing
2.6	C	Encourage intensification and diversification of uses and properties in districts, corridors, and neighborhood centers, including through assembly of vacant and underutilized parcels.		CD [ED]	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD = Community Development Department	FD [IS] = Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	PW [P] = Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	
CM	

```
CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
PD = Police Department
PW = Public Works Department
PW [E] = Engineering
PW [P] = Parks
```

CC = City Council
$\mathrm{CM}=\mathrm{City}$ Manager's Departme
CS = Community Services Department CS [CR] = Community Recreation

Short-term $=0-5$ years
Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term action
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
2.7	Partner with local commerce groups to recruit companies and pursue funding for business development and land re-utilization.	CD [ED]	Ongoing
2.8	Carry out Housing Element programs that provide housing to all segments of the local workforce.	CD	Ongoing
2.9	Expedite review for childcare facilities that will provide support to local employees.	CD [CP]	Short-term
2.10	Expedite review of the entitlement process for installation of infrastructure necessary to support high technology and multimedia companies.	CA	Mid-term
2.11	(c.) Allow mixed-use development in commercial and industrial districts as appropriate.	CD [LRP]	Short-term
2.12	Allow uses such as conference centers with resort amenities on appropriately sized and located parcels.	CD [LRP]	Short-term
2.13	Market the city to businesses that link agriculture with high technology, such as biotechnology enterprises.	CD [ED]	Ongoing
2.14	(c.) Partner with local farms to promote farmers markets and high quality locally grown food.	CS	Ongoing
2.15	Provide incentives for use of waterfront parcels for recreation, visitor-serving commerce, restaurant, marina, and fishing uses.	CD [ED]	Short-term
2.16	(c.) Work with the State to create year-round commercial opportunities at the fairgrounds.	CD [ED]	Long-term

KEY TO AS = Adm AS $[\mathrm{P}]=\mathrm{P}$ CA = City $C D=C o m$ $C D[A]=A$ CD [CP] = CD [LRP] CD [ED] = CD [LD] = CD [RDA] CC = City CM = City CM [CE] = CS = Com CS [CR] =	BREVIATIONS trative Services Department chasing orney unity Development Department inistration rrent Planning ong Range Planning conomic Development nd Development Redevelopment Agency uncil anager's Department vic Engagement nity Services Department mmunity Recreation	```CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW [E] = Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities Short-term \(=0-5\) years Mid-term =5-10 years Long-term \(=10-20\) yearsNone```		
(c.) Action included in the Land Use Plan of the City's Local Coastal Program				
Number			Lead Entity	Timeframe
2.17	Partner with the Harbor District and National Park Service to promote Channel Islands tours and develop a marine learning center.		CS	Long-term
2.18	Prioritize uses within the Harbor Specific Plan area as follows: (1) coastal dependent, (2) commercial fishing, (3) coastal access, and (4) visitor serving commercial and recreational uses.		CD	Short-term
2.19	(c.) Partner with hotels and the Chamber of Commerce to promote city golf courses.		CS [GS/AS]	Long-term
2.20	(c.) Promote outdoor r	pportunity strategy.	CS	Mid-term
3. OUR Well Planned and Designed Community				
3.1	(c.) Preserve the stock of existing homes by carrying out Housing Element programs.		CD	Ongoing
3.2	Enhance the appearance of districts, corridors, and gateways (including views from highways) through controls on building placement, design elements, and signage.		CD [LRP]	Short-term
3.3	Require preservation of public view sheds and solar access. Require all shoreline development (including anti-erosion or other protective structures) to provide public access to and along the coast, unless it would duplicate adequate access existing nearby, adversely affect agriculture, or be inconsistent with public safety, military security, or protection of fragile coastal resources.		CD [CP]	Short-term
3.4			CD [CP]	Ongoing
3.5	(c.) Establish land development incentives to upgrade the appearance of poorly maintained or		FD [IS]	Mid-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS [P] = Purchasing CA = City Attorney CD = Community Development Department CD $[\mathrm{A}]=$ Administration $\mathrm{CD}[\mathrm{CP}]=$ Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency $\mathrm{CC}=$ City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS $[C R]=$ Community Recreation		CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW [E] = Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	quire short-,	term $=0-5$ years erm $=5-10$ years $m=10-20$ years long-term action
(c) = Action included in the Land Use Plan of the City's Local Coastal Program				
Number	Action		Lead Entity	Timeframe
	otherwise unattractive sites, and enforce existing land maintenance regulations.			
3.6	Expand and maintain the City's urban forest and thoroughfare landscaping, using native species, in accordance with the City's Park and Development Guidelines and Irrigation and Landscape Guidelines.		PW [P]	Ongoing
3.7	Evaluate whether lot coverage standards should be changed based on neighborhood character.		CD [LRP]	Short-term
3.8	Adopt new development code provisions that designate neighborhood centers, as depicted on the General Plan Diagram, for a mixture of residences and small-scale, local-serving businesses.		CD [LRP]	Short-term
3.9	Adopt new development code provisions that designate areas within districts and corridors for mixed-use development that combines businesses with housing and focuses on the redesign of single-use shopping centers and retail parcels into walkable, well connected blocks, with a mix of building types, uses, and public and private frontages.		CD [LRP]	Short-term
3.10	Allow intensification of commercial areas through conversion of surface parking to building area under a districtwide parking management strategy in the Downtown Specific Plan.		CD [LRP]	Short-term
3.11	Expand the downtown redevelopment area to include parcels around future transit areas and along freeway frontage.		CD [RDA]	Mid-term
3.12	The City will work with the hospitals on the new Development Code treatment for the Loma Vista corridor, which includes both hospitals.		CD [LRP]	Short-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS $[P]=$ Purchasing CA = City Attorney CD = Community Development Department $C D[A]=$ Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		```CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW [E] = Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities```		
(c.) = Action included in the Land Use Plan of the City's Local Coastal Program				
Number			Lead Entity	Timeframe
3.13	Assess whether the City's Affordable Housing Programs respond to current needs, and modify them as necessary within State mandated Housing Element updates		CD	Ongoing
3.14	Utilize infill development, to the extent possible, to accommodate the targeted number and type of housing units described in the Housing Element		CD [LRP]	Ongoing
3.15	Adopt new development code provisions that ensure compliance with Housing Element objectives.		CD [LRP]	Short-term
3.16	Renew and modify greenbelt agreements as necessary to direct development to already urbanized areas.		CD [LRP]	Long-term
3.17	Continue to suppo General Plan, and Ventura, and the L cities and agencies edge.	nt as a means of implementing the s by all the cities, the County of AFCO); and work with other nearby character in areas outside the urban	CD [LRP]	Ongoing
3.18	Complete commun Downtown, Wells, others as appropria investments, foster	for areas such as Westside, Midtown, Medical District, Victoria Corridor, and nt standards for public and private ated as needed.	CD [LRP]	Ongoing
3.19	Preparation of the or specific plans to	ccount existing or proposed community nd ample citizen input.	CD [LRP]	Short-term

```
KEY TO ABBREVIATIONS
AS = Administrative Services Department
AS [P] = Purchasing
CA = City Attorney
CD = Community Development Department
CD = Administration
CD [LRP] = Current Planning
CD [LRP] = Long Range Planning
CD [LD] = Land Development
CD [LD] = Land Development
CD [RDA] = Redevelopment Agency
CC = City Council
CM = City Manager's Departmen
CS = Community Services Department
CS [CR] = Community Recreation
```

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports FD = Fire Social Service
FD = Fl Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW [P] = Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term action
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
3.20	Pursuant to SOAR, adopt development code provisions to "preserve agricultural and open space lands as a desirable means of shaping the City's internal and external form and size, and of serving the needs of the residents."	CD [LRP]	Short-term
3.21	Adopt performance standards for non-farm activities in agricultural areas that protect and support farm operations, including requiring non-farm uses to provide all necessary buffers as determined by the Agriculture Commissioner's Office.	CD [LRP]	Short-term
3.22	Offer incentives for agricultural production operations to develop systems of raw product and product processing locally.	$\mathrm{CD}[\mathrm{ED}]$	Mid-term
3.23	Develop and adopt a form-based Development Code that emphasizes pedestrian orientation, integration of land uses, treatment of streetscapes as community living space, and environmentally sensitive building design and operation.	CD [LRP]	Short-term
3.24	Revise the Residential Growth Management Program (RGMP) with an integrated set of growth management tools including: - Community or specific plans and development codes based on availability of infrastructure and transit that regulate community form and character by directing new residential development to appropriate locations and in ways that integrate with and enhance existing neighborhoods, districts and corridors; - appropriate mechanisms to ensure that new residential development produces high-quality	CD [LRP]	Short-term

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD = Community Development Department	FD [IS] = Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	PW [P] = Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM $=$ City Manager's Department	Short-term $=0-5$ years
CM [CE] = Civic Engagement	Mid-term $=5-10$ years
CS = Community Services Department	Long-term $=10-20$ years
CS [CR] = Community Recreation	Ongoing = May require short-, mid-, and long-term action

Number	Action	Lead Entity	Timeframe
	designs and a range of housing types across all income levels; and, - numeric limitations linked to the implementation of community or specific plans and development codes and the availability of appropriate infrastructure and resources; within those limitations, the RGMP should provide greater flexibility for timing new residential development.		
3.25	Establish first priority growth areas to include the districts, corridors, and neighborhood centers as identified on the General Plan Diagram; and second priority areas to include vacant undeveloped land when a community plan has been prepared for such (within the City limits).	CD [LRP]	Short-term
3.26	Establish and administer a system for the gradual growth of the City through identification of areas set aside for long-term preservation, for controlled growth, and for encouraged growth.	CD [LRP]	Mid-term
3.27	Require the use of techniques such as digital simulation and modeling to assist in project review.	CD [CP]	Short-term
3.28	Revise the planning processes to be more user-friendly to both applicants and neighborhood residents in order to implement City policies more efficiently.	CD [CP]	Short-term
4. Our Accessible Community			
4.1	Direct city transportation investment to efforts that improve user safety and keep the circulation system structurally sound and adequately maintained. First priority for capital funding will go to our pavement management program to return Ventura streets to excellent conditions.	PW [E]	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD = Community Development Department	FD [IS] = Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	PW [P] = Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	
CM	

```
CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
PD = Police Department
PW = Public Works Department
PW [E] = Engineering
PW [MS]= Maintenance Services
PW [U] = Utilities
```

CC = City Council
$\mathrm{CM}=\mathrm{City}$ Manager's Departme
CS = Community Services Department
CS [CR] = Community Recreation

Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing = May require short-, mid-, and long-term action
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
4.2	Develop a prioritized list of projects needed to improve safety for all travel modes and provide needed connections and multiple route options.	PW [E]	Short-term
4.3	Provide transportation services that meet the special mobility needs of the community including youth, elderly, and disabled persons.	PW [E]	Ongoing
4.4	Combine education with enforcement to instill safe and courteous use of the shared public roadway.	CS	Ongoing
4.5	Utilize existing roadways to meet mobility needs, and only consider additional travel lanes when other alternatives are not feasible.	CD [LRP]	Ongoing
4.6	Require new development to be designed with interconnected transportation modes and routes to complete a grid network.	CD [CP]	Short-term
4.7	Update the traffic mitigation fee program to fund necessary citywide circulation system and mobility improvements needed in conjunction with new development.	CD [LD]	Short-term
4.8	Implement the City's Neighborhood Traffic Management Program and update as necessary to improve livability in residential areas.	PW [E]	Ongoing
4.9	Identify, designate, and enforce truck routes to minimize the impact of truck traffic on residential neighborhoods.	PW [E]	Ongoing
4.10	Modify traffic signal timing to ensure safety and minimize delay for all users.	PW [E]	Short-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS $[P]=$ Purchasing CA = City Attorney $C D=$ Community Development Department CD $[\mathrm{A}]=$ Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department $\mathrm{PW}[\mathrm{E}]=$ Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	uire short-, mid	term $=0-5$ years rm $=5-10$ years $m=10-20$ years long-term action
(c.) = Action included in the Land Use Plan of the City's Local Coastal Program				
Number			Lead Entity	Timeframe
4.11	Refine level of service standards to encourage use of alternative modes of transportation while meeting state and regional mandates.		PW [E]	Short-term
4.12	Design roadway im between pedestrian	to minimize the potential for conflict	PW [E]	Ongoing
4.13	Require project prop of needed improve	provide adequate mitigation in the form reof.	CD [LD]	Ongoing
4.14	(c.) Provide development incentives to encourage projects that reduce automobile trips.		CD [CP]	Short-term
4.15	Encourage the placement of facilities that house or serve elderly, disabled, or socioeconomically disadvantaged persons in areas with existing public transportation services and pedestrian and bicycle amenities. Install roadway, transit, and alternative transportation improvements along existing or planned multi-modal corridors, including primary bike and transit routes, and at land use intensity nodes.		CD [CP]	Ongoing
4.16			PW [E]	Ongoing
4.17	Prepare and periodically update a Mobility Plan that integrates a variety of travel alternatives to minimize reliance on any single mode.		CD [LRP]	Short-term
4.18	Promote the development and use of recreational trails as transportation routes to connect housing with services, entertainment, and employment.		$\mathrm{PW}[\mathrm{P}]$	Ongoing
4.19	Adopt new development code provisions that establish vehicle trip reduction requirements for all development.		CD [LRP]	Short-term

KEY TO ABBREVIATIONS
 AS = Administrative Services Department

AS $[P]=$ Purchasing
CA = City Attorney
CD = Community Development Department
DA = Administration
[LRP] = Current Planning
CD [ED] = Economic Developmen
CD [LD] = Land Development
CD [RDA] = Redevelopment Agency CC = City Council
CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports FD = Fire Social Servic
FD = FIr Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW $[\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ years Ongoing $=$ May require short-, mid-, and long-term action
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
4.20	Develop a transportation demand management program to shift travel behavior toward alternative modes and services.	PW [E]	Mid-term
4.21	Require new development to provide pedestrian and bicycle access and facilities as appropriate, including connected paths along the shoreline and watercourses.	PW [E/P]	Short-term
4.22	Update the General Bikeway Plan as needed to encourage bicycle use as a viable transportation alternative to the automobile and include the bikeway plan as part of a new Mobility Plan.	PW [E]	Mid-term
4.23	(c.) Upgrade and add bicycle lanes when conducting roadway maintenance as feasible.	PW [E]	Ongoing
4.24	Require sidewalks wide enough to encourage walking that include ramps and other features needed to ensure access for mobility-impaired persons.	PW [E]	Short-term
4.25	Adopt new development code provisions that require the construction of sidewalks in all future projects, where appropriate.	CD [LRP]	Short-term
4.26	Establish a parking management program to protect the livability of residential neighborhoods, as needed.	CD [LRP]	Short-term
4.27	Extend stubbed-end streets through future developments, where appropriate, to provide necessary circulation within a developing area and for adequate internal circulation within and between neighborhoods. Require new developments in the North Avenue area, where applicable, to extend Norway Drive and Floral Drive to connect to Canada Larga Road; and connect the existing segments of Floral Drive. Designate the extension of Cedar Street between Warner Street and	PW [E]	Mid-term

KEY TO ABBREVIATIONS

AS = Administrative Services Department
AS $[\mathrm{P}]=$ Purchasing
$\mathrm{CA}=\mathrm{C}$ ity
CA = City Attorney
$\mathrm{CD}=$ Community Development Department
CD $[\mathrm{A}]=$ Administration
CD [RP) = Lorrent Planning
$C D[E D]=$ Economic Devanning
CD $[\mathrm{DD}]=$ Land Development
$C D[$ LD] $=$ Land Development
$\mathrm{CC}=$ City Council
CM = City Manager's Department
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] $=$ Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire
FD = 1 IS
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW
PW
$\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ years Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term actio
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
	south of Franklin Lane and the linking of the Cameron Street segments in the Westside community as high priority projects.		
4.28	Require all new development to provide for citywide improvements to transit stops that have sufficient quality and amenities, including shelters and benches, to encourage ridership.	PW [E]	Short-term
4.29	Develop incentives to encourage City employees and local employers to use transit, rideshare, walk, or bike.	HR	Mid-term
4.30	Work with public transit agencies to provide information to riders at transit stops, libraries, lodging, and event facilities.	PW [E]	Ongoing
4.31	Work with public and private transit providers to enhance public transit service.	PW [E]	Mid-term
4.32	Coordinate with public transit systems for the provision of additional routes as demand and funding allow.	PW [E]	Long-term
4.33	Work with Amtrak, Metrolink, and Union Pacific to maximize efficiency of passenger and freight rail service to the City and to integrate and coordinate passenger rail service with other transportation modes.	PW [E]	Mid-term
4.34	Lobby for additional transportation funding and changes to Federal, State, and regional transportation policy that support local decision-making.	PW [E]	Ongoing
4.35	The City shall pursue funding and site location for a multi-modal transit facility in coordination with VCTC, SCAT, U.P.R.R., Metrolink, Greyhound Bus Lines, and other forms of	PW [E]	Mid-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS $[P]=$ Purchasing CA = City Attorney $C D=$ Community Development Department $C D[A]=$ Administration $C D[C P]=$ Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department $\mathrm{PW}[\mathrm{E}]=$ Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	ire short-, m	$\begin{aligned} & \text { erm }=0-5 \text { years } \\ & r m=5-10 \text { years } \\ & m=10-20 \text { years } \\ & \text { ong-term action } \end{aligned}$
(c.) Action included in the Land Use Plan of the City's Local Coastal Program				
Number	Action		Lead Entity	Timeframe
	transportation.			
4.36	Require development along the fo advertising - to respect and preser - State Route 33 - U.S. HWY 101 - Anchors Way - Brakey Road - Fairgrounds Loop - Ferro Drive - Figueroa Street - Harbor Boulevard - Main Street - Navigator Drive - North Bank Drive - Poli Street/Foothill Road - Olivas Park Drive - Schooner Drive	uding noise mitigation, landscaping, and ity and its natural context.	CD [CP]	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD = Community Development Department	FD [IS] = Inspection Services
$\mathrm{CD}[\mathrm{A}]=$ Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	$\mathrm{PW}[\mathrm{P}]=$ Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	Short-term $=0-5$ years
CM [CE] = Civic Engagement	Mid-term $=5-10$ years
CS = Community Services Department	Long-term $=10-20$ years
CS [CR] = Community Recreation	Ongoing = May require short-, mid-, and long-term action

Number	Action	Lead Entity	Timeframe
	- Spinnaker Drive - Summit Drive - Telegraph Road - east of Victoria Avenue - Victoria Avenue - south of U.S. 101 - Wells Road		
4.37	Request that State Route 126 and 33, and U.S. HWY 101 be designated as State Scenic Highways.	CD [LRP]	Short-term
4.38	Continue to work with Caltrans to soften the barrier impact of U.S. HWY 101 by improving signage, aesthetics and undercrossings and overcrossings.	PW [E/P]	Ongoing
4.39	Maintain street trees along scenic thoroughfares, and replace unhealthy or missing trees along arterials and collectors throughout the City.	PW [P]	Ongoing
5. OUR SUSTAINABLE INFRASTRUCTURE			
5.1	Require low flow fixtures, leak repair, and drought tolerant landscaping (native species if possible), plus emerging water conservation techniques, such as reclamation, as they become available.	CD [CP]	Ongoing
5.2	Use natural features such as bioswales, wildlife ponds, and wetlands for flood control and water quality treatment when feasible.	PW [MS/P]	Ongoing
5.3	Demonstrate low water use techniques at community gardens and city-owned facilities.	PW [U/P]	Mid-term

KEY TO ABBREVIATIONS

AS = Administrative Services Department
AS $[P]=$ Purchasing
CA $=$ City Attorney
CD = Community Development Department
DA] = Administration
[LRP] = Current Planning
CD [ED] = Economic Developmen
CD [LD] = Land Development
CD [RDA] = Redevelopment Agency
CC = City Council
CM = City Manager's Department
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD Fire Social Service
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW $[\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term actio
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
5.4	Update the Urban Water Management plan as necessary in compliance with the State 1983 Urban Water Management Planning Act.	PW [U]	Ongoing
5.5	Provide incentives for new residences and businesses to incorporate recycling and waste diversion practices, pursuant to guidelines provided by the Environmental Services Office.	PW [MS]	Ongoing
5.6	Require project proponents to conduct sewer collection system analyses to determine if downstream facilities are adequate to handle the proposed development.	PW [U]	Ongoing
5.7	Require project proponents to conduct evaluations of the existing water distribution system, pump station, and storage requirements in order to determine if there are any system deficiencies or needed improvements for the proposed development.	PW [U]	Ongoing
5.8	Locate new development in or close to developed areas with adequate public services, where it will not have significant adverse effects, either individually or cumulatively, on coastal resources.	CD [LRP]	Ongoing
5.9	Update development fee and assessment district requirements as appropriate to cover the true costs associated with development.	AS	Mid-term
5.10	Utilize existing waste source reduction requirements, and continue to expand and improve composting and recycling options.	PW [MS]	Mid-term
5.11	Increase emergency water supply capacity through cooperative tie-ins with neighboring suppliers.	PW [U]	Mid-term
5.12	(c) Apply new technologies to increase the efficiency of the wastewater treatment system.	PW [U]	Mid-term

KEY TO ABBREVIATIONS
 AS = Administrative Services Department

AS $[P]=$ Purchasing
CA $=$ City Attorney
CD = Community Development Department
DA] = Administratio
CD [RP] = Long Ranning
$C D[E D]=$ Economic Developmen
CD [LD] = Land Development
CD [RDA] = Land Development
CC = City Council
CM = City Manager's Department
CM [CE] = Civic Engagement
CS = Community Services Department CS [CR] = Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
CD [SS] = Social Servic
Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW $[\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term actio
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
6. OUR ACTIVE COMMUNITY			
6.1	Develop new neighborhood parks, pocket parks, and community gardens as feasible and appropriate to meet citizen needs, and require them in new development.	PW [P]	Long-term
6.2	Require higher density development to provide pocket parks, tot lots, seating plazas, and other aesthetic green spaces.	$\mathrm{CD}[\mathrm{CP}]$	Short-term
6.3	Work with the County to plan and develop trails that link the City with surrounding open space and natural areas, and require development projects to include trails when appropriate.	PW [P]	Ongoing
6.4	(c.) Request Flood Control District approval of public access to unchannelized watercourses for hiking.	PW [P]	Mid-term
6.5	Seek landowner permission to allow public access on properties adjacent to open space where needed to connect trails.	PW [P]	Ongoing
6.6	(c. Update plans for and complete the linear park system as resources allow.	PW [P]	Long-term
6.7	Work with the County of Ventura to initiate efforts to create public trails in the hillside area.	PW [P]	Mid-term
6.8	Update and require periodic reviews of the Park and Recreation Workbook as necessary to reflect City objectives and community needs.	PW [P]	Mid-term
6.9	Require dedication of land identified as part of the City's Linear Park System in conjunction with new development.	PW [P]	Ongoing

KEY TO ABBREVIATIONS
AS = Administrative Services Department
$\mathrm{AS}[\mathrm{P}]=$ Purchasing
$\mathrm{CA}=$ City
$C A=$ City Attorney
CD = Community Development Department
CD A$]=$ Administration
$C D[$ [RP] = Long Ranging
$C D[E D]=$ Economic Devanning
CD $[\mathrm{DD}]=$ Land Development
$C D[$ LD] $=$ Land Development
$\mathrm{CC}=$ City Council
CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire Docar Servic
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
PD = Police Department
PW = Public Works Department
PW [E] = Engineering
PW [P] = Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing = May require short-, mid-, and long-term action
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
6.10	Evaluate and incorporate, as feasible, linear park segments in the General Bikeway Plan.	PW [E]	Ongoing
6.11	Update standards for citywide public parks and open space to include an expanded menu of shared park types, and identify locations and potential funding sources for acquiring new facilities in existing neighborhoods.	PW [P]	Short-term
6.12	Update and carry out the Grant Park Master Plan.	PW [P]	Mid-term
6.13	(c.) Foster the partnership between the City and Fair Board to improve Seaside Park.	CD [ED]	Ongoing
6.14	Improve facilities at City parks to respond to the requirements of special needs groups.	PW [P]	Mid-term
6.15	Adjust and subsidize fees to ensure that all residents have the opportunity to participate in recreation programs.	CS [CR]	Short-term
6.16	Update the project fee schedule as necessary to ensure that development provides its fair share of park and recreation facilities.	PW [P]	Short-term
6.17	Update and create new agreements for joint use of school and City recreational and park facilities.	$\begin{gathered} \text { CS [CR] } \\ \text { PW [P] } \end{gathered}$	Mid-term
6.18	Offer programs that highlight natural assets, such as surfing, sailing, kayaking, climbing, gardening, and bird watching.	CS [CR]	Ongoing
6.19	(c.) Provide additional boating and swimming access as feasible.	PW	Long-term

KEY TO ABBREVIATIONS

AS = Administrative Services Department
AS $[P]=$ Purchasing
CA $=$ City Attorney
CD = Community Development Department
CD A$]=$ Administration
CD [RP] = Long Range Plan
$C D[$ [ED] = Economic Developmen
CD [LD] = Land Development
CD [RDA] = Land Development
CC = City Council
CM = City Manager's Department
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fir = Social Servic
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW $[\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term action
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
6.20	Earmark funds for adequate maintenance and rehabilitation of existing skatepark facilities, and identify locations and funding for new development of advanced level skatepark facilities.	PW [P]	Mid-term
6.21	Promote the use of City facilities for special events, such as festivals, tournaments, and races.	CS [CA]	Ongoing
6.22	Enter into concession or service agreements where appropriate to supplement City services.	PW	Ongoing
7. OUR Healthy and Safe Community			
7.1	Work with interested parties to identify appropriate locations for assisted-living, hospice, and other care-provision facilities.	CS [SS]	Short-term
7.2	Provide technical assistance to local organizations that deliver health and social services to seniors, homeless persons, low-income citizens, and other groups with special needs.	CS [SS]	Ongoing
7.3	Participate in school and agency programs to: - provide healthy meals, - combat tobacco, alcohol, and drug dependency, - distribute city park and recreation materials through schools, and - distribute information about the benefits of proper nutrition and exercise.	CS [SS]	Ongoing
7.4	Enhance or create ordinances which increase control over ABC licensed premises.	PD	Mid-term
7.5	Investigate the creation of new land use fees to enhance funding of alcohol related enforcement, prevention and training efforts.	PD	Mid-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS $[P]=$ Purchasing CA = City Attorney $C D=$ Community Development Department CD $[\mathrm{A}]=$ Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department $\mathrm{PW}[\mathrm{E}]=$ Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	quire short-, mid	erm $=0-5$ years $r m=5-10$ years $m=10-20$ years ong-term action
(c.) = Action included in the Land Use Plan of the City's Local Coastal Program				
Number	Action		Lead Entity	Timeframe
7.6	Adopt updated editions of the California Construction Codes and International Codes as published by the State of California and the International Code Council respectively.		FD [IS]	Ongoing
7.7		ations and implement mitigation prior to ave potential for landsliding, 00 feet of an identified active or quefaction, subsidence, or expansive with all Federal Emergency	$\mathrm{CD}[\mathrm{CP} / \mathrm{LD}]$	Ongoing
7.8	To the extent feasi facilities, and utility and require critical damage and facilit	tal, police, fire, and emergency service ide of fault and tsunami hazard zones, orate construction principles that resist	FD	Ongoing
7.9	Maintain and imple Functional Respons	agement System (SEMS) Multihazard	FD	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD C Community Development Department	FD [IS] = Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	PW [P] = Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	

```
CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
PD = Police Department
PW = Public Works Department
PW [E] = Engineering
PW [P] = Parks
PW [U] = Utilities
```

CC = City Council
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation

Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing = May require short-, mid-, and long-term action
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
7.10	Require proponents of any new developments within the 100-year floodplain to implement measures, as identified in the Floodplain Ordinance, to protect structures from 100-year flood hazards (e.g., by raising the finished floor elevation outside the floodplain).	FD [IS]	Ongoing
7.11	(c.) Prohibit grading for vehicle access and parking or operation of vehicles within any floodway.	FD [IS]	Ongoing
7.12	Refer development plans to the Fire Department to assure adequacy of structural fire protection, access for firefighting, water supply, and vegetation clearance.	$\mathrm{CD}[\mathrm{CP}]$	Ongoing
7.13	Resolve extended response time problems by: - adding a fire station at the Pierpont/Harbor area, - relocating Fire Station \#4 to the Community Park site, - increasing firefighting and support staff resources, - reviewing and conditioning annexations and development applications, and - require the funding of new services from fees, assessments, or taxes as new subdivisions are developed.	FD	Long-term
7.14	Educate and reinforce City staff understanding of the Standardized Emergency Management System for the State of California.	FD	Ongoing
7.15	Increase public access to police services by: - increasing police staffing to coincide with increasing population, development, and calls for	PD	Ongoing

KEY TO ABBREVIATIONS AS = Administrative Services Department AS [P] = Purchasing CA = City Attorney CD = Community Development Department CD [A] = Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation			CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW [E] = Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	uire short-,	$\begin{aligned} & \text { term }=0-5 \text { years } \\ & m=5-10 \text { years } \\ & m=10-20 \text { years } \\ & \text { long-term action } \end{aligned}$
(c.) Action included in the Land Use Plan of the City's Local Coastal Program					
Number	Action			Lead Entity	Timeframe
	service, - increasing community participation by creating a Volunteers in Policing Program, and - require the funding of new services from fees, assessments, or taxes as new subdivisions are developed.				
7.16	Provide education about specific safety concerns such as gang activity, senior-targeted fraud, and property crimes.			PD	Ongoing
7.17	Establish a nexus between police department resources and increased service demands associated with new development.			PD	Mid-term
7.18	(c.) Continue to operat			PD	Ongoing
7.19			ommodate staff growth	PD	Mid-term
7.20	Require air pollution point sources to be located at safe distances from sensitive sites such as homes and schools.			FD [IS]	Short-term
7.21	Require analysis of individual development projects in accordance with the most current version of the Ventura County Air Pollution Control District Air Quality Assessment Guidelines and, when significant impacts are identified, require implementation of air pollutant mitigation measures determined to be feasible at the time of project approval.			FD [IS]	Ongoing
7.22	In accordance with Ordinance 93-37, require payment of fees to fund regional transportation demand			CD [LD]	Ongoing

```
KEY TO ABBREVIATIONS
AS = Administrative Services Department
AS [P] = Purchasing
CA = City Attorney
CD = Community Development Department
DA] = Administration
CD [LRP] = Current Planning
CD [LRP] = Long Range Planning
CD [LD] = Land Development
CD [LD] = Land Development
CC = City Council
CM = City Manager's Department
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation
```

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire Social Service
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW $[\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ year Long-term $=10-20$ year
Ongoing $=$ May require short-, mid-, and long-term action
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
	management (TDM) programs for all projects generating emissions in excess of Ventura County Air Pollution Control District adopted levels.		
7.23	Require individual contractors to implement the construction mitigation measures included in the most recent version of the Ventura County Air Pollution Control District Air Quality Assessment Guidelines.	PW [E]	Ongoing
7.24	Only approve projects involving sensitive land uses (such as residences, schools, daycare centers, playgrounds, medical facilities) within or adjacent to industrially designated areas if an analysis provided by the proponent demonstrates that the health risk will not be significant.	CD [CP]	Ongoing
7.25	Adopt new development code provisions that ensure uses in mixed-use projects do not pose significant health effects.	CD [LRP]	Short-term
7.26	Seek funding for cleanup of sites within the Brownfield Assessment Demonstration Pilot Program and other contaminated areas in West Ventura.	CD [ED]	Mid-term
7.27	Require proponents of projects on or immediately adjacent to lands in industrial, commercial, or agricultural use to perform soil and groundwater contamination assessments in accordance with American Society for Testing and Materials standards, and if contamination exceeds regulatory action levels, require the proponent to undertake remediation procedures prior to grading and development under the supervision of the County Environmental Health Division, County Department of Toxic Substances Control, or Regional Water Quality Control Board (depending	FD [IS]	Ongoing

KEY TO ABBREVIATIONS AS = Administrative Services Department AS [P] = Purchasing CA = City Attorney $C D=$ Community Development Department $C D[A]=$ Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		$\begin{aligned} & \text { CS [CA] = Cultural Affairs } \\ & \text { CS [GS/AS] = Golf Services/Adult Sports } \\ & \text { CS [SS] = Social Services } \\ & \text { FD = Fire Department } \\ & \text { FD [IS] = Inspection Services } \\ & \text { HR = Human Resources Department } \\ & \text { PD = Police Department } \\ & \text { PW = Public Works Department } \\ & \text { PW [E] = Engineering } \\ & \text { PW [P] = Parks } \\ & \text { PW [MS] = Maintenance Services } \\ & \text { PW [U] = Utilities } \end{aligned}$	uire short-, m	$\begin{aligned} & \text { term }=0-5 \text { years } \\ & \text { erm }=5-10 \text { years } \\ & m=10-20 \text { years } \\ & \text { long-term action } \end{aligned}$
(c.) = Action included in the Land Use Plan of the City's Local Coastal Program				
Number	Action		Lead Entity	Timeframe
	upon the nature of any identified contamination).			
7.28	Educate residents and businesses about how to reduce or eliminate the use of hazardous materials, including by using safer non-toxic equivalents.		PW [MS]	Ongoing
7.29	Require non-agricultural development to provide buffers, as determined by the Agriculture Commissioner's Office, from agricultural operations to minimize the potential for pesticide drift.		CD [CP]	Short-term
7.30	Require all users, producers, and transporters of hazardous materials and wastes to clearly identify the materials that they store, use, or transport, and to notify the appropriate City, County, State and Federal agencies in the event of a violation.		FD [IS]	Ongoing
7.31	Work toward voluntary reduction or elimination of aerial and synthetic chemical application in cooperation with local agricultural interests and the Ventura County agricultural commissioner.		FD [IS]	Mid-term
7.32	Require acoustical analyses for new residential developments within the mapped 60 decibel (dBA) CNEL contour, or within any area designated for commercial or industrial use, and require mitigation necessary to ensure that: - Exterior noise in exterior spaces of new residences and other noise sensitive uses that are used for recreation (such as patios and gardens) does not exceed 65 dBA CNEL, and - Interior noise in habitable rooms of new residences does not exceed 45 dBA CNEL with all windows closed.		FD [IS]	Ongoing

KEY TO ABBREVIATIONS	CS [CA] = Cultural Affairs
AS = Administrative Services Department	CS [GS/AS] = Golf Services/Adult Sports
AS [P] = Purchasing	CS [SS] = Social Services
CA = City Attorney	FD = Fire Department
CD = Community Development Department	FD [IS] Inspection Services
CD [A] = Administration	HR = Human Resources Department
CD [CP] = Current Planning	PD = Police Department
CD [LRP] = Long Range Planning	PW = Public Works Department
CD [ED] = Economic Development	PW [E] = Engineering
CD [LD] = Land Development	PW [P] Parks
CD [RDA] = Redevelopment Agency	PW [MS] = Maintenance Services
CC = City Council	PW [U] = Utilities
CM = City Manager's Department	
CM [CE] = Civic Engagement	
CS =Community Services Department	
CS [CR] = Community Recreation	

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Servic
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire
FD [IS] = Inspection Services
HR = Human Resources Department
PD = Police Department
PW = Public Works Department
PW [E] = Engineering
PW [P] = Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term $=5-10$ years Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term actio
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
7.33	As funding becomes available, construct sound walls along U.S. 101, SR 126, and SR 33 in areas where existing residences are exposed to exterior noise exceeding 65 dBA CNEL.	PW [E]	Long-term
7.34	Request that sound levels associated with concerts at the County Fairgrounds be limited to 70 dBA at the eastern edge of that property.	CS	Short-term
7.35	(c.) Request the termination of auto racing at the County fairgrounds	CS	Short-term
7.36	Amend the noise ordinance to restrict leaf blowing, amplified music, trash collection, and other activities that generate complaints.	FD [IS]	Short-term
7.37	(c. Use rubberized asphalt or other sound reducing material for paving and re-paving of City streets.	PW [E]	Ongoing
7.38	Update the Noise Ordinance to provide standards for residential projects and residential components of mixed-use projects within commercial and industrial districts.	CD [LRP]	Short-term
8. OUR PROSPEROUS COMMUNITY			
8.1	Work closely with schools, colleges, and libraries to provide input into site and facility planning.	CS	Ongoing
8.2	Organize a regional education summit to generate interest in and ideas about learning opportunities.	CS	Mid-term
8.3	Adopt joint-use agreements with libraries, schools, and other institutions to maximize use of educational facilities.	CS	Mid-term
8.4	Distribute information about local educational programs.	CS	Mid-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS [P] = Purchasing CA $=$ City Attorney $C D=$ Community Development Department CD $[\mathrm{A}]=$ Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		```CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW [E] = Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = UtilitiesNone```		
(c.) Action included in the Land Use Plan of the City's Local Coastal Program				
Number	Action		Lead Entity	Timeframe
	new libraries Master Plan.			
9. OUR Creative Community				
9.1	Require works of art in public spaces per the City's Public Art Program Ordinance.		CD [CP]	Mid-term
9.2	Sponsor and organize local art exhibits, performances, festivals, cultural events, and forums for local arts organizations and artists.		CS	Ongoing
9.3	Expand outreach an promoting locall - publishing a m - distributing the - offering free or	ams, features,	CS	Ongoing
9.4	Support the creative	ssional development opportunities.	CS	Short-term
9.5	Work with the scho	re curriculum	CS	Short-term
9.6	Promote the cultura	nderrepresented cultural groups.	CS	Mid-term
9.7	Offer ticket subsidy	transportation to cultural offerings.	CS	Ongoing
9.8	Increase the amoun	its use for production, display, and sale of	CD [LRP]	Ongoing


```
KEY TO ABBREVIATIONS
AS = Administrative Services Department
AS [P] = Purchasing
CA = City Attorney
CD = Community Development Department
CD] = Administration
CD [LPP] = Lurrent Planning
CD [LRP] = Long Range Planning
CD [LD] = Land Development
CD [RD] = Land Development
CC = City Council
CM = City Manager's Departmen
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation
```

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
CS [S] = Social Service
FD = Fire Department
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW $[\mathrm{P}]=$ Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term = 0-5 years Mid-term $=5-10$ year Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term action
$=$ Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
9.17	Provide incentives to owners of eligible structures to seek historic landmark status and invest in restoration efforts.	CD [LRP]	Short-term
9.18	(ك.) Require that modifications to historically-designated buildings maintain their character.	CD [CP]	Ongoing
9.19	For any project in a historic district or that would affect any potential historic resource or structure more than 40 years old, require an assessment of eligibility for State and federal register and landmark status and appropriate mitigation to protect the resource.	$\mathrm{CD}[\mathrm{CP}]$	Ongoing
9.20	Seek input from the City's Historic Preservation Commission on any proposed development that may affect any designated or potential landmark.	CD [CP]	Ongoing
9.21	(c) Update the inventory of historic properties.	CD [LRP]	Ongoing
9.22	Create a set of guidelines and/or policies directing staff, private property owners, developers, and the public regarding treatment of historic resources that will be readily available at the counter.	CD [LRP]	Short-term
9.23	Complete and maintain historic resource surveys containing all the present and future components of the historic fabric within the built, natural, and cultural environments.	CD [LRP]	Ongoing
9.24	(c.) Create a historic preservation element.	CD [LRP]	Long-term
10. OUR INVOLVEd Community			
10.1	Conduct focused outreach efforts to encourage all members of the community - including youth, seniors, special needs groups, and non-English speakers - to participate in City activities.	CM [CE]	Short-term

KEY TO ABBREVIATIONS

AS = Administrative Services Department
$\mathrm{AS}[\mathrm{P}]=$ Purchasing
CA $=$ City Attorney
CD = Community Development Department
A $=$ Administration
CD [LRP] = Long Ranging
CD [ED] = Lcong Ric Dianning
CD $[\mathrm{DD}]=$ Land Development
$C D[$ LD] $=$ Land Development
$\mathrm{CC}=$ City Council
CM = City Manager's Department
CM [CE] = Civic Engagement
CS = Community Services Department
CS [CR] = Community Recreation

CS [CA] = Cultural Affairs
CS [GS/AS] = Golf Services/Adult Sports
FD = Fire
FD =FFI Deparment
FD [IS] = Inspection Services
HR = Human Resources Department
$\mathrm{PD}=$ Police Department
PW = Public Works Department
PW [E] = Engineering
PW [P] = Parks
PW [MS] = Maintenance Services
PW [U] = Utilities
Short-term $=0-5$ years Mid-term =5-10 years Long-term $=10-20$ year Ongoing $=$ May require short-, mid-, and long-term actio
= Action included in the Land Use Plan of the City's Local Coastal Program

Number	Action	Lead Entity	Timeframe
10.2	Obtain public participation by seeking out citizens in their neighborhoods and gathering places such as schools, houses of worship and public spaces.	CM [CE]	Ongoing
10.3	Invite civic, neighborhood, and non-profit groups to assist with City project and program planning and implementation.	CD	Ongoing
10.4	Provide incentives for City staff to participate in community and volunteer activities.	HR	Short-term
10.5	Invite seniors to mentor youth and serve as guides at historical sites.	CS	Short-term
10.6	Offer internships in City governance, and include youth representatives on public bodies.	CS	Mid-term
10.7	Continue to offer the Ambassadors program to obtain citizens assistance with City projects.	PW	Ongoing
10.8	Utilize the City website as a key source of information and expand it to serve as a tool for civic engagement.	CM [CE]	Short-term
10.9	Publish an annual report that evaluates City performance in such areas as conservation, housing, and economic development.	CD	Mid-term
10.10	Continue to improve the user-friendliness of the media that communicate information about the City, including the website, cable channels, newsletters, kiosks, and water billing statements.	CM [CE]	Short-term
10.11	Establish a clear policy toward the scope, role, boundaries, and jurisdiction of neighborhood Community Councils citywide, with the objectives of strengthening their roles in decision-making.	CD [LRP]	Mid-term

KEY TO ABBREVIATIONS AS = Administrative Services Department AS [P] = Purchasing CA = City Attorney $C D=$ Community Development Department $C D[A]=$ Administration CD [CP] = Current Planning CD [LRP] = Long Range Planning CD [ED] = Economic Development CD [LD] = Land Development CD [RDA] = Redevelopment Agency CC = City Council CM = City Manager's Department CM [CE] = Civic Engagement CS = Community Services Department CS [CR] = Community Recreation		CS [CA] = Cultural Affairs CS [GS/AS] = Golf Services/Adult Sports CS [SS] = Social Services FD = Fire Department FD [IS] = Inspection Services HR = Human Resources Department PD = Police Department PW = Public Works Department PW $[E]=$ Engineering PW [P] = Parks PW [MS] = Maintenance Services PW [U] = Utilities	uire short-, mid	erm $=0-5$ years $\mathrm{rm}=5-10$ years $m=10-20$ years long-term action
Number		Action	Lead Entity	Timeframe
10.12	Establish stronger capital investment education, and oth solving.	nity Councils to set area priorities for mercial investment, physical planning, nd day-to-day cooperation and problem-	CD [LRP]	Ongoing
10.13	Recognizing that n policies and cityw Congress where lo	nced and sustained by overall City wide Neighborhood Community can collaborate and learn from each othe	CM[CE]	Mid-term
10.14	Establish clear liai between the City, Ventura Unified S	n, training, and involvement efforts other community partners, including the l and religious groups.	CM [CE]	Short-term

Appendix C

Project Description Information

Intensification/Reuse Only (Scenario 1)

Totals (Intensiflcation + Expanslon + Pending)		8,318	$\mathbf{9 9 2 , 3 7 7}$	$1,213,214$	$\mathbf{2 , 2 3 5 , 1 3 3}$	450,000

Notes:

1. Overall residential growth is based on 0.88% ennual growth through 2025. Qverall non-residentiol growth is basad on estimates provided by Stentey R. Hoffman Associbies, inc. All unit end square footage numbers are estimetes of how future growth may be distributed besed on available land, local land usa practices, and recent Council and community direction and preferencos. Al figures are for analytical purposos oniy. The actual distribution of future growth in the Cily may vary based on markot forces and other factors. Both the districticorridors and expansion aroas could accommodate more development andior a different mix of developmont.
2. The distribetion of growth in the districts and corridors is basod on the following general assumptions: (e) The Downtown ares and, to a lessor extent, the Venture Avenus contidor will be the focus of future residential end commorcial growth; (b) the Anundoll, North Avenue, and Upper North Avenue aross will be the focus of future industrisl growth; (c) other districts and corricors will not be the focus of growh, but will eccommodite a centaln amount of growh over time. When possibla, knowtedge of possible future plans or land evallability has been used to and Master Plien and staft knowledgo ol likety projects. Growth estimetes for the Aufindell community considier the likely development of the 75 ecre Mc Grath propenty with e mix of uses and dovolopment of other vacant /ands. Growth estimetes for the Auto Conter area consider the possibifity of a "big box" retaller in that area.
3. Estimates of growh in the SOVOXter infill sitas ara based on the following genoral assumptions: (a) 101/126 Crchard sita will develop similarly to a project rocontly propased for that sitt; (b) Wolls/Saticoy sitos will devalop in accordence with ongoing planning efforts for those areas; (c) the Pierpont area will develop gonorally in accordance with a concoptual project recently considorod by the City; (d) Second Units will be added at a rate of 15yyear; (e) roughly half of undorntiized lands identified in the Housing Element will be re-developed over the next 20 years; if all vacant lands outsido the districts and comidors will be doveloped in accordence with the propased land use designations. 4. Plannod and Pending Developments based upon the City's 2004 Planning and Pending Developments list. Bullding areas do not inctude sel/ storago facistios.
4. Expension area totals are conceptual estimates that oncompass a mix of uses and residontial densitios.
5. The following potential profects not included in the 2004 Plonned and Pending Dovelopments hist have boon incluted in the future avelopment lotals: (1) 150,000 square feel of industrial dovalcomont in the Auto Center area; (2) 165,000 square feet of retail development.
 associated with thase projects has boen addod to the profections of fiture growth to provide a "worst-case" analysis of passible future impacts.

Intensification/Reuse +N. Avenue + Olivas + Serra (Scenario 2)

	\qquad	Non-Residentlat Development (square feet)				
		Retall	Offlce	Industrla!	Hotel	Total
Districts						
Upper North Avenue	100	10,000	50,000	200.000		260.000
North Avenue	50	10,000	50,000	400,000		460.000
Downtown	1,600	100,000	200,000		150,000	450,000
Pacific View Mall	25	25,000	0			25,000
Hartor	300	66,000			150,000	216,000
Arundell	200	25.000	300,000	1,200,000		1,525,000
Auto Center	50	300,000	50,000	300,000		650,000
Metrolink	50		50,000	50,000		100,000
Saticoy	50	0		75,000		75,000
Subtotals (Districts)	2,425	536,000	700,000	2,225,000	300,000	3,761,000
Corridors						
Ventura Avenue	800.	40,000	100,000	100,000		240,000
Main Street	100	15,000	40,000			55,000
Thompson Boulevard	300	15,000	40,000			55,000
Loma Vista Road	25	15,000	40,000			55,000,
Telegraph Road	250	15,000	40,000			55,000
Victoria Avenue	50	15,000	40,000			55,000
Johnson Drive	150	50,000	20,000			70,000
Wells Road	50	15,000	20,000			35,000
Subtotals (Comidors)	1,725	180,000	340,000	100,000	0	620,000
Sol/Other infill						
101/126 Agriculture	200					0
Wells/Saticoy	1,050					0
Pierpont	100	30,000				30,000
Other Neighborhood Centers	100					
Second Units	300					
Underutilized	250					
Vacant	450	165,000.	50,000.			215,000
Subtotals (Other Inflil)	2,450	185,000	50,000	0	0	245,000
Totals (lntenslification/Reuse)	6,600	911,000	1,090,000	2,325,000	300,000	4,626,000
Expansion Areas						
North Avenue	176	18,295				18,295
Olivas	1,484	109,771	439,085			548,856
Serra	1,042	91,476	256.133			347,609.
Canada Larga						
Poinsettia						
Subtotals (Expansion)	2,702	219,542	695,218	0	0	914,760
Planned and Pending Developments.						
Downtown	50	\{,072			150.000	151,072
Ventura AvenueiWestside	238	7.086		27,000		34,086
Midfown	34	13,751				13,751
College (Telegraph/Loma Vista)	4	2,718	8,849			11,567
elephone Road Corridor	256		54,785			54,785
Montalvo/victoria	296		4,300			4,300
aticoy/East End	840	7,950	5,600			13,550
rundell		41,640	42,614	18,080		102,334
Olivas		7,160	7,066	390,053		404,279
Uubtotals (Planned/Pending)	1,718	81,377	123,214	435,133	150,000	789,724

Totals (IntensIflcation + Expansion + Pending)	11,020	$1,211,919$	$1,908,432$	$2,760,133$	450,000

Notes:

1. Overall residentis gronth is bassed on 1.14\% annual growth through 2025. Overall non-rasidentiol growth is based on astimetes provided by Stentioy R, Holfman

2. The distribution of growth in the districts and contrors is based on the fotcuring generd assumptions: (a) The Downtown area and, to alasser extent, the Vonturat Avenve cortidor will be the focus of future rasidientid and connmerciol growth; (b) the Arundoll, North Avernee, and Lppor North Avenue sreas will De the foccus of

 the possibility of a "oxg box" cotatier in that anoo.

3. Expanstion ereas total's aro conceptuol ostimetas that oncompars a mix od usas and rastiontion donsitios.

Intensification/Reuse + North Avenue + Olivas (Scenario 3)

	\qquad	Non-Residentlal Development (square feet)				
		Retall	Office	Industrial	Hotel	Total
Districts						
Upper North Avenue	100	10,000	50,000	200,000		260,000
North Avenue	50	10,000	50,000	400,000		460,000
Downtown	1,600	100,000	200,000		150.000	450,000
Pacific View Malt	25	25,000	0			25,000
Harbor.	300	66,000			150,000	216,000
Arundell	200	25,000	300,000	1,200,000		1,525,000
Auto Center	50	300,000	50,000	300,000		650,000
Metrolink	50		50,000	50,000		100,000
Saticoy	50	0		75,000		75,000
Subtotals (Districts)	2,425	536,000	700,000	2,225,000	300,000	3,761,000
Corridors						
Ventura Avenue	800	40,000	100,000	100,000		240,000
Main Street	100	15,000	40,000			55,000
Thompson Boulevard	300	15,000	40,000			55,000
Loma Vista Road	25.	15,000.	40,000			55,000
Telegraph Road	250	15.000	40,000			55,000
Victoria Avenue	50	15,000	40,000			55,000
Johnson Drive	150	50,000	20,000			70.000
Wells Road	50	15,000	20,000			35,000
Subtotals (Corrldors)	1,725.	180,000	340,000	100,000	0	620,000
SOVOther infill						
101/126 Agriculture	200					0
Wells/Saticoy	1,050					0
Pierpont	100	30,000				30,000
Other Neighorhood Centers	100					
Second Units	300					
Underutllized	250					
Vacant	450	165,000	50,000			215,000
Subtotals (Other Infill)	2,450	195,000	50,000	0	0	245,000
Totals (intensification/Reuse)	6,600	911,000.	1,090,000	2,325,000	300,000	4,626,000
Expansion Areas						
North Avenue	322	36,590	54,886			91,476
Olivas.	2.394	182,952	640,332			823,284
Serra						
Canada Langa						
Poinseitia						
Subtotals (Expansion)	2,716	219,542	695,218	0	0	914,760
Planned and Pending Developments						
Downtown	50	1,072			150.000	151,072
Ventura Avenue Westside	238	7,086		27,000		34,086
Midown	34	13.751				13,751
Coilege (Telegraph/Loma Vista)	4	2,718	8,849.			11,567
Telephone Road Comidor	256		54,785			54,785
Montalvovictoria	296		4,300			4,300
Saticoy/East End	840	7,950	5,600			13,550
Arundell		41.640	42,614	18,080		102,334
Olivas		7,160	7,066	390,053.		404,279
Subtotats (Planned/Pending)	1,718	81,377	123,214	435,133	150,000	789,724
Totals (intensification + Expansion + Pendlng)	11,034	,211,919	1,908,432	2,760,133	450,000	6,330,484

Noces:

$$
\begin{aligned}
& \text { 1. Overall residential prowth is bosed on 1.74\% snnuai prowth through 2025. Overath non-rosidentiol prowh is besed on estimates provitod by Stanley R. Hoffinan }
\end{aligned}
$$

and
2. The distribution of growth in the districts and corvidors is based on tha following general assumplions: (a) The Downtown arva and, to a lassor extent, the Vontura Avonve corriorer will bo the focus of futura rosidentiat and cormnorcial prowith; (b) the Aundell, North Avenue, and Upper North Avonvo aress will be the focus of hiture industriol growth; (c) cher disticts and corridors will nod bo tho focus of growth, but will eccommodate a cortain amount of growth over time. Whon passible, knowedge
 development of the 75 -acre McGrath propenty with a mix of usos and development of cher vacent lands. Growth a stimetas for tha Auto Conter ape cansider cossiblity of a "blg box" retallor in that aros.
3. Estimetas of growth in the SOVOTher instlitits are based on the following penersi assurptions: (a) $101 / 126$ Orherd site will dovolop similary to a projoct recently
 Hentified in the housing Elomant wifl be re-devalopod over the next 20 yours; in all vacant londs outside the gistricts and comblors will be doveloped in occerdance with the propased land uso designations.
4. Piannod and Pencing Dovelopments based upon the City's 2004 Planning and Pending Devolopments illst, Building aroas do nol include sofl storage facilities.
5. Expansion arta totels are conceptual estimates that oncompass a mix of usos and rosidential densitios.
. The following podentis profocts not includar in the 2004 Planned and Pending Dovolopments Mst hevo boon included in tho future developmont totals: (1) 150,000

 anaysisis ol passibio fiture impacts.

Intensification/Reuse + North Avenue + Serra (Scenario 4)

	Residentlal Development (unlts)	Non-Residentlal Development (square feet)				
		Retall	Office	Industrial	Hotel	Total
Districts						
Upper North Avenue	100	10,000	50,000	200,000		260,000
North Avenue	50	10,000	50,000	400,000		460,000
Downtown	1.600	100,000	200,000		150,000	450,000
Pacific View Mall	25	25,000	0			25,000
Harbor	300	66,000			150,000	216,000
Arundell	200	25,000	300,000	1,200,000		1,525,000
Auto Center	50	300,000	50,000	300,000		650,000
Metrolink	50		50,000	50,000		100,000
Saticoy	50	0		75,000		75,000
Subtotals (Districts)	2,425	536,000	700,000	2,225,000	300,000	3,761,000
Corridors						
Ventura Avenue	800	40,000	100,000	100,000		240,000
Main Street	100.	15,000	40,000			55,000
Thompson Boulevard	300	15,000	40,000			55,000
Loma Vista Road	25	15,000	40,000			55,000
Telegragh Road	250	15,000	40,000			55,000
Victoria Avenue	50	45,000	40,000			55,000
Johnson Drive	150	50,000	20.000			70,000
Wells Road	50	15.000	20,000			35,000
Subtotals (Corridors)	1,725	180,000	340,000	100,000	0	620,000
SOVOther InfII						
101/126 Agricuíture	200					0
Weils/Saticoy	1,050					0
Pierpont	100	30,000				30,000.
Other Neighborbood Centers	100					
Second Units	300					
Underutiized	250					
Vacant	450.	165,000	50,000.			215,000
Subtotals (Other Infili)	2,450	195,000	50,000	0	0	245,000
Totals (Intensification/Reuse)	6,800	911,000	1,090,000	2,325,000	300,000	4,626,000
Expansion Areas						
North Avenue	322	36,590\|	54,886			91.476
Olivas						0
Serra	2,380	182,952	640,332			823,284
Canada Larga						
Poinsettia						
ubtotals (Expanslon)	2,702	219,542	695,218	0	0.	914,760
Planned and Pending Developments						
Downtown	50	1,072			150,000	151,072
Centura AvenueW Westside	238	7,086		27,000		34.086
Midtown	34	13,751				13,751
College (Telegraph/Loma Vista)	4	2,718	8,849			11,567
elephone Road Corcidor	256		54,785			54,785
Montalvo Victoria	296		4,300,			4,300
aticoy/East End	840	7,950	5,600			13,550
Arundell		41,640	42,614	18,080		102,334
		7.160	7,066	390,053		404,279
ubtotals (Planned/Pending)	1,718	81,377	123,214	435,133	150,000	789,724

Totals (Intenslfication + Expansion + Pending)	11,020	$1,211,919$	$1,908,432$	$\mathbf{2 , 7 6 0 , 1 3 3}$	$\mathbf{4 5 0 , 0 0 0}$	$\mathbf{6 , 3 3 0 , 4 8 4}$

Notas:
 Assoand Councll and communty diroction and irefers are aslindar as
 development.
2. The distibibution of growth in the districts and cortiders is basod on tho following generd assumptions: (a) The Downtown aree and, to a lassor extant, the Vontura

 passiblity of " "big box" notellor in then sreas.

 with the propased iand use dostenntions.
 5. Expension aroa todels are concoptual estimstes that encomposs a mix of uses and rastion iod densitios.
. The following potentid profects nod inciudod in the 2004 Pionred ond Pendirg Devercoments ist heve been included in the future development todist: (1) 150,000
 induded in the "vocarf" cerocory. The square fodege associded with these profect has been ade anolysis of passilise future imposis.

Intensification/Reuse + North Avenue + W. Canada Larga (Scenario 5)

	\qquad	Non-Resldential Development				
		Retail	Office	Industrlal	Hotel	Total
Districts						
Upper North Avenue	100	10,000	50,000	200,000		260,000
North Avenue	50	10,000	50,000	400,000		460,000
Downtown	1,600	100,000	200,000		150.000	450,000
Pacific View Mall	25	25,000	0			25,000
Harbor	300	66,000			150,000	216,000
Arundell	200	25,000	300,000	1,200,000		1,525,000
Auto Center	50	300,000	50,000	300,000		650,000
Metrolink	50		50,000	50,000		100,000
Saticoy	50	0		75,000		75,000
Subtotals (Districts)	2,425	536,000	700,000	2,225,000	300,000	3,761,000
Corridors						
Ventura Avenue	800	40,000	100,000	100,000		240,000
Main Street	100	15.000	40,000			55,000
Thompson Boutevard	300	15.000	40,000			55,000
Loma Vista Road	25	15,000	40,000			55,000
Telegraph Road	250	15,000	40,000			55,000
Victoria Avenue	50	15,000	40,000			55,000
Johnson Drive	150	50,000	20,000			70,000
Wells Road	50	15,000	20,000			35.000
Subtotals (Corridors)	1,725	180,000	$340,000$.	100,000	0	620,000
SOVOTher infill						
101/126 Agriculture	200					0
Wells/Saticoy	1,050					0
Pierpont	100	30,000				30,000
Other Neighborhood Centers	100					
Second Units	300					
Underutilized	250					
Vacant	450	165,000	50,000			215,000
Subtotals (Other inflll)	2,450	195,000	50,000	0	0	245,000
Totals (Intensification/Reuse)	6,600	911,000.	1,090,000	2,325,000.	300,000	4,626,000
Expanston Areas						
North Avenue.	979	91,476	219,542			311,018
Olivas						0
Serra						
Canada Larga	1.728	109,771	439,085			548,856
Poinseltia						
Subtotals (Expanslon)	2,707	201,247	658,627	0	0	859,874

Planned and Pending Develogments						
Downtown	50	1,072			150.000	151.072
Ventura Avente/Westside	238	7,086		27,000		34,086
Midtown	34	13,751				13,751
College.(Telegraph/Loma Vista)	4	2,718	8,849			11,567
Telephone Road Corridor	256		54,785			54,785
Montalvo/Victoria	296		4,300			54,300
Saticoy/East End	840.	7,950	5,600			13,550
Arundell		41,640	42,614	18,080		102,334
Olivas		7,160	7,066	390,053		404,279
Subtotals (Planned/Pending)	1,718	81,377	123,214	435,133	150,000	789,724

Totals (intensification + Expanslon + Pending	11,025	$1,193,624$	$1,871,841$	$2,760,133$	450,000	$6,275,598$

Notes:

 development.
2. The distribution of grouth in the distericts and condiders is based on the following ganeral assumptions: (a) The Countown orsa and, to a lasser extont, the Ventura Avenue corfidor will be tho focus of fiture rasidentid isnd commercisi growth; (b) the Aundol, North Avorue, and Cpper North Avenve aress will be the focus of

 the possibility of a "ivg box" retaller in thot wros.
 sconty proposed for thes stho; (i) Wells/ Soticoy sithas will develip in accordonco with ongolng plonntions
 eccordance with the propesed land use dasignetions.

 anatysis of possible futuro impocts.

Intensification/Reuse + North Avenue + Poinsettia (Scenario 6)

	ResidentialDevelopment(units)	Non-Rasidential Development				
		Retall	Office	Industrial	Hotel	Total
Districts						
Upper North Avenue	100	10,000	50,000	200,000		260,000
North Avenue	50	10,000	50,000	400,000		460,000
Downtown	1,600	100,000	200,000		150,000	450,000
Pacific View Mall	25	25,000	0			25,000
Harbor	300	66,000			150,000	216,000
Arundell	200.	25,000	300,000	1,200,000		1,525,000
Auto Center	50	300,000	50,000	300,000		650.000
Metrolink	50		50,000	50,000		100,000
Saticoy	50.	0		75,000		75,000
Subtotals (Districts)	2,425	536,000	700,000	2,225,000	300,000	3,761,000
Corridors						
Ventura Avenue	800	40,000	100,000	100.000		240,000
Maln Street	100	15,000	40,000			55,000
Thompson Boulevard	300	15,000	40,000			55,000
Loma Vista Road	25	15,000	40,000			55,000
Telegraph Road	250	15,000	40,000			55,000
Victoria Avenue	50	15,000	40,000			55,000
Johnson Drive	150	50,000	20,000			70,000
Well's Road	50	15,000	20,000			35,000
Subtotals (Corridors)	1,725	180,000	340,000	100,000	0.	620,000
SOVOther InIII						
101/126 Agricuiture	200					0
Wells/Saticoy	1,050					0
Pierpont	100	30,000				30,000
Other Neighborhood Centers	100					
Second Units	300					
Underutilized	250					
Vacant	450	165,000	50,000			215,000
Subtotals (Other Infill)	2,450	195,000	50,000	0	0	245,000
rotals (intensification/Reuse)	6,600	911,000	1,090,000	2,325,000	300,000	4,626,000
Expansion Areas						
Norin Avenue	322	36,590	54,886			91.476
Olivas						0
Serra						
Canada Larga						
Poinsettia	2,380,	182,952	640,332			823,284
Subtotals (Expansion)	2,702	219,542	695,218	0	0	914,760

Planned and Pending Developments

Downtown	50	1.072			150.000	151,072
Ventura Avenue/Westside	238	7,086		27,000		34,036
Midtown	34	13,751				13,751
College (Telegraph/Loma Vista)	4	2,718	8,849			11,567
Teiephone Road Corridor	256		54,785			54,785
Montalvo/Victoria	296		4,300			4,300
Saticoy/East End	840	7,950	5,600			13,550
Arundell		41,640	42,614	18,080		102,334
Olivas		7.160	7.068	390,053		404,279
Subtotals (Planned/Pending).	1,718	81,377	123,214	435,133	150,000	789,724

Totals (Intensification + Expanslon + Pending)	11,020	$1,211,919$	$1,908,432$	$2,760,133$	450,000	$6,330,484$

Notes:
 Assent Cumill and communty direction and pretans as all foumes her
 devectoment.
2. The ofstribution a crowth in the odstricts and corriders is based on the fallowing generd assumptions: (a) The Downtown ares and, to a lesser axtent, the Verturd Avenue contos will be the focus af fiture rasidentisi and commorcidy growth: (b) the Anundell, North Avanue, and Upper North Avenue aress will be the focius of future industriac growth; (c) other distictets and contions will net bo the focus of growth, but will occomnnodxe ocortoin amount of growth over tima. Whon possible,
 Disthots ase basod on the Dountown Spocific Plon and Mastor Pisn and staff knowledge of ilikely profects. Growth estimetos for the Arundell commurity consider the

 With the propased iand use dostignations.
 5. Expansion ores tacts are concoptual astimatas that encompass a minx of ustas and rasidentior densitios.

 anoysis of possibite future impasts.

Expansion Area Acres by Use

Intensification/Reuse + N. Avenue + Olivas + Serra				
	N. Avenue	Olivas	Serra	Total
Res. Low	10	120	70	$\mathbf{2 0 0}$
Res. Medium	5	40	32	$\mathbf{7 7}$
Res. High	2	10	8	$\mathbf{2 0}$
Office		24	14	$\mathbf{3 8}$
Retail	1	6	5	12
Schools	10	60	40	12
Open Space	25	655	257	$\mathbf{1 1 0}$
Other	2	15	12	$\mathbf{9 3 7}$
Total	$\mathbf{5 5}$	$\mathbf{9 3 0}$	$\mathbf{4 3 8}$	$\mathbf{1 , 4 2 3}$

Intensification/Reuse + N. Avenue + Olivas

	N. Avenue	Olivas	Total
Res. Low	15	160	175
Res. Medium	8	80	$\mathbf{8 8}$
Res. High	5	15	$\mathbf{2 0}$
Office	3	35	$\mathbf{3 8}$
Retail	2	10	$\mathbf{1 2}$
Schools	10	60	$\mathbf{7 0}$
Open Space	10	555	$\mathbf{5 6 5}$
Other	2	15	$\mathbf{1 7}$
Total	$\mathbf{5 5}$	$\mathbf{9 3 0}$	$\mathbf{9 8 5}$

Intensification/Reuse +N. Avenue + Serra

	N. Avenue	Serra	Total
Res. Low	15	140	155
Res. Medium	8	60	68
Res. High	5	30	35
Office	3	35	38
Retail	2	10	12
Schools	10	40	50
Open Space	10	111	121
Other	2	12	14
Total	$\mathbf{5 5}$	$\mathbf{4 3 8}$	$\mathbf{4 9 3}$

Intensification/Reuse N. Avenue + W. Canada Larga

	N. Avenue	W. Canada Larga	Total
Res. Low			0
Res. Medium			0
Res. High	34	60	94
Office	12	24	36
Retail	5	6	11
Schools			0
Open Space	2	30	32
Other	2	1	3
Total	55	121	176

Intensification/Reuse N. Avenue + Poinsettia

	N. Avenue	Poinsettia	Total
Res. Low	15	140	155
Res. Medium	8	60	68
Res. High	5	30	$\mathbf{3 5}$
Office	3	35	$\mathbf{3 8}$
Retail	2	10	$\mathbf{1 2}$
Schools	10	30	40
Open Space	10	103	113
Other	2	10	12
Total	$\mathbf{5 5}$	$\mathbf{4 1 8}$	$\mathbf{4 7 3}$

Appendix D
Cultural Resources List

CITY OF SAN BUENAVENTURA HISTORIC LANDMARKS \& DISTRICTS

April 1, 2002

NO. LANDMARK NAME

ADDRESS

ADDITIONAL INFORMATION

1. Olivas Adobe

Designated February 11, 1974

4200 Olivas Park Drive

SL/NRHP
(CA-VEN-815H)

This two-story Monterey style adobe was the center of San Miguel Rancho. Built in 1847 by Don Raymundo Olivas, a prominent cattle and sheep rancher, it was owned by the family until 1899. Restored in the late 1920s by millionaire Max Fleischmann of Fleischmann Yeast and Margarine fame, the historic house was given to the City of San Buenaventura in 1961. Now a historic museum, it is dedicated to Ventura's rancho heritage.

2. | Ortega Adobe 215 West Main Street |
| :--- |
| Designated February 11, 1974 | (CA-VEN-785H)

Emigdio Miguel Ortega, grandson of Josef Francisco de Ortega, discoverer of San Francisco Bay in 1734, and comandante of Santa Barbara in 1782, was born at Mission San Diego. Emigdio was appointed Sergeant of the Santa Barbara Company in 18111818 and comisionado at Los Angeles in 1918. He married Concepcion Dominguez at Mission Santa Barbara. Through the land grant of 1830-1850 for Rancho Ex-Mission Santa Buenaventura from Governor Pio Pico, he bought the 200×200 foot lot and built the adobe in 1855-57. The west half of the adobe was washed away by the floods of 1862 and rebuilt using the original roof tiles from the Mission San Buenaventura. In 1897 , Emilio C. Ortega, son of Emigdio and Conception, began and operated from the adobe, the now famous Ortega Chili Factory. Located at 215 W Main Street, it was the townhouse of the Ortega Family, built in 1857.

3. Father Serra Statue
 Designated February 11, 1974

This bronze statue was designed by John Palo-Kanges and represents an idealized image of Father Junipero Serra, the founder of Mission San Buenaventura. Located in front of Ventura's City Hall on California Street, the original cement statue was a WPA project in 1936. Due to weathering, the original was placed in storage in 1989 and replaced by the present bronze one. The wooden statue used to mold the bronze statue is located in the atrium of the City Hall. It was unveiled in November 1936.

Constructed in 1912, it served as the Ventura County Courthouse until 1962. Designed by famed Los Angeles architect, Albert C. Martin Sr. in the "Beau Arts" or Neo-classic style. The building features the faces of 24 monks on the facade and stained glass skylights and domes in the interior. Restored and converted into Ventura's City Hall in 1972, it stands as one of the state's premier civic buildings. The west wing, formerly the county sheriffs office and jail, was restored and added to the City Hall designation in 1988.

5. Grant Park Cross
 Designated February 11, 1974
 $$
\text { Ferro Drive } \quad \text { SL(Site) }
$$

 Ferro Drive

 Ferro Drive

 SL(Site)

 SL(Site)}The wooden cross, made of pine from Santa Paula Canyon, was placed on this site to commemorate the original cross erected by Father Junipero Serra when he founded Mission San Buenaventura in 1782. Two earlier crosses had blown down by 1875 and were not replaced again until the ladies of the ECO Club, a service club, erected the present cross on Admission Day, September 9, 1912.

6. Mission Plaza Archeological Site

Designated February 11, 1974
The Mission Plaza Archaeological Project studied the area west of Mission San Buenaventura Church and along Valdez Alley from 1973 to 1975. A number of important features covering 3,500 years of history were uncovered at the site. These features include five mission building foundations, ceramic pipelines, an adobe brick factory, a well, an earth oven, and a water filtration building. Nicknamed El Caballo (the Horse) because of a carved wall feature in the shape of an animal head, the filtration building, built in 1782 by Chumash labor under the direction of Father Pedro Cambon, is the oldest standing structure in Ventura County. In the late 1860s, the building was used as a jail. The Mission Plaza Archaeological site includes VEN4, which was recorded in 1951 in the UCLA Archaeological Survey Archives. The approximately one and one half acre area was designated as a local historic landmark on February 11,1974.

7. Conklin Residence
 Designated May 6, 1974

608 East Thompson Blvd.

Mitchell Block

Located at 608 E Thompson Blvd., the home was originally built in 1877 by Dr. Solomon Leander Stuart, a dentist, whose office was located on California Street between Main and Santa Clara Streets. He is thought to have been a descendent of the artist Gilbert Stuart. The home was then deeded in 1887 to E. L. Mitchell, proprietor of a brick business and builder of two of the homes within the Mitchell Block. Marguerite Conklin, granddaughter of Marada Waton and owner of the property in 1918, lived her entire life within this restored Cape Cod style home
midst her family heirlooms. It is folklore that her mantle clock, silent on the day of her passing in 1977, would never be operable again. The exterior was changed to its present Cape Cod appearance in 1927.

8. Mission Norfolk Pines
 Designated July 1, 1974

211E Main Street
Mission District

Two of the tallest trees in the City, these large Norfolk Island Pines (araucaria excilas) are located adjacent to the San Buenaventura Mission. The trees were planted in the 1880s, and legend suggests that they were brought here from Norfolk Island by a sea captain to be used as replacement masts for his ship. The captain, perhaps lost at sea, never returned to claim his trees. Traditionally, the trees are lit with colored lights during the holiday season and can be seen from miles along Highway 101.

In November 2000, the America The Beautiful Fund designated the pines as California's Millennium Landmark Trees. The non-profit group has given the designation to at least one tree in each of the 50 states that "has seen the nation progress form a largely rural, farming community to an industrial powerhouse." The mission Norfolk Pines were the first trees to be given the designation in California.

9. Mound Pepper Tree 5430 Telegraph Road No longer exists

The Mound Pepper Tree was located 25 feet west of the east property line of the Mound Guest Home. It was cited as the oldest and largest tree of its specie in the City. It was 100 years old, 43 feet tall, 23.5 feet in circumference at its narrowest point two feet above ground and had a 100 -foot branch spread.

10. San Buenaventura Mission Designated July 1, 1974

211E Main Street
NRHP District

Father Junipero Serra founded Mission San Buenaventura on Easter Sunday, March 31, 1782. It was the ninth and last mission founded by Father Serra. Construction on the first adobe mission church began in 1787, but problems forced its demolition in 1790. The present stone and adobe church was built just to the east of the original structure and completed in 1809. The Mexican Government secularized the missions in 1834, and in 1846, Mission San Buenaventura was sold to Jose Arnaz and became known as Rancho Ex-Mission. In 1862, President Abraham Lincoln returned the Mission San Buenaventura Church to the Catholic Church, which owns it to this day.

11. Plaza Park Moreton Bay Fig Tree
 Designated July 1, 1974

The Moreton Bay Fig tree, which was planted in Plaza Park in 1874, is thought to be the largest tree of its species, being 68 feet high with a branch spread of 130 feet in the City. It is a ficus
macrophylla, which is a native of Queensland Australia. The tree is located at the northwest comer of Plaza Park at Chestnut and Santa Clara Streets.

12. Mission Plaza Moreton100 Block East Main Street Mission District/NHRP Bay Fig Tree

Designated July 1, 1974
The Mission Plaza Moreton Bay Fig Tree (ficus macrophylla) dominates the east side of Mission Plaza Park, along Figueroa Plaza. Its branches have a spread of over 100 feet and its circumference is 18 feet. The tree is over 120 years old. This area is part of the Mission National Register of Historic Places (NRHP) District.

13. Baker Residence
 Designated September 23, 1975

2107 Poli Street

Located at 2107 Poli Street, the home was built in 1888 by architect Franklin Pierce and it is a well-preserved model of Victorian architecture.

14. Judge Ewing Residence 605 Poli Street
 Designated September 23, 1975

This house was built in 1894 for Judge Felix Ewing, then the only judge in Ventura County. It was built in the popular Queen Anne style. The large wrap-around porch was elaborate for its time. The library has special carved paneling and tiled floors. The stone used in the walls was quarried in Foster Park north of Ventura. The building is now used as law offices.

15. Theodore Groene Building
 Bahn's Jewelry Store
 Designated October 27, 1975
 592 East Main Street

This building was originally constructed in the late 1920's as a bank for the Ventura Guarantee and Loan. Although it served as a home for many different businesses, it is primarily known as being occupied by the Bahn's Jewelry Store. Purchased by Theodore Groene in 1961, it was then restored by the contractor, Clyde Campbell. The building features a beautiful interior, including three large murals by Norman Kennedy. The exterior is noteworthy because of the lovely brickwork and the unusual ceramic tiles. The original white paint was removed from the building in 1982.

16. San Miguel Chapel Site Designated October 27, 1975

NE corner Thompson Blvd.

NRHP

Located at the northeast corner of the intersection of Thompson Boulevard and Palm Street. The San Miguel Chapel, originally constructed of adobe brick about 1790, served as a place of worship while the Mission San Buenaventura was being built. The Chapel was the first permanent structure in Ventura built by non-Aboriginal man. A second chapel, half the size of the first, was built on the site after the original chapel was destroyed by the earthquake of 1812 . Subsequently, the chapel suffered extensive damage from natural causes, and, in 1873, the walls
were torn down. The site was excavated by students from Moorpark College, starting in 1974. Excavated features include the uncovered aqueduct, which served the Mission, a rock foundation, a bell tower, and a section of painted wall.

17. Robert Stacy Judd Church 101 Laurel Street Church of Religious Science Designated December 1, 1975

This unusual building was designed for Ventura's First Baptist Church by Hollywood architect Robert Stacy-Judd. Finished in 1931, the church stands as a monument to the Mayan Revival style. Due to funds provided by local sculptor, Jason Herron, the building was restored in the mid 1980s.

18. Shisholop Village Site/ Cabrillo's Landing

Designated December 22, 1975
Located directly on the beach at the foot of Figueroa Street is the site of the Chumash Indian village called Shisholop by the missionaries who settled Ventura. Believed to have been a Chumash provincial capital, Shisholop was first settled shortly after A.D. 1000 and reached its zenith about the time it was visited in 1542 by Portuguese navigator Juan Rodriguez Cabrillo, while on an exploratory expedition for Spain. The location of Shisholop Village and the Cabrillo landing was designated a historical site on December 22, 1975.

19. Elizabeth Bard Memorial Hospital 121 North Fir Street Designated March 8, 1976

Opened on January 1, 1902, by brothers Senator Thomas R. Bard and Dr. Cephas Little Bard as a memorial to their mother, the Elizabeth Bard memorial Hospital is Ventura's only remaining Mission Revival building. Located on a hillside just two blocks east of City Hall, the structure, with its arched loggia, scalloped parapeted gables and domed bell tower, stands out as one of the finest works of well-known local builder Selwyn Locke Shaw. Cephas Bard, who came to Ventura in 1868, is said to have been the County's first doctor. He was also the first patient to die in the Bard Hospital in 1902. The building, which has been rehabilitated for use as offices, was designated a historic landmark on March 8, 1976.

20. Ventura Wharf (Pier)
 Designated March 29, 1976

Harbor Blvd. east of California Street

The Ventura Wharf was partially destroyed in 1926 and was rebuilt as it appears today. Located off of Harbor Boulevard between California Street and Fir Street, the pier was built to encourage growth in Ventura and to provide an outlet for farmers and their crops. The pier was considered a public utility and "absolutely indispensable" to the city's economy. The wooden structure includes a restaurant and a bait and tackle shop. The pier is a point of interest for today's tourists, as it was a promenade for residents in early days. It is said to be one of the longest piers on the California Coast.
21. Franz Residence

Designated March 29, 1976

The Emanuel Franz House, built in 1879, is the only remaining unaltered example of urban Italianate architecture from the 1870s to be found in the city. The house was built for Emanuel Franz, an Austrian immigrant who operated one of the first mercantile businesses on Main Street, just a half block from his home. Franz and his new bride moved into the house in 1880. All of their six children were born in the house. The Franz family owned the house continuously until 1975. Located at 31 N. Oak Street, it has an interesting front stoop and widow's watch. Designated March 29, 1976 and placed on the National Register June 25, 1982.

22. Magnolia Tree
 Designated March 29, 1976

31 North Oak Street

Planted at 739 E. Santa Clara Street by Charles G. Bartlett ca. 1907. It is the oldest of its species in the City. It was cut down by the owner in August 2002.

23. Great Pacific Iron Works
 235 West Santa Clara Street

Designated October 4, 1976
Located at 235 W. Santa Clara Street. Originally housed the Hobson Brother's meat packing business which was established in the 1870's. Currently owned and operated by Lost Arrow/Patagonia.

24. Ventura Theater
 26 South Chestnut Street
 Designated October 4, 1976

Built in 1928, it was the city's only luxurious movie theater during the movie palace era.

25. First Post Office Bldg.
 Designated October 4, 1976
 377 East Main Street

Located at 377 E. Main Street, it is the building that housed Ventura's first post office. Built in 1902, it was used until 1919 for that purpose. Currently the building houses Attention To Detail, a home furnishings business.

26. Hitching Post
 Designated October 4, 1976

88 North Ann Street

Located at 88 North Ann Street. This is one of the last remaining hitching posts in place in the City.

27. Apostolic Church
 902 East Main Street
 Designated December 20, 1976

Located at 902 E. Main St. This was originally the Alice Bartlett Club. The building has both architectural and historical significance. It was moved to its present location in 1922.

28. Southern Methodist Episcopal Church
 Designated July 11, 1977
 896 East Main Street

Located at 896 E. Main Street. The church was built in 1890 and is the last of the original seven churches built in the City during that time. It is in the Gothic style with a high steeple and beautiful stained glass windows. It currently houses the Victorian Rose Bed \& Breakfast.

29. Post Office Murals
 Designated October 24, 1977

Located in the Post Office at 675 E Santa Clara Street, the murals were painted by Gordon Grant in 1936-37. The project was sponsored by the Federal Arts project of the WPA.

30. Livery/County Garage 34 North Palm Street

Designated November 21, 1977
Located on Palm Street, the site has been in use since 1875 as a livery stable, then stable and garage until it was purchased by the County in 1921. It now houses the Livery Theatre, office, and retail uses.

31. Packard Garage 42 North Chestnut Street
 Designated November 21, 1977

Located on Chestnut Street, the building was originally constructed in 1925 to be used as a garage and showroom. The County purchased the building in 1956 for use as a warehouse. It is currently vacant.

32. Peirano Store
 Designated January 16, 1978

204 East Main Street Mission District

Oldest brick building in the City, built in November 1877. Located at the southeast corner of Main Street and Figueroa Plaza. Owned by the Peirano family since 1890 and in constant use as a grocery store since 1877 until Nick Peirano, nephew of the original owner, retired in 1986. It has housed a restaurant since September 1998.
33. Peirano Residence
(Parrish Law Offices)
Designated January 16, 1978
House located at the southwest corner of Figueroa and Santa Clara Streets. Built in 1897 by the Peirano family and in constant use by the family until 1976. House is 1-1/2 story wood frame with gabled roof. Restored by Donald Parrish and currently used as a law office.

34. Theodosia Burr Shepherd
 Gardens
 Designated July 17,1978

SE corner of Poli and Chestnut Streets

The original gardens of one of California's most famous horticulturists, were located between Main and Poli, Chestnut and Fir Streets. All that remains is a Star Pine and a Bird of Paradise. Designated a Point of Interest July 17, 1978.

35. Feraud Store \& Bakery 2 West Main Street (1903 Building)

NRHP
Designated July 17, 1978
Located at the southwest comer of Main Street and Ventura Avenue, the Feraud Bakery and Grocery Store was begun by Jules Feraud in 1903. The bakery stayed in the family until 1944. Currently owned by Robert Addison and used as a retail store. Designated a Point of Interest July 17, 1978.

36. First National Bank
of Ventura 1904
Designated Augoust 13, 1978

Located at 401E Main Street, the building was opened in June 1904 as the First National Bank. The building has been much altered over the years for various commercial uses. Designated a Point of Interest August 14, 1978.

37. First National Bank of Ventura 1926

Designated October 16, 1978
Located at the cornerstone of the downtown area at Main and California Streets, this building was used as a bank for many years. First as the First National Bank of Ventura, then Bank of America, Security First National, Channel Island State Bank and Wells Fargo before becoming the American Commercial Bank. The building currently houses a retail furniture store on the ground floor and offices on upper floors.
38. Bank of Italy

Designated December 4, 1978
Located at 394 E Main Street, the building was constructed in 1923-24 after being promoted by John Lagomarsino, Sr. The architectural style is Italian Renaissance Revival, which was widely used for commercial structures at that time. The building currently houses retail uses on the ground floor and office uses on the second floor.

39. Dr. T. E. Cunnane Residence 128 S. California Street
Designated December 18, 1978

Located at 128 S. California Street, this structure was the home and office of Dr. Thomas E. Cunnane, the city's physician after the death of Dr. Bard in 1902. The structure is one of the few remaining examples of Queen Anne cottage style architecture. Now used as business offices.

40. A. C. Martin Building
(Bella Maggiore Inn)
Designated April 9, 1979

69 S. California Street

The facade is at 69 S. California Street. The building was constructed in 1926. The architect was A. C. Martin of Los Angeles, who also designed the current City Hall. The style of the facade is taken from Spanish Renaissance sources. Restored by Tom Wood and currently houses the Bella Maggiore Inn. At one time it was known as El Nido Hotel.

41. Robert Sudden Residence
 Designated April 9, 1979
 825 Front Street

The house at 825 Front Street was built in 1886 by Captain Robert Sudden. It was originally located at Fir and Meta streets and was moved to its present location in 1916.

42. Robert M. Sheridan Residence 1029 Poli Street Designated May 21, 1979

Located at 1029 Poli Street, this craftsman bungalow house deviates from the traditional boxlike shaped bungalow. Historically the house is important for it was built by Robert M. Sheridan, son of early pioneer E. M. Sheridan, who was editor of the Ventura Signal. The house was used by Robert and his wife, Ellen, who was a well-known editor, writer and designer.

43. Chaffey \& McKeeby Einstein \& Bernheim General Store (building demolished) Designated May 21, 1979

SE corner Main and Palm Streets

This building was located at the southeast corner of Main and Palm Streets and was demolished because of structural problems in December 1979. The building was originally two general merchandise stores built in 1872. The owners were associated with the early development of the City; the Einstein and Bernheim store eventually became the Great Eastern Department Store. The site now houses Mid-State Bank.

44. Dudley House
 Designated January 21, 1980

SW corner Loma Vista and Ashwood Ave.

The Dudley House, built in 1891, was originally located at the northwest corner of Telegraph Road and Ashwood Avenue and was moved in 1977 to the southwest corner of Ashwood and Loma Vista Road, where it is being developed and managed as an historical resource. The
farmhouse was part of a 200-acre ranch owned and occupied by the Dudley family for five generations. The house was built by Selwyn Shaw, well know local builder and craftsman. The house is currently being restored by the San Buenaventura Heritage Foundation.

45. Righetti House
Designated January 21, 1980

125 W. Park Row Avenue

This late Queen Anne period house with elements of Classical Revival was constructed in 1918 for Daniel J. Righetti, who owned a shop on Main Street offering billiards, cigars, tobacco and confections. The Righettis were a pioneer Italian family in Ventura and lived in the house until 1922. In 1923 Dr. Julius Bianchi, a prominent local physician who served as U.S. envoy to Guatemala from 1920 to 1922, purchased the home and had his practice there for three years. He became president of the Ventura County Medical Society in 1926. On January 24, 1947, Mr. Sidney Houghton had the house moved from its original Main Street location along Valdez Alley near the Mission to its current location on Park Row Avenue. Architecturally, the house is important as one of the relatively few unaltered examples of the late Queen Anne period remaining in Ventura. Queen Anne elements include a tower, gables and bay. Classical Revival can be seen in the large, sweeping, curved porch with its classical columns. The hose serves as an important visual landmark for the Avenue Area.

46. Selwyn Shaw House

140 N. Ann Street
Designated January 21, 1980
Selwyn Lock Shaw, a prominent carpenter/builder who was responsible for the construction of many local Victorian style residences, as well as the Bard Hospital and Methodist Episcopal Church, built this Queen Anne style house for himself in 1888. This house is one of several on a block of primarily Victorian style houses owned and occupied by members of the Shaw family. The hillside home has a distinctive half-octagon bay. Located at 140 North Ann Street it is a triple story with a half-octagon bay window with elaborate roofline.

47. Jacques Roos House
 Designated March 17, 1980
 82 S. Ash Street

Jacques Roos, President of the Great Eastern Department Store, had this house built in 1892. It is a pattern house in the Queen Anne cottage style with significant Eastlake influences. The Eastlake elements are clear in the elaborately turned porch columns, spindle work and balustrade. The fine craftsmanship of this house can be seen in the meticulous detail, including elaborate sunburst patterns and flower designs in the shingles, bargeboard, and frieze. The windows make use of attractive flashed glass and are outlined by half columns. The Queen Anne influence is seen in the multiple gables and bays. This house is significant as the most elaborate example of Queen Anne cottage to be found in the City. The house was originally designated as the Wilson House. The name derived from A. E. Wilson, a clerk at the Great Eastern Department Store, who lived in the house in 1910 through 1911. When additional information identified the owner as Jacques Roos, the designated name was changed in 1991.

48. Dacy Fazio House
 Designated April 14, 1980

557 E. Thompson Blvd.

Orville Wadleigh, an early Ventura County rancher and City Trustee in 1918-1919, had this house built for his daughter Dacy Fazio in 1910. Dacy was married to Ben Fazio, owner and operator of the Fazio-Newby grocery store on Main Street. The house is a typical Craftsman Bungalow, but the property includes a carriage house/barn, which is significant as the only remaining example of a carriage house in the old downtown. The style and construction of the structure indicate that it may be older that the house itself. The house was restored in 1980 by Ira Goldenring for use as the Law Offices of Goldenring and Goldenring.

49. Terry House

4949 Foothill Road
Designated July 14, 1980
Located at 4949 Foothill Road, now the Unitarian Church. The house was built in 1917 by J. Myers of Oxnard, for Wellington G. Wide. The Wide Family lived in the house until 1922 when it was purchased by Joe Terry, Sr. The building combines several different styles of architecture, and is a one-of-a-kind example left in Ventura of a ranch/farm house built for an affluent family of that period.

50. Bert Shaw House
 1141 Poli Street
 Designated September 15, 1980

Built in 1896 by Jesse Bert Shaw, the son of Selwyn Shaw and a carpenter/builder like his father, this one-and-a-half story Victorian, with a medium high pitched cross gable roof and plain boxed cornice, is one of several houses built and lived in by members of the Shaw family along the 1100 block of Poli Street. The main feature of this house is a modified Palladian window on the front. A flat roofed addition was added on the west in 1929.

51. Blackstock House 835 E Main Street
 Designated September 15, 1980

The Blackstock House, thought to be the work of architect Charles Russell, was the home of James Blackstock, Main Street businessman and proprietor of the Central Cash and Meat Market and the Union Ice Co. from 1916 to 1926. The house was constructed in 1901 on the site of what is now the Ventura City Hall on Poli Street (originally built as the Ventura County Courthouse), and was moved ten years later to its present site at 835 Main Street, a prestigious address in early Ventura. The house remained in the Blackstock Family until 1944.

The Blackstock House marks a stylistic transition form the Queen Anne mode of Victorian design period which was ending at the turn of the century, to the Classical or Colonial revivals which swept the nation from about 1880 to 1950. The square tower of the Blackstock House, with its pointed peak (hipped roof) distinctly echoes the Victorian style. The classical or Colonial details can be seen in the modillions (Flat brackets under the eaves) that support the eaves, the elaborate frieze details above the second floor window, the articulation of the two stories with different classical orders and the triangular pediment above the portico.

The house is located in 1895 for the Frank Sifford family. Mr. Sifford was owner of the Ventura Transfer Company. His wife, Cora, was active in the Native Daughters of the Golden West. Unique characteristics include a portico columned front door, framed by a horseshoe shaped arch. The second story is accentuated by a small balcony above the front porch. Originally, the Palladian style window to the left of the font door contained stained glass in the arched center section. The house is a two-story box like shape and is a transition between the Queen Anne and Colonial Revival styles.

53. Nellie Clover House
 Designated November 1980

This house is a fine example of a classical turn of the century cottage. The Main Street lot originally belonged to Thomas Binns who died in 1891 and left the property to Eleanor Clover, mother of Melvin Clover. Melvin married his housekeeper, Nellie (nee' de la Riva), and they first occupied the house in 1911. Their marriage lasted less than a year. The house was deeded to Nellie in 1913 and she retained ownership until her death in 1964. The de la Riva family has a long history on Ventura, and the Binns were related to the Sheridans, another prominent family.

The house incorporates several distinctive architectural features. A dentiled Italianate cornice surround the building. A hipped roof with a large shingled pediment porch is supported by classical Corinthian columns. The shingle pediment features a Palladian style vent. The buildings features also include narrow clapboard siding, bay windows and a decorative redwood front door with a sunburst design.

54. Kimball House (Hertel Office Bldg.)
 Designated July 1981

7891 E Telephone Road

Eugene C. Kimball, a well-known rancher and inventor of farm machinery, built this house in 1929 for his growing family. Eugene C. Kimball was the son of Charles Newton Kimball who came to Ventura from Massachusetts in 1876 and farmed near Seaward Avenue between Main Street and Thompson Boulevard. The architect for the house was Alfred Frank Priest of Los Angeles. The house has elements of the Colonial Revival style. Mission style is seen in the arches, courtyard, and the red tile roof, with touches of Monterey revival style in the wood columns. The interior for the house remains much as it did when originally constructed. It is a one-story residence with a basement, of approximately 4,500 square feet, containing four bedrooms located on a little over on1.5 acres.

55. Dunning House
 Designated September 1981

932 E Main Street

This house is a single story California Bungalow built around 1920. It has a side facing the porch. Large stucco columns with a diamond design support the porch roof. The slanted bay
window on the east side of the house contains a window seat. The house is covered with clapboard siding and has a red brick chimney. Both exterior and interior retain the original California Bungalow feeling and are in excellent condition. William Arthur Dunning, a local rancher, constructed the house, which was continuously occupied by the Dunning family until 1965.

56. Granger House 1206 E Main Street
 Designated January 1982

One and a half story vernacular Victorian house featuring a high pitched truncated hipped roof topped with iron cresting and intersecting gables on the south and west side. House built in 1902 by W. H. Granger, a local grocer; his wife Effie lived in the house as late as 1917.

57. Morrison House

331 Poli Street

Designated May 18, 1982
John C. Morrison was the first owner of this property which was built in 1880. The two and onehalf story vernacular Victorian farmhouse features a prominent tower and a profusion of Eastlake details. J. C. Morrison was the first owner of this property. He was prominent locally and was involved in real estate with Thomas Bard. This two-and-a-half story vernacular Victorian farmhouse features a prominent tower and a profusion of Eastlake details. The detailed port frieze combines spindle and spool decoration with cutout stick work. The house was moved from 1785 North Ventura Avenue in 1985 to 320 W. Main Street to undergo restoration before being relocated to 331 Poli Street..

58. Mission Aqueduct
 Designated August 2, 1982

East end of Vince Street

Chumash Indians labored to construct the approximately eight-foot high wall of rubble that forms the main channel of the Mission Aqueduct. Constructed between 1702 and 1850, the aqueduct system included a dam, reservoir, filtration building, lavandaria, and fountains. Starting at the convergence of San Antonio Creek and the Ventura River, the aqueduct extended approximately seven miles, winding its way along the base of the foothills toward the mission and mission gardens, watering farms along the way.

The aqueduct was heavily damaged in the great flood of 1862 , but with repairs, it continued to be used into the 1870's. Dynamite was used to blast a hole through the aqueduct during the construction of a county road. Segments of the aqueduct are still visible today, and a part of the wall exists in the basement of a house built in 1989. Located at the eastern end of Vince and Lewis Streets, it is the largest and most intact stretch of surface aqueduct known to exist. Unique features include a slight elevation of one section to slow the flow of water and prevention of overflow by building up one side of the aqueduct.

The David S. Blackburn house was built in the late 1880s. It was constructed in the late Queen Anne style and has Colonial Revival elements. It is the most elaborate home from the turn of the 2^{th} century still remaining on Main Street. The home is a large, two-story structure with a shingled tower, wrap around porch and an attached water tower. Notable interior features include intricate fireplaces, leaded glass window, arched ceiling, special moldings and hardwood floors. An addition built on the west side for office space makes careful use of matching materials.

60. Alessandro Lagoon
 Designated December 1982

Junction of Vista Del Mar Drive and Alessandro Drive

In the later 19th and early 20th Centuries the site of the Alessandro Lagoon was known as Chautauqua flats and was a popular spot for camping and amusement enterprises. Today, it is one of the few existing fresh water refuges of the Pacific Coast flyway within Ventura County. The area is a triangular piece of land approximately 7.0 acres extending easterly from the junction of Vista Del Mar Drive and Alessandro Drive to a point of approximately 0.3 miles on Alessandro Drive which is west of the northern border fence of U. S. Highway 101. The area is presently enclosed in a seven-foot high chain link fence.

61. Elwell House
 Designated March 7, 1985

143 So Figueroa Street

The Elwell house was built in 1892 and belonged to William Elwell and his wife Elel Frieda Tico Elwell, descendents of important California and Yankee families.

This house is a single story house with a medium pitched hipped roof with an offset gable and slanted bay window. Decorative brackets in sets of three are found under the eaves and the bay window has diamond panes in the upper portion. The front porch, featuring turned columns and saw-tooth molding, has been extended and enclosed. An addition was made to the rear of the house in the 1920's. Asbestos shingles were added to the exterior of the house. Don Parrish restored the house for use as offices.

62. Suyter House

1157 Poli Street
Shaw District
Designated April 22, 1985
The William Suytar house was built in 1890-91 by Selwyn Shaw as a rental house. It is one of three landmarks located in the Selwyn Shaw Historic District: This Queen Anne-style residence features a prominent two-story slanted bay tower which extends from the side facing highpitched gable roof. The tower roof is octagon shaped with a rooster finial at the peak. Decorative details include fish scale shingles, stained glass, dentils and elaborate flower and tendril applied design in small porch gable. The landmark takes its name from 1920s resident William Suyter, who served as a local deputy sheriff. It was moved from 334 S Oak Street at the time of the Beachfront Redevelopment.
63. El Jardin Patio Building

Designated August 12, 1985

The El Jardin (Garden) Patio building was designed as one of the earliest outdoor malls in Southern California. The shopping court was very popular in the 1920s, but El Jardin appears to be the only example built in Ventura. The two-story structure, with shops and offices opening onto an interior courtyard, remains basically unchanged from its original design. A large archway on Main Street leads to a well landscaped courtyard built on three levels. The wood trimmed stucco building has large multi-paned arched windows, wrought iron railing and lamps, carved wooden spools, beams, and brackets and mission tile. Some of the tile has been replaced with brick tile. The use of low pitched tile parapets and flush tile roof lines enhance the effect of a "Spanish Village." In the 1950s, the arched front entrances and side windows on the street level were removed and replaced with large display windows.

El Jardin Patio was designed by the prominent Los Angeles architectural firm of Weber, Staunton and Spalding in 1925 for G.W. Chrisman and W.B. and Mary Alpin. The Alpins ran La Foresial, a flower shop on the west side of the courtyard, for many years. Their son, William Alpin, a photographer for Sunset Magazine, had his studio in the rear of the courtyard.

One of the earliest tenants of El Jardin was the Jack Rose Smart Shop, which was the first retailer in town to sell off-the-rack women's fashion. This store occupied the Main Street location east of the archway. Jack Rose, a man who believed downtown businesses, opened his first Ventura store in 1925 and continued to personally operate a downtown Main Street store until his death in 1955. In 1948, he built the art deco Jack Rose Building on the northwest corner of Main and Chestnut Streets to house his store.

64. Robert Brakey Residence 413 Poli Street Designated October 14, 1985.

The Brakey House was built in 1890 for Ventura's well known house mover, Robert E. Brakey. Although the house has been altered, it still retains the significant features of its original Victorian character. The Brakey family continued to live on this property through the 1930s. Robert Brakey was a City Trustee in 1916-17. His son, John R. Brakey continued the house moving business and among his accomplishments was the moving of the Port Hueneme Lighthouse which, unfortunately, no longer remains. John also accumulated a large collection of historic photographs, which can be seen at the Ventura County Historical Museum.

65. Judge Ben T. Williams House 386 Franklin Lane
 Designated January 26, 1987

The Judge Ben T. Williams House was built on the Avenue around 1890 possibly by Selwyn Shaw. Around 1950 it was moved to Franklin Lane. It is an example of a Queen Anne ranch house, with Stick-Eastlake influence. Benjamin Tully Williams was Judge of the Superior Court of Ventura for many years during the 1890's and early 1900's. He was also one of the most powerful political figures in the County during that time.

66. Charles Corcoran House

Designated April 1, 1986

831 Buena Vista Street

The Charles B. Corcoran Houses embody the distinctive characteristics of a type of and period of construction. The original house, built in the California Bungalow style in 1910, is a single story house with low pitched roofs, a porch with overhanging gables supported by elephantine columns, a cast concrete block foundation, and wood siding. This bungalow also includes a large Palladian bay window. The 1930 house is a much finer example of its style. Built in the Mediterranean, or Spanish Colonial Revival style, the architecture includes a red tile roof with low pitch, stucco walls, arched doorways throughout, wrought iron balconies and railings, and exposed rafters and beams.

67. Charles Cooper House
 163 Cedar Street
 October 14, 1986

Charles L. Cooper, a carpenter, purchased this property in 1886 and built the house in the same year. One of the more noted owners was Mr. Frank White, owner from 1929-49. Mr. White was a horticulturist and developed new strains of many common flowers. The house represents a particular period of local history when Ventura was only a small community; just prior to the tremendous economic boom created by the arrival of the Southern Pacific Railroad in 1887.

68. Josiah Keene House
 Designated September 28, 1987
 41 Bell Way

The Josiah Keene home was built near Ventura Avenue around 1872, making it one of the first grand homes built in San Buenaventura after incorporation. Josiah Keene was a veteran of the Civil War; a former U.S. Treasury employee; and a San Buenaventura area rancher. The house, which was moved to 41 Bell Way in 1928, is perhaps the City's only example of Second Empire/Victorian Residential style.

69. Hartman House 73 No Palm Street
 Designated September 28, 1987

In 1911, the Hartman family moved into this residence. Previously, portions of the San Buenaventura Mission complex and a brewery were on the property. The house is a wellpreserved example of the Craftsman Bungalow style, which was prevalent in California in the first quarter of the $20^{\text {th }}$ century, and contains many of the woodwork details, which were part of that style. Gayle Kieran restored the house in 1988 and it is now used as offices.

70. J. A. Day House
 Designated April 25, 1988

In 1889, prominent local grocer J.A. Day built this Victorian home, in the Stick-Eastlake style. The structure contains unique carpentry work with a profusion of wood detail in the balusters and frieze, with crafted decorative pediments over the windows, and stained glass over the door and around the windows. The J.A. Day home reinforces the historical feeling of the nearby Selwyn Shaw Historic District.

71. Ventura Insurance Bldg
 692 E Main Street (Rosarito Beach Restaurant) Designated April 25, 1988

In 1937, this building was built for the Ventura County Mutual Fire Insurance Company. The concrete structure is unique for San Buenaventura in its classic expression of Art Deco or Moderne style with Aztec Revival flower elements in the design. The noted Los Angeles Architect William W. Ache created the design. Mr. Frank Nam restored the building in 1988 and it is now the Rosarito Beach Restaurant.

72. Erburu House 2465 Hall Canyon Road
 Designated January 5, 1989

The house at 2465 Hall Canyon Road was built in 1909 by Mariano Erburu as a residence for his family. This $11 / 2$ story California Craftsman Bungalow is distinctive in its size, with $4,000 \mathrm{sq} . \mathrm{ft}$ of floor space. The front of the house has a low gable roof with a large gable dormer. The house's exterior is clapboard siding, with wide framed casement and double hung windows. Mr. Erburu, an immigrant from Spain, was a prominent Ventura businessman. Mr. Erburu primarily was in the sheep business and at one time owned a flock of over 300 head. In the late 1890's he also was a partner in a mercantile business with J. Feraud. The house was the first in the area and a focal point for those traveling to Ventura through Hall Canyon. The present owners, Robert and Pauline Chianese, have authentically restored both the interior and exterior of the house.

73. McCoskey Love House 119 S. Figueroa Street
 (Parrish restored to office bldg)
 Designated July 17, 1989

Ada McCoskey Love was the widow of prominent Ventura physician, J. H. Love. Dr. Love came to Ventura in 1891 and was a major figure in the community until his death in 1906. The Loves moved into this house in 1904. The house's style uniquely combines elements of the Italianate period with early Victorian influences. It has been moved twice with its original location being on the northwest corner of Chestnut and East Santa Clara Streets. Mr. Don Parrish has restored the house for use as offices.

74. Kate Duval House
 Designated July 17, 1989

953 E Main Street

The house was built in 1902 as a rental unit for the Eugene W. Duval family and was owned by Kate Duval, wife of Eugene. Mr. Duval operated a hardware store on Main Street. The Duvals lived in the house next door at 943 East Main. The most unique feature of this restored Queen Anne Cottage is the large front slanted bay window with its shingled pediment, sunburst brackets and decorative blocks.

Designated July 17, 1989
This house was built in 1923 by Louis Rudolph and sold to J. Hoover Love, Deputy County Tax Collector and son of the prominent Ventura physician Dr. J. H. Love. It is unique in its blending of a Mediterranean exterior with an American Arts and Crafts Movement interior. The Mediterranean influence. is seen in the parapet roof and symmetrical stucco facade. Craftsman features include a carved wood door with four narrow panes flanked by narrow multi-paned windows. French doors with wrought iron railings are found on each side of the main entrance with raised quatrefoils.

77. Mabel Nellie Owen House Designated January 22, 1990
93 W. Simpson Street Simpson Tract

This Mediterranean style house at 93 W Simpson was the home of Mabel Nellie Owen who was an activist and voice for the Avenue Community for over fifty years. Projects with which she was involved include relocation of the Taylor Ranch feed lots, opposing a proposal to construct a sewer treatment plant next to Sheridan Way School, building of Westpark and Avenue Adult Centers, initiation of a senior mini bus, and construction of the Church of God in Christ church.

77. Dr. Cephus Bard House 52 W. Mission Street Designated April 1, 1991

Dr. Cephus L. Bard, brother of Senator Thomas Bard, was a prominent physician in Ventura during the late 1800's. This house, built in 1886 for Dr. Bard, was originally located on Oak Street. It is one of the few remaining Italianate structures in Ventura and has maintained its integrity over the years.

78. Carlo Hahn House

211 E. Santa Clara Street
Designated July 15, 1991
This two-story residence was built between 1912 and 1914 for Carlo Hahn, an agent for the Bordalino Hat Co. and a partner of Giovanni Ferro. Mr. Ferro, Hahn's brother-in-law, lived next door in the elaborate Italianate villa once owned by the Schiappapietra family. The Hahn House was built to complement the adjacent mansion. It exhibits several characteristics of early Victorian styles although built well after the period ended. The house was remodeled as a restaurant in 1971. The house is listed as a contributing member of the Mission National Historic District.

79. Hammonds/Reese House 637-639 Poli Street
 Designated September 14, 1992

This one and one-half story Queen Anne Victorian has maintained its integrity over the years since being built in 1905. Its several outstanding features include a wraparound porch with Corinthian columns, both slanted and rounded bay windows, windows with diamond patterns, irregular gable roof lines, two tall decorative brick chimneys, decorative brackets under the extended eaves and narrow clapboard siding. The house is located on a prominent hillside and
is surrounded by other designated landmarks - the Ewing House to the west, the Bard Hospital to the east, and remnants of the Theodosia Burr Gardens across the street. The house was originally built for Harry and Dora Hammonds. Mr. Hammonds owned an insurance company in Ventura for over forty years. The second owner in 1912 was David J. Reese. Mr. Reese was the Ventura Postmaster and Editor and proprietor of the Ventura Daily Free Press and the Ventura Weekly Free Press.

80. Pierpont Inn 550 San Jon Road
 Designated February 1, 1993

A two-story hotel built in the Craftsman style in 1908 for Austen Pierpont. Sold in 1928 to Gus and Mattie Gleichmann who restored and enlarged the Inn over the years. President and Mrs. Bush lived in one of the cottages while Mr. Bush was working in the oil business.

81. A. D. Briggs House (Christopher Place)

Designated May 10, 1993
The house was built for Arthur D. Briggs in 1894. It is an unusually fine and well-maintained example of the Queen Anne style and stands with the house next door at 844 Thompson as an example of the many homes that were located in this neighborhood at the turn of the century.

82.

301 S. Dunning Street
Desionated October 12, 1993
This one and a half story English Tudor has a rectangular shape with a high pitched gable roof punctuated by 3 gabled dormer windows. On one side of this house there is a bay window, while the front features a fixed paned window. All other windows are wood casement. A front porch with matching fixed paned windows brick sides and stained glass windows complete the front. This house has a brick driveway with accents of brick and wood planters that complete the landscaping. This home on a corner lot also has many mature trees including a central English yew in the front.

83. Arcade Building 38-50 West Main Street
 Designated March 21, 1994

The area around Ventura Avenue east and west on Main Street was the beginning of the auto sales industry in the City of Ventura during the mid to late 1920s. Auto dealers at $38-50 \mathrm{~W}$. Main Street included Dodge, Chrysler, Edsel and Jaguar as well as vintage car operations. The present owner is Robert Addison. Roy Weatherly of Weatherly Motors was a long time owner.

84. Cassidy Dairy Ranch 3908 Loma Vista Road
 Desionated May 16, 1994

This house was built by noted builder Selwyn Shaw in 1894 on $71 / 2$ acres as a country residence for Richard \& Amelia Cassidy. He farmed oranges, grain and lima beans. In 1911 walnut trees were planted. In the mid 1920s Cassidy started a dairy, "Cassidy Dairy Ranch" which was
discontinued in 1935 upon the death of Richard Cassidy. The barn was built in 1899 by Fred Cassidy. Glen Cassidy, grandson of Richard, built his small house on the site in 1952.

85. San Buenaventura
 Mission Lavanderia
 Under Storeroom
 Designated November 14, 1994

The Mission Lavanderia was built and probably used in conjunction with the aqueduct. Because Spanish artisans were at the Mission between 1790-95 the Lavanderia and aqueduct were undoubtedly built in the earlier part of the time span of 1792-1815. The water ran from the Mission aqueduct to the fountain and into the central tank and eventually emptied into the Mission gardens to the west.

The Mission era Lavanderia was discovered under the storage behind the Peirano Market and Wilson Studio (204/208 E: Main Street) when the buildings were to be rehabilitated in 1991. Many post mission era artifacts including bottles, porcelain, stoneware, and abalone shells were found in the crawl space under the floor of the storage areas. A segment of mortared Mission floor tile was also found in the crawl space.

86. Erle Stanley Gardner Office
 Designated February 6, 1995
 21 So. California Street, Room 306

Erle Stanley Gardner was the author of 82 Perry Mason mystery novels. Gardner moved to Ventura in 1915. He practiced law in 1921 and lived here until 1934. Gardner lived in four different residences in the 15 years he spent in Ventura, only the last of which is still standing. This residence is located at 2420 Foster Avenue. His office was located in Room 306 at the northeast corner of 21 S . California Street in the First National Bank Building. The office is presently occupied by a law firm. The specific office Gardner occupied does not retain any of Gardner's personal objects.

87. Casa de Anza

Designated March 23, 1998

606-612 N Ventura Ave
 11-15 E Simpson St

The Casa de Anza apartment building was originally constructed in 1929 by Richard Langdon and the building is an example of the Spanish Colonial Revival style of the 1920's. The apartment building was erected as a direct result of the oil boom occurring on the Avenue and the resultant need for housing oil workers. After the building is restored the ground floor will be used as a library.

88. WWII Gun Emplacements Near Ventura River mouth
 Designated September 1998

Today it is estimated that of the 10 original Southern California coastal artillery sites, only three remain, one of which is Ventura's Battery 2. Ventura is fortunate to have such a rare and
important reminder of W.W. II. Presently the remains of the emplacements are two large concrete rings approximately 38 feet in diameter. The rings are topped with a steel rail.

89. Norton Ranch House 71 North Palm Street
 Designated October 1998

This Craftsman style house was built in 1910 by Mr. Norton for his home in the 40 -acre walnut grove located off of Bristol Road in east Ventura. During the twentieth century many prominent families, Cheney, Callens, Vanoni, Ramelli and De Silva, connected to the house. In 1990, the house was moved to 71 North Palm Street and restored. It is currently being used as a restaurant.

90. John C Fremont Camp 100 Block East Main Street

Designated January 11, 1999
John C. Fremont led an expedition of troops, horses and supplies from Monterey to San Buenaventura during late 1846 and early 1847, during the War with Mexico. The trip south was arduous and, in the afternoon of January 5, 1847, Fremont and his remaining expedition entered San Buenaventura and camped overnight in the orchard west of the San Buenaventura Mission Garden wall. On the rise above the Mission, a small bank of Californians was seen and Fremont and his troops fired on them. The Californians scattered and Fremont's men guarded the top of the hill all night. During that night, Fremont captured Don Jose Arnaz, a local merchant and threatened his life until Arnaz gave Fremont military information and supplies. Arnaz was released. Land that Arnaz had purchased from the Mission in 1846 was taken from him by the United States government, which did not recognize his title to the land. The land was later returned to him by the U.S. Courts. In 1850, Arnaz sold the land to Dr. Manual R. de Poli, a Spanish physician.

91. China Alley Historic Area 200 Block East Main

In the late nineteenth century, a flourishing Chinese settlement made up of merchants, laborers, and families settled on Figueroa Street, between Main and Santa Clara Street and China Alley, a former street that ran perpendicular to Figueroa Street in the middle of the newly incorporated township of San Buenaventura.

92. Louis Rudolph
 Craftsman Bungalow
 Designated March, 2002

958 E. Santa Clara Street

This single-story Craftsman Bungalow was built by local contractor Louis Rudolph in 1922 and lived in by his family until 1925, when he sold the lot to Amos Lovoorn, Manager of the J.C. Penney Company. Mr. Rudolph built the house next door and also built the Elk's Lodge on Main Street and Ash Street.

The house is a well-designed bungalow with a basement. The low-pitched hipped gable roof has exposed rafters under the broad eaves. Two large square stuccoed columns supported the hipped gable roof and cross-beam. A half brick design is featured on both the columns and the
fireplace. The house has narrow clapboard on the upper portion and shingles on the lower portion.

93. Five Trees

Hilltop above Ventura
Ventura County LM
Joseph Sexton, a Ventura horticulturist noted for his work with walnuts, avocados, and pampas grass, hired his neighbor Owen Marron to plant a row of 13 blue gum eucalyptus trees on the hilltop to mark the western boundary of his ranch. In 1903 a brush fire destroyed all but five of the trees. Old mariners charts show the five trees as a navigating landmark. Vandals cut down three of the approximately 60^{\prime} tall trees on Halloween 1940 leaving only two standing. Local citizens replaced the lost trees but on Halloween 1956 vandals struck again, leaving only one original tree and one replacement tree standing. Replacement trees were again planted but two died. In 1966 the Ventura Junior Womens Club planted more replacement trees. Now, only two trees remain standing.

94. Saticoy Walnut Growers
 Association Warehouse

This warehouse was built for drying and shipping Diamond Brand walnuts for the California Walnut Growers Association. The association was established by leaders of the Sunkist citrus industry. Many of the techniques perfected by the citrus industry, including Charles C. Teagues' cooperative marketing methods, were used to market walnuts. Eugene C. Kimball, a local resident, perfected a new way to dry walnuts which greatly reduced product losses. The building is one of two large agricultural warehouses in Saticoy located on opposite sides of a Southern Pacific Railroad spur track.

95. Saticoy Bean Warehouse 10995 Azahar Street Ventura County LM

This warehouse served the area's important local lima bean industry. The bean warehouse and neighboring Saticoy Walnut Growers warehouse, stand today as important reminders of the agricultural history and the growth of the farming cooperative movement in California.

96. The Farmers \& Merchants 1203 Los Angeles Avenue Ventura County LM Bank of Santa Paula

This neo-classical building housed the first branch bank in Ventura County. It stands as a reminder of Saticoy's vitality as an important agricultural shipping community around the turn of the century.

HISTORIC DISTRICTS

Mission Historic District	Boundaries:	E. Santa Clara Street Ventura Avenue Poli Street Palm Street
		Plaza Park/Houses

on Thompson Boulevard
608, 620, 632, 644,
658, 670, 682 and 692

Selwyn Shaw Historic District

Simpson Tract Historic District

Boundaries: Buena Vista Street Ann Street
Hemlock Street Poli Street

Boundaries:

Sheridan Way Ventura Avenue W. Prospect Street W. Simpson Street

Appendix E
Traffic Study

CITY OF SAN BUENAVENTURA

General Plan Circulation Element Update Traffic Study

August 2005

DRAFT

CITY OF SAN BUENAVENTURA GENERAL PLAN CIRCULATION ELEMENT UPDATE Traffic Study

Prepared by:

Austin-Foust Associates, Inc.
2020 North Tustin Avenue
Santa Ana, California 92705-7827
(714) 667-0496

August 19, 2005

CONTENTS

Page

1.0 INTRODUCTION

Background and Scope 1-1
Street System Performance Criteria 1-2
Definitions 1-4
References 1-7
2.0 EXISTING CONDITIONS
Arterial Street System 2-1
Transit 2-4
Bicycles 2-10
3.0 LONG-RANGE TRAFFIC ANALYSIS
Overall Approach 3-1
Future Growth Alternatives 3-2
Baseline Transportation Improvements 3-2
Scenario 1 - Intensification/Reuse Only 3-3
Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra 3-3
Scenario 3 - Intensification/Reuse + North Avenue + Olivas 3-23
Scenario 4 - Intensification/Reuse + North Avenue + Serra 3-34
Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga 3-45
Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia 3-50
4.0 ARTERIAL STREET SYSTEM
Overview 4-1
Street Classification System 4-1
Principal Intersections 4-6
Citywide Street Classification 4-6
Scenario 1 - Intensification/Reuse Only 4-12
Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra. 4-12
Scenario 3 - Intensification/Reuse + North Avenue + Olivas 4-12
Scenario 4 - Intensification/Reuse + North Avenue + Serra 4-19
Scenario 5 - Intensification/Reuse + North Avenue + Western Cañada Larga 4-19
Scenario 6 - Intensification/Reuse + North Avenue + Poinsettia 4-19
Traffic Calming 4-26
5.0 SPECIAL ISSUES
Cedar Street Northerly Extension 5-1
Additional Crossing Of The Santa Clara River 5-3
Olivas Park Drive Extension 5-3
APPENDIX A: Intersection Capacity Utilization Worksheets

CONTENTS (cont)

APPENDIX B: Circulation Element Community Input

Ventura Vision B-1
General Plan Advisory Committee (GPAC) B-2
Arterial Streets B-2
Public Transit B-6
Bikeways B-8

LIST OF FIGURES

Page

FIGURES

2-1 Existing Midblock Lanes 2-2
2-2 Existing ADT Volumes (000s) 2-3
2-3 Intersection Location Map 2-5
2-4 Existing Intersection Capacity Utilization (ICU) 2-8
2-5 Existing Bus Routes 2-9
2-6 Existing System of Bikeways 2-13
2-7 Bikeway Classifications 2-14
3-1 Existing and Future ADT by Subarea - Scenario 1 3-5
3-2 2025 ADT Volumes (000s) - Scenario 1 (Baseline Network) 3-6
3-3 2025 Intersection Capacity Utilization (ICU) - Scenario 1 (Baseline Network) 3-7
3-4 Existing and Future ADT by Subarea - Scenario 2 3-13
3-5 2025 ADT Volumes (000s) - Scenario 2 (Baseline Network) 3-15
3-6 2025 Intersection Capacity Utilization (ICU) - Scenario 2 (Baseline Network) 3-16
3-7 Existing and Future ADT by Subarea - Scenario 3 3-25
3-8 2025 ADT Volumes (000s) - Scenario 3 (Baseline Network) 3-26
3-9 2025 Intersection Capacity Utilization (ICU) - Scenario 3 (Baseline Network) 3-27
3-10 Existing and Future ADT by Subarea - Scenario 4 3-36
3-11 2025 ADT Volumes (000s) - Scenario 4 (Baseline Network) 3-37
3-12 2025 Intersection Capacity Utilization (ICU) - Scenario 4 (Baseline Network) 3-38
3-13 Existing and Future ADT by Subarea - Scenario 5 3-47
3-14 2025 ADT Volumes (000s) - Scenario 5 (Baseline Network) 3-48
3-15 2025 Intersection Capacity Utilization (ICU) - Scenario 5 (Baseline Network) 3-49
3-16 Existing and Future ADT by Subarea - Scenario 6 3-58
3-17 2025 ADT Volumes (000s) - Scenario 6 (Baseline Network) 3-59
3-18 2025 Intersection Capacity Utilization (ICU) - Scenario 6 (Baseline Network) 3-60
4-1 Functional Classifications - Conceptual Cross-Sections 4-4
4-2 Roadway Cross-Sections 4-7
4-3 Roadway Cross-Sections (Continued) 4-8
4-4 Roadway Cross-Sections (Continued) 4-9
4-5 Principal Intersections 4-11
4-6 Roadway Classifications - Scenario 1 4-13
4-7 2025 ADT Volumes (000s) - Scenario 1 (Baseline Network) 4-14
4-8 Roadway Classifications - Scenario 2 4-15
4-9 2025 ADT Volumes (000s) - Scenario 2 (Alternative Network) 4-16
4-10 Roadway Classifications - Scenario 3 4-17
4-11 2025 ADT Volumes (000s) - Scenario 3 (Alternative Network) 4-18
4-12 Roadway Classifications - Scenario 4 4-20
4-13 2025 ADT Volumes (000s) - Scenario 4 (Alternative Network) 4-21
4-14 Roadway Classifications - Scenario 5 4-22
4-15 2025 ADT Volumes (000s) - Scenario 5 (Alternative Network) 4-23
4-16 Roadway Classifications - Scenario 6 4-24
4-17 2025 ADT Volumes (000s) - Scenario 6 (Alternative Network) 4-25
5-1 2025 ADT Volumes (000s) - Scenario 5 (Alternative Network with Cedar Street Extension) 5-2
5-2 2025 ADT Volumes (000s)-Scenario 2 (Alternative Network with Santa Clara River Crossing) 5-4
5-3 2025 ADT Volumes (000s)-Scenario 6 (Alternative Network with Olivas Park Extension) 5-6
A-1 Intersection Location Map A-5
LIST OF TABLES
Page
TABLES
1-1 Arterial Intersection Performance Criteria 1-3
1-2 Level of Service Descriptions - Urban Streets 1-5
1-3 Level of Service Descriptions - Signalized Intersections 1-6
2-1 Existing ICU Summary 2-6
3-1 Land Use and Trip Generation by Sub-Area - 2025 Scenario 1 3-4
3-2 Roadway Improvements - Scenario 1 3-8
3-3 2025 ICU Summary - Scenario 1 3-9
3-4 Land Use and Trip Generation by Sub-Area - 2025Scenario 2 3-12
3-5 Roadway Improvements - Scenario 2 3-17
3-6 2025 ICU Summary - Scenario 2 3-19
3-7 Land Use and Trip Generation by Sub-Area - 2025 Scenario 3 3-24
3-8 Roadway Improvements - Scenario 3 3-28
3-9 2025 ICU Summary - Scenario 3 3-30
3-10 Land Use and Trip Generation by Sub-Area - 2025 Scenario 4 3-35
3-11 Roadway Improvements - Scenario 4 3-39
3-12 2025 ICU Summary - Scenario 4 3-41
3-13 Land Use and Trip Generation by Sub-Area - 2025 Scenario 5 3-46
3-14 Roadway Improvements - Scenario 5 3-51
3-15 2025 ICU Summary - Scenario 5 3-53
3-16 Land Use and Trip Generation by Sub-Area - 2025 Scenario 6 3-57
3-17 Roadway Improvements - Scenario 6 3-62
3-18 2025 ICU Summary - Scenario 6 3-64
4-1 Street Classifications 4-3
4-2 Street Section Space Allocation Examples 4-10
4-3 Traffic Calming Toolbox 4-28
B-1 Arterial Streets GPAC and Public Comments - March 13, 2202 B-3
B-2 Public Transit GPAC and Public Comments - March 13, 2202. B-7
B-3 General Bikeway Plan B-9

Chapter 1.0 INTRODUCTION

This technical report has been prepared as a resource document for the General Plan Circulation Element update being undertaken by the City of San Buenaventura. It is intended to provide technical material and other information pertaining to the Circulation Element Update.

BACKGROUND AND SCOPE

This report provides baseline information with respect to circulation, and then focuses on specific aspects of circulation planning such as performance criteria, future traffic demands, long-range highway capacity needs, and issues pertaining to transit and bicycle circulation. Technical information and discussions are provided as appropriate, and additional detailed data is attached as Appendices.

The remainder of this chapter discusses performance criteria for the arterial street system, indicating the policy and technical aspects of this important aspect of circulation planning. Chapter 2.0 then describes existing conditions for all modes of transportation. The arterial street system performance criteria are applied to recent traffic count data to provide a description of existing conditions.

Chapter 3.0 presents future traffic forecasts and analyzes long-range capacity needs on the Citywide street network. Various land use and network alternatives are tested and evaluated to assist in formulating the arterial street component of the Circulation Element.

Chapter 4.0 addresses the Circulation Element itself, and discusses various issues that have guided the preparation of the Element. Specific components of the Element are discussed here in detail, and in particular, the classification system for the arterial street component. Comments received from public participation in the General Plan process, and notes on how they have been used in preparing the updated Circulation Element can be found in Appendix B.

STREET SYSTEM PERFORMANCE CRITERIA

To evaluate the Circulation Element arterial street system in relation to the Land Use Element, use is made of performance criteria. These criteria include "performance standards" and "thresholds of significance," the latter being used for identifying project impacts in an EIR context. The performance standards form part of City Policy as contained in the Circulation Element and represent desired operating conditions for the City's street system. For the Circulation Element to be in "balance" with the Land Use Element, the circulation system must achieve such standards.

Performance Criteria Definitions

The performance criteria used here are based on two primary measures. The first is "capacity" which establishes the vehicle carrying ability of a roadway and the second is "volume." The ratio between the volume and the capacity gives a volume/capacity (V/C) ratio and based on that V / C ratio, a corresponding level of service (LOS) is defined. A later section of this chapter contains level of service descriptions for arterial roadways and freeways as contained in the 2000 Highway Capacity Manual (HCM) 2000 (see Reference 2 at the end of this chapter).

The analysis of the arterial road system is based on intersection capacity since this is the defining capacity limitation on an arterial highway system. Levels of service for arterial roadway intersections are determined based on operating conditions during the AM and PM peak hours. The intersection capacity utilization (ICU) methodology is applied using peak hour volumes and the geometric configuration of the intersection. This methodology sums the V / C ratios for the critical movements of an intersection and is generally compatible with the intersection capacity analysis methodology outlined in the HCM 2000.

The ICU calculation methodology and associated impact criteria used for the study area arterial system are summarized in Table 1-1. The performance standards (level of service "D" or "E" depending on location) are established by City Policy in the Circulation Element. The calculation methodology, which includes saturation flow rate and clearance interval parameters that are representative values for planning purposes, could change over time in response to changes in technical procedures used for such purposes.

Table 1-1

ARTERIAL INTERSECTION PERFORMANCE CRITERIA

V/C Calculation Methodology

Level of service to be based on peak hour intersection capacity utilization (ICU) values calculated using the following values:

Saturation Flow Rate: 1,600 vehicles/hour/lane.

Clearance Interval: none

Performance Standard

Level of Service E (peak hour ICU less than or equal to 1.00) for freeway ramp intersections. Level of Service D (peak hour ICU less than or equal to 0.90) for all other Principal Intersections*.

Threshold of Significance (for impact analyses)

For an intersection that is forecast to operate worse than it's performance standard, the impact of a given project is considered to be significant if the project increases the ICU by more than 0.01 . An ICU increase of more than .01 does not cause the threshold of significance to be exceeded if the with-project ICU does not exceed the maximum ICU value.

Level of Service

Level of service ranges are as follows:

ICU	LEVEL OF SERVICE (LOS)
$0.00-0.60$	A
$0.61-0.70$	B
$0.71-0.80$	C
$0.81-0.90$	D
$0.91-1.00$	E
Above 1.00	F

* See definition of Principal Intersections in Chapter 4

Level Of Service Descriptions

Tables 1-2 and 1-3 summarize the level of service descriptions for arterial highways and intersections, respectively. These descriptions are taken from material contained in HCM 2000.

DEFINITIONS

Certain terms used throughout this report are defined below to clarify their intended meaning:

ADT Average Daily Traffic. Generally used to measure the total two-directional traffic volumes passing a given point on a roadway.

DU Dwelling Unit. Used in quantifying residential land use.
ICU Intersection Capacity Utilization. A measure of the volume to capacity ratio for an intersection. Typically used to determine the peak hour level of service for a given set of intersection volumes.

LOS Level of Service. A scale used to evaluate circulation system performance based on intersection ICU values or volume/capacity ratios of arterial segments.

Peak Hour This refers to the hour during the AM peak period (typically $7 \mathrm{AM}-9 \mathrm{AM}$) or the PM peak period (typically 3 PM - 6 PM) in which the greatest number of vehicle trips are generated by a given land use or are traveling on a given roadway.

TSF Thousand Square Feet. Used in quantifying non-residential land uses, and refers to building floor area.

V/C Volume to Capacity Ratio. This is typically used to describe the percentage of capacity utilized by existing or projected traffic on a segment of an arterial or intersection.

VPD Vehicles Per Day. Similar to ADT, but more typically applied to trip generation (i.e., the amount of traffic generated by a given amount of land use).

VPH Vehicles Per Hour. Used for roadway volumes (counts or forecasts) and trip generation estimates. Measures the number of vehicles in a one hour period, typically the AM or PM peak hour.

Table 1-2

LEVEL OF SERVICE DESCRIPTIONS - URBAN STREETS

The average travel speed along an urban street is the determinant of the operating level of service (LOS). The travel speed along a segment, section, or entire length of an urban street is dependent on the running speed between signalized intersections and the amount of control delay incurred at signalized intersections. The following general statements characterize LOS along urban streets and show the relationship to free flow speeds (FFS)

	PERCENT	
LOS	DESCRIPTION	OF FFS

A LOS A describes primarily free-flow operations at average travel speeds, usually about 90 percent of the FFS for the given street class. Vehicles are completely unimpeded in their ability to maneuver within the traffic stream. Control delay at signalized intersections is normal.

B LOS B describes reasonably unimpeded operations at average travel speeds, usually about 70 percent of the FFS for the street class. Vehicles are completely unimpeded in their ability to maneuver with the traffic stream. Control delay at signalized intersections is minimal.

C LOS C describes stable operations; however, ability to maneuver and change lanes in midblock locations may be more restricted that at LOS B, and longer queues, adverse signal coordination, or both may contribute to lower average travel speeds of about 50 percent of the FFS for the street class.

D LOS D borders on a range in which small increases in flow may cause substantial increases in delay and decreases in travel speed. LOS D may be due to adverse signal progression, inappropriate signal timing, high volumes, or a combination of these factors. Average travel speeds are about 40 percent of FFS

E LOS E is characterized by significant delays and average travel speeds of 33 percent or less of the FFS. Such operations are caused by a combination of adverse progression, high signal density, high volumes, extensive delays at critical intersections, and inappropriate signal timing.

F LOS F is characterized by urban street flow at extremely low speeds, typically one-third to onefourth of the FFS. Intersection congestion is likely at critical signalized locations, with high delays, high volumes, and extensive queuing.

Source: Highway Capacity Manual 2000, Transportation Research Board, National Research Council

Table 1-3

LEVEL OF SERVICE DESCRIPTIONS - SIGNALIZED INTERSECTIONS

Levels of service (LOS) for signalized intersections are defined in terms of control delay as follows:

		DELAY PER
LOS	DESCRIPTION	VEHICLE (secs)

A LOS A describes operations with low control delay, up to 10 seconds per vehicle. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.

B LOS B describes operations with control delay greater than 10 and up to 20 seconds per vehicle. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than the LOS A, causing higher levels of delay.

C LOS C describes operations with control delay greater than 20 and up to 35 seconds per vehicle. These higher delays may result from only fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

D LOS D describes operations with control delay greater than 35 and up to 55 seconds per vehicle. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high V/C ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

E LOS E describes operations with control delay greater than 55 and up to 80 seconds per vehicle. These high delay values generally indicate poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent.

F LOS F describes operations with control delay in excess of 80 seconds per vehicle. This level, considered unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high V/C ratios with many individual cycle failures. Poor progression and long cycle lengths may also contribute significantly to high delay levels.

Source: Highway Capacity Manual 2000, Transportation Research Board, National Research Council

REFERENCES

1. City of Ventura Comprehensive Plan Update, Baseline Conditions Assessment, July 2002.
2. "Highway Capacity Manual 2000," Transportation Research Board, National Research Council.
3. City of Ventura, Annual Transportation Report, May 2005.
4. "General Bikeway Plan," City of Ventura, January 2005.
5. "City of Ventura Traffic Model Description and Validation," June 2005.

Chapter 2.0 EXISTING CONDITONS

This chapter discusses the transportation setting for the City of Ventura circulation system. Existing conditions are described for the various circulation system components addressed in the Circulation Element.

ARTERIAL STREET SYSTEM

The Citywide street system is illustrated in Figure 2-1. Shown here are those streets that are included in the Circulation Element, together with the existing midblock lanes on each street segment. Traffic conditions on the street network are described in terms of traffic volumes on the individual streets and also in terms of intersection operation. The former uses average daily traffic (ADT) as the measure of traffic usage, while the latter examines peak hour volumes to determine how well an intersection performs during rush hours. Specific "performance criteria" are used to evaluate intersections throughout the City, and these were discussed in Chapter 1.0.

The City prepares an annual monitoring report which provides traffic count data, level of service summaries and information on planned improvements at individual intersections. The latest report was released in October 2003 (see Reference 3 at the end of Chapter 1.0). Information, such as lane configurations, has been taken from that report.

Existing ADT volumes

Figure 2-2 shows the existing ADT volumes on the arterial street system. These volumes are based on counts taken in 2004 and represent two-direction 24-hour vehicles on an average weekday. As noted in the discussion on performance criteria, such volumes are not used directly in level of service criteria, but serve a number of purposes relative to evaluating the usage of the arterial street system. In particular, they provide one of the criteria for determining functional classification (see discussion on functional classifications in Chapter 4.0 of this report and also in the Circulation Element).

Figure 2-2
EXISTING ADT VOLUMES (000s)

Existing Levels Of Service

As discussed in the performance criteria section of Chapter 1.0, level of service (LOS) on the arterial street system is defined according to peak hour intersection performance using Intersection Capacity Utilization (ICU) values. Figure 2-3 shows the intersections included in this evaluation and Table 2-1 lists the current ICUs and corresponding LOS values (ICU calculations can be found in Appendix A). The ICUs and LOS values are also illustrated in Figure 2-4, which shows the highest of the AM or PM ICU values at each intersection. As can be seen here, one location does not meet the performance standard. This location is Ventura Boulevard at North Bank Drive (PM LOS "F").

Improvements at several intersections in the City (including Ventura Boulevard and North Bank Drive) are noted in the City's annual transportation report referenced earlier.

TRANSIT

The bus routes currently serving the City are illustrated in Figure 2-5. Service is provided by South Coast Area Transit (SCAT), with all six routes operating on both weekdays and weekend days. The routes serve major activity centers throughout the City, and as discussed in the bicycle section later in this chapter, buses are able to transport bicycles by means of special racks mounted on the buses.

Ventura Intercity Service Transit Authority (VISTA) provides bus service between Ventura and Santa Barbara via the transit center at Pacific View Mall, and intercity service to Oxnard, Camarillo, Thousand Oaks, Santa Paula, Fillmore and Los Angeles.

Rail transit service is provided by Metrolink and AMTRAK, and the above referenced figure shows the station locations.

Metrolink provides rail service between Ventura and Union Station in Los Angeles on the Ventura County line. A Metrolink station operates in the City of Ventura at Ventura Boulevard and Inez Street (the Montalvo Station). Presently, two trains in both the AM and PM operate the entire length of the route between Ventura and Union Station.

Rail service to the City of Ventura is also provided by AMTRAK via the Pacific Surfliner, which runs between San Luis Obispo to the north and San Diego to the south. The station is an unstaffed facility

Table 2-1				
INTERSECTION	AM PEAK HOUR		PM PEAK HOUR	
	ICU	LOS	ICU	LOS
1. Victoria \& Foothill	. 46	A	. 47	A
2. Victoria \& Loma Vista	. 51	A	. 45	A
3. Victoria \& Telegraph	. 57	A	. 69	B
4. Victoria \& Woodland	. 64	B	. 50	A
5. Victoria \& SR 126 SB Ramps	. 53	A	. 78	C
6. Victoria \& Thille	. 49	A	. 51	A
7. Victoria \& Telephone	. 57	A	. 63	B
8. Victoria \& Ralston	. 59	A	. 74	C
10. Victoria \& Moon	. 50	A	. 53	A
14. Hill \& Telephone	. 53	A	. 45	A
15. Johnson \& Telephone	. 42	A	. 52	A
18. Seaward \& US 101 NB Ramps	. 47	A	. 54	A
19. Monmouth/US 101 SB \& Harbor	. 48	A	. 62	B
20. Harbor \& Olivas Park	. 39	A	. 54	A
23. Mills \& Loma Vista	. 33	A	. 40	A
24. Mills \& Telegraph	. 45	A	. 48	A
25. Mills \& Maple	. 47	A	. 48	A
26. Mills \& Dean	. 51	A	. 53	A
27. Mills \& Main	. 59	A	. 61	B
28. US 101 NB Ramps \& Main	. 60	A	. 67	B
29. SR 126 EB Ramps \& Main	. 37	A	. 51	A
30. Callens \& Main	. 34	A	. 55	A
31. Donlon \& Main	. 45	A	. 69	B
32. Telephone \& Main	. 43	A	. 63	B
33. US 101 NB Ramps \& Telephone	. 39	A	. 60	A
34. Portola \& Telephone	. 38	A	. 45	A
35. Saratoga \& Telephone	. 32	A	. 42	A
38. Telephone \& Market	. 38	A	. 57	A
42. Telephone \& McGrath	. 24	A	. 45	A
45. Catalina \& Main	. 48	A	. 48	A
46. Seaward \& Main	. 49	A	. 55	A
47. Main \& Loma Vista	. 48	A	. 44	A
49. Main \& Telegraph	. 38	A	. 54	A
50. Emma \& Main	. 31	A	. 41	A
51. Lemon Grove \& Main	. 31	A	. 41	A
53. Kimball \& Telephone	. 69	B	. 53	A
55. Kimball \& SR 126 EB Ramps	. 35	A	. 34	A
56. Kimball \& SR 126 WB Ramps	. 60	A	. 34	A
58. Kimball \& Telegraph	. 21	A	. 30	A
60. Ramelli \& Telephone	. 29	A	. 53	A
61. Montgomery \& Telephone	. 54	A	. 36	A
63. Petit \& Telephone	. 43	A	. 58	A
65. Sanjon \& Thompson	. 35	A	. 40	A
68. Seaward \& Thompson	. 42	A	. 55	A
71. Sanjon \& Harbor	. 32	A	. 53	A
75. Ashwood \& Telegraph	. 29	A	. 42	A
77. Day \& Telegraph	. 40	A	. 37	A
85. Victoria \& Olivas Park	. 77	C	. 79	C
86. Telephone \& Olivas Park	. 53	A	. 66	B
91. Johnson \& Ralston	. 53	A	. 62	B

Table 2-1 (cont) EXISTING ICU SUMMARY				
INTERSECTION	AM PEAK HOUR		PM PEAK HOUR	
	ICU	LOS	ICU	LOS
92. Johnson \& Bristol	. 74	C	. 80	C
94. Johnson \& North Bank	. 60	A	. 70	B
95. Bristol \& Ramelli	. 42	A	. 21	A
96. Montgomery \& North Bank	. 39	A	. 29	A
100. Saticoy \& Telephone	. 43	A	. 41	A
101. Saticoy \& Telegraph	. 46	A	. 42	A
102. Wells \& Telegraph	. 54	A	. 52	A
104. Wells \& SR 126 EB Ramps	. 73	C	. 63	B
105. Wells \& Darling	. 72	C	. 78	C
106. Wells \& Telephone	. 78	C	. 72	C
114. California \& Thompson	. 52	A	. 54	A
115. Chestnut \& Thompson	. 42	A	. 50	A
120. Ventura \& Main	. 35	A	. 60	A
132. Ventura \& Stanley	. 55	A	. 61	B
136. US 101 SB Ramps \& Valentine	. 40	A	. 44	A
138. Johnson \& US 101 SB Ramps	. 42	A	. 51	A
160. Victoria \& US 101 NB Ramps	. 66	B	. 60	A
161. Victoria \& Valentine	. 43	A	. 61	B
162. California \& Harbor	. 16	A	. 29	A
163. Santa Clara \& Main	. 23	A	. 23	A
164. Seaward \& Poli	. 39	A	. 44	A
165. Seaward \& Harbor	. 57	A	. 59	A
166. College \& Telegraph	. 33	A	. 38	A
168. Day \& Foothill	. 71	C	. 72	C
169. Kimball \& Foothill	. 46	A	. 40	A
170. Petit \& Foothill	. 26	A	. 12	A
171. Saticoy \& Foothill	. 27	A	. 23	A
172. Wells \& Foothill	. 22	A	. 16	A
173. Victoria \& SR 126 WB Ramps	. 65	B	. 61	B
174. Petit \& Telegraph	. 34	A	. 24	A
175. Ventura \& Northbank	. 51	A	1.22	F
176. Saticoy \& Darling	. 31	A	. 23	A
177. Wells \& SR 126 WB Ramps	. 24	A	. 33	A
178. SR-33 Ramps \& Stanley	. 49	A	. 56	A
179. SR-33 Ramps \& Shell	. 71	C	. 70	B
180. Estates \& Telegraph	. 26	A	. 39	A
181. Ventura \& Ramona	. 31	A	. 45	A
182. Olive \& Main	. 47	A	. 47	A
Level of service ranges: $\begin{gathered} .00-.60 \mathrm{~A} \\ .61-.70 \mathrm{~B} \\ .71-.80 \mathrm{C} \\ .81-.90 \mathrm{D} \\ .91-1.00 \mathrm{E} \end{gathered}$ Above 1.00 F				
Note: Gray shading denotes intersection locations that exceed performance criteria.				

City of San Buenaventur
City of San Buenaventura
General Plan Circulation Element Update Traffic Study

located at Harbor Boulevard and Figueroa Street adjacent to the Ventura County Fairgrounds (Seaside Park). Four trains operate daily, with one additional train on the weekends and one additional train that operates only during the weekdays.

BICYCLES

The City has a comprehensive report labeled the "General Bikeway Plan" which was adopted by the City Council in January 2005 (see Reference 4 at the end of Chapter 1.0). It provides detailed information on the current Bikeway Plan, and an implementation program for augmenting the existing system. The plan seeks a "citywide bikeway system that serves the needs of both commuter and recreational cyclists." The following discussion summarizes key information from that report.

Overview

The City's General Plan contains policies within the Circulation Element and the Park and Recreation Element that relate to bikeways and support facilities within the City. The Select System of Bikeways Map, adopted by the City Council on December 13, 1999, delineates existing and proposed bikeways which connect major destinations such as schools, businesses, public facilities, transit centers, and regional trails. The Map also indicates the location of amenities such as bike racks, restrooms, and shower facilities. Also, the City has sections in its Ordinance Code which require standards for bicycle parking facilities in new development thereby encouraging greater use of bicycles as an alternate form of transportation.

The General Bikeway Plan is designed to facilitate the following actions:

- Address and expand upon existing City policies and establish related goals.
- Recommend bikeway design standards.
- Evaluate existing bicycle safety and education programs and make recommendations for enhancement.
- Identify priorities and a phasing plan for implementation of the Select System of Bikeways Map.
- Identify and recommend potential funding alternatives and other opportunities for interagency cooperation.

The Plan serves as a flexible, comprehensive and long-range guide for future bicycle planning and design and budgetary decisions, and helps ensure that the City's bicycle transportation and recreational needs are met.

Bicycle Advisory Team (BAT)

The BAT is an eight-member advisory committee, representing the Traffic Engineering, Planning, Parks, Recreation, and Police functions of the City. The BAT participates in preparing the City's Select System of Bikeways Plan and the General Bikeway Plan. In addition, BAT members work directly with the public in public workshops and meetings, and the committee has a major role in helping to meet the needs of commuter and recreational cyclists.

Bikeway Plan Components

The California Bicycle Transportation Act outlines the basic elements to be included in a general bikeway plan in order to be acceptable by the California Department of Transportation. This General Bikeway Plan addresses these requirements under the following headings.

- Route Selection - The current recommended bicycle routing within the City is based on the City's Select System of Bikeways Map, which was adopted by the City Council on December, 1999 as part of the General Bikeway Plan noted earlier in this section. The Select System of Bikeways Map was developed in concert with the Linear Park Network, the Land Use Plan Map and the Circulation Plan Map to integrate land use, circulation and recreational considerations.
- Citizen and Community Involvement - Development of a bikeway plan has had considerable community involvement. Entities contributing to this process include the Bicycle Advisory Team (BAT) discussed earlier, and the Parks and Recreation Commission. The Ventura County Transportation Commission was consulted to ensure long-term coordination of the General Bikeway Plan with the Regional Transportation Plan.
- Flexibility and Coordination with Long-Range Transportation Planning - The City's general bikeway plan has been developed to be consistent with local and regional
transportation plans. The City's Engineering, Planning, Police, and Public Works Departments work together to address bicycle transportation issues. These include safety, upgrading of bicycle facilities, maintenance, and the impacts on bicycle travel of capital improvement and major maintenance projects. The City coordinates with the Ventura County Transportation Commission on an annual basis to update the Ventura County Bikeways Map, which depicts bicyclist amenities throughout Ventura County. In addition, Local Bikeway Plans from Ventura County and adjoining Cities, including Oxnard, Santa Paula, Ojai, the Southern California Association of Governments, and Caltrans are reviewed for consistency with the City's Select System of Bikeways Map.
- Rest Facilities and Parking Facilities - The City's Select System of Bikeways Map indicates the location of bicyclist amenities within the system, including access to bicycle parking, storage facilities, and restrooms. City Resolution No. 81-74 establishes guidelines for bicycle parking facilities in conjunction with new construction within the City. The City's Community Development Department has also adopted bicycle rack guidelines as directed in the Resolution. In this regard, the provision of bicycle storage facilities, shower and dressing areas and other amenities is encouraged in the planning of public and private developments.
- Bicycle Safety Education - The General Bikeway Plan provides both physical recommendations (such as bike lanes) and program recommendations. The latter includes efforts to educate bicyclists and motorists, and efforts to increase the use of bicycles as a transportation alternative.

The City's bikeway system is illustrated in Figure 2-6. Bikeways in this system conform to standards and designations established by the California Department of Transportation (Caltrans). Figure 2-7 illustrates the three classes of bikeway facilities, and some discussion on each class of bikeway follows.

Bike Path (Class I)

Class I bike paths are separated from roads by distance or barriers, and cross traffic by motor vehicles is minimized. Bike paths offer opportunities not provided by the road system and can provide recreational opportunities or serve as desirable commuter routes.

Figure 2-6

Figure 2-7
BIKEWAY CLASSIFICATIONS

Design standards require two-way bicycle paths to be a minimum of eight feet wide plus shoulders. Bike paths are usually shared with pedestrians and if pedestrian use is expected to be significant, the desirable width is greater than eight feet, preferably 12 feet wide. Where equestrians are expected, a separate facility is generally recommended. Sidewalks and meandering paths are not considered appropriate to serve as bike paths because they are primarily intended to serve pedestrians, and generally do not meet Caltrans' design standards.

Bike Lane (Class II)

A Class II bikeway is a lane on a road that is reserved for bicycles. The lane is painted with pavement lines and markings and is signed. The lane markings decrease the potential for conflicts between motorists and bicyclists.

With respect to design standards, bike lanes are one-way, with a lane provided on each side of the roadway. They are located between the travel lane and the edge of paving or, if parking is permitted, between the travel lane and the parking lane. The lanes are four feet minimum width and five feet minimum width if parking is permitted.

Bike Route (Class III)

Class III bike routes share existing roads and provide continuity to other bikeways or designated preferred routes through high traffic areas. However, there is no separate lane and bike routes are established by placing "Bike Route" signs along roadways. Signs direct the cyclist and warn drivers of the presence of bicyclists. Since bicyclists are permitted on all roads, the decision to sign a road as a bike route is based on several factors including the advisability of encouraging bicycle travel on the route, serving bicycle demand corridors, and connecting discontinuous segments of bike lanes.

A previous section of this chapter showed the South Coast Area Transit System (SCAT)'s bus routes within the City of San Buenaventura. As noted there, these routes connect most of the major destinations within the City, including the Downtown, the County Government Center, Ventura College and the Arundell Community. The SCAT buses are equipped to transport bicycles. The Pacific View Mall, the National Guard Armory, and the Park and Ride Lot provide bikeway interface with transit routes, enhancing the opportunities to employ multiple modes of transportation in reaching a particular destination.

Chapter 3.0
 LONG-RANGE TRAFFIC ANALYSIS

This chapter discusses future growth in the City and presents traffic forecast data for the Citywide street system. Long-range capacity needs on the street network are then evaluated with specific emphasis on potential new roadways or upgrades to existing roadways. The analysis results provide the basic input for formulating the arterial street component of the Circulation Element (see discussion in next chapter).

OVERALL APPROACH

The arterial street system as depicted in the Circulation Element is designed to be adequate to serve future land uses as depicted in the Land Use Element. It thereby represents a circulation system that is in "balance" with future land uses. The analysis results presented here use long-range traffic forecast data based on buildout of the General Plan land uses to assess future needs and thereby identify a future street network that is adequate to serve those needs.

The approach used here is to apply year 2025 traffic forecasts to the existing system plus committed improvements (i.e., those that are funded and planned for implementation). The resulting information is then used to identify where deficiencies can be anticipated. Additional or expanded roadways are then added to the committed arterial street system until there is adequate capacity to serve the future traffic demands (these are referred to as non-committed improvements). Where appropriate, alternative strategies for achieving a balanced system were tested and evaluated.

Traffic forecast data presented here was produced using the Ventura citywide traffic forecasting model. The model uses future land use and circulation system assumptions to derive corresponding traffic forecast data. A detailed description of the modeling procedures can be found in the traffic model documentation report (Reference 5 at the end of Chapter 1.0).

The evaluation of land use and circulation system alternatives uses the performance criteria described in Chapter 1.0. As discussed there, the procedure is based on peak hour intersection performance with emphasis on the Principal Intersections identified throughout the City. Peak hour intersection capacity utilization (ICU) values are calculated using a "Baseline" set of roadway system
improvements. As discussed in Chapter 1.0, level of service (LOS) "E" (ICU not to exceed 1.00) is the performance standard for freeway ramp intersections and LOS "D" (ICU not to exceed .90) is the performance standard for all other Principal Intersections. Locations not operating at an acceptable LOS with the Baseline Network assumptions are considered deficient, and improvements needed to mitigate the deficiencies are identified.

FUTURE GROWTH ALTERNATIVES

A number of alternatives have been developed for potential growth within the City and its Sphere of Influence (SOI). They portray potential growth in four different area designations:

1. Districts - Commercial and industrial areas that have intensification potential.
2. Corridors - Linear commercial areas along designated arterials that have intensification potential.
3. Expansion Areas - Undeveloped land that is either outside the SOI or requires a "Save Our Agricultural Resources" (SOAR) vote, but has development potential.
4. Infill - General infill throughout the city.

Detailed discussions on these can be found in the reports documenting the development of the land use projections. Six scenarios have been defined which combine individual growth assumptions in the above four area designations. Total citywide growth is similar under each scenario, the differences largely affecting the geographic locations of the growth. In the sections which follow, each scenario is analyzed separately and the corresponding circulation needs evaluated.

BASELINE TRANSPORTATION IMPROVEMENTS

A number of transportation improvements throughout the city are currently committed for construction. They have identified funding sources and are programmed for implementation either through the City's Capital Improvement Program (CIP) or other mechanisms. They are referred to here as the "Baseline Improvements". Although the Baseline improvements are common to all scenarios, for convenience, they are listed as part of the overall improvements recommended with each scenario.

SCENARIO 1 - INTENSIFICATION/REUSE ONLY

This scenario adds an estimated 8,539 new dwelling units and 5.2 million square feet of nonresidential development ${ }^{1}$. It does not have any development in the growth areas, allocating all growth to the other three area designations.

Table 3-1 summarizes the growth for this scenario by a set of sub-areas, and Figure 3-1 shows this growth in diagrammatic form. Shown here is the existing daily trip generation by sub-area and the corresponding growth under this scenario. The overall trip generation increase citywide is 18.7 percent, and the growth is generally spread throughout the City. This scenario establishes a basic set of infill and intensification assumptions that are retained in the other five scenarios.

Year 2025 ADT volumes on the baseline circulation system for this scenario can be seen in Figure 3-2, and the corresponding ICUs are illustrated in Figure 3-3. Transportation improvements to provide adequate capacity for this scenario can be seen in Table 3-2. The corresponding ICU values are listed in Table 3-3 (ICU calculations can be found in Appendix A), which shows the ICU values under Baseline improvements only, and then the values obtained by adding the recommended additional improvements (labeled "non-committed" improvements).

Scenario 1 results in one location requiring additional (non-committed) improvements. This location is the Wells Road and Darling Road intersection.

SCENARIO 2 - INTENSIFICATION/REUSE + NORTH AVENUE + OLIVAS + SERRA

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue, Olivas, and Serra expansion areas. Citywide, this scenario would add an estimated 11,241 dwelling units and 6.4 million square feet of nonresidential development.

Table 3-4 summarizes the growth by sub-area for this scenario, and Figure 3-4 shows this growth in diagrammatic form. Overall growth in trip generation is 22.5 percent, somewhat higher than the 18.7 percent increase in Scenario 1 due to the addition of the two expansion areas.

[^14]Table 3-1
LAND USE AND TRIP GENERATION BY SUB-AREA - 2025 SCENARIO 1

Growth by Land Use Type

	Sub- Area	Residential (DUs)	Non-Residential (TSF)	Office (TSF)	Industrial (TSF)	Hotel (TSF)
1		22	105	400	0	Total (TSF)
2		43	95	50	0	188
3		103	170	0	362	635
4		282	60	0	0	342
5		96	0	9	107	213
6	440	132	100	0	0	232
7	200	43	343	1,016	0	1,402
8	0	0	0	0	0	0
9	50	155	23	725	0	904
10	844	15	149	173	0	338
11	200	50	70	25	0	145
12	10	0	0	0	0	0
13	17	0	0	0	0	0
14	1,147	17	20	0	0	37
15	70	0	0	25	0	25
16	1,196	165	12	0	0	177
17	435	0	0	0	0	0
Total Growth	8,539	1,124	1,147	2,424	469	5,163
Existing	41,784	6,632	5,090	9,900	2,213	23,836
Future	50,323	7,756	6,237	12,324	2,682	28,999
\%	20.4	16.9	22.5	24.5	21.2	21.7
Growth	20					

$$
\begin{aligned}
\text { Abbreviations: } & \text { ADT - Average Daily Trips } \\
& \text { DUs - Dwelling Units } \\
& \text { TSF - Thousand Square Feet }
\end{aligned}
$$

Figure 3-2
$\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s
2025 ADT VOLUMES (000s) SCENARIO 1 (BASELINE NETWORK)

City of San Buenaventur
General Plan Circulation Element Update Traffic Study

ROADWAY IMPROVEMENTS - SCENARIO 1

LOCATION	IMPROVEMENT
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR-126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR-126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/right-turn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR-126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane
II. Non-Committed	
2. Intersections (Baseline Network)	
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane

Table 3-3								
2025 ICU SUMMARY - SCENARIO 1								
Intersection	Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak		AM Peak		PM Peak	
	ICU	LOS	ICU	LOS	ICU	LOS	ICU	LOS
1. Victoria \& Foothill	. 50	A	. 54	A	--		--	
2. Victoria \& Loma Vista	. 55	A	. 51	A	--		--	
3. Victoria \& Telegraph	. 62	B	. 77	C	--		--	
4. Victoria \& Woodland	. 71	C	. 56	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 84	D	--		--	
6. Victoria \& Thille	. 52	A	. 60	A	--		--	
7. Victoria \& Telephone	. 63	B	. 72	C	--		--	
8. Victoria \& Ralston	. 69	B	. 77	C	--		--	
10. Victoria \& Moon	. 56	A	. 62	B	--		--	
14. Hill \& Telephone	. 53	A	. 60	A	--		--	
15. Johnson \& Telephone	. 49	A	. 74	C	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 52	A	. 62	B	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 56	A	. 80	C	--		--	
20. Harbor \& Olivas Park	. 41	A	. 76	C	--		--	
23. Mills \& Loma Vista	. 33	A	. 42	A	--		--	
24. Mills \& Telegraph	. 50	A	. 52	A	--		--	
25. Mills \& Maple	. 53	A	. 52	A	--		--	
26. Mills \& Dean	. 54	A	. 53	A	--		--	
27. Mills \& Main	. 69	B	. 73	C	--		--	
28. US 101 NB Ramps \& Main (a)	. 78	C	. 83	D	--		--	
29. SR-126 EB Ramps \& Main (a)	. 53	A	. 65	B	--		--	
30. Callens \& Main	. 46	A	. 68	B	--		--	
31. Donlon \& Main	. 56	A	. 84	D	--		--	
32. Telephone \& Main (a)	. 61	B	. 86	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 56	A	. 67	B	--		--	
34. Portola \& Telephone	. 36	A	. 50	A	--		--	
35. Saratoga \& Telephone	. 30	A	. 56	A	--		--	
38. Telephone \& Market	. 60	A	. 72	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--	
45. Catalina \& Main	. 38	A	. 35	A	--		--	
46. Seaward \& Main	. 53	A	. 69	B	--		--	
47. Main \& Loma Vista	. 52	A	. 54	A	--		--	
49. Main \& Telegraph	. 46	A	. 71	C	--		--	
50. Emma \& Main	. 40	A	. 51	A	--		--	
51. Lemon Grove \& Main	. 41	A	. 47	A	--		--	
53. Kimball \& Telephone	. 76	C	. 66	B	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 35	A	. 33	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 77	C	. 40	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--	
60. Ramelli \& Telephone	. 38	A	. 67	B	--		--	
61. Montgomery \& Telephone	. 58	A	. 35	A	--		--	
63. Petit \& Telephone	. 46	A	. 58	A	--		--	
65. Sanjon \& Thompson	. 48	A	. 59	A	--		--	
68. Seaward \& Thompson	. 51	A	. 65	B	--		--	

Table 3-3 (Continued) SCENARIO 1 ICU SUMMARY								
Intersection	Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak		AM Peak		PM Peak	
	ICU	LOS	ICU	LOS	ICU	LOS	ICU	LOS
71. Sanjon \& Harbor	. 36	A	. 66	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 48	A	--		--	
77. Day \& Telegraph	. 44	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 66	B	. 80	C	--		--	
86. Telephone \& Olivas Park	. 56	A	. 69	B	--		--	
91. Johnson \& Ralston	. 71	C	. 80	C	--		--	
92. Johnson \& Bristol	. 71	C	. 73	C	--		--	
94. Johnson \& North Bank	. 70	B	. 82	D	--		--	
95. Bristol \& Ramelli	. 49	A	. 26	A	--		--	
96. Montgomery \& North Bank	. 55	A	. 47	A	--		--	
100. Saticoy \& Telephone	. 47	A	. 46	A	--		--	
101. Saticoy \& Telegraph	. 47	A	. 51	A	--		--	
102. Wells \& Telegraph	. 63	B	. 63	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 65	B	. 74	C	--		--	
105. Wells \& Darling	. 69	B	1.06	F	. 63	B	. 88	D
106. Wells \& Telephone	. 72	C	. 73	C	--		--	
114. California \& Thompson	. 39	A	. 46	A	--		--	
115. Chestnut \& Thompson	. 48	A	. 59	A	--		--	
120. Ventura \& Main	. 40	A	. 71	C	--		--	
132. Ventura \& Sanley	. 75	C	. 83	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 48	A	. 53	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 52	A	. 84	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 81	D	. 66	B	--		--	
161. Victoria \& Valentine (a)	. 69	B	. 78	C	--		--	
162. California \& Harbor	. 26	A	. 36	A	--		--	
163. Santa Clara \& Main	. 25	A	. 30	A	--		--	
164. Seaward \& Poli	. 41	A	. 50	A	--		--	
165. Seaward \& Harbor	. 58	A	. 70	B	--		--	
166. College \& Telegraph	. 33	A	. 40	A	--		--	
168. Day \& Foothill	. 74	C	. 76	C	--		--	
169. Kimball \& Foothill	. 51	A	. 45	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 30	A	--		--	
172. Wells \& Foothill	. 33	A	. 26	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 86	D	. 74	C	--		--	
174. Petit \& Telegraph	. 42	A	. 28	A	--		--	
175. Ventura \& North Bank (a)	. 41	A	. 88	D	--		--	
176. Saticoy \& Darling	. 35	A	. 29	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 50	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 67	B	. 76	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 83	D	. 86	D	--		--	
180. Estates \& Telegraph	. 29	A	. 39	A	--		--	
181. Ventura \& Ramona	. 32	A	. 49	A	--		--	
182. Olive \& Main	. 52	A	. 58	A	--		--	
190. Petit \& North Bank	. 20	A	. 26	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--	

Intersection	Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak		AM Peak		PM Peak	
	ICU	LOS	ICU	LOS	ICU	LOS	ICU	LOS
192. Los Angeles \& North Bank	. 71	C	. 85	D	--		--	
193. Saticoy \& A Street	. 17	A	. 13	A	--		--	
194. Wells \& A Street	. 43	A	. 41	A	--		--	
(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU								
Note: Gray shading denotes intersection locations that exceed the performance standard.								

Table 3-4
LAND USE AND TRIP GENERATION BY SUB-AREA - 2025 SCENARIO 2

Growth by Land Use Type

		Sub- Area				
Residential (DUs)	Residential (TSF)	Office (TSF)	Industrial (TSF)	Hotel (TSF)	Total (TSF)	
	389	40	105	600	0	745
2	1,109	43	95	100	0	238
3	1,665	103	170	0	362	635
4	512	28	60	0	0	88
5	431	96	0	9	107	213
6	440	82	100	0	0	182
7	200	43	343	1,216	0	1,602
8	1,484	110	439	0	0	549
9	50	155	58	765	0	979
10	844	15	149	173	0	338
11	200	50	70	50	0	170
12	10	0	0	0	0	0
13	1,059	91	256	0	0	347
14	1,147	17	20	0	0	37
15	70	0	0	75	0	75
16	1,196	165	12	0	0	177
17	435	0	0	0	0	0
Total Growth	11,241	1,038	1,877	2,988	469	6,372
Existing	41,784	6,632	5,090	9,900	2,213	23,836
Future	53,025	7,670	6,967	12,889	2,682	30,208
\%	26.9	15.6	36.9	30.2	21.2	26.7
Growth	26					

Abbreviations: ADT - Average Daily Trips
DUs - Dwelling Units
TSF - Thousand Square Feet

Growth in ADT Trip Generation

Sub- Area	Growth (ADT)	Existing (ADT)	Future (ADT)	\% Growth
1	11,589	14,378	25,968	80.6
2	11,748	51,744	63,492	22.7
3	22,036	84,647	106,683	26.0
4	6,965	110,423	117,388	6.3
5	13,280	50,251	63,530	26.4
6	8,936	163,583	172,518	5.5
7	17,801	84,677	102,477	21.0
8	30,295	5,104	35,399	593.6
9	11,016	21,147	32,164	52.1
10	8,895	140,508	149,403	6.3
11	9,086	17,419	26,505	52.2
12	197	18,885	19,082	1.0
13	20,609	15,114	35,723	136.4
14	9,995	14,969	24,964	66.8
15	916	8,047	8,963	11.4
16	19,757	92,749	112,506	21.3
17	3,784	27,476	31,259	13.8
Total	206,905	921,119	$1,128,024$	22.5

EXISTING AND FUTURE ADT BY SUBAREA - SCENARIO 2

The 2025 ADT volumes on the baseline circulation system for this scenario can be seen in Figure 3-5, and the corresponding ICUs are depicted in Figure 3-6. To serve this scenario, it is proposed that the following new roadway links be added as an alternative to the Baseline Network along with selected intersection improvements:

1. Mills Road extension to Harbor Boulevard (connection at Schooner Drive)
2. New collector between Mills Road and Telephone Road in the Olivas expansion area
3. North Bank Drive extension from Johnson Drive to Bristol Road
4. Kimball Road extension from Telephone Road to North Bank Drive
5. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Table 3-5 summarizes the overall roadway and intersection improvements for this scenario, and Table 3-6 lists the ICU values with Baseline Improvements and with the recommended additional improvements (ICU calculations can be found in Appendix A). Comparative ADT volumes for the arterial street system with the added roadways can be found in Chapter 4.0 where the recommended roadway classifications for the scenarios are presented. It should be noted that with North Bank Drive extended from Johnson Drive to Bristol Road in the Alternative Network, the six lane widening of Johnson Drive between North Bank Drive and Bristol Road that is assumed in the Baseline Network is not needed.

Scenario 2 results in a total of four locations that require additional (non-committed) improvements, with one deficiency occurring under the Baseline Network and four deficiencies occurring under the Alternative Network. The deficient locations are as follows:

Baseline Network

- Wells Road at Darling Road

Alternative Network

- Mills Road at Main Street
- Johnson Drive at North Bank Drive
- Wells Road at Darling Road
- Ventura Boulevard at North Bank Drive

Figure 3-5
$\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s
2025 ADT VOLUMES (000s) SCENARIO 2 (BASELINE NETWORK)

City of San Buenaventur
City of San Buenaventura
General Plan Circulation Element Update Traffic Study

Table 3-5
ROADWAY IMPROVEMENTS - SCENARIO 2

LOCATION

IMPROVEMENT

I. Baseline

1. Streets

A Street (Saticoy Avenue to Wells Road
Harbor Boulevard Bridge over the Santa Clara River
Hill Road (Moon Drive to Ralston Street)
Johnson Drive (North Bank Drive to Bristol Road)
North Bank Drive (City limits to Wells Road)
North Bank Drive (Current terminus to Saticoy Avenue)
Telegraph Road (Saticoy Avenue to Wells Road)
Thille Street (Telephone Road to current terminus)
US-101 Off-ramp to California Street
Victoria Avenue (US-101 to City limits)
Wells Road (SR-126 to City limits)
Wells Road (Foothill Road to SR-126
2. Intersections
20. Harbor Boulevard and Olivas Park Drive
33. US-101 NB ramps at Telephone Road
35. Saratoga Avenue at Telephone Road
85. Victoria Avenue at Olivas Park Drive
86. Telephone Road at Olivas Park Drive
91. Johnson Drive at Ralston Street
92. Johnson Drive at Bristol Road
94. Johnson Drive at North Bank Drive
104. Wells Road at SR-126 EB Ramps
105. Wells Road at Darling Road
106. Wells Road at Telephone Road
160. Victoria Avenue at US 101 NB Ramps
175. Ventura Boulevard at North Bank Drive

New two-lane roadway
Widen to four lanes
Extend as two-lane roadway
Widen to six lanes (a)
New two-lane roadway
New two-lane roadway
Widen to four lanes
Extend as two-lane roadway
Relocate to Oak Street
Widen to six lanes
Widen to six lanes
Widen to four lanes

Add second southbound left-turn lane
Convert southbound left-turn lane to shared left-turn/right-turn lane
Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and
westbound through lanes
Add second northbound and southbound through lanes
Add second northbound and southbound through lanes
Convert southbound right-turn lane to shared through/right-turn lane
Add third northbound and southbound through lanes
Add third northbound and southbound through lanes
Add third northbound and southbound through lanes
Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
Add second eastbound through lane

(Table Continued)

Table 3-5
ROADWAY IMPROVEMENTS - SCENARIO 2

LOCATION	IMPROVEMENT
II. Non-Committed	
1a. Streets (Alternative Network)	
B Street (Mills Road to Telephone Road)	New two-lane roadway
Kimball Road (Telephone Road to North Bank Drive)	New four-lane roadway
Mills Road (Arundell Avenue to Harbor Boulevard)	New four-lane roadway
North Bank Drive (Johnson Drive to Bristol Road)	New four-lane roadway
Ralston Street (Ramelli Avenue to Montgomery Avenue)	New two-lane roadway
2. Intersections (Baseline Network)	
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
2a. Intersections (Alternative Network)	
27. Mills Road at Main Street	Add northbound left-turn lane and second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Improve eastbound approach to provide two left-turn lanes, three through lanes and a separate right-turn lane, and improve westbound approach to provide three left-turn lanes and two through lanes
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
175. Ventura Boulevard at North Bank Drive	Add third eastbound through lane

(a) This widening is not needed in the Alternative Network for this scenario, which includes an extension of North Bank Drive from Johnson Drive to Bristol Road.

Table 3-6
2025 ICU SUMMARY - SCENARIO 2

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	BaselineImprovements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 50	A	. 53	A	--		--		. 51	A	. 54	A	--		--	
2. Victoria \& Loma Vista	. 57	A	. 51	A	--		--		. 55	A	. 51	A	--		--	
3. Victoria \& Telegraph	. 64	B	. 77	C	--		--		. 61	B	. 76	C	--		--	
4. Victoria \& Woodland	. 73	C	. 57	A	--		--		. 69	B	. 54	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 89	D	--		--		. 54	A	. 82	D	--		--	
6. Victoria \& Thille	. 53	A	. 62	B	--		--		. 50	A	. 56	A	--		--	
7. Victoria \& Telephone	. 66	B	. 75	C	--		--		. 60	A	. 68	B	--		--	
8. Victoria \& Ralston	. 70	B	. 80	C	--		--		. 63	B	. 80	C	--		--	
10. Victoria \& Moon	. 57	A	. 66	B	--		--		. 54	A	. 59	A	--		--	
14. Hill \& Telephone	. 56	A	. 65	B	--		--		. 51	A	. 55	A	--		--	
15. Johnson \& Telephone	. 52	A	. 85	D	--		--		. 45	A	. 47	A	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 59	A	. 66	B	--		--		. 50	A	. 54	A	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 57	A	. 87	D	--		--		. 58	A	. 85	D	--		--	
20. Harbor \& Olivas Park	. 52	A	. 82	D	--		--		. 52	A	. 79	C	--		--	
23. Mills \& Loma Vista	. 34	A	. 43	A	--		--		. 33	A	. 44	A	--		--	
24. Mills \& Telegraph	. 49	A	. 52	A	--		--		. 49	A	. 55	A	--		--	
25. Mills \& Maple	. 51	A	. 52	A	--		--		. 57	A	. 60	A	--		--	
26. Mills \& Dean	. 54	A	. 52	A	--		--		. 58	A	. 59	A	--		--	
27. Mills \& Main	. 70	B	. 69	B	--		--		. 83	D	1.14	F	. 59	A	. 76	C
28. US 101 NB Ramps \& Main (a)	. 82	D	. 80	C	--		--		. 72	C	. 72	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 55	A	. 63	B	--		--		. 47	A	. 58	A	--		--	
30. Callens \& Main	. 47	A	. 67	B	--		--		. 41	A	. 61	B	--		--	
31. Donlon \& Main	. 58	A	. 86	D	--		--		. 51	A	. 79	C	--		--	
32. Telephone \& Main (a)	. 69	B	. 95	E	--		--		. 63	B	. 90	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 57	A	. 71	C	--		--		. 56	A	. 69	B	--		--	
34. Portola \& Telephone	. 36	A	. 51	A	--		--		. 36	A	. 51	A	--		--	

Table 3-6
2025 ICU SUMMARY - SCENARIO 2

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
35. Saratoga \& Telephone	. 31	A	. 57	A	--		--		. 30	A	. 55	A	--		--	
38. Telephone \& Market	. 67	B	. 77	C	--		--		. 62	B	. 74	C	--		--	
42. Telephone \& McGrath	. 41	A	. 84	D	--		--		. 29	A	. 70	B	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 38	A	. 34	A	--		--	
46. Seaward \& Main	. 58	A	. 70	B	--		--		. 54	A	. 66	B	--		--	
47. Main \& Loma Vista	. 55	A	. 51	A	--		--		. 53	A	. 50	A	--		--	
49. Main \& Telegraph	. 45	A	. 68	B	--		--		. 44	A	. 68	B	--		--	
50. Emma \& Main	. 41	A	. 45	A	--		--		. 42	A	. 47	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 42	A	--		--		. 46	A	. 51	A	--		--	
53. Kimball \& Telephone	. 76	C	. 71	C	--		--		. 49	A	. 38	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 36	A	. 34	A	--		--		. 40	A	. 34	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 78	C	. 43	A	--		--		. 92	E	. 47	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--		. 27	A	. 34	A	--		--	
60. Ramelli \& Telephone	. 42	A	. 71	C	--		--		. 28	A	. 35	A	--		--	
61. Montgomery \& Telephone	. 60	A	. 39	A	--		--		. 55	A	. 40	A	--		--	
63. Petit \& Telephone	. 46	A	. 60	A	--		--		. 49	A	. 62	B	--		--	
65. Sanjon \& Thompson	. 49	A	. 57	A	--		--		. 48	A	. 55	A	--		--	
68. Seaward \& Thompson	. 50	A	. 61	B	--		--		. 50	A	. 60	A	--		--	
71. Sanjon \& Harbor	. 37	A	. 69	B	--		--		. 36	A	. 69	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 47	A	--		--		. 31	A	. 46	A	--		--	
77. Day \& Telegraph	. 42	A	. 39	A	--		--		. 44	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 72	C	. 89	D	--		--		. 72	C	. 86	D	--		--	
86. Telephone \& Olivas Park	. 64	B	. 87	D	--		--		. 55	A	. 65	B	--		--	
91. Johnson \& Ralston	. 52	A	. 57	A	--		--		. 43	A	. 53	A	--		--	
92. Johnson \& Bristol	. 75	C	. 79	C	--		--		. 33	A	. 51	A	--		--	
94. Johnson \& North Bank	. 74	C	. 89	D	--		--		. 99	E	1.32	F	. 79	C	. 97	E
95. Bristol \& Ramelli	. 51	A	. 31	A	--		--		. 12	A	. 14	A	--		--	
96. Montgomery \& North Bank	. 62	B	. 47	A	--		--		. 54	A	. 43	A	--		--	
100. Saticoy \& Telephone	. 50	A	. 48	A	--		--		. 46	A	. 45	A	--		--	
101. Saticoy \& Telegraph	. 50	A	. 51	A	--		--		. 49	A	. 52	A	--		--	

Table 3-6
2025 ICU SUMMARY - SCENARIO 2

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
102. Wells \& Telegraph	. 65	B	. 63	B	--		--		. 63	B	. 61	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 66	B	. 75	C	--		--		. 63	B	. 73	C	--		--	
105. Wells \& Darling	. 69	B	1.07	F	. 63	B	. 88	D	. 67	B	1.03	F	. 61	B	. 83	D
106. Wells \& Telephone	. 74	C	. 73	C	--		--		. 68	B	. 70	B	--		--	
114. California \& Thompson	. 43	A	. 47	A	--		--		. 41	A	. 46	A	--		--	
115. Chestnut \& Thompson	. 50	A	. 59	A	--		--		. 49	A	. 56	A	--		--	
120. Ventura \& Main	. 42	A	. 71	C	--		--		. 41	A	. 72	C	--		--	
132. Ventura \& Stanley	. 75	C	. 83	D	--		--		. 75	C	. 83	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 54	A	. 64	B	--		--		. 55	A	. 63	B	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 57	A	. 86	D	--		--		. 59	A	. 84	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 86	D	. 72	C	--		--		. 81	D	. 68	B	--		--	
161. Victoria \& Valentine (a)	. 79	C	. 91	E	--		--		. 75	C	. 86	D	--		--	
162. California \& Harbor	. 29	A	. 37	A	--		--		. 31	A	. 37	A	--		--	
163. Santa Clara \& Main	. 25	A	. 30	A	--		--		. 25	A	. 28	A	--		--	
164. Seaward \& Poli	. 42	A	. 51	A	--		--		. 41	A	. 48	A	--		--	
165. Seaward \& Harbor	. 64	B	. 77	C	--		--		. 57	A	. 64	B	--		--	
166. College \& Telegraph	. 34	A	. 40	A	--		--		. 34	A	. 41	A	--		--	
168. Day \& Foothill	. 74	C	. 76	C	--		--		. 75	C	. 74	C	--		--	
169. Kimball \& Foothill	. 51	A	. 44	A	--		--		. 53	A	. 51	A	--		--	
170. Petit \& Foothill	. 35	A	. 18	A	--		--		. 34	A	. 19	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 31	A	--		--		. 36	A	. 32	A	--		--	
172. Wells \& Foothill	. 33	A	. 25	A	--		--		. 33	A	. 26	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 89	D	. 75	C	--		--		. 83	D	. 71	C	--		--	
174. Petit \& Telegraph	. 42	A	. 27	A	--		--		. 44	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 46	A	. 92	E	--		--		. 48	A	1.13	F	. 48	A	. 78	C
176. Saticoy \& Darling	. 35	A	. 29	A	--		--		. 35	A	. 28	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 50	A	--		--		. 32	A	. 49	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 69	B	. 75	C	--		--		. 69	B	. 75	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 93	E	. 93	E	--		--		. 93	E	. 93	E	--		--	
180. Estates \& Telegraph	. 28	A	. 40	A	--		--		. 28	A	. 38	A	--		--	

Table 3-6
2025 ICU SUMMARY - SCENARIO 2

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
181. Ventura \& Ramona	. 33	A	. 50	A	--		--		. 33	A	. 50	A	--		--	
182. Olive \& Main	. 54	A	. 61	B	--		--		. 55	A	. 61	B	--		--	
190. Petit \& North Bank	. 22	A	. 27	A	--		--		. 24	A	. 30	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--		. 08	A	. 13	A	--		--	
192. Los Angeles \& North Bank	. 72	C	. 86	D	--		--		. 66	B	. 82	D	--		--	
193. Saticoy \& A St	. 17	A	. 12	A	--		--		. 18	A	. 12	A	--		--	
194. Wells \& A St	. 44	A	. 41	A	--		--		. 43	A	. 42	A	--		--	
196. Ramelli \& Ralston	--		--		--		--		. 33	A	. 37	A	--		--	
197. Kimball \& Ralston	--		--		--		--		. 32	A	. 46	A	--		--	
198. Montgomery \& Ralston	--		--		--		--		. 26	A	. 23	A	--		--	
199. Kimball \& North Bank	--		--		--		--		. 69	B	. 64	B	--		--	
200. Harbor \& Mills	--		--		--		--		. 42	A	. 59	A	--		--	
201. Mills \& B St	--		--		--		--		. 73	C	. 75	C	--		--	
202. Telephone \& B St	--		--		--		--		. 48	A	. 65	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

SCENARIO 3 - INTENSIFICATION/REUSE + NORTH AVENUE + OLIVAS

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Olivas expansion areas. In this case, the amount of development in Expansion Area 2 is greater than in Scenario 1 (2,394 dwelling units versus no added dwelling units). Citywide, this scenario would add an estimated, 11,255 dwelling units and 6.4 million square feet of non-residential development.

Table 3-7 summarizes the growth by sub-area for this scenario, and Figure 3-7 shows this growth in diagrammatic form. The citywide increase in trip generation is 21.9 percent, similar to that of Scenario 2 but with different geographic distribution due to most of the expansion area growth being allocated to the Olivas Expansion Area.

The 2025 ADT volumes on the baseline circulation system for this scenario can be seen in Figure 3-8, and the corresponding ICUs are depicted in Figure 3-9. Deficiencies shown here are addressed by selected intersection improvements and by new roadway links serving the Olivas Expansion Area (the Mills Road extension and a new collector between the extension of Mills Road and Telephone Road). Table 3-8 summarizes the overall roadway and intersection improvements for this scenario, and Table 3-9 lists the ICU values with Baseline improvements and with the recommended additional improvements (ICU calculations can be found in Appendix A). Comparative ADT volumes for the arterial street system with the added roadways can be found in Chapter 4.0 where the recommended roadway classifications for the scenarios are presented.

Scenario 3 results in two locations that require additional (non-committed) improvements, with one deficiency occurring under the Baseline Network and two occurring under the Alternative Network. The deficient locations are as follows:

Baseline Network

- Wells Road at Darling Road

Alternative Network

- Mills Road at Main Street
- Wells Road at Darling Road

Table 3-7
LAND USE AND TRIP GENERATION BY SUB-AREA - 2025 SCENARIO 3

Growth by Land Use Type

	Sub- Area	Residential (DUs)	Non-Residential (TSF)	Office (TSF)	Industrial (TSF)	Hotel (TSF)
1		59	160	600	0	Total (TSF)
2		43	95	100	0	238
3		103	170	0	362	635
4		28	60	0	0	88
5		96	0	9	107	213
6	440	82	100	0	0	182
7	200	43	343	1,216	0	1,602
8	2,394	183	640	0	0	823
9	50	155	58	765	0	979
10	844	15	149	173	0	338
11	200	50	70	50	0	170
12	10	0	0	0	0	0
13	17	0	0	0	0	0
14	1,147	17	20	0	0	37
15	70	0	0	75	0	75
16	1,196	165	12	0	0	177
17	435	0	0	0	0	0
Total Growth	11,255	1,039	1,877	2,988	469	6,373
Existing	41,784	6,632	5,090	9,900	2,213	23,836
Future	53,039	7,671	6,967	12,889	2,682	30,209
\%	26.9	15.7	36.9	30.2	21.2	26.7
Growth	26					

Abbreviations: ADT - Average Daily Trips
DUs - Dwelling Units
TSF - Thousand Square Feet

Growth in ADT Trip Generation

Sub- Area	Growth (ADT)	Existing (ADT)	Future (ADT)	\% Growth
1	14,731	14,378	29,109	102.5
2	11,748	51,744	63,492	22.7
3	22,036	84,647	106,683	26.0
4	6,965	110,423	117,388	6.3
5	13,280	50,251	63,530	26.4
6	7,363	163,583	170,945	4.5
7	17,801	84,677	102,477	21.0
8	42,664	5,104	47,768	835.9
9	11,019	21,147	32,167	52.1
10	8,895	140,508	149,403	6.3
11	10,559	17,419	27,977	60.6
12	197	18,885	19,082	1.0
13	288	15,114	15,402	1.9
14	9,995	14,969	24,964	66.8
15	916	8,047	8,963	11.4
16	19,757	92,749	112,506	21.3
17	3,784	27,476	31,259	13.8
Total	201,998	921,119	$1,123,116$	21.9

Legend
2004 ADT XX - Subarea Number ADT - Average Daily Trips

Figure 3-8
$\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s
2025 ADT VOLUMES (000s) SCENARIO 3 (BASELINE NETWORK)

Table 3-8
ROADWAY IMPROVEMENTS - SCENARIO 3

LOCATION

IMPROVEMENT

I. Baseline

1. Streets

A Street (Saticoy Avenue to Wells Road
Harbor Boulevard Bridge over the Santa Clara River
Hill Road (Moon Drive to Ralston Street)
Johnson Drive (North Bank Drive to Bristol Road)
North Bank Drive (City limits to Wells Road)
North Bank Drive (Current terminus to Saticoy Avenue)
Telegraph Road (Saticoy Avenue to Wells Road)
Thille Street (Telephone Road to current terminus)
US-101 Off-ramp to California Street
Victoria Avenue (US-101 to City limits)
Wells Road (SR-126 to City limits)
Wells Road (Foothill Road to SR-126
2. Intersections
20. Harbor Boulevard and Olivas Park Drive
33. US-101 NB ramps at Telephone Road
35. Saratoga Avenue at Telephone Road
85. Victoria Avenue at Olivas Park Drive
86. Telephone Road at Olivas Park Drive
91. Johnson Drive at Ralston Street
92. Johnson Drive at Bristol Road
94. Johnson Drive at North Bank Drive
104. Wells Road at SR-126 EB Ramps
105. Wells Road at Darling Road
106. Wells Road at Telephone Road
160. Victoria Avenue at US 101 NB Ramps
175. Ventura Boulevard at North Bank Drive

New two-lane roadway
Widen to four lanes
Extend as two-lane roadway
Widen to six lanes
New two-lane roadway
New two-lane roadway
Widen to four lanes
Extend as two-lane roadway
Relocate to Oak Street
Widen to six lanes
Widen to six lanes
Widen to four lanes

Add second southbound left-turn lane
Convert southbound left-turn lane to shared left-turn/right-turn lane
Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and
westbound through lanes
Add second northbound and southbound through lanes
Add second northbound and southbound through lanes
Convert southbound right-turn lane to shared through/right-turn lane
Add third northbound and southbound through lanes
Add third northbound and southbound through lanes
Add third northbound and southbound through lanes
Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
Add second eastbound through lane

(Table Continued)

```
Table 3-8
ROADWAY IMPROVEMENTS - SCENARIO 3
```


LOCATION
 IMPROVEMENT

II. Non-Committed

1a. Streets (Alternative Network)
B Street (Mills Road to Telephone Road) \quad New two-lane roadway
Mills Road (Arundell Avenue to Harbor Boulevard) \quad New four-lane roadway
2. Intersections (Baseline Network)
105. Wells Road at Darling Road Add second southbound left-turn lane, second westbound left-turn lane and eastbound left-turn lane
2a. Intersections (Alternative Network)
27. Mills Road at Main Street
105. Wells Road at Darling Road

Add northbound left-turn lane and second northbound and southbound through lanes Add second southbound left-turn lane, second westbound left-turn lane and eastbound left-turn lane

Table 3-9
2025 ICU SUMMARY - SCENARIO 3

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	BaselineImprovements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 49	A	. 53	A	--		--		. 50	A	. 52	A	--		--	
2. Victoria \& Loma Vista	. 56	A	. 50	A	--		--		. 55	A	. 49	A	--		--	
3. Victoria \& Telegraph	. 63	B	. 77	C	--		--		. 61	B	. 75	C	--		--	
4. Victoria \& Woodland	. 71	C	. 56	A	--		--		. 69	B	. 55	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 87	D	--		--		. 56	A	. 84	D	--		--	
6. Victoria \& Thille	. 53	A	. 61	B	--		--		. 51	A	. 60	A	--		--	
7. Victoria \& Telephone	. 64	B	. 72	C	--		--		. 61	B	. 70	B	--		--	
8. Victoria \& Ralston	. 69	B	. 80	C	--		--		. 68	B	. 79	C	--		--	
10. Victoria \& Moon	. 57	A	. 63	B	--		--		. 57	A	. 62	B	--		--	
14. Hill \& Telephone	. 53	A	. 61	B	--		--		. 53	A	. 61	B	--		--	
15. Johnson \& Telephone	. 48	A	. 74	C	--		--		. 48	A	. 73	C	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 60	A	. 67	B	--		--		. 52	A	. 55	A	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 57	A	. 89	D	--		--		. 58	A	. 86	D	--		--	
20. Harbor \& Olivas Park	. 55	A	. 82	D	--		--		. 53	A	. 81	D	--		--	
23. Mills \& Loma Vista	. 34	A	. 44	A	--		--		. 33	A	. 45	A	--		--	
24. Mills \& Telegraph	. 49	A	. 50	A	--		--		. 50	A	. 54	A	--		--	
25. Mills \& Maple	. 52	A	. 51	A	--		--		. 58	A	. 60	A	--		--	
26. Mills \& Dean	. 54	A	. 54	A	--		--		. 57	A	. 58	A	--		--	
27. Mills \& Main	. 70	B	. 71	C	--		--		. 95	E	1.27	F	. 60	A	. 82	D
28. US 101 NB Ramps \& Main (a)	. 82	D	. 80	C	--		--		. 71	C	. 70	B	--		--	
29. SR 126 EB Ramps \& Main (a)	. 55	A	. 63	B	--		--		. 47	A	. 57	A	--		--	
30. Callens \& Main	. 47	A	. 68	B	--		--		. 42	A	. 59	A	--		--	
31. Donlon \& Main	. 59	A	. 85	D	--		--		. 54	A	. 79	C	--		--	
32. Telephone \& Main (a)	. 69	B	. 96	E	--		--		. 65	B	. 90	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 57	A	. 70	B	--		--		. 56	A	. 69	B	--		--	
34. Portola \& Telephone	. 37	A	. 51	A	--		--		. 35	A	. 50	A	--		--	
35. Saratoga \& Telephone	. 31	A	. 55	A	--		--		. 30	A	. 55	A	--		--	

Table 3-9
2025 ICU SUMMARY - SCENARIO 3

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	BaselineImprovements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
42. Telephone \& McGrath	. 46	A	. 88	D	--		--		. 29	A	. 70	B	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 38	A	. 34	A	--		--	
46. Seaward \& Main	. 59	A	. 70	B	--		--		. 56	A	. 67	B	--		--	
47. Main \& Loma Vista	. 55	A	. 53	A	--		--		. 53	A	. 51	A	--		--	
49. Main \& Telegraph	. 46	A	. 68	B	--		--		. 45	A	. 67	B	--		--	
50. Emma \& Main	. 41	A	. 45	A	--		--		. 42	A	. 47	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 43	A	--		--		. 49	A	. 49	A	--		--	
53. Kimball \& Telephone	. 76	C	. 66	B	--		--		. 76	C	. 65	B	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 35	A	. 33	A	--		--		. 34	A	. 32	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 76	C	. 40	A	--		--		. 76	C	. 40	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--		. 24	A	. 33	A	--		--	
60. Ramelli \& Telephone	. 37	A	. 68	B	--		--		. 38	A	. 67	B	--		--	
61. Montgomery \& Telephone	. 58	A	. 35	A	--		--		. 58	A	. 36	A	--		--	
63. Petit \& Telephone	. 46	A	. 58	A	--		--		. 46	A	. 59	A	--		--	
65. Sanjon \& Thompson	. 49	A	. 57	A	--		--		. 48	A	. 57	A	--		--	
68. Seaward \& Thompson	. 53	A	. 60	A	--		--		. 50	A	. 58	A	--		--	
71. Sanjon \& Harbor	. 38	A	. 70	B	--		--		. 37	A	. 68	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 46	A	--		--		. 31	A	. 48	A	--		--	
77. Day \& Telegraph	. 42	A	. 39	A	--		--		. 43	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 74	C	. 90	D	--		--		. 73	C	. 85	D	--		--	
86. Telephone \& Olivas Park	. 68	B	. 87	D	--		--		. 56	A	. 66	B	--		--	
91. Johnson \& Ralston	. 67	B	. 80	C	--		--		. 71	C	. 81	D	--		--	
92. Johnson \& Bristol	. 72	C	. 74	C	--		--		. 71	C	. 74	C	--		--	
94. Johnson \& North Bank	. 71	C	. 85	D	--		--		. 71	C	. 81	D	--		--	
95. Bristol \& Ramelli	. 50	A	. 27	A	--		--		. 47	A	. 26	A	--		--	
96. Montgomery \& North Bank	. 55	A	. 48	A	--		--		. 54	A	. 46	A	--		--	
100. Saticoy \& Telephone	. 48	A	. 46	A	--		--		. 47	A	. 46	A	--		--	
101. Saticoy \& Telegraph	. 47	A	. 51	A	--		--		. 47	A	. 51	A	--		--	

Table 3-9
2025 ICU SUMMARY - SCENARIO 3

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
102. Wells \& Telegraph	. 66	B	. 62	B	--		--		. 66	B	. 62	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 66	B	. 74	C	--		--		. 66	B	. 74	C	--		--	
105. Wells \& Darling	. 69	B	1.07	F	. 63	B	. 89	D	. 69	B	1.06	F	. 63	B	. 88	D
106. Wells \& Telephone	. 72	C	. 73	C	--		--		. 72	C	. 73	C	--		--	
114. California \& Thompson	. 44	A	. 47	A	--		--		. 43	A	. 47	A	--		--	
115. Chestnut \& Thompson	. 50	A	. 59	A	--		--		. 50	A	. 58	A	--		--	
120. Ventura \& Main	. 40	A	. 72	C	--		--		. 41	A	. 72	C	--		--	
132. Ventura \& Stanley	. 74	C	. 85	D	--		--		. 74	C	. 84	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 56	A	. 66	B	--		--		. 56	A	. 63	B	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 58	A	. 85	D	--		--		. 58	A	. 85	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 87	D	. 73	C	--		--		. 82	D	. 71	C	--		--	
161. Victoria \& Valentine (a)	. 82	D	. 94	E	--		--		. 80	C	. 90	D	--		--	
162. California \& Harbor	. 28	A	. 38	A	--		--		. 31	A	. 38	A	--		--	
163. Santa Clara \& Main	. 25	A	. 30	A	--		--		. 25	A	. 29	A	--		--	
164. Seaward \& Poli	. 42	A	. 51	A	--		--		. 41	A	. 49	A	--		--	
165. Seaward \& Harbor	. 65	B	. 77	C	--		--		. 56	A	. 68	B	--		--	
166. College \& Telegraph	. 33	A	. 40	A	--		--		. 34	A	. 42	A	--		--	
168. Day \& Foothill	. 73	C	. 75	C	--		--		. 73	C	. 73	C	--		--	
169. Kimball \& Foothill	. 51	A	. 45	A	--		--		. 51	A	. 46	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--		. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 31	A	--		--		. 36	A	. 31	A	--		--	
172. Wells \& Foothill	. 33	A	. 26	A	--		--		. 33	A	. 26	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 87	D	. 73	C	--		--		. 84	D	. 71	C	--		--	
174. Petit \& Telegraph	. 41	A	. 27	A	--		--		. 41	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 42	A	. 91	E	--		--		. 42	A	. 89	D	--		--	
176. Saticoy \& Darling	. 34	A	. 30	A	--		--		. 34	A	. 29	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 49	A	--		--		. 33	A	. 49	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 68	B	. 74	C	--		--		. 68	B	. 74	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 96	E	. 98	E	--		--		. 96	E	. 98	E	--		--	
180. Estates \& Telegraph	. 29	A	. 39	A	--		--		. 28	A	. 39	A	--		--	

```
Table 3-9
```

2025 ICU SUMMARY - SCENARIO 3

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
181. Ventura \& Ramona	. 33	A	. 52	A	--		--		. 33	A	. 51	A	--		--	
182. Olive \& Main	. 55	A	. 61	B	--		--		. 56	A	. 61	B	--		--	
190. Petit \& North Bank	. 21	A	. 26	A	--		--		. 20	A	. 26	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--		. 08	A	. 15	A	--		--	
192. Los Angeles \& North Bank	. 71	C	. 86	D	--		--		. 71	C	. 86	D	--		--	
193. Saticoy \& A St	. 16	A	. 13	A	--		--		. 16	A	. 13	A	--		--	
194. Wells \& A St	. 44	A	. 42	A	--		--		. 44	A	. 41	A	--		--	
200. Harbor \& Mills	--		--		--		--		. 42	A	. 64	B	--		--	
201. Mills \& B St	--		--		--		--		. 77	C	. 83	D	--		--	
202. Telephone \& B St	--		--		--		--		. 49	A	. 65	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

SCENARIO 4 - INTENSIFICATION/REUSE + NORTH AVENUE + SERRA

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Serra expansion areas. Citywide, this scenario would add an estimated 11,241 dwelling units and 6.4 million square feet of non-residential development.

Table 3-10 summarizes the growth by sub-area for this scenario, and Figure 3-10 shows this growth in diagrammatic form. The citywide increase in trip generation for this scenario is 21.7 percent with the expansion area growth allocated to the Serra Expansion Area (2,397 dwelling units versus 1,059 in Scenario 2).

The 2025 ADT volumes on the baseline circulation system for this scenario can be seen in Figure 3-11, and the corresponding ICUs are shown in Figure 3-12. To serve this scenario, it is proposed that the following new roadway links be added as an alternative to the Baseline Network along with selected intersection improvements:

1. North Bank Drive extension from Johnson Drive to Bristol Road
2. Kimball Road extension from Telephone Road to North Bank Drive
3. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Table 3-11 summarizes the overall roadway and intersection improvements for this scenario, and Table 3-12 lists the ICU values with Baseline Improvements and with the recommended additional improvements (ICU calculations can be found in Appendix A). Comparative ADT volumes for the arterial street system with the added roadways can be found in Chapter 4.0 where the recommended roadway classifications for the scenarios are presented. It should be noted that with North Bank Drive extended from Johnson Drive to Bristol Road in the Alternative Network, the six-lane widening of Johnson Drive between North Bank Drive and Bristol Road that is assumed in the Baseline Network is not needed.

Table 3-10
LAND USE AND TRIP GENERATION BY SUB-AREA - 2025 SCENARIO 4

Growth by Land Use Type

		Sub- Area				
Residential (DUs)	Residential (TSF)	Office (TSF)	Industrial (TSF)	Hotel (TSF)	Total (TSF)	
	535	59	160	600	0	819
2	1,109	43	95	100	0	238
3	1,665	103	170	0	362	635
4	512	28	60	0	0	88
5	431	96	0	9	107	213
6	440	82	100	0	0	182
7	200	43	343	1,216	0	1,602
8	0	0	0	0	0	0
9	50	155	58	764	0	978
10	844	15	149	173	0	338
11	200	50	70	50	0	170
12	10	0	0	0	0	0
13	2,397	183	640	0	0	823
14	1,147	17	20	0	0	37
15	70	0	0	75	0	75
16	1,196	165	12	0	0	177
17	435	0	0	0	0	0
Total Growth	11,241	1,039	1,877	2,988	469	6,372
Existing	41,784	6,632	5,090	9,900	2,213	23,836
Future	53,025	7,671	6,967	12,888	2,682	30,208
\%	26.9	15.7	36.9	30.2	21.2	26.7
Growth	26					

Abbreviations: ADT - Average Daily Trips
DUs - Dwelling Units
TSF - Thousand Square Feet

Growth in ADT Trip Generation

Sub- Area	Growth (ADT)	Existing (ADT)	Future (ADT)	\% Growth
1	14,731	14,378	29,109	102.5
2	13,505	51,744	65,249	26.1
3	22,036	84,647	106,683	26.0
4	2,135	110,423	112,558	1.9
5	13,280	50,251	63,530	26.4
6	9,293	163,583	172,876	5.7
7	17,801	84,677	102,477	21.0
8	0	5,104	5,104	0.0
9	11,015	21,147	32,162	52.1
10	8,895	140,508	149,403	6.3
11	10,559	17,419	27,977	60.6
12	197	18,885	19,082	1.0
13	41,898	15,114	57,013	277.2
14	9,995	14,969	24,964	66.8
15	916	8,047	8,963	11.4
16	19,757	92,749	112,506	21.3
17	3,784	27,476	31,259	13.8
Total	199,798	921,119	$1,120,916$	21.7

Figure 3-10
EXISTING AND FUTURE ADT BY SUBAREA - SCENARIO 4

Figure 3-11
$\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s
2025 ADT VOLUMES (000s) SCENARIO 4 (BASELINE NETWORK)

City of San Buenaventur
City of San Buenaventura
General Plan Circulation Element Update Traffic Study

ROADWAY IMPROVEMENTS - SCENARIO 4	

(Table Continued)

Table 3-11
ROADWAY IMPROVEMENTS - SCENARIO 4

LOCATION \quad IMPROVEMENT

II. Non-Committed

1a. Streets (Alternative Network)	
Kimball Road (Telephone Road to North Bank Drive)	New four-lane roadway
North Bank Drive (Johnson Drive to Bristol Road)	New four-lane roadway
Ralston Street (Ramelli Avenue to Montgomery Avenue)	New two-lane roadway
2. Intersections (Baseline Network)	Add separate eastbound right-turn lane
15. Johnson Drive \& Telephone Road	Add southbound right-turn lane
94. Johnson Drive at North Bank Drive	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
105. Wells Road at Darling Road	
2a. Intersections (Alternative Network)	Improve eastbound approach to provide two left-turn lanes, three through lanes and a separate right-turn lane, and improve westbound approach to provide three left-turn lanes and two through lanes
94. Johnson Drive at North Bank Drive	
105. Wells Road at Darling Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
175. Ventura Boulevard at North Bank Drive	

(a) This widening is not needed in the Alternative Network for this scenario, which includes an extension of North Bank Drive from Johnson Drive to Bristol Road.

Table 3-12
2025 ICU SUMMARY - SCENARIO 4

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	BaselineImprovements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 50	A	. 54	A	--		--		. 50	A	. 53	A	--		--	
2. Victoria \& Loma Vista	. 58	A	. 51	A	--		--		. 59	A	. 52	A	--		--	
3. Victoria \& Telegraph	. 64	B	. 78	C	--		--		. 64	B	. 77	C	--		--	
4. Victoria \& Woodland	. 72	C	. 57	A	--		--		. 71	C	. 57	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 57	A	. 91	E	--		--		. 56	A	. 83	D	--		--	
6. Victoria \& Thille	. 53	A	. 64	B	--		--		. 52	A	. 62	B	--		--	
7. Victoria \& Telephone	. 64	B	. 77	C	--		--		. 63	B	. 72	C	--		--	
8. Victoria \& Ralston	. 71	C	. 85	D	--		--		. 69	B	. 87	D	--		--	
10. Victoria \& Moon	. 60	A	. 68	B	--		--		. 58	A	. 64	B	--		--	
14. Hill \& Telephone	. 57	A	. 66	B	--		--		. 53	A	. 58	A	--		--	
15. Johnson \& Telephone	. 55	A	. 92	E	. 52	A	. 85	D	. 46	A	. 66	B	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 52	A	. 61	B	--		--		. 52	A	. 61	B	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 55	A	. 84	D	--		--		. 55	A	. 84	D	--		--	
20. Harbor \& Olivas Park	. 41	A	. 78	C	--		--		. 41	A	. 78	C	--		--	
23. Mills \& Loma Vista	. 33	A	. 43	A	--		--		. 33	A	. 42	A	--		--	
24. Mills \& Telegraph	. 49	A	. 52	A	--		--		. 49	A	. 51	A	--		--	
25. Mills \& Maple	. 52	A	. 50	A	--		--		. 51	A	. 50	A	--		--	
26. Mills \& Dean	. 54	A	. 53	A	--		--		. 54	A	. 54	A	--		--	
27. Mills \& Main	. 69	B	. 68	B	--		--		. 67	B	. 68	B	--		--	
28. US 101 NB Ramps \& Main (a)	. 78	C	. 78	C	--		--		. 77	C	. 78	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 53	A	. 62	B	--		--		. 52	A	. 62	B	--		--	
30. Callens \& Main	. 46	A	. 66	B	--		--		. 45	A	. 65	B	--		--	
31. Donlon \& Main	. 57	A	. 81	D	--		--		. 56	A	. 81	D	--		--	
32. Telephone \& Main (a)	. 62	B	. 90	D	--		--		. 62	B	. 89	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 56	A	. 70	B	--		--		. 56	A	. 69	B	--		--	
34. Portola \& Telephone	. 36	A	. 52	A	--		--		. 35	A	. 50	A	--		--	

Table 3-12
2025 ICU SUMMARY - SCENARIO 4

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
35. Saratoga \& Telephone	. 31	A	. 57	A	--		--		. 31	A	. 56	A	--		--	
38. Telephone \& Market	. 62	B	. 72	C	--		--		. 62	B	. 72	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--		. 29	A	. 75	C	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 37	A	. 33	A	--		--	
46. Seaward \& Main	. 55	A	. 68	B	--		--		. 55	A	. 68	B	--		--	
47. Main \& Loma Vista	. 56	A	. 54	A	--		--		. 56	A	. 53	A	--		--	
49. Main \& Telegraph	. 45	A	. 63	B	--		--		. 45	A	. 62	B	--		--	
50. Emma \& Main	. 40	A	. 44	A	--		--		. 40	A	. 44	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 42	A	--		--		. 40	A	. 42	A	--		--	
53. Kimball \& Telephone	. 75	C	. 74	C	--		--		. 63	B	. 44	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 37	A	. 33	A	--		--		. 38	A	. 34	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 81	D	. 44	A	--		--		. 84	D	. 48	A	--		--	
58. Kimball \& Telegraph	. 25	A	. 32	A	--		--		. 25	A	. 33	A	--		--	
60. Ramelli \& Telephone	. 45	A	. 74	C	--		--		. 35	A	. 42	A	--		--	
61. Montgomery \& Telephone	. 61	B	. 42	A	--		--		. 52	A	. 42	A	--		--	
63. Petit \& Telephone	. 46	A	. 60	A	--		--		. 49	A	. 62	B	--		--	
65. Sanjon \& Thompson	. 47	A	. 55	A	--		--		. 47	A	. 54	A	--		--	
68. Seaward \& Thompson	. 49	A	. 61	B	--		--		. 49	A	. 61	B	--		--	
71. Sanjon \& Harbor	. 36	A	. 69	B	--		--		. 36	A	. 69	B	--		--	
75. Ashwood \& Telegraph	. 30	A	. 45	A	--		--		. 29	A	. 45	A	--		--	
77. Day \& Telegraph	. 43	A	. 39	A	--		--		. 44	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 68	B	. 82	D	--		--		. 68	B	. 83	D	--		--	
86. Telephone \& Olivas Park	. 56	A	. 70	B	--		--		. 56	A	. 70	B	--		--	
91. Johnson \& Ralston	. 56	A	. 62	B	--		--		. 48	A	. 60	A	--		--	
92. Johnson \& Bristol	. 79	C	. 85	D	--		--		. 66	B	. 86	D	--		--	
94. Johnson \& North Bank	. 76	C	. 91	E	. 71	C	. 87	D	. 92	E	1.19	F	. 77	C	. 88	D
95. Bristol \& Ramelli	. 54	A	. 37	A	--		--		. 32	A	. 29	A	--		--	
96. Montgomery \& North Bank	. 66	B	. 47	A	--		--		. 45	A	. 39	A	--		--	
100. Saticoy \& Telephone	. 49	A	. 48	A	--		--		. 48	A	. 49	A	--		--	
101. Saticoy \& Telegraph	. 49	A	. 51	A	--		--		. 48	A	. 52	A	--		--	
102. Wells \& Telegraph	. 63	B	. 62	B	--		--		. 64	B	. 62	B	--		--	

Table 3-12
2025 ICU SUMMARY - SCENARIO 4

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
104. Wells \& SR 126 EB Ramps (a)	. 66	B	. 74	C	--		--		. 66	B	. 74	C	--		--	
105. Wells \& Darling	. 69	B	1.06	F	. 63	B	. 89	D	. 69	B	1.08	F	. 63	B	. 87	D
106. Wells \& Telephone	. 74	C	. 73	C	--		--		. 73	C	. 73	C	--		--	
114. California \& Thompson	. 42	A	. 46	A	--		--		. 42	A	. 46	A	--		--	
115. Chestnut \& Thompson	. 49	A	. 57	A	--		--		. 50	A	. 55	A	--		--	
120. Ventura \& Main	. 42	A	. 73	C	--		--		. 41	A	. 72	C	--		--	
132. Ventura \& Stanley	. 74	C	. 87	D	--		--		. 74	C	. 87	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 46	A	. 54	A	--		--		. 49	A	. 55	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 56	A	. 91	E	--		--		. 58	A	. 87	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 83	D	. 70	B	--		--		. 81	D	. 68	B	--		--	
161. Victoria \& Valentine (a)	. 73	C	. 78	C	--		--		. 70	B	. 78	C	--		--	
162. California \& Harbor	. 28	A	. 36	A	--		--		. 28	A	. 36	A	--		--	
163. Santa Clara \& Main	. 25	A	. 29	A	--		--		. 25	A	. 29	A	--		--	
164. Seaward \& Poli	. 41	A	. 49	A	--		--		. 41	A	. 50	A	--		--	
165. Seaward \& Harbor	. 58	A	. 70	B	--		--		. 58	A	. 70	B	--		--	
166. College \& Telegraph	. 33	A	. 40	A	--		--		. 32	A	. 38	A	--		--	
168. Day \& Foothill	. 74	C	. 75	C	--		--		. 74	C	. 75	C	--		--	
169. Kimball \& Foothill	. 51	A	. 45	A	--		--		. 51	A	. 48	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--		. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 31	A	--		--		. 36	A	. 31	A	--		--	
172. Wells \& Foothill	. 33	A	. 25	A	--		--		. 33	A	. 25	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 89	D	. 76	C	--		--		. 87	D	. 75	C	--		--	
174. Petit \& Telegraph	. 42	A	. 26	A	--		--		. 41	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 48	A	. 95	E	--		--		. 47	A	1.06	F	. 47	A	. 74	C
176. Saticoy \& Darling	. 37	A	. 29	A	--		--		. 36	A	. 30	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 49	A	--		--		. 33	A	. 49	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 68	B	. 77	C	--		--		. 68	B	. 77	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 96	E	. 98	E	--		--		. 96	E	. 98	E	--		--	
180. Estates \& Telegraph	. 29	A	. 40	A	--		--		. 29	A	. 40	A	--		--	
181. Ventura \& Ramona	. 33	A	. 52	A	--		--		. 33	A	. 53	A	--		--	
182. Olive \& Main	. 55	A	. 62	B	--		--		. 55	A	. 62	B	--		--	

```
Table 3-12
2025 ICU SUMMARY - SCENARIO 4
```

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
190. Petit \& North Bank	. 22	A	. 29	A	--		--		. 22	A	. 28	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 16	A	--		--		. 08	A	. 14	A	--		--	
192. Los Angeles \& North Bank	. 73	C	. 86	D	--		--		. 71	C	. 85	D	--		--	
193. Saticoy \& A St	. 18	A	. 13	A	--		--		. 18	A	. 12	A	--		--	
194. Wells \& A St	. 44	A	. 42	A	--		--		. 45	A	. 41	A	--		--	
196. Ramelli \& Ralston	--		--		--		--		. 48	A	. 57	A	--		--	
197. Kimball \& Ralston	--		--		--		--		26	A	. 38	A	--		--	
198. Montgomery \& Ralston	--		--		--		--		. 25	A	. 24	A	--		--	
199. Kimball \& North Bank	--		--		--		--		. 71	C	. 64	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Scenario 4 results in four locations that require additional (non-committed) improvements, with three deficiencies occurring under each network scenario (Baseline and Alternative). The deficient locations are as follows:

Baseline Network

- Johnson Drive at Telephone Road
- Johnson Drive at North Bank Drive
- Wells Road at Darling Road

Alternative Network

- Johnson Drive at North Bank Drive
- Wells Road at Darling Road
- Ventura Boulevard at North Bank Drive

SCENARIO 5 - INTENSIFICATION/REUSE + NORTH AVENUE + WESTERN CAÑADA LARGA

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Western Cañada Larga expansion areas. Citywide, this scenario would add an estimated 11,246 dwelling units and 6.25 million square feet of non-residential development.

Table 3-13 summarizes the growth by sub-area for this scenario, and Figure 3-13 shows this growth in diagrammatic form. The citywide increase in trip generation is 20.6 percent, which is fairly comparable to that of Scenarios 2, 3, and 4. In this case, the Expansion Area growth is allocated to northwestern part of the city (North Avenue and Western Cañada Larga).

The 2025 ADT volumes on the baseline circulation system for this scenario can be seen in Figure 3-14, and the corresponding ICUs are depicted in Figure 3-15. To serve this scenario, it is proposed that the following new roadway links be added as an alternative to the Baseline Network along with selected intersection improvements:

1. Cedar Street extension from Kellogg Street to Stanley Avenue
2. Stanley Avenue extension from Ventura Avenue to Cedar Street

Table 3-13
LAND USE AND TRIP GENERATION BY SUB-AREA - 2025 SCENARIO 5

Growth by Land Use Type

		Sub- Area				
Residential (DUs)	Residential (TSF)	Office (TSF)	Industrial (TSF)	Hotel (TSF)	Total (TSF)	
	2,920	223	764	600	0	1,587
2	1,109	43	95	100	0	238
3	1,665	103	170	0	362	635
4	512	28	60	0	0	88
5	431	96	0	9	107	213
6	440	82	100	0	0	182
7	200	43	343	1,198	0	1,584
8	0	0	0	0	0	0
9	50	155	58	714	0	928
10	844	15	149	173	0	338
11	200	50	70	50	0	170
12	10	0	0	0	0	0
13	17	0	0	0	0	0
14	1,147	17	20	0	0	37
15	70	0	0	75	0	75
16	1,196	165	12	0	0	177
17	435	0	0	0	0	0
Total Growth	11,246	1,020	1,841	2,920	469	6,249
Existing	41,784	6,632	5,090	9,900	2,213	23,836
Future	53,030	7,652	6,931	12,820	2,682	30,085
\%	26.9	15.4	36.2	29.5	21.2	26.2
Growth	26					

Abbreviations: ADT - Average Daily Trips
DUs - Dwelling Units
TSF - Thousand Square Feet

Growth in ADT Trip Generation

Sub- Area	Growth (ADT)	Existing (ADT)	Future (ADT)	\% Growth
1	44,438	14,378	58,816	309.1
2	13,505	51,744	65,248	26.1
3	19,836	84,647	104,483	23.4
4	6,965	110,423	117,388	6.3
5	13,280	50,251	63,530	26.4
6	9,293	163,583	172,876	5.7
7	17,675	84,677	102,352	20.9
8	0	5,104	5,104	0.0
9	10,667	21,147	31,814	50.4
10	8,895	140,508	149,403	6.3
11	10,559	17,419	27,977	60.6
12	197	18,885	19,082	1.0
13	288	15,114	15,402	1.9
14	9,995	14,969	24,964	66.8
15	916	8,047	8,963	11.4
16	19,757	92,749	112,506	21.3
17	3,784	27,476	31,259	13.8
Total	190,050	921,119	$1,111,169$	20.6

Figure 3-13
EXISTING AND FUTURE ADT BY SUBAREA - SCENARIO 5

Figure 3-14

$10 \quad 30 \quad 50$

2025 ADT VOLUMES (000s) SCENARIO 5 (BASELINE NETWORK)

Table 3-14 summarizes the overall roadway and intersection improvements for this scenario, and Table 3-15 lists the ICU values with Baseline improvements and with the recommended additional improvements (ICU calculations can be found in Appendix A). Comparative ADT volumes for the arterial street system with the added roadways can be found in Chapter 4.0 where the recommended roadway classifications for the scenarios are presented. It should be noted that the Cedar Street and associated Stanley Avenue extensions suggested here are not included in the Scenario 5 circulation plan that is recommended in Chapter 4.0. The reason for this is discussed as a Special Issue in Chapter 5.0.

Scenario 5 results in two locations that require additional (non-committed) improvements, with both deficiencies occurring under each network scenario (Baseline and Alternative). The deficient locations are as follows:

Baseline Network

- SR-33 Ramps at Shell Road
- Wells Road at Darling Road

Alternative Network

- SR-33 Ramps at Shell Road
- Wells Road at Darling Road

SCENARIO 6 - INTENSIFICATION/REUSE + NORTH AVENUE + POINSETTIA

This scenario adds to the intensification and infill development of Scenario 1 by adding residential and non-residential development in the North Avenue and Poinsettia expansion areas. Citywide, this scenario would add an estimated 11,241 dwelling units and 6.4 million square feet of nonresidential development.

Table 3-16 summarizes the growth by sub-area for this scenario, and Figure 3-16 shows this growth in diagrammatic form. Citywide growth in trip generation is 21.7 percent, relatively similar to Scenarios 2, 3, 4, and 5, but with the Expansion Area growth allocated to the Poinsettia area in the northeast part of the city.

The 2025 ADT volumes on the baseline circulation system for this scenario can be seen in Figure 3-17, and the corresponding ICUs are depicted in Figure 3-18. To serve this scenario, it is proposed that

Text continues on Page 3-61

Table 3-14
ROADWAY IMPROVEMENTS - SCENARIO 5

LOCATION

IMPROVEMENT

I. Baseline

1. Streets

A Street (Saticoy Avenue to Wells Road
Harbor Boulevard Bridge over the Santa Clara River
Hill Road (Moon Drive to Ralston Street)
Johnson Drive (North Bank Drive to Bristol Road)
North Bank Drive (City limits to Wells Road)
North Bank Drive (Current terminus to Saticoy Avenue)
Telegraph Road (Saticoy Avenue to Wells Road)
Thille Street (Telephone Road to current terminus)
US-101 Off-ramp to California Street
Victoria Avenue (US-101 to City limits)
Wells Road (SR-126 to City limits)
Wells Road (Foothill Road to SR-126)
2. Intersections
20. Harbor Boulevard and Olivas Park Drive
33. US-101 NB ramps at Telephone Road
35. Saratoga Avenue at Telephone Road
85. Victoria Avenue at Olivas Park Drive
86. Telephone Road at Olivas Park Drive
91. Johnson Drive at Ralston Street
92. Johnson Drive at Bristol Road
94. Johnson Drive at North Bank Drive
104. Wells Road at SR-126 EB Ramps
105. Wells Road at Darling Road
106. Wells Road at Telephone Road
160. Victoria Avenue at US 101 NB Ramps
175. Ventura Boulevard at North Bank Drive

New two-lane roadway
Widen to four lanes
Extend as two-lane roadway
Widen to six lanes
New two-lane roadway
New two-lane roadway
Widen to four lanes
Extend as two-lane roadway
Relocate to Oak Street
Widen to six lanes
Widen to six lanes
Widen to four lanes

Add second southbound left-turn lane
Convert southbound left-turn lane to shared left-turn/right-turn lane
Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and
westbound through lanes
Add second northbound and southbound through lanes
Add second northbound and southbound through lanes
Convert southbound right-turn lane to shared through/right-turn lane
Add third northbound and southbound through lanes
Add third northbound and southbound through lanes
Add third northbound and southbound through lanes
Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
Add second eastbound through lane

(Table Continued)

Table 3-14
ROADWAY IMPROVEMENTS - SCENARIO 5

LOCATION	IMPROVEMENT
II. Non-Committed	
1a. Streets (Alternative Network)	
Cedar Street (Kellogg Street to Stanley Avenue)	New two-lane roadway
Kimball Road (Telephone Road to North Bank Drive)	New four-lane roadway
Ralston Street (Ramelli Avenue to Montgomery Avenue)	New two-lane roadway
Stanley Avenue (Cedar Street to Ventura Avenue)	New two-lane roadway
2. Intersections (Baseline Network)	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
105. Wells Road at Darling Road	Add southbound right-turn lane, second westbound through lane and separate westbound right-turn lane
179. SR-33 Ramps at Shell Road	Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
2a. Intersections (Baseline Network)	Add southbound right-turn lane, second westbound through lane and separate westbound right-turn lane
105. Wells Road at Darling Road	

Table 3-15
2025 ICU SUMMARY - SCENARIO 5

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 49	A	. 53	A	--		--		. 49	A	. 53	A	--		--	
2. Victoria \& Loma Vista	. 56	A	. 50	A	--		--		. 57	A	. 51	A	--		--	
3. Victoria \& Telegraph	. 63	B	. 76	C	--		--		. 62	B	. 76	C	--		--	
4. Victoria \& Woodland	. 70	B	. 56	A	--		--		. 70	B	. 55	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 59	A	. 86	D	--		--		. 58	A	. 85	D	--		--	
6. Victoria \& Thille	. 52	A	. 62	B	--		--		. 51	A	. 61	B	--		--	
7. Victoria \& Telephone	. 63	B	. 72	C	--		--		. 61	B	. 71	C	--		--	
8. Victoria \& Ralston	. 67	B	. 79	C	--		--		. 71	C	. 82	D	--		--	
10. Victoria \& Moon	. 55	A	. 63	B	--		--		. 57	A	. 61	B	--		--	
14. Hill \& Telephone	. 53	A	. 61	B	--		--		. 53	A	. 60	A	--		--	
15. Johnson \& Telephone	. 48	A	. 73	C	--		--		. 48	A	. 73	C	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 53	A	. 61	B	--		--		. 53	A	. 59	A	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 56	A	. 86	D	--		--		. 55	A	. 88	D	--		--	
20. Harbor \& Olivas Park	. 43	A	. 80	C	--		--		. 43	A	. 80	C	--		--	
23. Mills \& Loma Vista	. 33	A	. 42	A	--		--		. 33	A	. 42	A	--		--	
24. Mills \& Telegraph	. 48	A	. 52	A	--		--		. 48	A	. 50	A	--		--	
25. Mills \& Maple	. 51	A	. 50	A	--		--		. 51	A	. 50	A	--		--	
26. Mills \& Dean	. 53	A	. 54	A	--		--		. 53	A	. 54	A	--		--	
27. Mills \& Main	. 68	B	. 70	B	--		--		. 68	B	. 70	B	--		--	
28. US 101 NB Ramps \& Main (a)	. 78	C	. 79	C	--		--		. 78	C	. 79	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 53	A	. 63	B	--		--		. 53	A	. 62	B	--		--	
30. Callens \& Main	. 46	A	. 66	B	--		--		. 46	A	. 66	B	--		--	
31. Donlon \& Main	. 56	A	. 84	D	--		--		. 56	A	. 83	D	--		--	
32. Telephone \& Main (a)	. 62	B	. 87	D	--		--		. 62	B	. 87	D	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 55	A	. 68	B	--		--		. 56	A	. 68	B	--		--	
34. Portola \& Telephone	. 35	A	. 49	A	--		--		. 35	A	. 49	A	--		--	

Table 3-15
2025 ICU SUMMARY - SCENARIO 5

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
35. Saratoga \& Telephone	. 30	A	. 56	A	--		--		. 30	A	. 56	A	--		--	
38. Telephone \& Market	. 61	B	. 73	C	--		--		. 61	B	. 72	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--		. 29	A	. 75	C	--		--	
45. Catalina \& Main	. 38	A	. 34	A	--		--		. 38	A	. 33	A	--		--	
46. Seaward \& Main	. 56	A	. 69	B	--		--		. 56	A	. 68	B	--		--	
47. Main \& Loma Vista	. 55	A	. 53	A	--		--		. 56	A	. 52	A	--		--	
49. Main \& Telegraph	. 45	A	. 67	B	--		--		. 45	A	. 67	B	--		--	
50. Emma \& Main	. 41	A	. 46	A	--		--		. 41	A	. 46	A	--		--	
51. Lemon Grove \& Main	. 40	A	. 43	A	--		--		. 40	A	. 43	A	--		--	
53. Kimball \& Telephone	. 76	C	. 67	B	--		--		. 66	B	. 44	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 35	A	. 33	A	--		--		. 38	A	. 33	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 77	C	. 39	A	--		--		. 85	D	. 40	A	--		--	
58. Kimball \& Telegraph	. 24	A	. 34	A	--		--		. 24	A	. 35	A	--		--	
60. Ramelli \& Telephone	. 38	A	. 67	B	--		--		. 35	A	. 38	A	--		--	
61. Montgomery \& Telephone	. 58	A	. 35	A	--		--		. 56	A	. 39	A	--		--	
63. Petit \& Telephone	. 46	A	. 58	A	--		--		. 46	A	. 56	A	--		--	
65. Sanjon \& Thompson	. 48	A	. 57	A	--		--		. 49	A	. 57	A	--		--	
68. Seaward \& Thompson	. 50	A	. 60	A	--		--		. 49	A	. 59	A	--		--	
71. Sanjon \& Harbor	. 35	A	. 68	B	--		--		. 35	A	. 70	B	--		--	
75. Ashwood \& Telegraph	. 29	A	. 47	A	--		--		. 29	A	. 47	A	--		--	
77. Day \& Telegraph	. 42	A	. 39	A	--		--		. 42	A	. 39	A	--		--	
85. Victoria \& Olivas Park	. 66	B	. 81	D	--		--		. 66	B	. 81	D	--		--	
86. Telephone \& Olivas Park	. 56	A	. 68	B	--		--		. 56	A	. 68	B	--		--	
91. Johnson \& Ralston	. 46	A	. 55	A	--		--		. 67	B	. 89	D	--		--	
92. Johnson \& Bristol	. 70	B	. 73	C	--		--		. 72	C	. 69	B	--		--	
94. Johnson \& North Bank	. 69	B	. 82	D	--		--		. 70	B	. 82	D	--		--	
95. Bristol \& Ramelli	. 49	A	. 27	A	--		--		. 49	A	. 31	A	--		--	
96. Montgomery \& North Bank	. 55	A	. 48	A	--		--		. 46	A	. 32	A	--		--	

Table 3-15
2025 ICU SUMMARY - SCENARIO 5

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				BaselineImprovements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
100. Saticoy \& Telephone	. 46	A	. 46	A	--		--		. 47	A	. 45	A	--		--	
101. Saticoy \& Telegraph	. 47	A	. 52	A	--		--		. 48	A	. 52	A	--		--	
102. Wells \& Telegraph	. 63	B	. 62	B	--		--		. 65	B	. 62	B	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 67	B	. 75	C	--		--		. 66	B	. 76	C	--		--	
105. Wells \& Darling	. 70	B	1.07	F	. 64	B	. 88	D	. 69	B	1.07	F	. 63	B	. 88	D
106. Wells \& Telephone	. 73	C	. 73	C	--		--		. 73	C	. 71	C	--		--	
114. California \& Thompson	. 44	A	. 48	A	--		--		. 43	A	. 51	A	--		--	
115. Chestnut \& Thompson	. 51	A	. 55	A	--		--		. 54	A	. 59	A	--		--	
120. Ventura \& Main	. 43	A	. 76	C	--		--		. 39	A	. 71	C	--		--	
132. Ventura \& Stanley	. 68	B	. 83	D	--		--		. 61	B	. 62	B	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 49	A	. 57	A	--		--		. 49	A	. 56	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 57	A	. 83	D	--		--		. 57	A	. 83	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 81	D	. 67	B	--		--		. 80	C	. 67	B	--		--	
161. Victoria \& Valentine (a)	. 68	B	. 78	C	--		--		. 68	B	. 78	C	--		--	
162. California \& Harbor	. 29	A	. 35	A	--		--		. 29	A	. 41	A	--		--	
163. Santa Clara \& Main	. 26	A	. 31	A	--		--		. 26	A	. 30	A	--		--	
164. Seaward \& Poli	. 41	A	. 50	A	--		--		. 41	A	. 50	A	--		--	
165. Seaward \& Harbor	. 60	A	. 72	C	--		--		. 59	A	. 71	C	--		--	
166. College \& Telegraph	. 34	A	. 39	A	--		--		. 33	A	. 40	A	--		--	
168. Day \& Foothill	. 74	C	. 76	C	--		--		. 73	C	. 76	C	--		--	
169. Kimball \& Foothill	. 51	A	. 44	A	--		--		. 51	A	. 45	A	--		--	
170. Petit \& Foothill	. 34	A	. 18	A	--		--		. 34	A	. 18	A	--		--	
171. Saticoy \& Foothill	. 36	A	. 30	A	--		--		. 36	A	. 31	A	--		--	
172. Wells \& Foothill	. 33	A	. 26	A	--		--		. 33	A	. 25	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 85	D	. 73	C	--		--		. 80	C	. 73	C	--		--	
174. Petit \& Telegraph	. 41	A	. 28	A	--		--		. 41	A	. 28	A	--		--	
175. Ventura \& North Bank (a)	. 42	A	. 89	D	--		--		. 42	A	. 89	D	--		--	
176. Saticoy \& Darling	. 35	A	. 29	A	--		--		. 35	A	. 28	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 33	A	. 49	A	--		--		. 33	A	. 49	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 64	B	. 69	B	--		--		. 61	B	. 62	B	--		--	

```
Table 3-15
```

2025 ICU SUMMARY - SCENARIO 5

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
179. SR-33 Ramps \& Shell (a)	1.13	F	1.11	F	. 80	C	. 78	C	1.12	F	1.10	F	. 80	C	. 76	C
180. Estates \& Telegraph	. 28	A	. 39	A	--		--		. 28	A	. 39	A	--		--	
181. Ventura \& Ramona	. 36	A	. 54	A	--		--		. 33	A	. 39	A	--		--	
182. Olive \& Main	. 63	B	. 69	B	--		--		. 61	B	. 67	B	--		--	
190. Petit \& North Bank	. 20	A	. 25	A	--		--		. 21	A	. 22	A	--		--	
191. Saticoy \& North Bank	. 08	A	. 15	A	--		--		. 08	A	. 14	A	--		--	
192. Los Angeles \& North Bank	. 72	C	. 86	D	--		--		. 71	C	. 86	D	--		--	
193. Saticoy \& A St	. 17	A	. 13	A	--		--		. 17	A	. 13	A	--		--	
194. Wells \& A St	. 43	A	. 41	A	--		--		. 44	A	. 41	A	--		--	
196. Ramelli \& Ralston	--		--		--		--		. 39	A	. 48	A	--		--	
197. Kimball \& Ralston	--		--		--		--		. 32	A	. 44	A	--		--	
198. Montgomery \& Ralston	--		--		--		--		. 22	A	. 17	A	--		--	
199. Kimball \& North Bank	--		--		--		--		. 44	A	. 47	A	--		--	

(a) LOS E (ICU less than or equal to 1.00 is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90 is the recommended performance standard for all other intersection locations.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Table 3-16
LAND USE AND TRIP GENERATION BY SUB-AREA - 2025 SCENARIO 6

Growth by Land Use Type

	Sub- Area	Residential (DUs)	Non-Residential (TSF)	Office (TSF)	Industrial (TSF)	Hotel (TSF)
1		59	160	600	0	Total (TSF)
2		43	95	100	0	238
3		103	170	0	362	635
4		28	60	0	0	88
5		96	0	9	107	213
6	440	82	100	0	0	182
7	200	43	343	1,216	0	1,602
8	0	0	0	0	0	0
9	50	155	58	765	0	978
10	844	15	149	173	0	338
11	200	50	70	50	0	170
12	2,390	183	640	0	0	823
13	17	0	0	0	0	0
14	1,147	17	20	0	0	37
15	70	0	0	75	0	75
16	1,196	165	12	0	0	177
17	435	0	0	0	0	0
Total Growth	11,241	1,039	1,877	2,988	469	6,373
Existing	41,784	6,632	5,090	9,900	2,213	23,836
Future	53,025	7,671	6,967	12,889	2,682	30,209
\%	26.9	15.7	36.9	30.2	21.2	26.7
Growth	26					

Abbreviations: ADT - Average Daily Trips
DUs - Dwelling Units
TSF - Thousand Square Feet

Growth in ADT Trip Generation

Sub- Area	Growth (ADT)	Existing (ADT)	Future (ADT)	\% Growth
1	14,731	14,378	29,109	102.5
2	11,741	51,744	63,485	22.7
3	22,036	84,647	106,683	26.0
4	6,965	110,423	117,388	6.3
5	13,280	50,251	63,530	26.4
6	7,063	163,583	170,646	4.3
7	17,801	84,677	102,477	21.0
8	0	5,104	5,104	0.0
9	11,018	21,147	32,166	52.1
10	8,895	140,508	149,403	6.3
11	10,559	17,419	27,977	60.6
12	41,108	18,885	59,993	217.7
13	288	15,114	15,402	1.9
14	9,995	14,969	24,964	66.8
15	916	8,047	8,963	11.4
16	19,757	92,749	112,506	21.3
17	3,784	27,476	31,259	13.8
Total	199,936	921,119	$1,121,055$	21.7

Figure 3-16
EXISTING AND FUTURE ADT BY SUBAREA - SCENARIO 6

Figure 3-17
$\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s
2025 ADT VOLUMES (000s) SCENARIO 6 (BASELINE NETWORK)

City of San Buenaventur
City of San Buenaventura
General Plan Circulation Element Update Traffic Study
the following links be added as an alternative to the Baseline Network along with selected intersection improvements:

1. Johnson Drive extension from SR-126 to Foothill Avenue
2. Loma Vista Road extension from Victoria Avenue to Kimball Road
3. Woodland Street extension from Hill Road to Johnson Drive

Table 3-17 summarizes the overall roadway and intersection improvements for this scenario, and Table 3-18 lists the ICU values with Baseline improvements and with the recommended additional improvements (ICU calculations can be found in Appendix A). Comparative ADT volumes for the arterial street system with the added roadways can be found in Chapter 4.0 where the recommended roadway classifications for the scenarios are presented.

Scenario 6 results in one location that will require additional (non-committed) improvements, with the deficiency occurring under both network scenarios (Baseline and Alternative). The deficient location is as follows:

Baseline Network

- Wells Road at Darling Road

Alternative Network

- Wells Road at Darling Road

Table 3-17
ROADWAY IMPROVEMENTS - SCENARIO 6

LOCATION	IMPROVEMENT
I. Baseline	
1. Streets	
A Street (Saticoy Avenue to Wells Road)	New two-lane roadway
Harbor Boulevard Bridge over the Santa Clara River	Widen to four lanes
Hill Road (Moon Drive to Ralston Street)	Extend as two-lane roadway
Johnson Drive (North Bank Drive to Bristol Road)	Widen to six lanes
North Bank Drive (City limits to Wells Road)	New two-lane roadway
North Bank Drive (Current terminus to Saticoy Avenue)	New two-lane roadway
Telegraph Road (Saticoy Avenue to Wells Road)	Widen to four lanes
Thille Street (Telephone Road to current terminus)	Extend as two-lane roadway
US-101 Off-ramp to California Street	Relocate to Oak Street
Victoria Avenue (US-101 to City limits)	Widen to six lanes
Wells Road (SR-126 to City limits)	Widen to six lanes
Wells Road (Foothill Road to SR-126)	Widen to four lanes
2. Intersections	
20. Harbor Boulevard and Olivas Park Drive	Add second southbound left-turn lane
33. US-101 NB ramps at Telephone Road	Convert southbound left-turn lane to shared left-turn/right-turn lane
35. Saratoga Avenue at Telephone Road	Convert separate westbound right-turn lane to shared through/right-turn lane and add separate southbound right-turn lane
85. Victoria Avenue at Olivas Park Drive	Add second northbound and southbound left-turn lanes, third northbound and southbound through lanes, second eastbound left-turn lane and second westbound through lane
86. Telephone Road at Olivas Park Drive	Add double southbound left-turn lanes, second eastbound left-turn lane and second eastbound and westbound through lanes
91. Johnson Drive at Ralston Street	Add second northbound and southbound through lanes
92. Johnson Drive at Bristol Road	Add second northbound and southbound through lanes
94. Johnson Drive at North Bank Drive	Convert southbound right-turn lane to shared through/right-turn lane
104. Wells Road at SR-126 EB Ramps	Add third northbound and southbound through lanes
105. Wells Road at Darling Road	Add third northbound and southbound through lanes
106. Wells Road at Telephone Road	Add third northbound and southbound through lanes
160. Victoria Avenue at US 101 NB Ramps	Convert westbound shared left-turn/right-turn lane to dedicated left-turn lane and add third westbound right-turn lane
175. Ventura Boulevard at North Bank Drive	Add second eastbound through lane

(Table Continued)

Table 3-17
ROADWAY IMPROVEMENTS - SCENARIO 6

LOCATION

IMPROVEMENT

II. Non-Committed

1a. Streets (Alternative Network)
Johnson Drive (Current terminus to Telegraph Road)
Johnson Drive (Telegraph Road to Foothill Road) Loma Vista Road (Kimball Road to Victoria Avenue) New four-lane roadway Woodland Street (Hill Road to Johnson Drive) New two-lane roadway New two-lane roadway
2. Intersections (Baseline Network) 105. Wells Road at Darling Road

2a. Intersections (Alternative Network)
$\frac{\text { 2a. Intersections (Alternative Network) }}{\text { 105. Wells Road at Darling Road }}$
Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane
Add eastbound left-turn lane, second southbound left-turn lane and second westbound left-turn lane

Table 3-18
2025 ICU SUMMARY - SCENARIO 6

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	BaselineImprovements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
1. Victoria \& Foothill	. 53	A	. 69	B	--		--		. 53	A	. 56	A	--		--	
2. Victoria \& Loma Vista	. 68	B	. 61	B	--		--		. 56	A	. 57	A	--		--	
3. Victoria \& Telegraph	. 74	C	. 87	D	--		--		. 56	A	. 75	C	--		--	
4. Victoria \& Woodland	. 82	D	. 77	C	--		--		. 65	B	. 51	A	--		--	
5. Victoria \& SR 126 SB Ramps (a)	. 64	B	. 94	E	--		--		. 48	A	. 70	B	--		--	
6. Victoria \& Thille	. 57	A	. 68	B	--		--		. 47	A	. 57	A	--		--	
7. Victoria \& Telephone	. 64	B	. 76	C	--		--		. 61	B	. 78	C	--		--	
8. Victoria \& Ralston	. 73	C	. 81	D	--		--		. 75	C	. 80	C	--		--	
10. Victoria \& Moon	. 60	A	. 65	B	--		--		. 56	A	. 61	B	--		--	
14. Hill \& Telephone	. 53	A	. 61	B	--		--		. 69	B	. 66	B	--		--	
15. Johnson \& Telephone	. 50	A	. 78	C	--		--		. 73	C	. 79	C	--		--	
18. Seaward \& US 101 NB Ramps (a)	. 52	A	. 62	B	--		--		. 52	A	. 61	B	--		--	
19. Monmouth/US 101 SB \& Harbor (a)	. 55	A	. 83	D	--		--		. 55	A	. 81	D	--		--	
20. Harbor \& Olivas Park	. 41	A	. 80	C	--		--		. 41	A	. 79	C	--		--	
23. Mills \& Loma Vista	. 35	A	. 43	A	--		--		. 34	A	. 43	A	--		--	
24. Mills \& Telegraph	. 49	A	. 53	A	--		--		. 49	A	. 51	A	--		--	
25. Mills \& Maple	. 53	A	. 51	A	--		--		. 51	A	. 48	A	--		--	
26. Mills \& Dean	. 55	A	. 53	A	--		--		. 53	A	. 56	A	--		--	
27. Mills \& Main	. 69	B	. 71	C	--		--		. 66	B	. 69	B	--		--	
28. US 101 NB Ramps \& Main (a)	. 79	C	. 80	C	--		--		. 76	C	. 78	C	--		--	
29. SR 126 EB Ramps \& Main (a)	. 54	A	. 64	B	--		--		. 51	A	. 61	B	--		--	
30. Callens \& Main	. 46	A	. 67	B	--		--		. 44	A	. 63	B	--		--	
31. Donlon \& Main	. 55	A	. 84	D	--		--		. 54	A	. 81	D	--		--	
32. Telephone \& Main (a)	. 62	B	. 90	D	--		--		. 64	B	. 93	E	--		--	
33. US 101 NB Ramps \& Telephone (a)	. 56	A	. 70	B	--		--		. 56	A	. 70	B	--		--	
34. Portola \& Telephone	. 36	A	. 52	A	--		--		. 36	A	. 52	A	--		--	
35. Saratoga \& Telephone	. 30	A	. 58	A	--		--		. 33	A	. 57	A	--		--	

Table 3-18
2025 ICU SUMMARY - SCENARIO 6

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
38. Telephone \& Market	. 65	B	. 73	C	--		--		. 63	B	. 74	C	--		--	
42. Telephone \& McGrath	. 29	A	. 75	C	--		--		. 28	A	. 74	C	--		--	
45. Catalina \& Main	. 37	A	. 34	A	--		--		. 37	A	. 33	A	--		--	
46. Seaward \& Main	. 55	A	. 69	B	--		--		. 56	A	. 70	B	--		--	
47. Main \& Loma Vista	. 56	A	. 55	A	--		--		. 55	A	. 56	A	--		--	
49. Main \& Telegraph	. 45	A	. 68	B	--		--		. 45	A	. 65	B	--		--	
50. Emma \& Main	. 40	A	. 45	A	--		--		. 40	A	. 44	A	--		--	
51. Lemon Grove \& Main	. 39	A	. 43	A	--		--		. 39	A	. 42	A	--		--	
53. Kimball \& Telephone	. 84	D	. 71	C	--		--		. 66	B	. 53	A	--		--	
55. Kimball \& SR 126 EB Ramps (a)	. 39	A	. 38	A	--		--		. 31	A	. 24	A	--		--	
56. Kimball \& SR 126 WB Ramps (a)	. 83	D	. 43	A	--		--		. 71	C	. 35	A	--		--	
58. Kimball \& Telegraph	. 30	A	. 39	A	--		--		. 26	A	. 35	A	--		--	
60. Ramelli \& Telephone	. 39	A	. 72	C	--		--		. 33	A	. 56	A	--		--	
61. Montgomery \& Telephone	. 59	A	. 34	A	--		--		. 58	A	. 35	A	--		--	
63. Petit \& Telephone	. 44	A	. 58	A	--		--		. 44	A	. 59	A	--		--	
65. Sanjon \& Thompson	. 49	A	. 56	A	--		--		. 47	A	. 55	A	--		--	
68. Seaward \& Thompson	. 50	A	. 62	B	--		--		. 49	A	. 60	A	--		--	
71. Sanjon \& Harbor	. 36	A	. 68	B	--		--		. 36	A	. 67	B	--		--	
75. Ashwood \& Telegraph	. 31	A	. 48	A	--		--		. 32	A	. 48	A	--		--	
77. Day \& Telegraph	. 43	A	. 41	A	--		--		. 43	A	. 41	A	--		--	
85. Victoria \& Olivas Park	. 68	B	. 82	D	--		--		. 70	B	. 81	D	--		--	
86. Telephone \& Olivas Park	. 56	A	. 70	B	--		--		. 56	A	. 66	B	--		--	
91. Johnson \& Ralston	. 53	A	. 55	A	--		--		. 54	A	. 63	B	--		--	
92. Johnson \& Bristol	. 72	C	. 76	C	--		--		. 66	B	. 85	D	--		--	
94. Johnson \& North Bank	. 72	C	. 83	D	--		--		. 72	C	. 89	D	--		--	
95. Bristol \& Ramelli	. 47	A	. 28	A	--		--		. 53	A	. 31	A	--		--	
96. Montgomery \& North Bank	. 54	A	. 47	A	--		--		. 54	A	. 47	A	--		--	
100. Saticoy \& Telephone	. 47	A	. 45	A	--		--		. 45	A	. 46	A	--		--	

Table 3-18
2025 ICU SUMMARY - SCENARIO 6

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
101. Saticoy \& Telegraph	. 51	A	. 56	A	--		--		. 48	A	. 51	A	--		--	
102. Wells \& Telegraph	. 68	B	. 69	B	--		--		. 63	B	. 60	A	--		--	
104. Wells \& SR 126 EB Ramps (a)	. 67	B	. 76	C	--		--		. 67	B	. 78	C	--		--	
105. Wells \& Darling	. 70	B	1.08	F	. 64	B	. 89	D	. 69	B	1.08	F	. 66	B	. 89	D
106. Wells \& Telephone	. 73	C	. 74	C	--		--		. 72	C	. 73	C	--		--	
114. California \& Thompson	. 42	A	. 47	A	--		--		. 41	A	. 48	A	--		--	
115. Chestnut \& Thompson	. 49	A	. 57	A	--		--		. 47	A	. 57	A	--		--	
120. Ventura \& Main	. 41	A	. 71	C	--		--		. 40	A	. 72	C	--		--	
132. Ventura \& Stanley	. 74	C	. 84	D	--		--		. 74	C	. 84	D	--		--	
136. US 101 SB Ramps \& Valentine (a)	. 45	A	. 53	A	--		--		. 47	A	. 53	A	--		--	
138. Johnson \& US 101 SB Ramps (a)	. 56	A	. 86	D	--		--		. 52	A	. 84	D	--		--	
160. Victoria \& US 101 NB Ramps (a)	. 84	D	. 70	B	--		--		. 82	D	. 69	B	--		--	
161. Victoria \& Valentine (a)	. 71	C	. 79	C	--		--		. 71	C	. 78	C	--		--	
162. California \& Harbor	. 27	A	. 36	A	--		--		. 28	A	. 36	A	--		--	
163. Santa Clara \& Main	. 25	A	. 29	A	--		--		. 25	A	. 29	A	--		--	
164. Seaward \& Poli	. 44	A	. 51	A	--		--		. 42	A	. 49	A	--		--	
165. Seaward \& Harbor	. 57	A	. 71	C	--		--		. 57	A	. 71	C	--		--	
166. College \& Telegraph	. 36	A	. 43	A	--		--		. 33	A	. 43	A	--		--	
168. Day \& Foothill	. 80	C	. 78	C	--		--		. 80	C	. 79	C	--		--	
169. Kimball \& Foothill	. 63	B	. 66	B	--		--		. 55	A	. 43	A	--		--	
170. Petit \& Foothill	. 37	A	. 20	A	--		--		. 39	A	. 22	A	--		--	
171. Saticoy \& Foothill	. 38	A	. 33	A	--		--		. 42	A	. 35	A	--		--	
172. Wells \& Foothill	. 36	A	. 28	A	--		--		. 37	A	. 27	A	--		--	
173. Victoria \& SR 126 WB Ramps (a)	. 95	E	. 87	D	--		--		. 80	C	. 70	B	--		--	
174. Petit \& Telegraph	. 44	A	. 28	A	--		--		. 46	A	. 27	A	--		--	
175. Ventura \& North Bank (a)	. 42	A	. 89	D	--		--		. 43	A	. 95	E	--		--	
176. Saticoy \& Darling	. 37	A	. 28	A	--		--		. 34	A	. 26	A	--		--	
177. Wells \& SR 126 WB Ramps (a)	. 34	A	. 50	A	--		--		. 33	A	. 47	A	--		--	
178. SR-33 Ramps \& Stanley (a)	. 67	B	. 74	C	--		--		. 67	B	. 74	C	--		--	
179. SR-33 Ramps \& Shell (a)	. 96	E	. 98	E	--		--		. 96	E	. 98	E	--		--	

```
Table 3-18
```

2025 ICU SUMMARY - SCENARIO 6

Intersection	BASELINE NETWORK								ALTERNATIVE NETWORK							
	Baseline Improvements				Non-Committed Improvements				Baseline Improvements				Non-Committed Improvements			
	AM Peak		PM Peak													
	ICU	LOS														
180. Estates \& Telegraph	. 27	A	. 41	A	--		--		. 28	A	. 41	A	--		--	
181. Ventura \& Ramona	. 33	A	. 52	A	--		--		. 33	A	. 50	A	--		--	
182. Olive \& Main St	. 53	A	. 62	B	--		--		. 53	A	. 61	B	--		--	
190. Petit Av \& North Bank Dr	. 20	A	. 27	A	--		--		. 19	A	. 26	A	--		--	
191. Saticoy Av \& North Bank Dr	. 08	A	. 15	A	--		--		. 08	A	. 15	A	--		--	
192. Los Angeles Av \& North Bank	. 72	C	. 87	D	--		--		. 71	C	. 86	D	--		--	
193. Saticoy Av \& A St	. 19	A	. 13	A	--		--		. 18	A	. 12	A	--		--	
194. Wells Rd \& A St	. 45	A	. 42	A	--		--		. 40	A	. 41	A	--		--	
205. Johnson \& Woodland	--		--		--		--		. 66	B	. 69	B	--		--	
206. Johnson \& Telegraph	--		--		--		--		. 78	C	. 68	B	--		--	
207. Johnson \& Loma Vista	--		--		--		--		. 32	A	. 49	A	--		--	
208. Johnson \& Foothill	--		--		--		--		. 52	A	. 63	B	--		--	

(a) LOS E (ICU less than or equal to 1.00) is acceptable at this location (freeway ramps). LOS D (ICU less than or equal to .90) is the recommended performance standard for all other intersection locations that are analyzed.

Note: Gray shading denotes intersection locations that exceed the performance standard.

Chapter 4.0 ARTERIAL STREET SYSTEM

This chapter presents material pertaining to the Arterial Street System Component of the Circulation Element. It is intended to provide background discussion and related material for that component of the Element, and to present recommendations for the Citywide Arterial Street Plan.

OVERVIEW

Preparing the Circulation Element Update has involved a comprehensive process with input from numerous sources. Some of these sources were described in Chapter 2.0 as part of the existing conditions data that was compiled relative to existing physical features of the circulation system. Other information sources include community input (see Appendix B) and technical analyses as described in this report.

The discussion in this chapter focuses on the arterial street system and uses information prepared in the previous chapter (Chapter 3.0) to present Arterial Street Plans to be considered for inclusion in the Circulation Element. A customized Street Classification System is first described and then recommendations presented for each of the six land use scenarios discussed in the previous chapter.

STREET CLASSIFICATION SYSTEM

The arterial street component of the Circulation Element has two features which define the physical attributes of individual roadways on the Citywide street system. These are:

1. Design Classification

2. Functional Classification

The first establishes standards for right-of-way dedication when new construction occurs and shows the maximum number of lanes that would be accommodated on a given street. It essentially sets the maximum size of the street. There are three design classifications used in the Circulation Element, Primary Arterial, Secondary Arterial and Collector. Design specifications for these can be found in the City's Standard Detail Number 105.

The functional classification addresses lane deployment, medians, parking, and streetscape attributes designed to achieve objectives other than simply moving traffic. It addresses the "character" of a street as well as its size. Labels used in naming the functional classifications include the following:

- Boulevard - a street with a raised planted median
- Arterial - a street with a striped median
- Street - a street with no median

The first two are used in differentiating Primary Arterials, and all three are used for differentiating Secondary Arterials. Other descriptions are used as appropriate, particularly for collectors which are differentiated by both medians and parking.

The design and functional classifications are listed in Table 4-1. This shows the relationship between the two in conjunction with specific features of each classification and representative average daily traffic (ADT) values. As noted in the table, the ADT values are representative only and do not imply that the street is capable of carrying this volume or that it should carry no more than this volume. Figure 4-1 provides an illustrative guide in the form of cross-sections, and a brief description of each functional classification follows.

Six-Lane Boulevard (6LB) - This is the highest level of functional classification both in terms of its ability to carry traffic and also in terms of aesthetic appearance. It has a landscaped median wherever possible (i.e., where no access is required or where access can be limited) and gives a high quality street appearance. It is not necessary for the raised median to be continuous as long as there are sufficient sections of landscaped median to provide visual continuity. The intervening sections would have a striped median. No curbside parking is allowed under this functional classification. Also, where necessary, the basic six lane section may be augmented with auxiliary lanes (as currently exists on Victoria Avenue which has eight midblock lanes).

Six-Lane Arterial (6LA) - This is the second functional classification with six lanes and is the second of two functional classifications within the Primary Arterial design classification. In this case it has a striped median allowing two-way left turns into adjacent properties. Like the six-lane boulevard, it typically does not allow curbside parking since all the street width is required to accommodate the six lanes plus center turn lane. The only situation where parking would be allowed is where the right-of-way

is sufficient to accommodate parking as well as the other space components of this classification (i.e., median and bike lanes).

Four-Lane Boulevard (4LB) - This is the secondary arterial equivalent of the six-lane boulevard (6LB). It essentially provides the same type of streetscape, but with only four lanes. As noted for the 6LB, the landscaped median need not be continuous as long as there are sufficient sections to provide visual continuity. No curbside parking is allowed under this functional classification.

Four-Lane Arterial (4LA) - In its highest traffic carrying form, this is similar to the 4LB, but without the landscaped median. Typically, there is no parking and the center striped lane allows for twoway left turns. A variation on this is to allow parking, in which case the median would typically be narrower (no more than the 10 feet needed for the two-way left turn lane) and the parkway would also be narrower (eight feet rather than the desired 12 feet). Ideally the parking would be accommodated by indents, thereby providing designated parking sections along individual sections of roadway.

Four-Lane Street (4LS) - This is a basic four-lane roadway with no median and parking allowed on both sides. At intersections, the parking is removed and a striped median is provided to allow protected left turns.

Two-Lane Boulevard (2LB) - This provides for a high capacity two lane roadway within the Secondary Arterial Street Design Classification. It allows for special treatments such as Class I bikeways or wide parkways. Intersection augmentation is an important feature to enable the high midblock volumes to be accommodated.

Urban Collector (UC) - The Collector is the third level of design classification in the Circulation Element, and the Urban Collector is the highest level of the three functional classifications within this design classification.

Residential Collector (RC) - The Residential Collector recognizes that many streets designated as Collectors are in residential areas, and in many cases have driveways fronting onto the street. This classification has extra wide lanes so that traffic is not blocked by cars turning into driveways. At the same time, the residential character is preserved by not providing a median unless it is part of a special traffic calming program.

Special Collector (SC) - This third functional classification for Collector allows for special treatment such as traffic calming features (raised medians and/or narrowed curb-to-curb width), or special parking provisions (Main Street through the downtown area with its angle parking is an example of this functional classification).

Functional classification cross-sections can be found in Figures 4-2 through 4-4, and Table 4-2 shows roadway space allocation examples for the various functional classifications.

PRINCIPAL INTERSECTIONS

As noted in the discussion on performance criteria, level of service is defined by peak hour intersection performance. While the previous section on street classifications included a listing of desirable ADT values, these are simply a guide and do not imply that a roadway needs to be widened simply because the desired ADT threshold is exceeded.

Accordingly, a set of principal intersections are defined in the Circulation Element and are illustrated here in Figure 4-5. These will be regularly monitored and improvements programmed as appropriate. Chapter 3.0 of this report showed estimates of future volumes and levels of service at these locations in relation to the long-range arterial street system. Actual intersection improvements at the principal intersections are not part of the Circulation Element, but would be included as appropriate in the Annual Transportation Report.

CITYWIDE STREET CLASSIFICATIONS

This section presents functional classification recommendations for the citywide arterial street system. The classification for each street segment represents a balance between needed capacity and other objectives (or constraints) related to the character of that street. Constraints include right-of-way and access needs. Other attributes include adjacent land uses, parking needs, street character, and visual/aesthetic values. An individual classification system is presented for each land use scenario, and year 2025 ADT volumes for that system are also shown for each scenario.

FUNCTIONAL CLASSIFICATION 6LB: 6-LANE BOULEVARD

FUNCTIONAL CLASSIFICATION 4LB: 4-LANE BOULEVARD

Legend
$\mathrm{V}=$ Vehicle Lane (11' minimum)
$\mathrm{P}=$ Parking Lane (8')
$\mathrm{B}=$ Bike Lane (5')

Figure 4-2

ROADWAY CROSS-SECTIONS

```
DESIGN CLASSIFICATION: SECONDARY ARTERIAL
```


FUNCTIONAL CLASSIFICATION 4LA: 4-LANE ARTERIAL (WITHOUT PARKING)

FUNCTIONAL CLASSIFICATION 4LA: 4-LANE ARTERIAL (WITH PARKING)

FUNCTIONAL CLASSIFICATION 4LS: 4-LANE STREET

FUNCTIONAL CLASSIFICATION 2LB:2-LANE BOULEVARD

| Legend |
| :--- | ---: |
| $\mathrm{V}=$ Vehicle Lane (11' minimum) |
| $\mathrm{P}=$ Parking Lane (8') |
| $\mathrm{B}=$ Bike Lane (5') |\quad| Figure 4-3 |
| ---: |
| ROADWAY CROSS-SECTIONS |
| (CONTINUED) |

DESIGN CLASSIFICATION: COLLECTOR

FUNCTIONAL CLASSIFICATION UC: URBAN COLLECTOR

FUNCTIONAL CLASSIFICATION RS: RESIDENTIAL COLLECTOR

FUNCTIONAL CLASSIFICATION SC: SPECIAL COLLECTOR (ANGLE PARKING)

Legend
$\mathrm{V}=$ Vehicle Lane (11' minimum)
$\mathrm{P}=$ Parking Lane (8')
$\mathrm{B}=$ Bike Lane (5')
:---:
ROADWAY CROSS-SECTIONS
(CONTINUED)

FUNCTIONAL CLASSIFICATION	Table 4-2 ET SECTION SPACE ALLOCATION EXAMPLES					
	VEHICLES	BICYCLES	- SPACE ALLOC PARKING	$\begin{gathered} \text { TION (FEET) } \\ \text { MEDIAN } \end{gathered}$	PARKWAYS	TOTAL
1. 6 LB - Six-lane Boulevard	68	10	0	12	28	108
2. 6LB - Six-lane Boulevard	68	10	0	16	24	108
3. 6 LB - Six-lane Boulevard	68	10	0	20	20	108
4. 6LA - Six-lane Arterial (without parking)	72	10	0	12	24	108
5. 6LA - Six-lane Arterial (with parking)	68	10	16	10	14	108
6. 4LB - Four-lane Boulevard	48	12	0	12	28	90
7. 4LB - Four-lane Boulevard	48	12	0	16	24	90
8. 4LB - Four-lane Boulevard	48	12	0	20	20	90
9. 4LA - Four-lane Arterial (without parking)	48	10	0	16	24	90
10. 4LA - Four-lane Arterial (without parking)	48	10	0	12	30	90
11. 4LA - Four-lane Arterial (with parking)	48	10	16	12	14	90
12. TLB - Two-lane Boulevard	26	12	0	20	32	90
13. TLB - Two-lane Boulevard	26	10	0	16	28	80
14. UC - Urban Collector	24	10	16	10	20	80
15. UC - Urban Collector	24	10	16	10	16	76
16. RC - Residential Collector	34	10	16	0	20	80
17. SC - Special Collector (angle parking)	24	0	40	0	16	80

SCENARIO 1 - INTENSIFICATION/REUSE ONLY

The recommended arterial street system functional classifications for Scenario 1 are shown in Figure 4-6, and corresponding year 2025 ADT volumes are illustrated in Figure 4-7. The circulation plan for this scenario is considered a Baseline Network that contains a number of transportation improvements throughout the city that are currently committed for construction (i.e., they have identified funding sources and are programmed for implementation either through the City's Capital Improvement Program (CIP) or other mechanisms; refer to chapter 3.0 for detailed listings of the Baseline improvements).

SCENARIO 2 - INTENSIFICATION/REUSE + NORTH AVENUE + OLIVAS + SERRA

The recommended arterial street system functional classifications for Scenario 2 are shown in Figure 4-8, and corresponding year 2025 ADT volumes are illustrated in Figure 4-9. In this scenario, it is recommended that the following roadway links be added to the Baseline circulation plan:

1. Mills Road extension to Harbor Boulevard
2. New collector between the Mills Road extension and Telephone Road
3. North Bank Drive extension from Johnson Drive to Bristol Drive
4. Kimball Road extension from Telephone Road to North Bank Drive
5. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Note that with North Bank Drive extended from Johnson Drive to Bristol Road, the six-lane widening of Johnson Drive between North Bank Drive and Bristol Road that is assumed in the Baseline circulation plan is not needed.

SCENARIO 3 - INTENSIFICATION/REUSE + NORTH AVENUE + OLIVAS

The recommended arterial street system functional classifications for Scenario 3 are shown in Figure 4-10, and corresponding year 2025 ADT volumes are illustrated in Figure 4-11. In this scenario, it is recommended that the following roadway links be added to the Baseline circulation plan:

1. Mills Road extension to Harbor Boulevard
2. New collector between the Mills Road extension and Telephone Road

Figure 4-7
$\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s
2025 ADT VOLUMES (000s) SCENARIO 1 (BASELINE NETWORK)

Figure 4-11

SCENARIO 4 - INTENSIFICATION/REUSE + NORTH AVENUE + SERRA

The recommended arterial street system functional classifications for Scenario 4 are shown in Figure 4-12, and corresponding year 2025 ADT volumes are illustrated in Figure 4-13. In this scenario, it is recommended that the following roadway links be added to the Baseline circulation plan:

1. North Bank Drive extension from Johnson Drive to Bristol Road
2. Kimball Road extension from Telephone Road to North Bank Drive
3. Ralston Street extension from Ramelli Avenue to Montgomery Avenue

Note that with North Bank Drive extended from Johnson Drive to Bristol Road, the six-lane widening of Johnson Drive between North Bank Drive and Bristol Road that is assumed in the Baseline circulation plan is not needed.

SCENARIO 5 - INTENSIFICATION/REUSE + NORTH AVENUE + WESTERN CAÑADA LARGA

The recommended arterial street system functional classifications for Scenario 5 are shown in Figure 4-14, and corresponding year 2025 ADT volumes are illustrated in Figure 4-15. In this scenario, the circulation plan is the same Baseline Network as considered for Scenario.

SCENARIO 6 - INTENSIFICATION/REUSE + NORTH AVENUE + POINSETTIA

The recommended arterial street system functional classifications for Scenario 6 are shown in Figure 4-16, and corresponding year 2025 ADT volumes are illustrated in Figure 4-17. In this scenario, it is recommended that the following roadway links be added to the Baseline circulation plan:

1. Johnson Drive extension from SR-126 to Foothill Avenue
2. Loma Vista Road extension from Victoria Avenue to Kimball Road
3. Woodland Street extension from Hill Road to Johnson Drive

Figure 4-15 $\xrightarrow{10 \quad 30 \quad 50}$ Average Daily Traffic (ADT) Volumes in 000s

2025 ADT VOLUMES (000s) SCENARIO 5 (BASELINE NETWORK)

TRAFFIC CALMING

Traffic calming involves the deployment of street design features that cause motorists to drive with more care, to drive more slowly or perhaps via another route. The majority of traffic calming devices make alterations to a street's geometry, reducing its real or perceived width, or causing the driver to negotiate curvature or pavement texture. These modifications are almost always made within the public right-of-way, and are usually accompanied by extensive landscaping, thereby serving as neighborhood landmarks as well as traffic calming devices.

Traffic calming measures are generally implemented in response to specific problems. The problem or problems may involve a neighborhood or simply a street or part of a street. Examples of typical problems are as follows:

Cut-Through Traffic - Cut-through traffic has neither origin nor destination within the neighborhood, but rather is passing through on local streets. Cut-through trips seek out local streets, sometimes because they are faster, and sometimes because they are more pleasant and therefore seem to be faster.

Speeding - Many motorists (neighborhood residents as well as "cut-through") drive too fast on local streets. While some speeding is by irresponsible drivers, the majority is by normally responsible drivers unintentionally speeding due to design features such as excessively wide pavement, straight sections of road and absence of landscaping. In addition to safety issues, speeding vehicles degrade the quality of the street for other users and particularly for residents.

Safety - While largely related to speeding, safety also involves factors such as road geometry, safe road crossing locations, etc.

Aesthetics - Wide expanses of pavement devoted solely to the moving of traffic can take over a street in response to providing adequate "traffic service." Traffic calming provides the opportunity to use streets not only for moving cars but also as an aesthetically pleasing focal point for the community.

Although there are a number of traffic calming devices, they generally derive from some combination of a few basic principles:

Narrowing the street - This tends to reduce the speed that most drivers find reasonable and comfortable. Narrowing is done through reducing the pavement width, either at the sides or by adding a median or both. At intersections, narrowing can be achieved or complemented by extending the curbs. The perception of narrowing, which can be as effective as actual narrowing, is gained with street trees along the curb, overhead tree canopy, buildings brought close to the street and "gateways" along the street (i.e., short sections along which the curb-to-curb street width is narrowed).

Deflecting the vehicle path - Deflection usually terminates long, straight street views, thereby reducing speeds. Deflection is done through curving the travel path of the vehicle, and thereby causing the driver to reduce speed. Features incorporated into the street to cause deflection can also enhance the visual character of a street.

Diverting the driver's route - This is a more extreme measure, and makes vehicular access more difficult, thereby encouraging drivers to use another route. Diagonal street closures, one-way streets, median closings and turning movement restrictions are examples of diversion.

Changing the pavement surface - This feature demands attention from drivers, and reduces the comfortable driving speed. When deployed at intersections, it can enhance pedestrian safety.

Standard traffic control devices - These slow traffic through regulation. Stop signs, turn movement prohibitions, traffic signals and posted speed limits are examples of these more conventional traffic calming strategies.

Table 4-3 provides a toolbox of typical traffic calming actions. Typically three steps are undertaken to implement a traffic calming program:

1. Identify what needs fixing (i.e., location and problem) and apply some form of warrant/justification for proceeding with a study.
2. Identify potential tools that might be applicable.
3. Evaluate the tools and establish an implementation plan.

Traffic calming measures, while simple in concept, give a new balance between traffic service and important neighborhood values, such as noise, safety, walking and bicycling. Part of step three above is to recognize the trade-offs that can occur in this regard and achieve the desired balance between what may often be competing objectives.

Table 4-3
TRAFFIC CALMING TOOLBOX

TOOL	SPOT LOCATION	INTERSECTION	ROADWAY	
Bulbout (curb extension)	\checkmark			
Chicane	--	\checkmark	\checkmark	
Choker (neckdown)	\checkmark	-	\checkmark	
Diverter	--	\checkmark	\checkmark	--
Driveway Link	--	--	\checkmark	
Full Street Closure	--	\checkmark	\checkmark	
Gateway	\checkmark	\checkmark	\checkmark	
Intermediate Median Barrier	--	\checkmark	\checkmark	
Landscaping Treatments	\checkmark	\checkmark	--	
Median	--	-	\checkmark	
Modified Intersection	--	\checkmark	\checkmark	
Partial Street Closure	--	\checkmark	--	
Pedestrian Refuge Islands	\checkmark	\checkmark	\checkmark	
Speed Humps and Tables	\checkmark	\checkmark	--	
Roadway Narrowing	--	--	\checkmark	\checkmark
Roundabout	--	-	\checkmark	

Chapter 5.0 SPECIAL ISSUES

This chapter discusses a number of special issues with respect to the citywide arterial street system. The intent is to provide analysis information regarding these issues and give recommendations as to how they should be addressed either in the General Plan Circulation Element Update or in the EIR being prepared for the updated Element.

CEDAR STREET NORTHERLY EXTENSION

Consideration was given in the traffic analysis for a northerly extension of Cedar Street. A Cedar Street extension to Dakota Drive along with an eastward extension of Stanley Avenue to Cedar Street had been included in the previous Circulation Element roadway plan. As part of this Circulation Element Update Traffic Study, an analysis was made to identify the potential benefits of the Cedar Street extension. The land use alternative selected for this evaluation is Scenario 5 which includes development in Expansion Area 5 (Cañada Larga).

The 2025 average daily traffic (ADT) volumes for this scenario are shown in Figure 5-1, and comparative intersection capacity utilization (ICU) values at the intersections affected by the extension are summarized below:

Intersection	Without Cedar Extension		With Cedar Extension	
	AM Peak	PM Peak	AM Peak	PM Peak
132. Ventura \& Stanley	.68	.83	.61	.62
178. SR-33 Ramps \& Stanley	.64	.69	.61	.62

The traffic forecast data presented in Chapter 3.0 for Scenario 5 indicates that the majority of the traffic in the Cañada Larga Expansion Area would use the Cañada Larga and Shell Road interchanges with SR-33, and very little of that traffic would use Ventura Avenue south of Shell Road. Hence, the capacity needs at the intersection of Stanley Road and Ventura Avenue are the issue independent of the land use. As indicated above, year 2025 ICUs for this intersection show adequate capacity. Hence, the cost and potential impacts of such an extension suggest a relatively low benefit of constructing the extension. Accordingly, it is not recommended for inclusion in the Circulation Element at this time.

Figure 5-1

ADDITIONAL CROSSING OF THE SANTA CLARA RIVER

An additional crossing of the Santa Clara River has been considered several times in the past. One candidate location would be a southward extension of Kimball Road over into the recently approved RiverPark development in the City of Oxnard. A study carried out in 2004 for the County of Ventura concluded that expansion of the existing bridges (including the current Caltrans bridge widening on US101) would accommodate future demand without the need for additional bridges.

To verify this finding and to examine the potential benefits of such an extension, the City of Ventura traffic model was utilized to prepare 2025 traffic projections with a Kimball Road extension across the river. The year 2025 ADT volumes with the new river crossing are illustrated in Figure 5-2. As can be seen, future demand on the bridge would be 38,000 ADT, more than is reasonable capacity for a two-lane bridge but within the capacity of a four-lane bridge. Potential benefits of this new bridge would largely occur on Victoria Avenue. Traffic between Ventura and Oxnard that currently uses Victoria Avenue and US-101 to travel between Ventura and the eastside of Oxnard would divert to the new bridge.

For each of the six land use scenarios analyzed in this study, a proposed circulation system has been developed which would serve the year 2025 traffic. In most cases, the circulation system involves intersection improvements and specific roadway links added to serve those scenarios that have expansion area growth. An added crossing of the Santa Clara River would not obviate the need for those additional roadways and would not change the intersection improvements in specific areas proposed as part of those scenarios. Accordingly, it is concluded that the high cost and impacts of an additional crossing would not be justified, given the ability to provide adequate capacity by other means.

OLIVAS PARK DRIVE EXTENSION

Consideration has been given in the past to extending Olivas Park Drive to the Johnson Drive underpass of the US-101. At the present time, traffic on Olivas Park Drive using the interchange must take a circuitous route via Golf Course Road or Perkin Avenue and then Leland Street to reach the Johnson Drive interchange. Hence, the extension would provide a substantial benefit with respect to access to the interchange.

It is recommended that this extension be considered as part of the overall upgrade to the Johnson Drive interchange and vicinity. In particular, if a North Bank Drive connection to Bristol Road is constructed, then associated changes will need to be made at the intersection of Johnson Drive and on the various ramps serving the US-101. Since the Olivas Park Drive extension would aid this situation, it would be a valuable addition to the circulation system in this area. The year 2025 ADT volumes with the Olivas Park Drive extension are illustrated in Figure 5-3.

Appendix A INTERSECTION CAPACITY UTILIZATION WORKSHEETS

This appendix contains information pertaining to the existing and future intersection analysis portion of the San Buenaventura traffic study. The sections that follow contain existing and future AM and PM peak hour intersection capacity utilization (ICU) worksheets for intersections in the traffic analysis study area. For intersections that require additional improvements, ICU worksheets with NonCommitted Improvements are included. The ICU data sets contained in the appendix are presented in the following order:

ICU DATA SETS

Scenario

Data Set
Existing
2025 Scenario 1 (Baseline Network) 2
2025 Scenario 2 (Baseline Network) 3
2025 Scenario 2 (Alternative Network) 4
2025 Scenario 3 (Baseline Network) 5
2025 Scenario 3 (Alternative Network) 6
2025 Scenario 4 (Baseline Network) 7
2025 Scenario 4 (Alternative Network) 8
2025 Scenario 5 (Baseline Network) 9
2025 Scenario 5 (Alternative Network) 10
2025 Scenario 6 (Baseline Network) 11
2025 Scenario 6 (Alternative Network) 12

ICU METHODOLOGY

Peak hour intersection volume/capacity ratios are calculated by means of intersection capacity utilization (ICU) values. The procedure is based on the critical movement methodology, and shows the amount of capacity utilized by each critical move. Basic assumptions used in the calculation are as follows:

Saturation flow rate: 1,600 vehicles per hour per lane
Clearance Interval: none

A "de-facto" right-turn lane is used in the ICU calculation for cases where a curb lane is wide enough to separately serve both thru and right-turn traffic (typically with a width of 19 feet from curb to outside of thru-lane with parking prohibited during peak periods). Such lanes are treated the same as striped right-turn lanes during the ICU calculations, but they are denoted on the ICU calculation worksheets using the letter " d " in place of a numerical entry for right-turn lanes.

The methodology also incorporates a check for right-turn capacity utilization. Both right-turn-ongreen (RTOG) and right-turn-on-red (RTOR) capacity availability are calculated and checked against the total right-turn capacity need. If insufficient capacity is available, then an adjustment is made to the total capacity utilization value. The following example shows how this adjustment is made.

Example For Northbound Right

1. Right-Turn-On-Green (RTOG)

If NBT is critical move, then:
RTOG $=\mathrm{V} / \mathrm{C}(\mathrm{NBT})$
Otherwise, $\mathrm{RTOG}=\mathrm{V} / \mathrm{C}(\mathrm{NBL})+\mathrm{V} / \mathrm{C}(\mathrm{SBT})-\mathrm{V} / \mathrm{C}(\mathrm{SBL})$

2. Right-Turn-On-Red (RTOR)

If WBL is critical move, then:
RTOR = V/C (WBL)

Otherwise,

$$
\text { RTOR }=\text { V/C (EBL) }+\mathrm{V} / \mathrm{C}(\mathrm{WBT})-\mathrm{V} / \mathrm{C}(\mathrm{EBT})
$$

3. Right-Turn Overlap Adjustment

If the northbound right is assumed to overlap with the adjacent westbound left, adjustments to the RTOG and RTOR values are made as follows:

$$
\begin{aligned}
& \text { RTOG }=\text { RTOG }+ \text { V/C (WBL }) \\
& \text { RTOR }=\text { RTOR }- \text { V/C (WBL) }
\end{aligned}
$$

4. Total Right-Turn Capacity (RTC) Availability For NBR

RTC $=$ RTOG + factor x RTOR
Where factor = RTOR saturation flow factor (75\%)
Right-turn adjustment is then as follows: Additional ICU $=\mathrm{V} / \mathrm{C}(\mathrm{NBR})-\mathrm{RTC}$

A zero or negative value indicates that adequate capacity is available and no adjustment is necessary. A positive value indicates that the available RTOR and RTOG capacity does not adequately accommodate the right-turn V/C, therefore the right-turn is essentially considered to be a critical movement. In such cases, the right-turn adjustment is noted on the ICU worksheet and it is included in the total capacity utilization value. When it is determined that a right-turn adjustment is required for more than one right-turn movement, the word "multi" is printed on the worksheet instead of an actual right-turn movement reference, and the right-turn adjustments are cumulatively added to the total capacity utilization value. In such cases, further operational evaluation is typically carried out to determine if under actual operational conditions, the critical right-turns would operate simultaneously, and therefore a right-turn adjustment credit should be applied.

Shared Lane V/C Methodology

For intersection approaches where shared usage of a lane is permitted by more than one turn movement (e.g., left/thru, thru/right, left/thru/right), the individual turn volumes are evaluated to determine whether dedication of the shared lane is warranted to any one given turn movement. The following example demonstrates how this evaluation is carried out:

Example for Shared Left/Thru Lane

1. Average Lane Volume (ALV)

$$
\text { ALV }=\frac{\text { Left-Turn Volume }+ \text { Thru Volume }}{\text { Total Left }+ \text { Thru Approach Lanes (including shared lane) }}
$$

2. ALV for Each Approach

$$
\operatorname{ALV}(\text { Left })=\frac{\text { Left-Turn Volume }}{\text { Left Approach Lanes (including shared lane) }}
$$

$\operatorname{ALV}($ Thru $)=\quad$ Thru Volume
Thru Approach Lanes (including shared lane)

3. Lane Dedication is Warranted

If ALV (Left) is greater than ALV then full dedication of the shared lane to the left-turn approach is warranted. Left-turn and thru V/C ratios for this case are calculated as follows:
$\mathrm{V} / \mathrm{C}($ Left $)=\frac{\text { Left-Turn Volume }}{\text { Left Approach Capacity (including shared lane) }}$

```
V/C (Thru) = Thru Volume
Thru Approach Capacity (excluding shared lane)
```

Similarly, if ALV (Thru) is greater than ALV then full dedication to the thru approach is warranted, and left-turn and thru V/C ratios are calculated as follows:

$$
\begin{aligned}
& \mathrm{V} / \mathrm{C}(\text { Left })=\frac{\text { Left-Turn Volume }}{\text { Left Approach Capacity (excluding shared lane) }} \\
& \mathrm{V} / \mathrm{C}(\mathrm{Thru})=\frac{\text { Thru Volume }}{\text { Thru Approach Capacity (including shared lane) }}
\end{aligned}
$$

4. Lane Dedication is not Warranted

If ALV (Left) and ALV (Thru) are both less than ALV, the left/thru lane is assumed to be truly shared and each left, left/thru or thru approach lane carries an evenly distributed volume of traffic equal to ALV. A combined left/thru V/C ratio is calculated as follows:

$$
\text { V/C }(\text { Left/Thru })=\frac{\text { Left-Turn Volume }+ \text { Thru Volume }}{\text { Total Left }+ \text { Thru Approach Capacity (including shared lane) }}
$$

This V/C (Left/Thru) ratio is assigned as the V/C (Thru) ratio for the critical movement analysis and ICU summary listing.

If split phasing has not been designated for this approach, the relative proportion of V/C (Thru) that is attributed to the left-turn volume is estimated as follows:

If approach has more than one left-turn (including shared lane), then:
V/C (Left) $=\mathrm{V} / \mathrm{C}(\mathrm{Thru})$
If approach has only one left-turn lane (shared lane), then:

$$
\mathrm{V} / \mathrm{C}(\text { Left })=\frac{\text { Left-Turn Volume }}{\text { Single Approach Lane Capacity }}
$$

If this left-turn movement is determined to be a critical movement, the V/C (Left) value is posted in brackets on the ICU summary printout.

These same steps are carried out for shared thru/right lanes. If full dedication of a shared thru/right lane to the right-turn movement is warranted, the right-turn V/C value calculated in step three is checked against the RTOR and RTOG capacity availability if the option to include right-turns in the V/C ratio calculations is selected. If the V / C value that is determined using the shared lane methodology described here is reduced due to RTOR and RTOG capacity availability, the V/C value for the thru/right lanes is posted in brackets.

When an approach contains more than one shared lane (e.g., left/thru and thru/right), steps one and two listed above are carried out for the three turn movements combined. Step four is carried out if dedication is not warranted for either of the shared lanes. If dedication of one of the shared lanes is warranted to one movement or another, step three is carried out for the two movements involved, and then steps one through four are repeated for the two movements involved in the other shared lane.

Figure A-1 shows the intersections for which ICU calculations are made, and the actual calculation sheets follow.

EXISTING

1. Victoria \& Foothill

Existing Count						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	.09*	200	.13*
NBT	1	1600	20	. 01	70	. 04
NBR	1	1600	200	. 13	300	. 19
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	50	.03*	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	.01*	170	. 11
EBT	1	1600	260	. 16	400	.25*
EBR	1	1600	230	. 14	20	. 01
WBL	2	3200	390	. 12	250	.08*
WBT	1	1600	520	.33*	310	. 19
WBR	d	1600	10	. 01	10	. 01

TOTAL CAPACITY UTILIZATION
.46

3. Victoria \& Telegraph

Existing Count						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	640	.20*	1030	. $32 *$
NBT	2	3200	510	. 16	780	. 24
NBR	1	1600	150	. 09	220	. 14
SBL	1	1600	140	. 09	170	. 11
SBT	3	4800	680	.14*	510	.11*
SBR	d	1600	40	. 03	30	. 02
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	380	\{.16\}*	660	\{.21\}*
EBR	1.5		630		750	
WBL	2	3200	220	.07*	150	.05*
WBT	2	3200	540	. 17	400	. 13
WBR	d	1600	50	. 03	50	. 03

TOTAL CAPACITY UTILIZATION .57 .69
2. Victoria \& Loma Vista

Existing Count						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	210	.13*
NBT	2	3200	260	. 08	470	. 15
NBR	d	1600	20	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	490	.15*	280	.09*
SBR	d	1600	80	. 05	20	. 01
EBL	0	0	70		20	
EBT	1	1600	30	.23*	30	.21*
EBR	0	0	270		280	
WBL	0	0	60	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	30	. 05
WBR	,	0	60		20	

TOTAL CAPACITY UTILIZATION
. 51
.45

4. Victoria \& Woodland

Existing Count						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	190	.12*	50	. 03
NBT	3	4800	1350	. 30	1890	.41*
NBR	0	0	80		60	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	1560	.33*	1430	. 30
SBR	0	0	40		10	
EBL	0	0	20		20	
EBT	1	1600	10	.09*	10	.04*
EBR	0	0	120		30	
WBL	1.5		270		100	
WBT	0.5	3200	10	.10*	10	.04*
WBR	0		30		20	
Note: Assumes E/W Split Phasing						
TOTA	CAPACII	Y UTILIZAI		. 64		. 50

5. Victoria \& SR 126 SB Ramps

Existing Count						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1300	. 21	1950	.31*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2040	.33*	1590	. 26
SBR	0	0	80		80	
EBL	1.5		190		260	
EBT	0.5	3200	180	.12*	120	.12*
EBR	1	1600	210	. 13	280	. 18
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	250	. 16	520	. 33
Right Turn Adjustment			Multi	.08*	Multi	.35*
Note	Assumes	E/W Split	Phasing			

TOTAL CAPACITY UTILIZATION
.53
.78

7. Victoria \& Telephone

Existing Count						
	LANES	CAPACITY	AM PK HoUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	2	3200	250	. 08	330	. 10
NBT	4	6400	1320	.25*	1200	.23*
NBR	0	0	260		250	
SBL	2	3200	350	.11*	290	.09*
SBT	4	6400	1340	. 21	1300	. 20
SBR	1	1600	250	. 16	290	. 18
EBL	2	3200	280	.09*	390	. 12
EBT	3	4800	320	. 09	710	.19*
EBR	0	0	120		210	
WBL	2	3200	340	. 11	380	.12*
WBT	3	4800	570	.12*	530	. 11
WBR	1	1600	160	. 10	330	. 21

TOTAL CAPACITY UTILIZATION
.57
.63

6. Victoria \& Thille

Existing Count						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	60	.04*
NBT	4	6400	1240	.26*	1790	. 29
NBR	0	0	480	. 30	70	
SBL	1	1600	180	.11*	40	. 03
SBT	4	6400	1680	. 31	1620	.29*
SBR	0	0	300		240	
EBL	1.5		230		240	
EBT	0.5	3200	30	.08*	10	.08*
EBR	1	1600	120	. 08	190	. 12
WBL	1	1600	30	. 02	140	.09*
WBT	1	1600	10	.02*	40	. 08
WBR	0	0	20		80	
Right Turn Adjustment			NBR	.02*	EBR	.01*
Note: Assumes E/W Split Phasing						
TOT	CAPACIT	Y UTILIZAT		. 49		. 51

8. Victoria \& Ralston

Existing Count						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	220	.14*	320	.20*
NBT	4	6400	1400	. 24	1660	. 30
NBR	0	0	120		270	
SBL	1	1600	120	. 08	220	. 14
SBT	4	6400	1550	.26*	1790	.30*
SBR	0	0	100		110	
EBL	1	1600	50	. 03	160	. 10
EBT	1	1600	90	.06*	230	.14*
EBR	1	1600	260	. 16	360	. 23
WBL	1	1600	210	.13*	160	.10*
WBT	1	1600	180	. 11	110	. 07
WBR	1	1600	180	. 11	110	. 07
TOTA	CAPACI	UTILIZAT		. 59		. 74

10. Victoria \& Moon

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	100	. 06
NBT	4	6400	1760	.29*	1820	.31*
NBR	0	0	70		160	
SBL	1	1600	70	.04*	170	.11*
SBT	4	6400	1680	. 27	1940	. 32
SBR	0	0	30		90	
EBL	1	1600	30	. 02	80	. 05
EBT	1	1600	40	.03*	60	.04*
EBR	1	1600	30	. 02	80	. 05
WBL	1	1600	220	.14*	110	.07*
WBT	1	1600	50	. 03	40	. 03
WBR	1	1600	90	. 06	80	. 05

TOTAL CAPACITY UTILIZATION
. 50
. 53

15. Johnson \& Telephone

Existing Count						
	LANES	CAPACITY	AM PK HoUR		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	2	3200	310	.10*	160	. 05
NBT	2	3200	170	. 08	150	.09*
NBR	0	0	100		210	. 13
SBL	1	1600	40	. 03	100	.06*
SBT	2	3200	120	.04*	170	. 05
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	30	. 02
EBT	3	4800	240	. 07	860	.26*
EBR	0	0	110		370	
WBL	1	1600	200	. 13	180	.11*
WBT	3	4800	1160	.25*	480	. 11
WBR	0	0	60		50	

TOTAL CAPACITY UTILIZATION
.42
. 52

14. Hill \& Telephone

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	80	.11*	30	.05*
NBR	0	0	40		30	
SBL	1	1600	60	.04*	230	.14*
SBT	1	1600	20	. 01	60	. 04
SBR	1	1600	100	. 06	220	. 14
EBL	1	1600	170	.11*	110	. 07
EBT	3	4800	430	. 10	1090	.24*
EBR	0	0	60		60	
WBL	1	1600	60	. 04	30	.02*
WBT	3	4800	1030	.27*	630	. 14
WBR	0	0	260		50	

TOTAL CAPACITY UTILIZATION . 53
.45
18. Seaward \& US 101 NB Ramps

Existing Count						
			AM	HouR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	360	.11*
NBT	2	3200	910	. 28	830	. 26
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	660	.21*	900	.28*
SBR	1	1600	210	. 13	260	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	320	.10*	480	.15*
WBT	0	0	0		0	
WBR	2	3200	370	. 12	410	. 13

TOTAL CAPACITY UTILIZATION
.47
. 54

19. Monmouth/US 101 SB \& Harbor

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	50	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		520		800	
SBT	0.5	3200	30	.18*	80	.29*
SBR	0		10		40	
EBL	1	1600	130	.08*	100	.06*
EBT	2	3200	220	. 08	350	. 12
EBR	0	0	20		30	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	310	.19*	380	.24*
WBR	1	1600	360	. 23	340	. 21
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	60	.04*
NBT	2	3200	900	.28*	690	. 22
NBR	1	1600	320	. 20	140	. 09
SBL	1	1600	90	.06*	60	. 04
SBT	2	3200	470	. 15	970	.30*
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	50	.03*	130	. 08
EBT	2	3200	60	. 02	120	.04*
EBR	d	1600	30	. 02	80	. 05
WBL	1	1600	40	. 03	260	.16*
WBT	2	3200	50	.02*	110	. 03
WBR	f		50		170	
TOTAL CAPACITY UTILIZATION				. 39		. 54

24. Mills \& Telegraph

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	240	. 15	140	.09*
NBT	1	1600	370	.23*	230	. 14
NBR	1	1600	200	. 13	340	. 21
SBL	1	1600	60	.04*	90	. 06
SBT	2	3200	300	. 09	430	.13*
SBR	1	1600	20	. 01	20	. 01
EBL	1	1600	30	. 02	30	. 02
EBT	2	3200	340	.11*	610	.19*
EBR	1	1600	100	. 06	120	. 08
WBL	2	3200	210	.07*	230	.07*
WBT	2	3200	400	. 14	410	. 14
WBR	0	0	60		50	

25. Mills \& Maple

Existing Count						
				HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	.05*
NBT	2	3200	950	.33*	720	. 26
NBR	0	0	100		100	
SBL	1	1600	60	.04*	100	. 06
SBT	2	3200	590	. 20	860	.29*
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	140		200	
WBT	1	1600	20	.10*	20	.14*
WBR	1	1600	50	. 03	30	. 02

TOTAL CAPACITY UTILIZATION .47 . 48

27. Mills \& Main

Existing Count						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	30		30	
NBT	1	1600	90	.08*	80	.07*
NBR	1	1600	220	. 14	190	. 12
SBL	2.5		930	\{.22\}*	1250	\{.29\}*
SBT	0.5	4800	80	. 22	90	. 29
SBR	0		40		30	
EBL	2	3200	80	.03*	100	. 03
EBT	4	6400	780	. 12	1020	.16*
EBR	1	1600	20	. 01	30	. 02
WBL	2	3200	160	. 05	290	.09*
WBT	3	4800	1020	.21*	1070	. 22
WBR	2	3200	1380	. 43	1270	. 40
Right Turn Adjustment			WBR	.05*		

TOTAL CAPACITY UTILIZATION
59

26. Mills \& Dean

Existing Count						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	190	.12*
NBT	2	3200	1170	.37*	830	. 26
NBR	1	1600	270	. 17	320	. 20
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	610	. 20	900	.29*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	40	.03*
EBR	1	1600	20	. 01	200	. 13
WBL	2	3200	340	.11*	260	.08*
WBT	1	1600	50	. 05	50	. 05
WBR	0	0	30		30	
Right Turn Adjustment					EBR	.01*
TOTAL CAPACITY UTILIZATION				. 51		. 53

28. US 101 NB Ramps \& Main

Existing Count						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	390	.12*	280	.09*
SBT	0	0	0		0	
SBR	3	4800	1620	. 34	1270	. 26
EBL	0	0	0		0	
EBT	3	4800	1660	.35*	2170	.45*
EBR	f		270		290	
WBL	2	3200	320	.10*	420	.13*
WBT	3	4800	940	. 20	1360	. 28
WBR	0	0	0		0	
Right Turn Adjustment			SBR	.03*		

TOTAL CAPACITY UTILIZATION . 60

29. SR 126 EB Ramps \& Main

Existing Count						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	260	. 08	430	.13*
EBT	3	4800	1780	.37*	2210	. 46
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1060	. 22	1820	.38*
WBR	f		110		330	

TOTAL CAPACITY UTILIZATION
. 37
31. Donlon \& Main

Existing Count						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		120		390	
NBT	0	3200	0	.05*	0	.19*
NBR	0.5		30		220	
SBL	1.5		290		270	
SBT	0.5	3200	150	.14*	110	.12*
SBR	1	1600	180	. 11	200	. 13
EBL	0	0	0		0	
EBT	4	6400	1380	.22*	2040	.32*
EBR	d	1600	120	. 08	130	. 08
WBL	2	3200	120	.04*	200	.06*
WBT	3	4800	900	. 19	1380	. 29
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

Existing Count						
			AM P	K HOUR	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		150	\{.05\}*	490	\{.16\}*
NBT	0.5	3200	10	. 05	10	. 16
NBR	1	1600	70	. 04	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	1550	.24*	2050	.32*
EBR	d	1600	220	. 14	140	. 09
WBL	2	3200	110	.03*	160	.05*
WBT	3	4800	1020	. 21	1650	. 35
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 34 . 55
32. Telephone \& Main

Existing Count						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	210	.07*	580	. 18
NBT	2	3200	150	. 05	620	.19*
NBR	1	1600	120	. 08	260	. 16
SBL	1.5		180	. 11	400	\{.19\}*
SBT	1.5	4800	670	.21*	490	. 19
SBR	f		650		840	
EBL	2	3200	400	. 13	700	. 22
EBT	3	4800	740	.15*	1200	.25*
EBR	f		250		420	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 43

33. US 101 NB Ramps \& Telephone

Existing Count						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		570		470	
NBT	0.5	3200	10	.18*	10	.15*
NBR	1	1600	320	. 20	420	. 26
SBL	1	1600	10	.01*	10	.01*
SBT	0	0	0		0	
SBR	1	1600	10	. 01	10	. 01
EBL	1	1600	10	.01*	20	. 01
EBT	3	4800	600	. 13	1600	.33*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	920	.19*	1250	. 26
WBR	0	0	10		20	
Right Turn Adjustment					NBR	.11*
Note	Assumes	N/S Split	hasi			

TOTAL CAPACITY UTILIZATION
39
.60

35. Saratoga \& Telephone

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	30	. 02
NBT	1	1600	10	.08*	20	.07*
NBR	0	0	110		90	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	20	. 04	30	. 03
SBR	0	0	40		20	
EBL	1	1600	10	.01*	40	. 03
EBT	3	4800	600	. 13	1280	.27*
EBR	d	1600	40	. 03	80	. 05
WBL	1	1600	50	. 03	80	.05*
WBT	2	3200	660	.21*	800	. 25
WBR	1	1600	20	. 01	50	. 03

34. Portola \& Telephone

Existing Count						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	180	.06*	230	.07*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	20	. 01	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	290	. 18	180	. 11
EBL	1	1600	70	.04*	330	.21*
EBT	3	4800	540	. 11	1340	. 28
EBR	d	1600	180	. 11	250	. 16
WBL	1	1600	20	. 01	80	. 05
WBT	3	4800	620	.13*	730	.16*
WBR	0	0	10		40	
Right Turn Adjustment			SBR	.14*		
TOTAL CAPACITY UTILIZATIO				. 38		. 45

38. Telephone \& Market

Existing Count						
	LANES	CAPACITY	AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	140	. 09	110	. 07
NBT	3	4800	390	.08*	690	.14*
NBR	d	1600	80	. 05	60	. 04
SBL	1	1600	220	.14*	170	.11*
SBT	3	4800	260	. 05	460	. 10
SBR	d	1600	160	. 10	150	. 09
EBL	1	1600	110	. 07	260	.16*
EBT	1	1600	200	.13*	170	. 11
EBR	1	1600	80	. 05	180	. 11
WBL	1	1600	40	.03*	90	. 06
WBT	1	1600	80	. 05	260	.16*
WBR	1	1600	110	. 07	380	. 24
TOTA	CAPACI	UTILIZAI		. 38		. 57

42. Telephone \& McGrath

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	. 08	90	.06*
NBT	3	4800	470	.10*	630	. 13
NBR	d	1600	210	. 13	80	. 05
SBL	1	1600	90	.06*	70	. 04
SBT	2	3200	180	. 06	640	.20*
SBR	1	1600	60	. 04	40	. 03
EBL	1	1600	20	. 01	60	. 04
EBT	1	1600	60	.04*	30	.02*
EBR	1	1600	70	. 04	180	. 11
WBL	1	1600	40	.03*	210	.13*
WBT	1	1600	30	. 02	110	. 07
WBR	1	1600	70	. 04	150	. 09
Right Turn Adjustment			NBR	.01*	EBR	.04*
TOTAL CAPACITY UTILIZATIO				. 24		. 45

46. Seaward \& Main

Existing Count						
			AM P	HOUR		Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	.08*	140	.09*
NBT	1	1600	150	. 09	180	. 11
NBR	1	1600	250	. 16	200	. 13
SBL	1	1600	30	. 02	50	. 03
SBT	1	1600	120	.08*	110	.07*
SBR	1	1600	190	. 12	50	. 03
EBL	1	1600	120	. 08	90	. 06
EBT	2	3200	530	.17*	520	.16*
EBR	1	1600	160	. 10	120	. 08
WBL	0.5		90		150	
WBT	1.5	3200	410	.16*	550	.23*
WBR	0		20		50	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	40	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	200	.06*	60	.02*
SBT	1	1600	10	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		20		20	
EBT	1.5	3200	600	.20*	640	.21*
EBR	0		10		20	
WBL	1	1600	10	. 01	20	. 01
WBT	2	3200	470	.19*	630	.23*
WBR	0	0	140		100	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 48		. 48

47. Main \& Loma Vista

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	340	.11*	470	.15*
NBR	f		40		40	
SBL	1	1600	500	.31*	280	.18*
SBT	2	3200	430	. 14	540	. 18
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	40	\{.02\}*	100	\{.06\}*
WBT	1	1600	30	. 04	40	. 09
WBR	2	3200	290	. 09	340	. 11
TOTA	CAPACI	Y UTILIZAT		. 48		. 44

49. Main \& Telegraph

Existing Count						
	LANES	CAPACITY	AM PK Hour		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1.5		270		520	
NBT	1.5	4800	480	.16*	520	.22*
NBR	f		190		90	
SBL	1.5		170		260	
SBT	1.5	4800	350	.11*	570	.18*
SBR	0		30		40	
EBL	0	0	0		0	
EBT	2	3200	350	.11*	440	. 14
EBR	f		510		600	
WBL	0	0	0		0	
WBT	1.5	4800	330	. 10	460	.14*
WBR	1.5		150	. 09	200	

50. Emma \& Main

Existing Count						
	LANES	CAPACITY	AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	70	. 04	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	740	.23*	1050	.33*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	70	.04*	90	.06*
WBT	3	4800	860	. 18	1220	. 25
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 31
.41

53. Kimball \& Telephone

Existing Count						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	270	.08*	550	.17*
SBT	0	0	0		0	
SBR	2	3200	940	. 29	540	. 17
EBL	2	3200	290	.09*	590	.18*
EBT	3	4800	290	. 06	890	. 19
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	750	.23*	590	.18*
WBR	1	1600	700	. 44	410	. 26
Right Turn Adjustment			Multi	.29*		

TOTAL CAPACITY UTILIZATION . 69

55. Kimball \& SR 126 EB Ramps

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1360	.28*	800	.17*
NBR	f		130		200	
SBL	1	1600	40	.03*	30	.02*
SBT	3	4800	1200	. 25	780	. 16
SBR	0	0	0		0	
EBL	2	3200	120	.04*	470	.15*
EBT	0	0	10		0	
EBR	f		230		540	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION .35 . 34
56. Kimball \& SR 126 WB Ramps

Existing Count						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	.18*	230	. 07
NBT	3	4800	820	. 17	840	.18*
NBR	d	1600	70	. 04	200	. 13
SBL	1	1600	10	. 01	10	.01*
SBT	3	4800	680	.14*	540	. 11
SBR	d	1600	200	. 13	120	. 08
EBL	1.5		30		30	
EBT	0.5	3200	10	.01*	10	.01*
EBR	1	1600	400	. 25	160	. 10
WBL	0	0	160		110	
WBT	1	1600	110	.17*	70	.11*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment			EBR	.10*	EBR	.03*
Note: Assumes E/W Split Phasing						
TOTA	CAPACI	Y UTILIZAT		. 60		. 34

60. Ramelli \& Telephone

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	0	0	0		0	
NBR	1	1600	200	. 13	400	. 25
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	1	1600	0	. 00	0	. 00
EBT	3	4800	320	. 08	1080	.24*
EBR	0	0	40		60	
WBL	1	1600	320	. 20	260	.16*
WBT	3	4800	1320	.28*	840	. 18
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.12*
TOTAL CAPACITY UTILIZATION				. 29		. 53

61. Montgomery \& Telephone

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	130	.08*
NBT	1	1600	80	. 05	10	. 01
NBR	d	1600	20	. 01	20	. 01
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	40	.03*	20	.01*
SBR	1	1600	90	. 06	30	. 02
EBL	1	1600	20	.01*	50	. 03
EBT	2	3200	460	. 14	740	.23*
EBR	d	1600	90	. 06	140	. 09
WBL	1	1600	80	. 05	60	.04*
WBT	2	3200	1020	.32*	600	. 19
WBR	1	1600	10	. 01	10	. 01
Right Turn Adjustment			SBR	.02*		
TOTAL CAPACITY UTILIZATIO				. 54		. 36

65. Sanjon \& Thompson

Existing Count						
	LANES	CAPACITY	m PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	340	.11*
NBT	0	0	0		0	
NBR	1	1600	130	. 08	190	. 12
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	380	.17*	570	.23*
EBR	0	0	170		170	
WBL	1	1600	120	.08*	100	.06*
WBT	2	3200	500	. 16	580	. 18
WBR	0	0	0		0	

63. Petit \& Telephone

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	140	. 09
NBT	1	1600	40	.14*	50	.19*
NBR	0	0	180		260	
SBL	1	1600	40	.03*	30	.02*
SBT	1	1600	60	. 04	50	. 03
SBR	1	1600	110	. 07	70	. 04
EBL	1	1600	80	.05*	80	. 05
EBT	2	3200	300	. 09	680	.21*
EBR	d	1600	90	. 06	210	. 13
WBL	1	1600	140	. 09	250	.16*
WBT	2	3200	660	.21*	510	. 16
WBR	a	1600	20	. 01	60	. 04
TOTAL CAPACITY UTILIZATION				. 43		. 58

68. Seaward \& Thompson

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	100	. 06	180	.11*
NBT	2	3200	470	.15*	410	. 13
NBR	d	1600	240	. 15	260	. 16
SBL	1	1600	70	.04*	70	. 04
SBT	2	3200	320	. 10	350	.11*
SBR	d	1600	40	. 03	60	. 04
EBL	1	1600	30	. 02	60	. 04
EBT	2	3200	510	.18*	640	.24*
EBR	0	0	80		120	
WBL	2	3200	170	.05*	280	.09*
WBT	2	3200	430	. 13	580	. 18
WBR	1	1600	50	. 03	70	. 04
TOTAL CAPACITY UTILIZATION				. 42		. 55

71. Sanjon \& Harbor

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	170	.11*	280	.18*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	100	. 06
EBL	1	1600	40	.03*	110	.07*
EBT	1	1600	110	. 07	460	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	210	.13*	450	.28*
WBR	1	1600	420	. 26	160	. 10
Right Turn Adjustment			WBR	.05*		

TOTAL CAPACITY UTILIZATION . 32 . 53

77. Day \& Telegraph

Existing Count						
	LANES	CAPACITY	AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	190	.06*	280	.09*
SBT	0	0	0		0	
SBR	1	1600	100	. 06	100	. 06
EBL	1	1600	100	.06*	60	.04*
EBT	2	3200	500	. 16	870	. 27
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	880	.28*	780	.24*
WBR	d	1600	310	. 19	220	. 14

75. Ashwood \& Telegraph

Existing Count						
			AM P		PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	70	.04*
NBR	d	1600	40	. 03	60	. 04
SBL	1	1600	70	.04*	160	.10*
SBT	1	1600	40	. 03	60	. 04
SBR	1	1600	90	. 06	110	. 07
EBL	1	1600	90	.06*	140	. 09
EBT	2	3200	500	. 16	780	.24*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	70	.04*
WBT	2	3200	500	.16*	560	. 18
WBR	d	1600	90	. 06	80	. 05
TOTAL CAPACITY UTILIZATIO				. 29		. 42

85. Victoria \& Olivas Park

Existing Count						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	480	. 30	380	.24*
NBT	2	3200	1650	.52*	1270	. 40
NBR	1	1600	360	. 23	300	. 19
SBL	1	1600	260	.16*	120	. 08
SBT	2	3200	840	. 26	1230	.38*
SBR	f		40		60	
EBL	1	1600	60	. 04	100	. 06
EBT	2	3200	90	.03*	100	.03*
EBR	f		90		700	
WBL	1	1600	100	.06*	230	.14*
WBT	1	1600	30	. 02	110	. 07
WBR	f		50		160	
TOTA	CAPACIT	UTILIZAI		. 71		. 79

86. Telephone \& Olivas Park

Existing Count						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	0	0	190	\{.12\}*	620	\{.39\}*
SBT	1	1600	10	. 13	10	. 39
SBR	d	1600	140	. 09	380	. 24
EBL	1	1600	360	.23*	260	.16*
EBT	1	1600	110	. 07	170	. 11
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	130	.08*	140	.09*
WBR	1	1600	400	. 25	400	. 25
Right Turn Adjustment			WBR	.08*		

91. Johnson \& Ralston

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	.08*	140	.09*
NBT	1	1600	360	. 23	420	. 26
NBR	d	1600	30	. 02	70	. 04
SBL	,	1600	40	. 03	50	. 03
SBT	1	1600	460	.29*	560	.35*
SBR	d	1600	80	. 05	50	. 03
EBL	1	1600	40	.03*	90	. 06
EBT	1	1600	90	. 06	220	.14*
EBR	d	1600	100	. 06	190	. 12
WBL	1	1600	60	. 04	60	.04*
WBT	1	1600	200	.13*	110	. 07
WBR	d	1600	80	. 05	50	. 03
TOTAL CAPACITY UTILIZATION				. 53		. 62

94. Johnson \& North Bank

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	90	.06*
NBT	3	4800	140	. 03	370	. 08
NBR	d	1600	10	. 01	60	. 04
SBL	1	1600	0	. 00	30	. 02
SBT	2	3200	1190	.37*	1000	.31*
SBR	1	1600	220	. 14	180	. 11
EBL	2.5		400	.08*	1380	.29*
EBT	1.5	6400	40	. 03	170	. 11
EBR	1	1600	310	. 19	250	. 16
WBL	1.5		90	. 03	110	
WBT	1.5	4800	30	.02*	70	.04*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment			EBR	.10*		

95. Bristol \& Ramelli

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	.01*
NBT	1	1600	30	.03*	10	. 01
NBR	0	0	10		10	
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	10	. 01	20	.01*
SBR	1	1600	290	. 18	150	. 09
EBL	1	1600	50	.03*	140	.09*
EBT	2	3200	140	. 05	450	. 14
EBR	0	0	10		10	
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	650	.22*	260	.09*
WBR	0	0	40		30	
Right Turn Adjustment			SBR	.13*	SBR	.01*
TOTAL CAPACITY UTILIZATIO				. 42		. 21

100. Saticoy \& Telephone

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	160	. 10	80	.05*
NBT	1	1600	190	.12*	90	. 06
NBR	1	1600	170	. 11	120	. 08
SBL	1	1600	180	.11*	70	. 04
SBT	1	1600	90	. 06	110	.07*
SBR	1	1600	180	. 11	160	. 10
EBL	1	1600	120	.08*	150	. 09
EBT	2	3200	280	. 09	570	.18*
EBR	1	1600	80	. 05	150	. 09
WBL	1	1600	100	. 06	180	.11*
WBT	2	3200	270	.12*	550	. 19
WBR	0	0	110		60	

96. Montgomery \& North Bank

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	110	.07*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	280	. 18	130	. 08
EBL	1	1600	60	.04*	130	.08*
EBT	2	3200	90	. 03	310	. 10
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	310	.19*	190	.12*
WBR	d	1600	180	. 11	80	. 05
Right Turn Adjustment			SBR	.10*		
TOTAL CAPACITY UTILIZATIO				. 39		. 29

101. Saticoy \& Telegraph

Existing Count						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	140		50	
NBT	1	1600	80	.16*	40	.08*
NBR	0	0	40		30	
SBL	0	0	10		10	
SBT	1	1600	60	.08*	40	.04*
SBR	0	0	50		20	
EBL	1	1600	20	. 01	20	. 01
EBT	1	1600	220	.19*	340	.28*
EBR	0	0	90		110	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	220	. 14	250	. 16
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTA	CAPACIT	UTILIZAT		. 46		. 42

102. Wells \& Telegraph

Existing Count						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	230	.14*
NBT	1	1600	110	. 07	220	. 14
NBR	1	1600	60	. 04	170	. 11
SBL	1	1600	10	. 01	20	. 01
SBT	1	1600	250	.16*	160	.10*
SBR	1	1600	40	. 03	20	. 01
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	70	.18*	140	.20*
EBR	0	0	220		180	
WBL	1	1600	170	.11*	120	.08*
WBT	1	1600	140	. 11	120	. 09
WBR	0	0	30		20	

TOTAL CAPACITY UTILIZATION . 54 . 52
104. Wells \& SR 126 EB Ramps

Existing Count						
			AM P	Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	600	. 19	970	. 30
NBR	f		550		1050	
SBL	0	0	0		0	
SBT	2	3200	1890	.59*	1270	.40*
SBR	f		80		60	
EBL	1	1600	80	.05*	190	.12*
EBT	0	0	0		0	
EBR	1	1600	220	. 14	360	. 23
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.09*	EBR	.11*
TOTAL CAPACITY UTILIZATI				. 73		. 63

106. Wells \& Telephone

Existing Count						
			AM PK	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	.08*	570	. 18
NBT	2	3200	940	. 30	1950	.63*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	2	3200	1790	.56*	1330	. 42
SBR	1	1600	120	. 08	310	. 19
EBL	1.5		120		180	
EBT	0.5	3200	0	.04*	0	.06*
EBR	2	3200	590	. 18	450	. 14
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment EBR \quad.08*Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 78		. 72

114. California \& Thompson

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		460		420	
NBT	0.5	3200	330	.25*	220	.20*
NBR	1	1600	200	. 13	160	. 10
SBL	1.5		90		140	
SBT	1.5	4800	50	.04*	160	.07*
SBR	0		40		30	
EBL	1	1600	20	. 01	30	. 02
EBT	2	3200	640	.22*	730	.25*
EBR	0	0	50		80	
WBL	1	1600	20	.01*	30	.02*
WBT	2	3200	350	. 12	400	. 14
WBR	0	0	30		50	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

Existing Count						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	80	. 05
SBT	1	1600	210	.14*	310	.22*
SBR	0	0	10		40	
EBL	1	1600	80	. 05	80	. 05
EBT	2	3200	470	.15*	510	.16*
EBR	f		340		470	
WBL	1	1600	190	.12*	170	.11*
WBT	2	3200	420	. 14	470	. 16
WBR	0	0	40		50	

TOTAL CAPACITY UTILIZATION
.42
. 50
132. Ventura \& Stanley

Existing Count						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	.13*	200	.13*
NBT	1	1600	240	. 15	390	. 24
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	420	.26*	330	.21*
SBR	1	1600	370	. 23	240	. 15
EBL	1	1600	250	.16*	430	.27*
EBT	0	0	0		0	
EBR	1	1600	160	. 10	200	. 13
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 55		. 61

136. US 101 SB Ramps \& Valentine

Existing Count						
	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	,	0		0	
SBL	1.5		290	.09*	410	.13*
SBT	0	4800	0		0	
SBR	1.5		50		20	
EBL	1	1600	60	.04*	350	.22*
EBT	2	3200	140	. 04	650	. 20
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	860	.27*	300	.09*
WBR	1		790		920	

TOTAL CAPACITY UTILIZATION
.40
160. Victoria \& US 101 NB Ramps

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	2	3200	440	.14*	410	.13*
NBT	3	4800	1270	. 26	1490	. 31
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2090	.33*	1940	.30*
SBR	1	1600	200	. 13	440	. 28
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1.5		500		370	
WBT	0	6400	0	\{.19\}*	0	\{.17\}*
WBR	2.5		940		880	

TOTAL CAPACITY UTILIZATION
.66
138. Johnson \& US 101 SB Ramps

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	110	.07*	410	.26*
NBT	1	1600	110	. 07	350	. 22
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	460	.29*	230	.14*
SBR	f		1130		1130	
EBL	1	1600	90	.06*	170	.11*
EBT	0	0	0		0	
EBR	1	1600	110	. 07	80	. 05
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 42
. 51
161. Victoria \& Valentine

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	150	.05*	150	.05*
NBT	3	4800	1440	. 30	1470	. 32
NBR	0	0	20		50	
SBL	1	1600	30	. 02	50	. 03
SBT	2	3200	940	.29*	1110	.35*
SBR	f		1620		1150	
EBL	2.5		300		680	
EBT	0.5	4800	40	.07*	30	.15*
EBR	1	1600	140	. 09	350	. 22
WBL	0	0	10		20	
WBT	1	1600	10	.01*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment WBR .01* EBR .03*Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 43		. 61

162. California \& Harbor

Existing Count						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	80	.05*	240	.15*
SBT	0	0	0		0	
SBR	1	1600	50	. 03	60	. 04
EBL	1	1600	10	. 01	60	. 04
EBT	1	1600	170	.11*	220	.14*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	120	. 05	160	. 07
WBR	0	0	40		60	

TOTAL CAPACITY UTILIZATION
. 16
164. Seaward \& Poli

Existing Count						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	150		120	
NBT	1	1600	0	.17*	0	.18*
NBR	0	0	120		160	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	.09*	320	.20*
EBR	d	1600	70	. 04	100	. 06
WBL	1	1600	210	.13*	90	.06*
WBT	1	1600	190	. 12	250	. 16
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.39
.44
163. Santa Clara \& Main

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	190	. 06	190	. 06
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	270	.09*	400	.13*
EBR	0	0	10		10	
WBL	1	1600	140	.09*	90	.06*
WBT	2	3200	350	. 12	400	. 13
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 23
.23
165. Seaward \& Harbor

Existing Count						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	60	. 04
NBT	2	3200	350	.12*	320	.12*
NBR	0	0	20		50	
SBL	2	3200	380	.12*	580	.18*
SBT	2	3200	200	. 06	360	. 11
SBR	1	1600	360	. 23	450	. 28
EBL	2	3200	380	.12*	370	. 12
EBT	2	3200	360	. 12	850	.28*
EBR	0	0	20		50	
WBL	1	1600	10	. 01	20	.01*
WBT	2	3200	220	.07*	260	. 08
WBR	2	3200	950	. 30	810	. 25
Right Turn Adjustment			WBR	.14*		
TOTAL CAPACITY UTILIZATION				. 57		. 59

166. College \& Telegraph

Existing Count						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.07*	0	.06*
NBR	0	0	70		70	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	570	.20*	870	.29*
EBR	0	0	60		70	
WBL	1	1600	100	.06*	50	.03*
WBT	2	3200	600	. 19	660	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 33
169. Kimball \& Foothill

Existing Count						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	310	.19*	130	.08*
NBT	0	0	0		0	
NBR	1	1600	30	. 02	30	. 02
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	180	.24*	300	.31*
EBR	0	0	210		190	
WBL	1	1600	50	.03*	20	.01*
WBT	1	1600	410	. 26	170	. 11
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.46
.40
168. Day \& Foothill

Existing Count							
				AM PK	HOUR	PM PK	HOUR
		LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	$.13^{*}$	230	$.14^{*}$	
NBT	1	1600	30	.02	30	.02	
NBR	1	1600	170	.11	250	.16	
SBL	0	0	50		50		
SBT	1	1600	20	$.04^{*}$	20	$.04^{*}$	
SBR	1	1600	30	.02	50	.03	
EBL	1	1600	110	.07	80	.05	
EBT	1	1600	440	$.40 *$	440	$.41^{*}$	
EBR	0	0	200		220		
WBL	1	1600	230	$.14^{*}$	210	$.13 *$	
WBT	1	1600	400	.31	400	.28	
WBR	0	0	90		50		

TOTAL CAPACITY UTILIZATION . 71
170. Petit \& Foothill

Existing Count						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		10	\{.01\}*
NBT	1	1600	0	.04*	0	. 01
NBR	0	0	10		10	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	160	. 10	160	.10*
EBR	1	1600	20	. 01	20	. 01
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	340	.22*	150	. 10
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 26
171. Saticoy \& Foothill

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	0	0	130		50	
NBT	1	1600	0	.09*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 12	200	.18*
EBR	0	0	50		80	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	260	.18*	140	. 10
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 27
173. Victoria \& SR 126 WB Ramps

Existing Count							
LANES		CAPACITY	AM PK HOUR		PM PK HOUR		
		VOL	V/C	VOL	V/C		
NBL	0		0	0		0	
NBT	3	4800	1190	. 28	1880	.46*	
NBR	0	0	170		330		
SBL	0	0	0		0		
SBT	3	4800	1760	.40*	1340	. 30	
SBR	0	0	150		110		
EBL	0	0	0		0		
EBT	0	0	0		0		
EBR	1	1600	360	. 23	330	. 21	
WBL	0	0	0		0		
WBT	0	0	0		0		
WBR	1	1600	180	. 11	100	. 06	
Right Turn Adjustment			Multi	.25*	Multi	.15*	

172. Wells \& Foothill

Existing Count						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	110	.07*	100	.06*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	50	. 03
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	50	. 04	90	.06*
EBR	1	1600	100	. 06	110	. 07
WBL	0	0	60		30	\{.02\}*
WBT	1	1600	120	.12*	40	. 05
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
. 22
. 16
174. Petit \& Telegraph

Existing Count						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	40	.03*
NBT	1	1600	20	. 01	10	. 01
NBR	1	1600	10	. 01	20	. 01
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	10	.03*	20	.03*
SBR	0	0	30		20	
EBL	1	1600	10	.01*	10	.01*
EBT	2	3200	300	. 09	460	. 14
EBR	1	1600	50	. 03	90	. 06
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	420	.26*	270	.17*
WBR	1	1600	10	. 01	30	. 02
TOTAL CAPACITY UTILIZATION				. 34		. 24

175. Ventura \& Northbank

Existing Count						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	60		60	
SBT	1	1600	0	.07*	0	.11*
SBR	0	0	50		110	
EBL	1	1600	160	. 10	300	. 19
EBT	1	1600	710	.44*	1770	1.11*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	270	. 17	310	. 19
WBR	1	1600	40	. 03	40	. 03
TOT	CAPACII	UTILIZA		. 51		1.22

177. Wells \& SR 126 WB Ramps

Existing Count						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	440	. 14	860	.27*
NBR	f		240		300	
SBL	0	0	0		0	
SBT	2	3200	760	.24*	560	. 18
SBR	f		250		120	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1210		770	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	130	. 08	100	. 06
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 24		. 33

176. Saticoy \& Darling

Existing Count						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	\{.01\}*
NBT	1	1600	160	.11*	140	. 09
NBR	1	1600	90	. 06	30	. 02
SBL	0	0	50	\{.03\}*	10	
SBT	1	1600	160	. 13	160	.11*
SBR	1	1600	50	. 03	80	. 05
EBL	0	0	70		50	
EBT	1	1600	90	.13*	60	.09*
EBR	0	0	40		40	
WBL	0	0	60	\{.04\}*	40	\{.02\}*
WBT	1	1600	40	. 08	70	. 08
WBR	0	0	20		10	

TOTAL CAPACITY UTILIZATION . 31
.23
178. SR-33 Ramps \& Stanley

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	500	. 31	640	. 40
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	230	. 14	150	. 09
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	460	.29*	600	.38*
WBR	f		150		120	
Right Turn Adjustment			NBR	.20*	NBR	.18*
TOTAL CAPACITY UTILIZATIO				. 49		. 56

179. SR-33 Ramps \& Shell

Existing Count						
			AM P	HouR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	430		520	
SBT	1	1600	0	.28*	0	.33*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	80	. 06
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	610	. $42 *$	480	.36*
WBR	0	0	60		100	

TOTAL CAPACITY UTILIZATION
.71
181. Ventura \& Ramona

Existing Count						
			AM	K Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	1	1600	310	. 21	570	.37*
NBR	0	0	20		20	
SBL	1	1600	60	. 04	50	.03*
SBT	1	1600	410	.26*	460	. 30
SBR	0	0	10		20	
EBL	0	0	10	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 02	10	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	10	.02*	10	.03*
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
. 31
.45
180. Estates \& Telegraph

Existing Count						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	50	. 03
NBT	1	1600	10	. 04	10	.07*
NBR	0	0	60		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	550	.17*	790	.25*
EBR	d	1600	50	. 03	50	. 03
WBL	1	1600	40	.03*	90	.06*
WBT	2	3200	600	. 19	790	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 26
.39
182. Olive \& Main St

Existing Count						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	520	.33*	320	.20*
SBT	1	1600	20	. 04	30	. 05
SBR	0	0	50		50	
EBL	0	0	50	\{.03\}*	200	
EBT	1	1600	70	. 08	200	.25*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	150	.10*	110	. 08
WBR	1	1600	210	. 13	340	. 21

TOTAL CAPACITY UTILIZATION
.47
. 47

SCENARIO 1

1. Victoria \& Foothill

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	.09*	250	.16*
NBT	1	1600	10	. 01	80	. 05
NBR	1	1600	190	. 12	330	. 21
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	60	.04*	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	.01*	180	. 11
EBT	1	1600	300	. 19	460	.29*
EBR	1	1600	220	. 14	30	. 02
WBL	2	3200	450	. 14	260	.08*
WBT	1	1600	570	.36*	330	. 21
WBR	d	1600	10	. 01	20	. 01
TOTA	CAPACII	UTILIZAT		. 50		. 54

3. Victoria \& Telegraph

2025 Scenario 1 w/Baseline						
			AM P	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	.21*	1160	.36*
NBT	2	3200	540	. 17	900	. 28
NBR	1	1600	140	. 09	200	. 13
SBL	1	1600	160	. 10	200	. 13
SBT	3	4800	710	.15*	550	.11*
SBR	d	1600	40	. 03	20	. 01
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	360	\{.16\}*	740	\{.23\}*
EBR	1.5		680		780	\{.22\}
WBL	2	3200	330	.10*	210	.07*
WBT	2	3200	580	. 18	340	. 11
WBR	d	1600	60	. 04	60	. 04

2. Victoria \& Loma Vista

2025 Scenario 1 w/Baseline						
			AM PK	K HOUR	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	260	.16*
NBT	2	3200	270	. 08	550	. 17
NBR	d	1600	10	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	530	.17*	300	.09*
SBR	d	1600	100	. 06	20	. 01
EBL	0	0	70		30	
EBT	1	1600	30	.23*	30	.24*
EBR	0	0	270		320	
WBL	0	0	60	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	30	. 05
WBR	0	0	60		20	
TOTA	CAPACII	Y UTILIZAT		. 55		. 51

4. Victoria \& Woodland

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	220	.14*	60	. 04
NBT	3	4800	1410	. 31	2110	.47*
NBR	0	0	80		130	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	1780	.38*	1580	. 33
SBR	0	0	30		10	
EBL	0	0	10		20	
EBT	1	1600	10	.10*	10	.04*
EBR	0	0	140		30	
WBL	1.5		260		100	
WBT	0.5	3200	10	.09*	10	.04*
WBR	0		20		20	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 71		. 56

5. Victoria \& SR 126 SB Ramps

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1370	. 22	2610	.41*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2540	.41*	1840	. 30
SBR	0	0	70		90	
EBL	1.5		240		160	
EBT	0.5	3200	190	.13*	130	.09*
EBR	1	1600	220	. 14	240	. 15
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	250	. 16	550	. 34
Right Turn Adjustment Multi Note: Assumes E/W Split Phasing				.03*	WBR	.34*
TOTAL	CAPACITY	Y UTILIzATI		. 57		. 84

7. Victoria \& Telephone

2025 Scenario 1 w/Baseline						
			AM P	HouR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	310	.10*	330	. 10
NBT	4	6400	1300	. 25	1580	.27*
NBR	0	0	270		130	
SBL	2	3200	340	. 11	350	.11*
SBT	4	6400	1780	.28*	1360	. 21
SBR	1	1600	300	. 19	370	. 23
EBL	2	3200	320	.10*	680	.21*
EBT	3	4800	330	. 08	840	. 20
EBR	0	0	60		120	
WBL	2	3200	220	. 07	310	. 10
WBT	3	4800	700	.15*	610	.13*
WBR	1	1600	170	. 11	320	. 20

6. Victoria \& Thille

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1300	. 27	2460	.39*
NBR	0	0	460	. 29	50	
SBL	1	1600	170	. 11	40	.03*
SBT	4	6400	2140	.39*	1840	. 32
SBR	0	0	370		230	
EBL	1.5		240		290	
EBT	0.5	3200	30	.08*	10	.09*
EBR	1	1600	120	. 08	190	. 12
WBL	1	1600	30	. 02	120	. 08
WBT	1	1600	10	.02*	60	.09*
WBR	0	0	20		80	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 52		. 60

8. Victoria \& Ralston

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	400	.25*
NBT	4	6400	1450	. 24	1890	. 33
NBR	0	0	70		220	
SBL	1	1600	100	. 06	210	. 13
SBT	4	6400	1820	. $30 *$	1810	.30*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	120	. 08
EBT	1	1600	110	.07*	230	.14*
EBR	1	1600	230	. 14	320	. 20
WBL	1	1600	250	.16*	130	.08*
WBT	1	1600	230	. 14	130	. 08
WBR	1	1600	190	. 12	120	. 08
TOTA	CAPACIT	Y UTILIzAT		. 69		. 77

10. Victoria \& Moon

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1820	. 30	2170	.39*
NBR	0	0	120		330	
SBL	1	1600	40	. 03	120	.08*
SBT	4	6400	1950	.31*	1870	. 33
SBR	0	0	20		260	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	30	. 02	180	. 11
WBL	1	1600	280	.18*	150	.09*
WBT	1	1600	120	. 08	50	. 03
WBR	1	1600	70	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
.56

15. Johnson \& Telephone

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	.10*	190	. 06
NBT	2	3200	170	. 11	230	.14*
NBR	0	0	170		410	. 26
SBL	1	1600	30	. 02	100	.06*
SBT	2	3200	180	.06*	200	. 06
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	30	. 02
EBT	3	4800	200	. 06	1020	.31*
EBR	0	0	170	. 11	450	
WBL	1	1600	400	. 25	360	.23*
WBT	3	4800	1370	. $30 *$	530	. 12
WBR	0	0	60		40	

TOTAL CAPACITY UTILIZATION
.49
.74

14. Hill \& Telephone

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		30	
NBT	1	1600	100	.10*	60	.14*
NBR	0	0	10		140	
SBL	1	1600	50	.03*	250	.16*
SBT	1	1600	30	. 02	60	. 04
SBR	1	1600	60	. 04	240	. 15
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	480	. 11	1160	.28*
EBR	0	0	60		180	
WBL	1	1600	190	. 12	30	.02*
WBT	3	4800	1090	.29*	700	. 16
WBR	0	0	280		60	

TOTAL CAPACITY UTILIZATION
. 53
.60
18. Seaward \& US 101 NB Ramps

| 2025 | Scenario 1 w/Baseline | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 2 | 3200 | 510 | $.16^{*}$ | 570 | $.18^{*}$ |
| NBT | 2 | 3200 | 920 | .29 | 950 | .30 |
| NBR | 0 | 0 | 0 | | 0 | |
| | | | | | | |
| SBL | 0 | 0 | 0 | | 0 | |
| SBT | 2 | 3200 | 760 | $.24^{*}$ | 1050 | $.33^{*}$ |
| SBR | 1 | 1600 | 230 | .14 | 260 | .16 |
| | | | | | | |
| EBL | 0 | 0 | 0 | | 0 | |
| EBT | 0 | 0 | 0 | | 0 | |
| EBR | 0 | 0 | 0 | | 0 | |
| | | | | | | |
| WBL | 2 | 3200 | 390 | $.12 *$ | 360 | $.11 *$ |
| WBT | 0 | 0 | 0 | | 0 | |
| WBR | 2 | 3200 | 410 | .13 | 450 | .14 |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
. 52
52 . 62

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		640		940	
SBT	0.5	3200	30	.21*	70	.33*
SBR	0		10		40	
EBL	1	1600	150	.09*	140	.09*
EBT	2	3200	360	. 12	410	. 14
EBR	0	0	20		30	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	560	.35*
WBR	1	1600	310	. 19	330	. 21
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	130	.08*
NBT	2	3200	920	.29*	1100	. 34
NBR	1	1600	380	. 24	190	. 12
SBL	2	3200	170	.05*	160	. 05
SBT	2	3200	710	. 22	1180	.37*
SBR	1	1600	140	. 09	120	. 08
EBL	1	1600	70	.04*	170	. 11
EBT	2	3200	140	. 04	200	.06*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	50	. 03	400	.25*
WBT	2	3200	110	.03*	150	. 05
WBR	f		50		370	

TOTAL CAPACITY UTILIZATION
.41
.76

24. Mills \& Telegraph

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	170	.11*
NBT	1	1600	430	.27*	240	. 15
NBR	1	1600	200	. 13	350	. 22
SBL	1	1600	60	.04*	140	. 09
SBT	2	3200	370	. 12	480	.15*
SBR	1	1600	10	. 01	20	. 01
EBL	1	1600	20	. 01	20	. 01
EBT	2	3200	350	.11*	600	.19*
EBR	1	1600	80	. 05	160	. 10
WBL	2	3200	260	.08*	220	.07*
WBT	2	3200	430	. 16	480	. 17
WBR	0	0	80		70	
TOTA	CAPACIT	Y UTILIZAT		. 50		. 52

25. Mills \& Maple

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	.05*
NBT	2	3200	1000	.34*	810	. 29
NBR	0	0	100		110	
SBL	1	1600	60	.04*	110	. 07
SBT	2	3200	720	. 24	950	.32*
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	220		220	
WBT	1	1600	20	.15*	20	.15*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 53 . 52

27. Mills \& Main

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	30		30	
NBT	1	1600	70	.06*	80	.07*
NBR	1	1600	340	. 21	230	. 14
SBL	2.5		1200		1340	
SBT	0.5	4800	80	.28*	90	.30*
SBR	0		40		20	
EBL	2	3200	100	.03*	100	.03*
EBT	4	6400	1070	. 17	1240	. 19
EBR	1	1600	20	. 01	30	. 02
WBL	2	3200	170	. 05	370	. 12
WBT	3	4800	1180	.25*	1560	.33*
WBR	2	3200	1430	. 45	1400	. 44
Right Turn Adjustment NBR . 0 Note: Assumes N/S Split Phasing						

26. Mills \& Dean

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	150	.09*
NBT	2	3200	1220	.38*	910	. 28
NBR	1	1600	270	. 17	380	. 24
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	810	. 26	1000	.32*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	180	. 11
WBL	2	3200	410	.13*	250	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.02*
total capacity utilization				. 54		. 53

28. US 101 NB Ramps \& Main

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	580	.18*	320	.10*
SBT	0	0	0		0	
SBR	3	4800	1740	. 36	1470	. 31
EBL	0	0	0		0	
EBT	3	4800	2290	.48*	2670	.56*
EBR	f		320		160	
WBL	2	3200	380	.12*	540	.17*
WBT	3	4800	1050	. 22	1850	. 39
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 78		. 83

29. SR 126 EB Ramps \& Main

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	270	. 08	460	.14*
EBT	3	4800	2550	.53*	2800	. 58
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1240	. 26	2440	.51*
WBR	f		130		310	

TOTAL CAPACITY UTILIZATION
. 53
31. Donlon \& Main

2025 Scenario 1 w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		580	
NBT	0	3200	0	.06*	0	.24*
NBR	0.5		30		180	
SBL	1.5		370		340	
SBT	0.5	3200	140	.16*	80	.13*
SBR	1	1600	180	. 11	210	. 13
EBL	0	0	0		0	
EBT	4	6400	1960	.31*	2490	.39*
EBR	d	1600	210	. 13	220	. 14
WBL	2	3200	110	.03*	250	.08*
WBT	3	4800	1060	. 22	1630	. 34
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	640	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	2260	.35*	2530	.40*
EBR	d	1600	290	. 18	240	. 15
WBL	2	3200	90	.03*	180	.06*
WBT	3	4800	1200	. 25	2090	. 44
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.46
.68
32. Telephone \& Main

2025 Scenario 1 w/Baseline

			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	260	.08	710	.22
NBT	2	3200	240	$.08^{*}$	1000	$.31^{*}$
NBR	1	1600	80	.05	280	.18
SBL	1.5		250	.16	470	
SBT	1.5	4800	970	$.30^{*}$	680	$.24^{*}$
SBR	f		740		990	
EBL	2	3200	460	.14	760	.24
EBT	3	4800	1100	$.23^{*}$	1500	$.31^{*}$
EBR	f		390		450	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

Note: Assumes N/S Split Phasing
TOTAL CAPACITY UTILIZATION . 61
.86

33. US 101 NB Ramps \& Telephone

2025 Scenario 1 w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		660		520	
NBT	0.5	3200	30	.22*	70	.18*
NBR	1	1600	270	. 17	400	. 25
SBL	0.5		40		10	
SBT	0	3200	0	.12*	0	\{.01\}*
SBR	1.5		340		230	
EBL	1	1600	20	.01*	280	.18*
EBT	3	4800	710	. 15	1860	. 39
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	980	.21*	1390	.29*
WBR	0	0	10		20	
Right Turn Adjustment					NBR	.01*
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 56		. 67

35. Saratoga \& Telephone

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	20	. 01
NBT	1	1600	10	.08*	60	.15*
NBR	0	0	110		180	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	30	. 02	30	. 02
SBR	1	1600	20	. 01	20	. 01
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	590	. 12	1540	.32*
EBR	d	1600	80	. 05	160	. 10
WBL	1	1600	50	. 03	90	.06*
WBT	3	4800	890	.19*	950	. 21
WBR	0	0	20		40	

TOTAL CAPACITY UTILIZATION
30
. 56

34. Portola \& Telephone

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	.08*	310	.10*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	140	. 09	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	610	. 13	1660	.35*
EBR	d	1600	200	. 13	290	. 18
WBL	1	1600	20	. 01	70	.04*
WBT	3	4800	820	.18*	890	. 19
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.06*		
TOTAL CAPACITY UTILIZATION				. 36		. 50

38. Telephone \& Market

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	. 09	210	. 13
NBT	3	4800	530	.11*	870	.18*
NBR	d	1600	90	. 06	100	. 06
SBL	1	1600	460	.29*	160	.10*
SBT	3	4800	270	. 06	680	. 14
SBR	d	1600	170	. 11	160	. 10
EBL	1	1600	60	. 04	220	.14*
EBT	1	1600	270	.17*	240	. 15
EBR	1	1600	150	. 09	310	. 19
WBL	1	1600	50	.03*	160	. 10
WBT	1	1600	130	. 08	360	.23*
WBR	1	1600	120	. 08	600	. 38
Right Turn Adjustment					WBR	.07*

42. Telephone \& McGrath

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	230	.14*
NBT	3	4800	660	. 14	940	. 20
NBR	d	1600	280	. 18	100	. 06
SBL	1	1600	60	. 04	70	. 04
SBT	2	3200	310	.10*	1060	.33*
SBR	1	1600	60	. 04	40	. 03
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	70	.04*	30	.02*
EBR	1	1600	120	. 08	330	. 21
WBL	1	1600	60	.04*	280	.18*
WBT	1	1600	30	. 02	90	. 06
WBR	1	1600	60	. 04	160	. 10
Right Turn Adjustment					EBR	.08*
TOTAL CAPACITY UTILIZATION				. 29		. 75

46. Seaward \& Main

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	220	.14*
NBT	1	1600	160	. 10	170	. 11
NBR	1	1600	320	. 20	270	. 17
SBL	1	1600	30	. 02	60	. 04
SBT	1	1600	140	.09*	90	.06*
SBR	1	1600	190	. 12	90	. 06
EBL	1	1600	120	. 08	80	. 05
EBT	2	3200	690	.22*	630	.20*
EBR	1	1600	190	. 12	180	. 11
WBL	0.5		100		150	
WBT	1.5	3200	490	.19*	710	.29*
WBR	0		20		80	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	50	.04*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	70	.02*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	760	.25*	800	. 26
EBR	0		10		10	
WBL	1	1600	10	.01*	50	. 03
WBT	2	3200	500	. 21	820	.30*
WBR	0	0	160		130	
TOTAL CAPACITY UTILIZATION				. 38		. 35

47. Main \& Loma Vista

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	290	.09*	480	.15*
NBR	f		40		190	
SBL	1	1600	580	.36*	420	.26*
SBT	2	3200	550	. 18	570	. 18
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	370	. 12	480	. 15
TOTAL CAPACITY UTILIZATION				. 52		. 54

49. Main \& Telegraph

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		280	. 18	690	
NBT	1.5	4800	680	.21*	800	.31*
NBR	f		150		110	
SBL	1.5		210		360	
SBT	1.5	4800	460	.15*	800	.25*
SBR	0		30		50	
EBL	0	0	0		0	
EBT	2	3200	300	. 09	410	. 13
EBR	f		730		680	
WBL	0	0	0		0	
WBT	1.5	4800	330	.10*	470	\{.15\}*
WBR	1.5		150		320	\{.01\}
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 46 . 71

51. Lemon Grove \& Main

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		30		40	
NBT	1.5	3200	20	.03*	20	.03*
NBR	0		100	. 06	30	
SBL	1.5		30		80	
SBT	0.5	3200	10	.01*	10	.03*
SBR	1	1600	70	. 04	70	. 04
EBL	1	1600	40	. 03	60	. 04
EBT	2	3200	1080	.34*	1250	.39*
EBR	d	1600	60	. 04	70	. 04
WBL	1	1600	30	.02*	30	.02*
WBT	3	4800	1000	. 22	1500	. 32
WBR	0	0	50		50	
Right Turn Adjustment NBR .01*						
Note: Assumes N/S Split Phasing						

50. Emma \& Main

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1070	.33*	1360	.43*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	50	.03*	90	.06*
WBT	3	4800	1030	. 21	1690	. 35
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 40
. 51

53. Kimball \& Telephone

2025 Scenario 1 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	260	$.08^{*}$	500	$.16^{*}$
SBT	0	0	0		0	
SBR	2	3200	1230	.38	650	.20
EBL	2	3200	260	$.08^{*}$	960	$.30^{*}$
EBT	3	4800	310	.06	980	.20
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	890	$.28^{*}$	650	$.20^{*}$
WBR	1	1600	670	.42	360	.23
Right Turn Adjustment	Multi	$.32^{*}$				

TOTAL CAPACITY UTILIZATION
.76
55. Kimball \& SR 126 EB Ramps

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1340	. 28	860	.18*
NBR	f		120		420	
SBL	1	1600	30	. 02	30	.02*
SBT	3	4800	1480	.31*	880	. 18
SBR	0	0	0		0	
EBL	2	3200	120	.04*	400	.13*
EBT	0	0	10		0	
EBR	£		240		530	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

56. Kimball \& SR 126 WB Ramps

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	580	.18*	260	.08*
NBT	3	4800	810	. 17	780	. 16
NBR	d	1600	60	. 04	230	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	710	.15*	550	.11*
SBR	d	1600	190	. 12	100	. 06
EBL	1.5		40		30	
EBT	0.5	3200	10	.02*	10	.01*
EBR	1	1600	620	. 39	240	. 15
WBL	0	0	180		120	
WBT	1	1600	120	.19*	70	.12*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR Note: Assumes E/W Split Phasing				.23*	EBR	.08*
TOTAL CAPACITY UTILIZATION				. 77		. 40

60. Ramelli \& Telephone

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	170	. 11	520	. 33
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	340	. 08	1420	.31*
EBR	0	0	40		80	
WBL	1	1600	380	. 24	190	.12*
WBT	3	4800	1700	.35*	1070	. 22
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.22*
TOTA	CAPACIT	Y UTILIZAT		. 38		. 67

61. Montgomery \& Telephone

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	70	.04*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	20	. 01	140	. 09
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	90	. 06	20	. 01
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	510	. 16	770	.24*
EBR	d	1600	90	. 06	120	. 08
WBL	1	1600	100	. 06	70	.04*
WBT	2	3200	1090	.34*	680	. 21
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*	NBR	.01*

TOTAL CAPACITY UTILIZATION . 58 . 35

65. Sanjon \& Thompson

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	490	.15*	580	.18*
NBT	0	0	0		0	
NBR	1	1600	190	. 12	230	. 14
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	480	.24*	710	.31*
EBR	0	0	280		270	
WBL	1	1600	150	.09*	160	.10*
WBT	2	3200	520	. 16	740	. 23
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	160	. 10
NBT	1	1600	40	. 11	70	.19*
NBR	0	0	130		240	
SBL	1	1600	30	. 02	30	.02*
SBT	1	1600	80	.05*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	90	.06*	80	. 05
EBT	2	3200	320	. 10	770	.24*
EBR	d	1600	80	. 05	240	. 15
WBL	1	1600	150	. 09	210	.13*
WBT	2	3200	760	.24*	520	. 16
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 58

68. Seaward \& Thompson

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	. 06	210	.13*
NBT	2	3200	530	.17*	530	. 17
NBR	d	1600	220	. 14	190	. 12
SBL	1	1600	100	.06*	50	. 03
SBT	2	3200	380	. 12	490	.15*
SBR	d	1600	70	. 04	70	. 04
EBL	1	1600	110	. 07	90	. 06
EBT	2	3200	620	.22*	820	.29*
EBR	0	0	70		100	
WBL	2	3200	180	.06*	260	.08*
WBT	2	3200	420	. 13	780	. 24
WBR	1	1600	40	. 03	60	. 04
TOTA	CAPACII	Y UTILIZAT		. 51		. 65

71. Sanjon \& Harbor

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	210	.13*	370	.23*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	230	. 14	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	260	.16*	560	.35*
WBR	1	1600	470	. 29	270	. 17
Right Turn Adjustment			WBR	.03*		

TOTAL CAPACITY UTILIZATION . 36 . 66

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	250	.08*	340	.11*
SBT	0	0	0		0	
SBR	1	1600	90	. 06	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	500	. 16	900	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	950	.30*	790	. 25
WBR	d	1600	310	. 19	270	. 17

75. Ashwood \& Telegraph

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	100	.06*
NBR	d	1600	40	. 03	70	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	50	. 03	70	. 04
SBR	1	1600	130	. 08	120	. 08
EBL	1	1600	80	.05*	150	. 09
EBT	2	3200	520	. 16	850	.27*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	540	.17*	620	. 19
WBR	d	1600	110	. 07	90	. 06
TOTAL CAPACITY UTILIZATION				. 29		. 48

85. Victoria \& Olivas Park

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	. 21	590	.18*
NBT	3	4800	1840	.38*	1780	. 37
NBR	1	1600	510	. 32	450	. 28
SBL	2	3200	480	.15*	210	. 07
SBT	3	4800	1500	. 31	1590	.33*
SBR	f		50		90	
EBL	2	3200	130	. 04	170	. 05
EBT	2	3200	160	.05*	230	.07*
EBR	f		190		970	
WBL	1	1600	130	.08*	350	.22*
WBT	2	3200	50	. 02	380	. 12
WBR	f		120		190	
TOTA	CAPACIT	UTILIZAT		. 66		. 80

86. Telephone \& Olivas Park

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	370	.12*	970	.30*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	160	. 10	660	. 41
EBL	2	3200	470	.15*	390	.12*
EBT	2	3200	210	. 07	280	. 09
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	180	.06*	270	.08*
WBR	1	1600	570	. 36	750	. 47
Right Turn Adjustment			WBR	.21*	Multi	.17*

TOTAL CAPACITY UTILIZATION . 56 . 69

92. Johnson \& Bristol

2025 Scenario 1 w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	530	. 17	980	. 31
NBR	f		190		1110	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	980	.31*	1140	.36*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	20	.01*	280	.18*
EBR	1	1600	130	. 08	190	. 12
WBL	2	3200	1020	.32*	450	.14*
WBT	1	1600	260	. 16	160	. 10
WBR	d	1600	30	. 02	10	. 01
Right Turn Adjustment			EBR	.05*		

TOTAL CAPACITY UTILIZATION
71
91. Johnson \& Ralston

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	130	.08*
NBT	2	3200	480	. 15	780	. 24
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	40	. 03	60	. 04
SBT	2	3200	770	.24*	880	.28*
SBR	d	1600	90	. 06	50	. 03
EBL	1	1600	40	.03*	90	. 06
EBT	1	1600	90	. 06	210	.13*
EBR	d	1600	110	. 07	260	. 16
WBL	1	1600	90	. 06	60	.04*
WBT	1	1600	230	.14*	90	. 06
WBR	d	1600	90	. 06	50	. 03
TOTAL CAPACITY UTILIZATION				. 47		. 53

94. Johnson \& North Bank

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	70	.04*
NBT	3	4800	160	. 03	510	. 11
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1580	.38*	1390	.33*
SBR	0	0	240		170	
EBL	2.5		450	.09*	1780	.37*
EBT	1.5	6400	70	. 04	340	. 21
EBR	1	1600	410	. 26	320	. 20
WBL	1.5		140		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.14*		
TOTAL CAPACITY UTILIZATION				. 70		. 82

95. Bristol \& Ramelli

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	. 01
NBT	1	1600	20	.02*	10	.02*
NBR	0	0	10		20	
SBL	1	1600	10	.01*	30	.02*
SBT	1	1600	20	. 01	30	. 02
SBR	1	1600	280	. 18	110	. 07
EBL	1	1600	10	.01*	150	.09*
EBT	2	3200	190	. 06	670	. 21
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	. 01
WBT	2	3200	900	. $30 *$	380	.13*
WBR	0	0	60		30	
Right Turn Adjustment			SBR	.15*		
TOTAL CAPACITY UTILIZATION				. 49		. 26

100. Saticoy \& Telephone

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	190	.12*	90	. 06
SBT	1	1600	120	. 08	150	.09*
SBR	1	1600	260	. 16	160	. 10
EBL	1	1600	120	.08*	180	.11*
EBT	2	3200	220	. 07	650	. 20
EBR	1	1600	100	. 06	180	. 11
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	320	.14*	470	.17*
WBR	0	0	130		60	
TOTA	CAPACIT	U UIILIzAT		. 47		. 46

96. Montgomery \& North Bank

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	120	.08*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	380	. 24	170	. 11
EBL	1	1600	90	.06*	320	.20*
EBT	2	3200	120	. 04	380	. 12
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	470	.29*	270	.17*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.14*		
TOTAL CAPACITY UTILIZATION				. 55		. 47

101. Saticoy \& Telegraph

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	170		80	
NBT	1	1600	70	.18*	50	.10*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	20	. 01
EBT	1	1600	190	.17*	410	.35*
EBR	0	0	80		150	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	270	. 17	290	. 18
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
total capacity utilizarion				. 47		. 51

102. Wells \& Telegraph

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	260	.16*
NBT	1	1600	120	. 08	280	. 18
NBR	1	1600	50	. 03	260	. 16
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	270	.17*	200	.13*
SBR	1	1600	50	. 03	30	. 02
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	50	.17*	190	.26*
EBR	0	0	220		220	
WBL	1	1600	310	.19*	130	.08*
WBT	1	1600	150	. 10	110	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION .63 .63
104. Wells \& SR 126 EB Ramps

2025 Scenario 1 w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	870	. 18	1430	. 30
NBR	f		600		1560	
SBL	0	0	0		0	
SBT	3	4800	2660	.55*	1730	.36*
SBR	f		80		60	
EBL	1	1600	90	.06*	320	.20*
EBT	0	0	0		0	
EBR	1	1600	160	. 10	600	. 38
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.04*	EBR	.18*
TOTAL CAPACITY UTILIZATION				. 65		. 74

106. Wells \& Telephone

2025 Scenario 1 w/Baseline						
			AM PK	K HOUR	PM P	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	420	. 13
NBT	3	4800	1230	. 26	2900	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2510	.52*	1930	. 40
SBR	1	1600	130	. 08	420	. 26
EBL	1.5		160	\{.05\}*	240	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	540	. 17	530	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 72		. 73

114. California \& Thompson

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		30		30	
NBT	0.5	3200	10	.01*	20	.02*
NBR	1	1600	60	. 04	80	. 05
SBL	1.5		130		170	
SBT	1.5	4800	70	.04*	160	.07*
SBR	0		10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	820	.30*	930	.32*
EBR	0	0	130		100	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	310	. 10	400	. 14
WBR	0	0	10		60	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	90	. 06
SBT	1	1600	260	.17*	320	.22*
SBR	0	0	10		30	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	550	.17*	700	.22*
EBR	f		390		510	
WBL	1	1600	210	.13*	230	.14*
WBT	2	3200	450	. 15	630	. 22
WBR	0	0	30		70	

TOTAL CAPACITY UTILIZATION
.48
. 59
132. Ventura \& Stanley

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM Pk	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	350	.22*	290	.18*
NBT	1	1600	260	. 16	350	. 22
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	470	.29*	370	.23*
SBR	1	1600	520	. 33	380	. 24
EBL	1	1600	390	.24*	670	.42*
EBT	0	0	0		0	
EBR	1	1600	220	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		380	.12*	460	.14*
SBT	0	4800	0		0	
SBR	1.5		80	. 05	20	
EBL	1	1600	100	.06*	430	.27*
EBT	2	3200	200	. 06	750	. 23
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	950	. $30 *$	390	.12*
WBR	f		830		900	

TOTAL CAPACITY UTILIZATION
.48
160. Victoria \& US 101 NB Ramps

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	530	.17*	520	.16*
NBT	3	4800	1380	. 29	1890	. 39
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2690	. 42 *	2210	.35*
SBR	1	1600	130	. 08	360	. 23
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	710	.22*	490	.15*
WBT	0	0	0		0	
WBR	3	4800	910	. 19	1150	. 24

TOTAL CAPACITY UTILIZATION
.81
.66
138. Johnson \& US 101 SB Ramps

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	680	.43*
NBT	1	1600	130	. 08	480	. 30
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	580	.36*	400	.25*
SBR	f		1530		1580	
EBL	1	1600	110	.07*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	110	. 07	90	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 52
.84
161. Victoria \& Valentine

2025 Scenario 1 w/Baseline

TOTAL CAPACITY UTILIZATION
162. California \& Harbor

| 2025 Scenario 1 w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 0 | 0 | 0 | | 0 | |
| NBT | 0 | 0 | 0 | | 0 | |
| NBR | 0 | 0 | 0 | | 0 | |
| | | | | | | |
| SBL | 1 | 1600 | 190 | $.12^{*}$ | 320 | $.20^{*}$ |
| SBT | 0 | 0 | 0 | | 0 | |
| SBR | 1 | 1600 | 40 | .03 | 50 | .03 |
| | | | | | | |
| EBL | 1 | 1600 | 20 | .01 | 80 | .05 |
| EBT | 1 | 1600 | 230 | $.14^{*}$ | 260 | $.166^{*}$ |
| EBR | 0 | 0 | 0 | | 0 | |
| | | | | | 0 | |
| WBL | 0 | 0 | 0 | | 0 | |
| WBT | 2 | 3200 | 170 | .07 | 230 | .10 |
| WBR | 0 | 0 | 50 | | 100 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
. 26
164. Seaward \& Poli

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		170	
NBT	1	1600	0	.18*	0	.21*
NBR	0	0	130		170	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	.09*	350	.22*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	230	.14*	110	.07*
WBT	1	1600	170	. 11	290	. 18
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.41
. 50
163. Santa Clara \& Main

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HoUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	250	. 08	230	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	340	.11*	480	.15*
EBR	0	0	10		10	
WBL	1	1600	140	.09*	170	.11*
WBT	2	3200	360	. 12	520	. 17
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
.30
165. Seaward \& Harbor

2025 Scenario 1 w/Baseline

166. College \& Telegraph

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.06*
NBR	0	0	60		80	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	580	.20*	920	.31*
EBR	0	0	60		80	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	690	. 22	700	. 22
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 33
169. Kimball \& Foothill

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	120	.08*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	30	. 02
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	200	. 26	400	.36*
EBR	0	0	210		180	
WBL	1	1600	60	. 04	20	.01*
WBT	1	1600	530	.33*	200	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.51
.45
168. Day \& Foothill

2025 Scenario 1 w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	220	.14*
NBT	1	1600	30	. 02	30	. 02
NBR	1	1600	170	. 11	280	. 18
SBL	0	0	50		50	
SBT	1	1600	20	.04*	20	.04*
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	110	. 07	80	. 05
EBT	1	1600	450	.41*	480	.44*
EBR	0	0	200		220	
WBL	1	1600	250	.16*	230	.14*
WBT	1	1600	420	. 32	420	. 29
WBR	0	0	90		50	

TOTAL CAPACITY UTILIZATION . 74
170. Petit \& Foothill

2025 Scenario 1 w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	160	.10	30	.02
EBR	1	1600	40	.03	30	
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	480	$.31^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario 1 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	110		50	
NBT	1	1600	0	.08*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	130	. 12	310	.25*
EBR	0	0	60		90	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	420	.28*	170	. 12
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 36
173. Victoria \& SR 126 WB Ramps

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1230	. 30	2130	. $52 *$
NBR	0	0	220		350	
SBL	0	0	0		0	
SBT	3	4800	1980	.45*	1530	. 34
SBR	0	0	180		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	630	. 39	410	. 26
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	160	. 10
Right Turn Adjustment			Multi	.41*	Multi	.22*
TOTAL CAPACITY UTILIZATION				. 86		. 74

172. Wells \& Foothill

2025 Scenario 1 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	210	.14*
EBR	1	1600	90	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 26
174. Petit \& Telegraph

2025 Scenario 1 w/Baseline

			AM PK		HOUR	PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	80	$.05 *$	50	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	20	.01	
SBL	1	1600	30	.02	20	.01	
SBT	1	1600	20	$.03 *$	20	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	270	.08	600	.19	
EBR	1	1600	60	.04	80	.05	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	520	$.33^{*}$	330	$.21^{*}$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 42 . 28
175. Ventura \& North Bank

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	80		40	
SBT	1	1600	0	.10*	0	.10*
SBR	0	0	80		120	
EBL	1	1600	160	.10*	540	. 34
EBT	2	3200	910	. 28	2500	.78*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	.21*	370	. 23
WBR	1	1600	50	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 41
177. Wells \& SR 126 WB Ramps

2025 Scenario 1 w/Baseline						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	. 17	1360	.43*
NBR	f		410		380	
SBL	0	0	0		0	
SBT	2	3200	1050	.33*	740	. 23
SBR	f		420		200	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1690		1040	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	190	. 12	110	. 07
Right Turn Adjustment					WBR	.07*
TOTAL CAPACITY UTILIZATION				. 33		. 50

176. Saticoy \& Darling

2025 Scenario 1 w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	150	. 10	230	.15*
NBR	1	1600	110	. 07	30	. 02
SBL	0	0	50		10	\{.01 **
SBT	1	1600	250	.19*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	60		60	
EBT	1	1600	70	.11*	60	.10*
EBR	0	0	40		40	
WBL	0	0	70	\{.04\}*	50	\{.03\}*
WBT	1	1600	20	. 08	60	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 35
.29
178. SR-33 Ramps \& Stanley

2025 Scenario 1 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	700	. 44	850	. 53
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	250	. 16	170	. 11
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.45*	920	.58*
WBR	f		170		140	
Right Turn Adjustment			NBR	.22*	NBR	.18*

179. SR-33 Ramps \& Shell

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	550		610	
SBT	1	1600	0	.36*	0	.39*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	130	. 09	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	660	.46*	620	.46*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION
.83
181. Ventura \& Ramona

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	40	. 03
NBT	1	1600	350	.23*	620	.40*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	70	.04*
SBT	1	1600	390	. 25	470	. 31
SBR	0	0	10		30	
EBL	0	0	20	\{.01\}*	20	\{.01\}*
EBT	1	1600	10	. 03	10	. 03
EBR	0	0	10		10	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
. 32
180. Estates \& Telegraph

2025 Scenario 1 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	50	. 03
NBT	1	1600	10	. 05	10	.06*
NBR	0	0	70		90	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	820	.26*
EBR	d	1600	60	. 04	70	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	670	.21*	800	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 29
. 39
182. Olive \& Main St

2025 Scenario 1 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	1	1600	10	.01	10	.01
NBT	1	1600	10	$.01^{*}$	10	$.01^{*}$
NBR	0	0	10		10	
SBL	1	1600	560	$.35^{*}$	400	$.25^{*}$
SBT	1	1600	20	.06	30	.08
SBR	0	0	80		90	
EBL	0	0	80	$\{.05\}^{*}$	280	
EBT	1	1600	80	.10	220	$.31^{*}$
EBR	1	1600	10	.01	40	.03

$\begin{array}{rrrrrrc}\text { WBL } & 0 & 0 & 10 & & 10 & \{.01\}^{*} \\ \text { WBT } & 1 & 1600 & 160 & .11^{*} & 150 & .10 \\ \text { WBR } & 1 & 1600 & 180 & .11 & 440 & .28\end{array}$

TOTAL CAPACITY UTILIZATION
. 52
. 58
190. Petit Av \& North Bank Dr

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	250	. 16	230	. 14
EBL	1	1600	60	.04*	280	.18*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	80	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.10*		
TOTAL CAPACITY UTILIZATION				. 20		. 26

192. Los Angeles Av \& North Bank

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1410	. 29	3110	.65*
NBR	d	1600	20	. 01	70	. 04
SBL	1	1600	110	. 07	160	.10*
SBT	3	4800	2800	.58*	2230	. 46
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	. 10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	20	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 71		. 85

191. Saticoy Av \& North Bank Dr

2025 Scenario 1 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	.01*	10	.01*
NBT	1	1600	30	. 03	20	. 02
NBR	0	0	20		10	
SBL	1	1600	20	. 01	50	. 03
SBT	1	1600	10	.03*	30	.04*
SBR	0	0	30		30	
EBL	1	1600	20	. 01	40	.03*
EBT	2	3200	90	.03*	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	70	.02*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.05*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 1 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	240	.15*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 17		. 13

194. Wells Rd \& A St

2025 Scenario 1 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	380	. 13	860	.32*
NBR	0	0	50		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	810	.26*	580	. 18
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	110	. 07	60	. 04
WBL	1	1600	160	.10*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.04*		
TOTAL CAPACITY UTILIZATION				. 43		. 41

NON-COMMITTED
IMPROVEMENTS

94. Johnson \& North Bank

2025 Scenario 1 w/Non-Committed Lanes						
			AM P	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	70	.04*
NBT	3	4800	160	. 03	510	. 11
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	10	. 01	70	. 04
SBT	2	3200	1580	.49*	1390	.43*
SBR	1	1600	240	. 15	170	. 11
EBL	2.5		450	.09*	1780	.37*
EBT	1.5	6400	70	. 04	340	. 21
EBR	1	1600	410	. 26	320	. 20
WBL	1.5		140		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.14*		

TOTAL CAPACITY UTILIZATION . 81 . 92

161. Victoria \& Valentine

2025 Scenario 1 w/Non-Committed Lanes						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	190	.06*
NBT	3	4800	1650	. 35	2080	. 44
NBR	0	0	20		50	
SBL	1	1600	40	. 03	40	. 03
SBT	2	3200	1640	.51*	1490	.47*
SBR	f		1670		1190	
EBL	2.5		320		740	
EBT	0.5	4800	50	.08*	30	.16*
EBR	2	3200	250	. 08	450	. 14
WBL	0	0	20		20	
WBT	1	1600	10	.02*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Note: Assumes E/W Split Phasing						

105. Wells \& Darling

2025 Scenario 1 w/Non-Committed Lanes						
			AM P	HOUR	PM P	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1250	. 26	2830	.59*
NBR	d	1600	60	. 04	170	. 11
SBL	2	3200	120	. 04	340	.11*
SBT	3	4800	2420	. $50 *$	1830	. 38
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	100		40	
WBL	2	3200	60	. 02	290	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	
TOTAL CAPACITY UTILIZATION				. 63		. 88

162. California \& Harbor

2025 Scenario 1 w/Non-Committed Lanes						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	190	.12*	320	.20*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	50	. 03
EBL	1	1600	20	. 01	80	. 05
EBT	1	1600	230	.14*	260	.16*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	170	. 07	230	. 10
WBR	0	0	50		100	

SCENARIO 2

1. Victoria \& Foothill

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	.09*	240	.15*
NBT	1	1600	10	. 01	80	. 05
NBR	1	1600	180	. 11	340	. 21
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	70	. $04 *$	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	. 01 *	180	. 11
EBT	1	1600	300	. 19	460	.29*
EBR	1	1600	220	. 14	20	. 01
WBL	2	3200	450	. 14	250	.08*
WBT	1	1600	570	.36*	340	. 21
WBR	d	1600	10	. 01	20	. 01

TOTAL CAPACITY UTILIZATION
. 50

3. Victoria \& Telegraph

2025 Scenario 2 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	690	.22*	1150	.36*
NBT	2	3200	540	. 17	910	. 28
NBR	1	1600	150	. 09	210	. 13
SBL	1	1600	180	. 11	200	. 13
SBT	3	4800	710	.15*	550	.11*
SBR	d	1600	40	. 03	20	. 01
EBL	1	1600	50	. 03	40	. 03
EBT	1.5	4800	360	\{.16\}*	720	\{.23\}*
EBR	1.5		680		790	\{.22\}
WBL	2	3200	360	.11*	220	.07*
WBT	2	3200	590	. 18	340	. 11
WBR	d	1600	60	. 04	70	. 04

TOTAL CAPACITY UTILIZATION .64 .77

2. Victoria \& Loma Vista

2025 Scenario 2 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	260	.16*
NBT	2	3200	260	. 08	560	. 18
NBR	d	1600	20	. 01	30	. 02
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	540	.17*	280	.09*
SBR	d	1600	110	. 07	20	. 01
EBL	0	0	70		20	
EBT	1	1600	40	.25*	30	.24*
EBR	0	0	290		330	
WBL	0	0	60	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	30	. 05
WBR	0	0	60		20	

TOTAL CAPACITY UTILIZATION . 57 . 51
4. Victoria \& Woodland

2025 Scenario 2 w/Baseline

5. Victoria \& SR 126 SB Ramps

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1420	. 23	2690	.43*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2580	.41*	1890	. 31
SBR	0	0	70		90	
EBL	1.5		220		150	. 09
EBT	0.5	3200	210	.13*	160	.10*
EBR	1	1600	210	. 13	230	. 14
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	270	. 17	570	. 36
Right Turn Adjustment WBR Note: Assumes E/W Split Phasing				.03*	WBR	.36*
TOTAL CAPACITY UTILIZATION				. 57		. 89

7. Victoria \& Telephone

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	310	.10*	320	. 10
NBT	4	6400	1310	. 25	1690	.29*
NBR	0	0	260		150	
SBL	2	3200	340	. 11	370	.12*
SBT	4	6400	1780	.28*	1330	. 21
SBR	1	1600	330	. 21	420	. 26
EBL	2	3200	370	.12*	650	.20*
EBT	3	4800	400	. 10	940	. 22
EBR	0	0	80		110	
WBL	2	3200	270	. 08	350	. 11
WBT	3	4800	750	.16*	650	.14*
WBR	1	1600	170	. 11	320	. 20

TOTAL CAPACITY UTILIZATION

6. Victoria \& Thille

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1360	. 28	2530	.40*
NBR	0	0	460	. 29	50	
SBL	1	1600	160	. 10	40	.03*
SBT	4	6400	2180	.40*	1890	. 33
SBR	0	0	370		220	
EBL	1.5		240		310	
EBT	0.5	3200	30	.08*	10	.10*
EBR	1	1600	120	. 08	200	. 13
WBL	1	1600	30	. 02	100	. 06
WBT	1	1600	10	.02*	80	.09*
WBR	0	0	20		70	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 53		. 62

8. Victoria \& Ralston

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	400	.25*
NBT	4	6400	1440	. 24	1990	. 34
NBR	0	0	70		210	
SBL	1	1600	100	. 06	220	. 14
SBT	4	6400	1870	.31*	1810	.30*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	140	. 09
EBT	1	1600	130	.08*	260	.16*
EBR	1	1600	220	. 14	320	. 20
WBL	1	1600	240	.15*	150	.09*
WBT	1	1600	250	. 16	150	. 09
WBR	1	1600	200	. 13	130	. 08
TOTA	CAPACIT	UTILIZAT		. 70		. 80

10. Victoria \& Moon

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1820	. 30	2260	.41*
NBR	0	0	110		340	
SBL	1	1600	40	. 03	120	.08*
SBT	4	6400	1990	.31*	1900	. 34
SBR	0	0	20		250	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	100	.06*
EBR	1	1600	30	. 02	170	. 11
WBL	1	1600	300	.19*	180	.11*
WBT	1	1600	120	. 08	60	. 04
WBR	1	1600	70	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
. 57

15. Johnson \& Telephone

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	340	.11*	220	. 07
NBT	2	3200	170	. 11	230	.14*
NBR	0	0	230	. 14	420	. 26
SBL	1	1600	60	. 04	140	.09*
SBT	2	3200	170	.05*	210	. 07
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	. 03	30	. 02
EBT	3	4800	260	.08*	1210	.34*
EBR	0	0	170	. 11	400	
WBL	1	1600	440	.28*	440	.28*
WBT	3	4800	1420	. 31	580	. 13
WBR	0	0	70		60	

TOTAL CAPACITY UTILIZATION
.52
.85

14. Hill \& Telephone

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	100	.10*	50	.15*
NBR	0	0	10		170	
SBL	1	1600	60	.04*	270	.17*
SBT	1	1600	40	. 03	70	. 04
SBR	1	1600	70	. 04	230	. 14
EBL	1	1600	170	.11*	110	. 07
EBT	3	4800	540	. 13	1250	.30*
EBR	0	0	70		190	
WBL	1	1600	140	. 09	40	.03*
WBT	3	4800	1180	.31*	760	. 17
WBR	0	0	290		70	

TOTAL CAPACITY UTILIZATION
.56
.65
18. Seaward \& US 101 NB Ramps

2025 Scenario 2 w/Baseline

			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	610	$.19 *$	650	$.20^{*}$
NBT	2	3200	890	.28	940	.29
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	850	$.27 *$	1040	$.33^{*}$
SBR	1	1600	230	.14	220	.14
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	420	$.13 *$	410	$.13^{*}$
WBT	0	0	0		0	
WBR	2	3200	380	.12	480	.15

TOTAL CAPACITY UTILIZATION
.59
.66

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 2 w/Baseline						
			AM P	HoUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	40	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		650		1040	
SBT	0.5	3200	40	.22*	70	.36*
SBR	0		10		40	
EBL	1	1600	130	.08*	160	.10*
EBT	2	3200	400	. 13	420	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	390	.24*	600	.38*
WBR	1	1600	320	. 20	310	. 19
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	. 04	140	.09*
NBT	2	3200	900	.28*	1060	. 33
NBR	1	1600	500	. 31	240	. 15
SBL	2	3200	440	.14*	420	. 13
SBT	2	3200	630	. 20	1170	.37*
SBR	1	1600	150	. 09	110	. 07
EBL	1	1600	70	. 04	160	. 10
EBT	2	3200	150	.05*	260	.08*
EBR	d	1600	60	. 04	130	. 08
WBL	1	1600	80	.05*	450	.28*
WBT	2	3200	100	. 03	150	. 05
WBR	f		310		610	
TOTAL CAPACITY UTILIZATION				. 52		. 82

24. Mills \& Telegraph

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM Pk	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	170	.11*
NBT	1	1600	420	.26*	250	. 16
NBR	1	1600	200	. 13	380	. 24
SBL	1	1600	60	.04*	140	. 09
SBT	2	3200	380	. 12	480	.15*
SBR	1	1600	10	. 01	10	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	340	.11*	540	.17*
EBR	1	1600	80	. 05	130	. 08
WBL	2	3200	260	.08*	220	.07*
WBT	2	3200	410	. 15	420	. 15
WBR	0	0	80		70	
Right Turn Adjustment					NBR	.02*
TOTAL CAPACITY UTILIZATION				. 49		. 52

25. Mills \& Maple

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	990	.34*	850	.30*
NBR	0	0	90		110	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	730	. 24	910	. 30
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	210		220	
WBT	1	1600	20	.14*	20	.15*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 51
.52

27. Mills \& Main

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	30		30	
NBT	1	1600	60	.06*	70	.06*
NBR	1	1600	360	. 23	240	. 15
SBL	2.5		1220		1300	
SBT	0.5	4800	80	.28*	90	.29*
SBR	0		40		20	
EBL	2	3200	120	.04*	90	.03*
EBT	4	6400	1050	. 16	1120	. 18
EBR	1	1600	20	. 01	30	. 02
WBL	2	3200	170	. 05	370	. 12
WBT	3	4800	1140	.24*	1470	.31*
WBR	2	3200	1430	. 45	1380	. 43
Right Turn Adjustment \quad NBR $\quad .08 *$Note: Assumes N / S Split Phasing						

26. Mills \& Dean

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	100	.06*
NBT	2	3200	1210	.38*	960	. 30
NBR	1	1600	280	. 18	360	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	820	. 26	970	.31*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	190	. 12
WBL	2	3200	410	.13*	240	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.05*
TOTA	CAPACIT	UTILIZAT		. 54		. 52

28. US 101 NB Ramps \& Main

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	670	.21*	330	.10*
SBT	0	0	0		0	
SBR	3	4800	1690	. 35	1400	. 29
EBL	0	0	0		0	
EBT	3	4800	2300	.48*	2540	.53*
EBR	f		310		150	
WBL	2	3200	400	.13*	530	.17*
WBT	3	4800	1050	. 22	1810	. 38
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 82		. 80

29. SR 126 EB Ramps \& Main

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	270	. 08	430	.13*
EBT	3	4800	2650	.55*	2710	. 56
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1250	. 26	2390	. $50 *$
WBR	f		130		380	

TOTAL CAPACITY UTILIZATION . 55
31. Donlon \& Main

2025 Scenario 2 w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		170		630	
NBT	0	3200	0	.06*	0	.24*
NBR	0.5		30		150	
SBL	1.5		400		330	
SBT	0.5	3200	170	.18*	120	.14*
SBR	1	1600	180	. 11	210	. 13
EBL	0	0	0		0	
EBT	4	6400	1990	.31*	2540	.40*
EBR	d	1600	240	. 15	140	. 09
WBL	2	3200	90	.03*	250	.08*
WBT	3	4800	1080	. 23	1620	. 34
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 2 w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		170	\{.06\}*	630	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	.01*
EBT	4	6400	2300	.36*	2450	. 38
EBR	d	1600	330	. 21	230	. 14
WBL	2	3200	100	.03*	170	. 05
WBT	3	4800	1210	. 25	2110	.44*
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 47
.67
32. Telephone \& Main

2025 Scenario 2 w/Baseline

			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	. 10	740	. 23
NBT	2	3200	340	.11*	1130	.35*
NBR	1	1600	70	. 04	300	. 19
SBL	1.5		250	. 16	490	
SBT	1.5	4800	1110	.35*	830	.28*
SBR	f		690		960	
EBL	2	3200	460	. 14	730	. 23
EBT	3	4800	1090	.23*	1540	.32*
EBR	f		440		460	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						
TOTA	CAPACIT	Y UTILIZAT		. 69		. 95

33. US 101 NB Ramps \& Telephone

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		680		560	
NBT	0.5	3200	20	.22*	80	.20*
NBR	1	1600	280	. 18	400	. 25
SBL	0.5		40		10	
SBT	0	3200	0	.12*	0	\{.01\}*
SBR	1.5		340		250	
EBL	1	1600	20	.01*	300	.19*
EBT	3	4800	820	. 17	1960	. 41
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1060	.22*	1470	.31*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 57 . 71
35. Saratoga \& Telephone

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	30	. 02
NBT	1	1600	10	.08*	60	.14*
NBR	0	0	110		170	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	40	. 03	30	. 02
SBR	1	1600	40	. 03	20	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	700	. 15	1620	.34*
EBR	d	1600	50	. 03	160	. 10
WBL	1	1600	50	. 03	90	.06*
WBT	3	4800	950	.20*	1030	. 22
WBR	0	0	20		40	
TOTA	CAPACIT	UTILIZAT		. 31		. 57

34. Portola \& Telephone

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	260	.08*	330	.10*
NBT	1	1600	10	. 01	30	. 02
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	690	. 14	1750	.36*
EBR	d	1600	230	. 14	310	. 19
WBL	1	1600	20	. 01	70	.04*
WBT	3	4800	900	.19*	980	. 21
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 36		. 51

38. Telephone \& Market

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	. 11	250	.16*
NBT	3	4800	740	.15*	1070	. 22
NBR	d	1600	80	. 05	110	. 07
SBL	1	1600	500	.31*	160	. 10
SBT	3	4800	480	. 10	840	.18*
SBR	d	1600	180	. 11	160	. 10
EBL	1	1600	40	. 03	210	.13*
EBT	1	1600	270	.17*	240	. 15
EBR	1	1600	210	. 13	290	. 18
WBL	1	1600	60	.04*	190	. 12
WBT	1	1600	130	. 08	370	.23*
WBR	1	1600	110	. 07	630	. 39
Right Turn Adjustment					WBR	.07*
TOTAL CAPACITY UTILIZATION				. 67		. 77

42. Telephone \& McGrath

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	.13*	300	.19*
NBT	3	4800	910	. 19	1190	. 25
NBR	d	1600	330	. 21	100	. 06
SBL	1	1600	50	. 03	70	. 04
SBT	2	3200	610	.19*	1220	.38*
SBR	1	1600	50	. 03	50	. 03
EBL	1	1600	10	. 01	70	. 04
EBT	1	1600	30	.02*	30	.02*
EBR	1	1600	220	. 14	350	. 22
WBL	1	1600	80	.05*	300	.19*
WBT	1	1600	30	. 02	80	. 05
WBR	1	1600	40	. 03	150	. 09
Right Turn Adjustment			EBR	.02*	EBR	.06*
TOTAL CAPACITY UTILIZATION				. 41		. 84

46. Seaward \& Main

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	200	.13*
NBT	1	1600	160	. 10	180	. 11
NBR	1	1600	310	. 19	290	. 18
SBL	1	1600	30	. 02	70	. 04
SBT	1	1600	160	.10*	100	.06*
SBR	1	1600	190	. 12	80	. 05
EBL	1	1600	110	. 07	80	. 05
EBT	2	3200	730	.23*	660	.21*
EBR	1	1600	180	. 11	120	. 08
WBL	0.5		90		170	
WBT	1.5	3200	510	.20*	720	.30*
WBR	0		30		80	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	70	.02*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	40		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	770	.25*	760	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	50	. 03
WBT	2	3200	510	. 22	790	.29*
WBR	0	0	180		130	
TOTAL CAPACITY UTILIZATION				. 37		. 34

47. Main \& Loma Vista

2025 Scenario 2 w/Baseline						
			AM P	K Hour	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	340	.11*	460	.14*
NBR	f		40		180	
SBL	1	1600	590	. $37 *$	390	.24*
SBT	2	3200	580	. 18	640	. 21
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	350	. 11	490	. 15
TOTA	CAPACIT	Y UTILIZAT		. 55		. 51

49. Main \& Telegraph

2025 Scenario 2 w/Baseline						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		300	. 19	640	
NBT	1.5	4800	600	.19*	720	.28*
NBR	f		140		90	
SBL	1.5		200		270	. 17
SBT	1.5	4800	470	.15*	720	.24*
SBR	0		40		50	
EBL	0	0	0		0	
EBT	2	3200	290	. 09	440	. 14
EBR	f		700		610	
WBL	0	0	0		0	
WBT	1.5	4800	340	.11*	510	.16*
WBR	1.5		120		210	
Note: Assumes N/S Split Phasing						

50. Emma \& Main

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1040	.33*	1210	.38*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	80	.05*
WBT	3	4800	960	. 20	1520	. 32
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 41
.45

53. Kimball \& Telephone

2025 Scenario 2 w/Baseline

| | | AM PK HOUR | PM PK HOUR |
| :--- | :--- | :--- | :--- | :--- |
| LANES CAPACITY | VOL | V/C | vOL |

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	390	$.12^{*}$	570	$.18 *$
SBT	0	0	0		0	
SBR	2	3200	1170	.37	660	.21
EBL	2	3200	300	$.09 *$	900	$.28^{*}$
EBT	3	4800	420	.09	1160	.24
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	1000	$.31^{*}$	790	$.25^{*}$
WBR	1	1600	740	.46	480	.30
Right Turn Adjustment	Multi	$.24^{*}$				

TOTAL CAPACITY UTILIZATIOM
.76
55. Kimball \& SR 126 EB Ramps

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1430	.30*	900	.19*
NBR	f		130		430	
SBL	1	1600	30	.02*	30	.02*
SBT	3	4800	1510	. 31	920	. 19
SBR	0	0	0		0	
EBL	2	3200	120	.04*	400	.13*
EBT	0	0	10		0	
EBR	f		290		560	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
TOTA	CAPACIT	UTILIZAT		. 36		. 34

56. Kimball \& SR 126 WB Ramps

60. Ramelli \& Telephone

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	70	.04*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	200	. 13	510	. 32
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	450	. 11	1550	.36*
EBR	0	0	80		190	
WBL	1	1600	340	. 21	210	.13*
WBT	3	4800	1780	.37*	1200	. 25
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.17*

61. Montgomery \& Telephone

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	300	.19*	90	.06*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	30	. 02	150	. 09
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	100	. 06	20	. 01
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	570	. 18	800	.25*
EBR	d	1600	100	. 06	150	. 09
WBL	1	1600	130	. 08	90	.06*
WBT	2	3200	1110	.35*	730	. 23
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*		

TOTAL CAPACITY UTILIZATION . 60 . 39

65. Sanjon \& Thompson

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	530	.17*	540	.17*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	220	. 14
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	480	.24*	680	.31*
EBR	0	0	300		300	
WBL	1	1600	120	.08*	150	.09*
WBT	2	3200	510	. 16	770	. 24
WBR	0	,	0		0	

63. Petit \& Telephone

2025 Scenario 2 w/Baseline						
			AM P		PM	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	140	. 09
NBT	1	1600	40	. 11	60	.21*
NBR	0	0	130		270	
SBL	1	1600	40	. 03	30	.02*
SBT	1	1600	70	.04*	50	. 03
SBR	1	1600	120	. 08	80	. 05
EBL	1	1600	90	.06*	90	. 06
EBT	2	3200	320	. 10	780	.24*
EBR	d	1600	90	. 06	260	. 16
WBL	1	1600	190	. 12	200	.13*
WBT	2	3200	790	.25*	580	. 18
WBR	d	1600	30	. 02	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 60

68. Seaward \& Thompson

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	. 08	210	.13*
NBT	2	3200	480	.15*	500	. 16
NBR	d	1600	220	. 14	180	. 11
SBL	1	1600	110	.07*	60	. 04
SBT	2	3200	380	. 12	360	.11*
SBR	d	1600	50	. 03	90	. 06
EBL	1	1600	100	. 06	90	. 06
EBT	2	3200	650	.22*	790	.28*
EBR	0	0	60		110	
WBL	2	3200	200	.06*	280	.09*
WBT	2	3200	420	. 13	770	. 24
WBR	1	1600	40	. 03	60	. 04
TOTA	CAPACIT	Y UTILIZAI		. 50		. 61

71. Sanjon \& Harbor

2025 Scenario 2 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	190	.12*	390	.24*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	270	. 17	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	260	.16*	590	.37*
WBR	1	1600	480	. 30	280	. 18
Right Turn Adjustment			WBR	.05*		

TOTAL CAPACITY UTILIZATION . 37 . 69

77. Day \& Telegraph

2025 Scenario 2 w/Baseline						
			AM PK HoUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	230	.07*	340	.11*
SBT	0	0	0		0	
SBR	1	1600	90	. 06	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	500	. 16	910	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	940	.29*	770	. 24
WBR	d	1600	350	. 22	260	. 16

75. Ashwood \& Telegraph

2025 Scenario 2 w/Baseline						
			AM P	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	90	.06*
NBR	d	1600	40	. 03	60	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	50	. 03	70	. 04
SBR	1	1600	120	. 08	120	. 08
EBL	1	1600	80	.05*	150	. 09
EBT	2	3200	510	. 16	830	.26*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	550	.17*	580	. 18
WBR	d	1600	110	. 07	100	. 06
TOTAL CAPACITY UTILIZATION				. 29		. 47

85. Victoria \& Olivas Park

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	810	.25*	660	.21*
NBT	3	4800	1920	. 40	1830	. 38
NBR	1	1600	500	. 31	440	. 28
SBL	2	3200	520	. 16	220	. 07
SBT	3	4800	1610	.34*	1770	.37*
SBR	f		160		180	
EBL	2	3200	260	. 08	360	. 11
EBT	2	3200	170	.05*	250	.08*
EBR	f		220		890	
WBL	1	1600	120	.08*	360	.23*
WBT	2	3200	70	. 02	340	. 11
WBR	f		120		240	
TOTA	CAPACIT	Y UTILIZAI		. 72		. 89

86. Telephone \& Olivas Park

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	420	.13*	870	.27*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	470	. 29	880	. 55
EBL	2	3200	670	.21*	640	.20*
EBT	2	3200	350	. 11	520	. 16
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	440	.14*	400	.13*
WBR	1	1600	610	. 38	730	. 46
Right Turn Adjustment			WBR	.14*	Multi	.25*

TOTAL CAPACITY UTILIZATION . 64 . 87
91. Johnson \& Ralston

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	130	.08*
NBT	2	3200	550	. 17	800	. 25
NBR	d	1600	30	. 02	200	. 13
SBL	1	1600	50	. 03	60	. 04
SBT	2	3200	800	.25*	920	.29*
SBR	d	1600	90	. 06	50	. 03
EBL	1	1600	40	.03*	80	. 05
EBT	1	1600	120	. 08	260	.16*
EBR	d	1600	110	. 07	260	. 16
WBL	1	1600	110	. 07	70	.04*
WBT	1	1600	290	.18*	140	. 09
WBR	d	1600	90	. 06	80	. 05
TOTAL CAPACITY UTILIZATION				. 52		. 57

94. Johnson \& North Bank

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	90	.06*
NBT	3	4800	190	. 04	530	. 11
NBR	d	1600	30	. 02	230	. 14
SBL	1	1600	60	. 04	130	. 08
SBT	3	4800	1610	.38*	1490	.35*
SBR	0	0	230		170	
EBL	2.5		570	.12*	1820	.38*
EBT	1.5	6400	90	. 06	410	. 26
EBR	1	1600	440	. 28	320	. 20
WBL	1.5		200		310	
WBT	1.5	4800	140	.07*	180	.10*
WBR	1	1600	40	. 03	150	. 09
Right Turn Adjustment			EBR	.13*		

TOTAL CAPACITY UTILIZATION
.74
.89
95. Bristol \& Ramelli

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	. 01
NBT	1	1600	20	.02*	10	.02*
NBR	0	0	10		20	
SBL	1	1600	20	.01*	50	.03*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	240	. 15	140	. 09
EBL	1	1600	20	.01*	110	. 07
EBT	2	3200	310	. 10	790	.25*
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	.01*
WBT	2	3200	1040	.35*	550	. 18
WBR	0	0	80		40	
Right Turn Adjustment			SBR	.12*		

TOTAL CAPACITY UTILIZATION . 51 . 31
100. Saticoy \& Telephone

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	140	.09*
NBT	1	1600	200	.13*	140	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	200	.13*	90	. 06
SBT	1	1600	110	. 07	150	.09*
SBR	1	1600	270	. 17	160	. 10
EBL	1	1600	120	.08*	190	.12*
EBT	2	3200	230	. 07	690	. 22
EBR	1	1600	110	. 07	180	. 11
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	370	.16*	510	.18*
WBR	0	0	130		60	
тотA	CAPACII	UTILIZAT		. 50		. 48

96. Montgomery \& North Bank

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	110	.07*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	450	. 28	200	. 13
EBL	1	1600	110	.07*	320	.20*
EBT	2	3200	110	. 03	410	. 13
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	500	.31*	280	.18*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.18*		
TOTAL CAPACITY UTILIZATION				. 62		. 47

101. Saticoy \& Telegraph

2025 Scenario 2 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	180		70	
NBT	1	1600	70	.19*	50	.10*
NBR	0	0	50		40	
SBL	0	0	10		20	
SBT	1	1600	80	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	30	. 02
EBT	1	1600	200	.18*	410	.35*
EBR	0	0	80		150	
WBL	1	1600	60	.04*	30	.02*
WBT	1	1600	270	. 17	270	. 17
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 50		. 51

102. Wells \& Telegraph

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	250	.16*
NBT	1	1600	120	. 08	300	. 19
NBR	1	1600	60	. 04	250	. 16
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	280	.18*	210	.13*
SBR	1	1600	50	. 03	20	. 01
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	50	.17*	200	.26*
EBR	0	0	220		210	
WBL	1	1600	320	. $20 *$	130	.08*
WBT	1	1600	150	. 10	100	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.65
.63

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1250	. 26	2870	.60*
NBR	d	1600	60	. 04	170	. 11
SBL	1	1600	130	. 08	350	.22*
SBT	3	4800	2420	. $50 *$	1840	. 38
SBR	d	1600	10	. 01	10	. 01
EBL	0	0	80		30	
EBT	1	1600	30	.13*	40	.07*
EBR	0	0	90		40	
WBL	1	1600	60	.04*	290	.18*
WBT	1	1600	30	. 06	40	. 15
WBR	0	0	70		200	

104. Wells \& SR 126 EB Ramps

2025 Scenario 2 w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	870	. 18	1430	. 30
NBR	f		590		1600	
SBL	0	0	0		0	
SBT	3	4800	2660	.55*	1730	.36*
SBR	f		80		60	
EBL	1	1600	100	.06*	340	.21*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	620	. 39
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.18*
TOTAL CAPACITY UTILIZATION				. 66		. 75

106. Wells \& Telephone

2025 Scenario 2 w/Baseline						
			AM PK	K Hour	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	360	.11*	460	. 14
NBT	3	4800	1230	. 26	2920	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2500	.52*	1940	. 40
SBR	1	1600	130	. 08	420	. 26
EBL	1.5		150	\{.05\}*	250	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	560	. 18	570	. 18
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.04*		
TOTAL CAPACITY UTILIZATION				. 74		. 73

114. California \& Thompson

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		30	. 02
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	50	. 03	80	. 05
SBL	1.5		140		160	
SBT	1.5	4800	80	.05*	170	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	870	.32*	940	.33*
EBR	0	0	150		100	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	320	. 10	400	. 14
WBR	0	0	10		60	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

| 2025 | Scenario 2 w/Baseline | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 0 | 0 | 10 | $\{.01\}^{*}$ | 10 | $\{.01\}^{*}$ |
| NBT | 1 | 1600 | 10 | .02 | 10 | .02 |
| NBR | 0 | 0 | 10 | | 10 | |
| | | | | | | |
| SBL | 1 | 1600 | 30 | .02 | 80 | .05 |
| SBT | 1 | 1600 | 270 | $.18^{*}$ | 350 | $.24^{*}$ |
| SBR | 0 | 0 | 10 | | 30 | |
| | | | | | | |
| EBL | 1 | 1600 | 10 | .01 | 20 | .01 |
| EBT | 2 | 3200 | 590 | $.18^{*}$ | 670 | $.21^{*}$ |
| EBR | f | | 410 | | 520 | |
| | | | | | | |
| WBL | 1 | 1600 | 200 | $.13^{*}$ | 210 | $.13^{*}$ |
| WBT | 2 | 3200 | 450 | .15 | 630 | .22 |
| WBR | 0 | 0 | 30 | | 70 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
.50
132. Ventura \& Stanley

2025 Scenario 2 w/Baseline						
			AM PK	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	340	.21*	290	.18*
NBT	1	1600	260	. 16	360	. 23
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	470	.29*	380	.24*
SBR	1	1600	530	. 33	380	. 24
EBL	1	1600	400	.25*	660	.41*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		470	.15*	550	.17*
SBT	0	4800	0		0	
SBR	1.5		70		20	
EBL	1	1600	120	.08*	540	.34*
EBT	2	3200	180	. 06	700	. 22
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	1000	.31*	400	.13*
WBR	f		820		910	

TOTAL CAPACITY UTILIZATION
. 54
160. Victoria \& US 101 NB Ramps

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	530	.17*	580	.18*
NBT	3	4800	1430	. 30	1990	. 41
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2730	.43*	2270	.35*
SBR	1	1600	140	. 09	370	. 23
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	840	.26*	610	.19*
WBT	0	0	0		0	
WBR	3	4800	870	. 18	1170	. 24

TOTAL CAPACITY UTILIZATION .86
138. Johnson \& US 101 SB Ramps

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	690	.43*
NBT	1	1600	150	. 09	550	. 34
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	620	.39*	400	.25*
SBR	f		1610		1750	
EBL	1	1600	130	.08*	290	.18*
EBT	0	0	0		0	
EBR	1	1600	130	. 08	100	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

161. Victoria \& Valentine

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	220	.07*
NBT	3	4800	1850	. 39	2370	. 50
NBR	0	0	20		50	
SBL	1	1600	40	. 03	50	. 03
SBT	2	3200	1780	.56*	1650	.52*
SBR	f		1700		1190	
EBL	2.5		300		650	
EBT	0.5	4800	50	.07*	20	.14*
EBR	1	1600	340	. 21	580	. 36
WBL	0	0	20		20	
WBT	1	1600	10	.02*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment EBR Note: Assumes E/W Split Phasing				.06*	EBR	.15*
Note	Assumes	Right-Tur	Overl	for	R EBR	

TOTAL CAPACITY UTILIZATION
162. California \& Harbor

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	230	.14*	340	.21*
SBT	0	0	0		0	
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	10	. 01	80	.05*
EBT	1	1600	240	.15*	260	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	230	.11*
WBR	0	0	50		130	

TOTAL CAPACITY UTILIZATION
. 29
164. Seaward \& Poli

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		180	
NBT	1	1600	0	.18*	0	.22*
NBR	0	0	130		170	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	350	.22*
EBR	d	1600	80	. 05	130	. 08
WBL	1	1600	240	.15*	110	.07*
WBT	1	1600	170	. 11	300	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 42 . 51
163. Santa Clara \& Main

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	260	. 08	220	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	350	.11*	460	.15*
EBR	0	0	10		10	
WBL	1	1600	140	.09*	170	.11*
WBT	2	3200	360	. 12	490	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
.30
165. Seaward \& Harbor

2025 Scenario 2 w/Baseline

			AM PK		HOUR	PM PK		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C		
NBL	1	1600	40	.03	80	.05		
NBT	2	3200	370	$.13^{*}$	300	$.12^{*}$		
NBR	0	0	40		70			
SBL	2	3200	700	$.22^{*}$	700	$.22^{*}$		
SBT	2	3200	180	.06	320	.10		
SBR	1	1600	320	.20	440	.28		
EBL	2	3200	340	.11	320	.10		
EBT	2	3200	700	$.23^{*}$	1270	$.41^{*}$		
EBR	0	0	20		50			
WBL	1	1600	20	$.01^{*}$	30	$.02^{*}$		
WBT	2	3200	290	.09	500	.16		
WBR	2	3200	1090	.34	1330	.42		
Right Turn Adjustment	WBR	$.05^{*}$						

166. College \& Telegraph

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.07*	0	.07*
NBR	0	0	70		90	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	570	.20*	890	.30*
EBR	0	0	60		70	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	700	. 22	660	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
169. Kimball \& Foothill

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	110	.07*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	210	. 26	390	.36*
EBR	0	0	210		190	
WBL	1	1600	70	. 04	20	.01*
WBT	1	1600	520	.33*	200	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 51
.44
168. Day \& Foothill

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	220	.14*
NBT	1	1600	30	. 02	30	. 02
NBR	1	1600	170	. 11	270	. 17
SBL	0	0	50		50	
SBT	1	1600	20	.04*	20	.04*
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	110	. 07	80	. 05
EBT	1	1600	450	.41*	480	.44*
EBR	0	0	200		220	
WBL	1	1600	250	.16*	220	.14*
WBT	1	1600	410	. 31	430	. 30
WBR	0	0	90		50	

170. Petit \& Foothill

2025 Scenario 2 w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	50		10	
NBT	1	1600	0	$.04^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	170	.11	30	.02
EBR	1	1600	30	.02		
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	480	$.31^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 35
. 18
171. Saticoy \& Foothill

2025 Scenario 2 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	100		50	
NBT	1	1600	0	.08*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 13	310	.26*
EBR	0	0	60		100	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	420	.28*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 36 . 31
173. Victoria \& SR 126 WB Ramps

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1260	. 31	2180	.53*
NBR	0	0	230		350	
SBL	0	0	0		0	
SBT	3	4800	2020	.46*	1560	. 34
SBR	0	0	190		80	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	650	. 41	430	. 27
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	150	. 09
Right Turn Adjustment			Multi	.43*	Multi	.22*
TOTAL CAPACITY UTILIZATION				. 89		. 75

172. Wells \& Foothill

2025 Scenario 2 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	130	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	200	.13*
EBR	1	1600	100	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 25
174. Petit \& Telegraph

2025 Scenario 2 w/Baseline

			AM PK		HOUR	PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	80	$.05 *$	40	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	20	.01	
SBL	1	1600	30	.02	20	.01	
SBT	1	1600	20	$.03 *$	20	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	270	.08	590	.18	
EBR	1	1600	50	.03	90	.06	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	530	$.33 *$	320	$.20 *$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 42 . 27
175. Ventura \& North Bank

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	90		50	
SBT	1	1600	0	.11*	0	.11*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	550	. 34
EBT	2	3200	1090	. 34	2590	.81*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	380	.24*	430	. 27
WBR	1	1600	60	. 04	40	. 03

TOTAL CAPACITY UTILIZATION
.46
177. Wells \& SR 126 WB Ramps

2025 Scenario 2 w/Baseline						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	. 17	1360	.43*
NBR	f		420		390	
SBL	0	0	0		0	
SBT	2	3200	1050	.33*	740	. 23
SBR	f		430		200	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1690		1040	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	110	. 07
Right Turn Adjustment					WBR	.07*
TOTAL CAPACITY UTILIZATION				. 33		. 50

176. Saticoy \& Darling

2025 Scenario 2 w/Baseline						
			AM P	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	150	. 10	240	.16*
NBR	1	1600	110	. 07	30	. 02
SBL	,	0	60		10	\{.01\}*
SBT	1	1600	250	.19*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	70		50	
EBT	1	1600	70	.11*	60	.09*
EBR	0	0	40		40	
WBL	0	0	70	\{.04\}*	50	\{.03\}*
WBT	1	1600	20	. 08	70	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 35
.29
178. SR-33 Ramps \& Stanley

2025 Scenario 2 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES	CAPACITY	VOL	V/C	VOL
	V/C			

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	720	.45	840	.52
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	270	.17	180	.11
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	710	$.44^{*}$	940	$.59 *$
WBR	f		180		160	
Right Turn Adjustment	NBR	$.25^{*}$	NBR	$.16 *$		

179. SR-33 Ramps \& Shell

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	680		650	
SBT	1	1600	0	.44*	0	.42*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	110	. 08
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	700	.48*	690	.50*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION .93
181. Ventura \& Ramona

2025 Scenario 2 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	40	. 03
NBT	1	1600	370	.24*	630	.40*
NBR	0	0	20		10	
SBL	1	1600	80	.05*	70	.04*
SBT	1	1600	400	. 26	470	. 31
SBR	0	0	20		30	
EBL	0	0	20	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		10	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 50
180. Estates \& Telegraph

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	60	. 04
NBT	1	1600	10	. 05	10	.07*
NBR	0	0	70		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	820	.26*
EBR	d	1600	60	. 04	60	. 04
WBL	1	1600	40	. 03	90	.06*
WBT	2	3200	640	.20*	790	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 28 .40
182. Olive \& Main St

2025 Scenario 2 w/Baseline						
			AM PK	K Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	580	.36*	450	.28*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	90	\{.06\}*	280	
EBT	1	1600	80	. 11	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	160	.11*	170	. 11
WBR	1	1600	190	. 12	450	. 28

TOTAL CAPACITY UTILIZATION
. 54
.61
190. Petit Av \& North Bank Dr

2025 Scenario 2 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	290	. 18	240	. 15
EBL	1	1600	50	.03*	310	.19*
EBT	2	3200	70	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	100	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 22		. 27

192. Los Angeles Av \& North Bank

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	200	. 13
NBT	3	4800	1450	. 30	3170	.66*
NBR	d	1600	30	. 02	70	. 04
SBL	1	1600	110	. 07	160	.10*
SBT	3	4800	2820	.59*	2260	. 47
SBR	d	1600	140	. 09	90	. 06
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	150	. 09	160	. 10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	10	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 72		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 2 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	0	. 00
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	20		10	
SBL	1	1600	20	.01*	50	.03*
SBT	1	1600	10	. 02	30	. 04
SBR	0	0	20		30	
EBL	1	1600	20	.01*	40	.03*
EBT	2	3200	100	. 03	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	50	.02*	90	.03*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.04*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 2 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	240	.15*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	180	.11*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTA	CAPACIT	Y UTILIZAT		. 17		. 12

194. Wells Rd \& A St

2025 Scenario 2 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	390	. 14	850	.32*
NBR	0	0	50		180	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	820	.26*	590	. 19
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	160	.10*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 44		. 41

NON-COMMITTED
IMPROVEMENTS
105. Wells \& Darling

2025 Scenario $2 \mathrm{w} /$ Non-Committed Lanes						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1250	. 26	2870	.60*
NBR	d	1600	60	. 04	170	. 11
SBL	2	3200	130	. 04	350	.11*
SBT	3	4800	2420	.50*	1840	. 38
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	30	.02*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	90		40	
WBL	2	3200	60	. 02	290	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	
TOTA	CAPACII	UTILIZA		. 63		. 88

SCENARIO 2 (ALTERNATIVE NETWORK)

1. Victoria \& Foothill

| 2025 | Scenario 2 | (Alt. Net.) w/Baseline | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 140 | $.09 *$ | 240 | $.15^{*}$ |
| NBT | 1 | 1600 | 20 | .01 | 70 | .04 |
| NBR | 1 | 1600 | 160 | .10 | 250 | .16 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 70 | $.04 *$ | 20 | $.01^{*}$ |
| SBR | 1 | 1600 | 40 | .03 | 10 | .01 |
| | | | | | | |
| EBL | 1 | 1600 | 10 | $.01 *$ | 180 | .11 |
| EBT | 1 | 1600 | 290 | .18 | 480 | $.30^{*}$ |
| EBR | 1 | 1600 | 230 | .14 | 20 | .01 |
| | | | | | | |
| WBL | 2 | 3200 | 370 | .12 | 240 | $.08^{*}$ |
| WBT | 1 | 1600 | 590 | $.37 *$ | 330 | .21 |
| WBR | d | 1600 | 10 | .01 | 20 | .01 |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
. 51
. 54

3. Victoria \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HoUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	.21*	1130	.35*
NBT	2	3200	510	. 16	790	. 25
NBR	1	1600	150	. 09	230	. 14
SBL	1	1600	180	. 11	200	. 13
SBT	3	4800	640	.13*	520	.11*
SBR	d	1600	40	. 03	30	. 02
EBL	1	1600	50	. 03	40	. 03
EBT	1.5	4800	350	\{.16\}*	730	\{.23\}*
EBR	1.5		650		760	\{.21\}
WBL	2	3200	360	.11*	220	.07*
WBT	2	3200	600	. 19	320	. 10
WBR	d	1600	60	. 04	70	. 04

TOTAL CAPACITY UTILIZATION
.61
.76

2. Victoria \& Loma Vista

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	270	.17*
NBT	2	3200	240	. 08	450	. 14
NBR	d	1600	20	. 01	30	. 02
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	480	.15*	270	.08*
SBR	d	1600	100	. 06	20	. 01
EBL	0	0	80		30	
EBT	1	1600	40	.25*	30	.24*
EBR	0	0	280		320	
WBL	0	0	60	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	30	. 05
WBR	0	0	60		20	

TOTAL CAPACITY UTILIZATION . 55
.51

4. Victoria \& Woodland

2025 Scenario 2 (Alt. Net.) w/Baseline

			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	.13*	60	. 04
NBT	3	4800	1380	. 30	2010	.45*
NBR	0	0	80		160	
SBL	1	1600	20	. 01	20	.01*
SBT	3	4800	1690	.36*	1530	. 32
SBR	0	0	40		10	
EBL	0	0	20		20	
EBT	1	1600	10	.11*	10	.04*
EBR	0	0	140		30	
WBL	1.5		250		90	
WBT	0.5	3200	10	.09*	10	.04*
WBR	0		30		20	
Note: Assumes E/W Split Phasing						
TOTA	CAPACIT	UTILIZAT		. 69		. 54

5. Victoria \& SR 126 SB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1300	. 21	2370	.38*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2390	.39*	1740	. 29
SBR	0	0	100		90	
EBL	1.5		210		150	
EBT	0.5	3200	200	.13*	120	.08*
EBR	1	1600	210	. 13	220	. 14
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	250	. 16	580	. 36
Right Turn Adjustment WBR				.02*	WBR	.36*

7. Victoria \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	310	.10*	320	. 10
NBT	4	6400	1240	. 23	1360	.23*
NBR	0	0	260		140	
SBL	2	3200	370	. 12	360	.11*
SBT	4	6400	1610	.25*	1260	. 20
SBR	1	1600	330	. 21	350	. 22
EBL	2	3200	320	.10*	630	.20*
EBT	3	4800	370	. 09	930	. 22
EBR	0	0	80		130	
WBL	2	3200	130	. 04	260	. 08
WBT	3	4800	720	.15*	670	.14*
WBR	1	1600	180	. 11	340	. 21

TOTAL CAPACITY UTILIZATION
.60
.68

6. Victoria \& Thille

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1240	. 26	2210	.35*
NBR	0	0	460	. 29	50	
SBL	1	1600	160	. 10	40	.03*
SBT	4	6400	2030	.37*	1740	. 30
SBR	0	0	330		210	
EBL	1.5		230		290	
EBT	0.5	3200	30	.08*	10	.09*
EBR	1	1600	130	. 08	200	. 13
WBL	1	1600	30	. 02	110	. 07
WBT	1	1600	10	.02*	80	.09*
WBR	0	0	20		70	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 50		. 56

8. Victoria \& Ralston

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	240	.15*	360	.23*
NBT	4	6400	1400	. 23	1680	. 30
NBR	0	0	60		230	
SBL	1	1600	100	. 06	200	. 13
SBT	4	6400	1580	.26*	1710	.28*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	150	. 09
EBT	1	1600	140	.09*	280	.18*
EBR	1	1600	220	. 14	290	. 18
WBL	1	1600	210	.13*	180	.11*
WBT	1	1600	270	. 17	150	. 09
WBR	1	1600	190	. 12	130	. 08
TOTAL CAPACITY UTILIZATION				. 63		. 80

10. Victoria \& Moon

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	180	. 11
NBT	4	6400	1760	.29*	1920	.36*
NBR	0	0	110		390	
SBL	1	1600	30	.02*	110	.07*
SBT	4	6400	1710	. 27	1800	. 32
SBR	0	0	20		240	
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	70	.04*	80	.05*
EBR	1	1600	30	. 02	170	. 11
WBL	1	1600	300	.19*	180	.11*
WBT	1	1600	110	. 07	60	. 04
WBR	1	1600	70	. 04	50	. 03
TOTA	CAPACIT	UTILIZAT		. 54		. 59

15. Johnson \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	2	3200	360	.11*	180	. 06
NBT	2	3200	160	. 08	220	.08*
NBR	0	0	80		40	
SBL	1	1600	50	. 03	80	.05*
SBT	2	3200	150	.05*	190	. 06
SBR	d	1600	50	. 03	60	. 04
EBL	1	1600	60	.04*	50	. 03
EBT	3	4800	270	. 08	1000	.31*
EBR	0	0	160	. 10	570	. 36
WBL	1	1600	10	. 01	40	.03*
WBT	3	4800	1130	.25*	560	. 13
WBR	0	0	50		50	

TOTAL CAPACITY UTILIZATION
.45
.47

14. Hill \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	90	.09*	50	.08*
NBR	0	0	10		60	
SBL	1	1600	60	.04*	240	.15*
SBT	1	1600	30	. 02	60	. 04
SBR	1	1600	60	. 04	240	. 15
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	570	. 13	1350	.30*
EBR	0	0	50		90	
WBL	1	1600	70	. 04	30	.02*
WBT	3	4800	1020	.27*	730	. 16
WBR	0	0	290		60	

TOTAL CAPACITY UTILIZATION
. 51
. 55
18. Seaward \& US 101 NB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	.18*	580	.18*
NBT	2	3200	750	. 23	800	. 25
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	740	.23*	790	.25*
SBR	1	1600	240	. 15	280	. 18
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	290	.09*	350	.11*
WBT	0	0	0		0	
WBR	2	3200	460	. 14	470	. 15

TOTAL CAPACITY UTILIZATION
.50
. 54

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		680		1030	
SBT	0.5	3200	40	.23*	70	.36*
SBR	0		10		40	
EBL	1	1600	120	.08*	160	.10*
EBT	2	3200	400	. 13	420	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	390	.24*	570	.36*
WBR	1	1600	310	. 19	330	. 21
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM P	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	. 06	140	.09*
NBT	2	3200	980	.31*	1210	. 38
NBR	1	1600	450	. 28	170	. 11
SBL	2	3200	440	.14*	370	. 12
SBT	2	3200	670	. 21	1350	.42*
SBR	1	1600	150	. 09	140	. 09
EBL	1	1600	80	.05*	220	. 14
EBT	2	3200	90	. 03	170	.05*
EBR	d	1600	60	. 04	130	. 08
WBL	1	1600	70	. 04	360	.23*
WBT	2	3200	60	.02*	150	. 05
WBR	f		320		410	
TOTAL CAPACITY UTILIZATION				. 52		. 79

24. Mills \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	170	.11*
NBT	1	1600	430	.27*	280	. 18
NBR	1	1600	270	. 17	440	. 28
SBL	1	1600	60	.04*	130	. 08
SBT	2	3200	410	. 13	530	.17*
SBR	1	1600	10	. 01	10	. 01
EBL	1	1600	20	. 01	20	. 01
EBT	2	3200	300	.09*	540	.17*
EBR	1	1600	80	. 05	120	. 08
WBL	2	3200	300	.09*	270	.08*
WBT	2	3200	380	. 14	410	. 15
WBR	0	0	80		60	
Right Turn Adjustment					NBR	.02*
TOTAL CAPACITY UTILIZATION . 49						. 55

25. Mills \& Maple

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	1070	.37*	970	.35*
NBR	0	0	110		140	
SBL	1	1600	60	.04*	120	.08*
SBT	2	3200	800	. 27	1030	. 34
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	240		250	
WBT	1	1600	20	.16*	20	.17*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 57
.60

27. Mills \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	110		360	
NBT	1	1600	300	.26*	490	.53*
NBR	1	1600	270	. 17	220	. 14
SBL	2.5		1020		1190	
SBT	0.5	4800	390	.30*	360	.33*
SBR	0		40		50	
EBL	2	3200	140	.04*	110	. 03
EBT	4	6400	990	. 15	960	.15*
EBR	1	1600	170	. 11	350	. 22
WBL	2	3200	370	. 12	400	.13*
WBT	3	4800	1090	.23*	1220	. 25
WBR	2	3200	1290	. 40	1140	. 36
Note: Assumes N/S Split Phasing						

26. Mills \& Dean

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	110	.07*
NBT	2	3200	1300	.41*	1110	. 35
NBR	1	1600	290	. 18	390	. 24
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	910	. 29	1130	.36*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	200	. 13
WBL	2	3200	440	.14*	270	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.06*
TOTAL CAPACITY UTILIZATION				. 58		. 59

28. US 101 NB Ramps \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	600	.19*	310	.10*
SBT	0	0	0		0	
SBR	3	4800	1780	. 37	1280	. 27
EBL	0	0	0		0	
EBT	3	4800	1980	.41*	2250	.47*
EBR	f		310		140	
WBL	2	3200	390	.12*	490	.15*
WBT	3	4800	970	. 20	1490	. 31
WBR	0	0	0		,	
TOTAL CAPACITY UTILIZATION				. 72		. 72

29. SR 126 EB Ramps \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	310	. 10	500	.16*
EBT	3	4800	2240	.47*	2320	. 48
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1160	. 24	2020	.42*
WBR	f		130		320	

TOTAL CAPACITY UTILIZATION .47
. 58

31. Donlon \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		510	
NBT	0	3200	0	.06*	0	.23*
NBR	0.5		30		210	
SBL	1.5		330		320	
SBT	0.5	3200	160	.15*	90	.13*
SBR	1	1600	180	. 11	190	. 12
EBL	0	0	0		0	
EBT	4	6400	1740	.27*	2220	.35*
EBR	d	1600	160	. 10	130	. 08
WBL	2	3200	110	.03*	260	.08*
WBT	3	4800	1000	. 21	1350	. 28
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		170	\{.06\}*	610	\{.19\}*
NBT	0.5	3200	10	. 06	10	. 19
NBR	1	1600	60	. 04	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	1940	.30*	2160	.34*
EBR	d	1600	280	. 18	150	. 09
WBL	2	3200	100	.03*	190	.06*
WBT	3	4800	1120	. 24	1720	. 36
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.41
.61
32. Telephone \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline

			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	. 08	520	. 16
NBT	2	3200	310	.10*	1110	.35*
NBR	1	1600	130	. 08	350	. 22
SBL	1.5		240	. 15	480	
SBT	1.5	4800	1060	.33*	810	.27*
SBR	£		720		920	
EBL	2	3200	450	. 14	710	. 22
EBT	3	4800	970	.20*	1340	.28*
EBR	f		320		440	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

33. US 101 NB Ramps \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	K HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		700		560	
NBT	0.5	3200	20	.23*	100	.21*
NBR	1	1600	270	. 17	400	. 25
SBL	0.5		40		10	
SBT	0	3200	0	\{.11\}*	,	\{.01\}*
SBR	1.5		330		220	
EBL	1	1600	20	.01*	270	.17*
EBT	3	4800	780	. 16	1930	. 40
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1020	.21*	1430	.30*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						

34. Portola \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	270	.08*	310	.10*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	140	. 09	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	640	. 13	1730	.36*
EBR	d	1600	230	. 14	300	. 19
WBL	1	1600	20	. 01	60	.04*
WBT	3	4800	840	.18*	950	. 21
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.06*		
TOTAL CAPACITY UTILIZATION				. 36		. 51

38. Telephone \& Market

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	. 09	80	. 05
NBT	3	4800	620	.13*	940	.20*
NBR	d	1600	130	. 08	110	. 07
SBL	1	1600	410	.26*	170	.11*
SBT	3	4800	370	. 08	820	. 17
SBR	d	1600	170	. 11	170	. 11
EBL	1	1600	110	. 07	250	.16*
EBT	1	1600	310	.19*	230	. 14
EBR	1	1600	50	. 03	120	. 08
WBL	1	1600	60	.04*	200	. 13
WBT	1	1600	130	. 08	430	.27*
WBR	1	1600	110	. 07	500	. 31
TOTAL CAPACITY UTILIZATION				. 62		. 74

42. Telephone \& McGrath

			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	130	.08*
NBT	3	4800	790	. 16	930	. 19
NBR	d	1600	290	. 18	100	. 06
SBL	1	1600	70	. 04	70	. 04
SBT	2	3200	280	.09*	1050	.33*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	80	.05*	30	.02*
EBR	1	1600	60	. 04	230	. 14
WBL	1	1600	60	.04*	340	.21*
WBT	1	1600	30	. 02	130	. 08
WBR	1	1600	60	. 04	120	. 08
Right Turn Adjustment					EBR	.06*
TOTA	CAPACIT	Y UTILIZAT		. 29		. 70

46. Seaward \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	210	.13*
NBT	1	1600	170	. 11	150	. 09
NBR	1	1600	270	. 17	170	. 11
SBL	1	1600	30	. 02	70	. 04
SBT	1	1600	140	.09*	80	.05*
SBR	1	1600	190	. 12	80	. 05
EBL	1	1600	110	. 07	90	. 06
EBT	2	3200	700	.22*	640	.20*
EBR	1	1600	200	. 13	140	. 09
WBL	0.5		80		130	
WBT	1.5	3200	470	.18*	690	. $28 *$
WBR	0		20		80	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P		PM PK	Hour
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	50	.04*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	250	.08*	80	.03*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		10	\{.01\}*
EBT	1.5	3200	760	.25*	760	. 24
EBR	0		20		10	
WBL	1	1600	10	.01*	40	. 03
WBT	2	3200	500	. 20	760	.28*
WBR	0	0	150		140	
TOTAL CAPACITY UTILIZATION				. 38		. 34

47. Main \& Loma Vista

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	320	.10*	440	.14*
NBR	f		40		200	
SBL	1	1600	570	.36*	370	.23*
SBT	2	3200	540	. 17	580	. 19
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	340	. 11	450	. 14
TOTAL CAPACITY UTILIZATION				. 53		. 50

49. Main \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290	. 18	600	
NBT	1.5	4800	580	.18*	750	.28*
NBR	f		180		160	
SBL	1.5		190	. 12	240	. 15
SBT	1.5	4800	490	.16*	780	.26*
SBR	0		30		40	
EBL	0	0	0		0	
EBT	2	3200	240	. 08	380	. 12
EBR	f		730		630	
WBL	0	0	0		0	
WBT	1.5	4800	310	.10*	440	.14*
WBR	1.5		120		210	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 44 . 68

51. Lemon Grove \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		30		60	
NBT	1.5	3200	20	.03*	20	.04*
NBR	0		130	. 08	60	
SBL	1.5		30		80	
SBT	0.5	3200	10	.01*	10	.03*
SBR	1	1600	70	. 04	70	. 04
EBL	1	1600	40	. 03	60	. 04
EBT	2	3200	1150	.36*	1270	.40*
EBR	d	1600	40	. 03	40	. 03
WBL	1	1600	70	.04*	70	.04*
WBT	3	4800	950	. 21	1420	. 31
WBR	0	0	50		50	
Right Turn Adjustment NBR .02*						
Note	ssumes	N/S Split	Phasin			

50. Emma \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1110	.35*	1290	.40*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	50	.03*	80	.05*
WBT	3	4800	970	. 20	1590	. 33
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 42		. 47

53. Kimball \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	80		60	
NBT	0	0	440		1520	
NBR	0	0	50		70	
SBL	2	3200	210	.07*	440	.14*
SBT	0	0	1310		700	
SBR	2	3200	370	. 12	240	. 08
EBL	2	3200	130	.04*	70	. 02
EBT	3	4800	260	. 06	840	.19*
EBR	0	0	30		80	
WBL	0	0	260		80	\{.05\}*
WBT	2	3200	670	.29*	590	. 21
WBR	1	1600	580	. 36	350	. 22
Right Turn Adjustment			Multi	.09*		
TOTAL CAPACITY UTILIZATION				. 49		. 38

55. Kimball \& SR 126 EB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1520	. 32	1150	.24*
NBR	f		150		700	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	1790	.37*	1030	. 21
SBR	0	0	0		0	
EBL	2	3200	110	.03*	290	.09*
EBT	0	0	10		0	
EBR	f		340		630	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 40
. 34

56. Kimball \& SR 126 WB Ramps

58. Kimball \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	170	.05*	100	. 03
NBT	2	3200	110	. 03	230	.07*
NBR	1	1600	90	. 06	180	. 11
SBL	1	1600	20	. 01	60	.04*
SBT	2	3200	240	.08*	190	. 06
SBR	1	1600	20	. 01	30	. 02
EBL	1	1600	20	.01*	40	. 03
EBT	2	3200	190	. 06	570	.18*
EBR	1	1600	80	. 05	250	. 16
WBL	2	3200	210	. 07	140	.04*
WBT	2	3200	400	.13*	300	. 09
WBR	1	1600	10	. 01	30	. 02
Right Turn Adjustment					NBR	.01*

61. Montgomery \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	220	.14*	40	.03*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	70	. 04	170	. 11
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	60	.04*	20	.01*
SBR	1	1600	100	. 06	30	. 02
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	550	. 17	870	.27*
EBR	d	1600	30	. 02	10	. 01
WBL	1	1600	110	. 07	60	.04*
WBT	2	3200	1130	.35*	690	. 22
WBR	1	1600	10	. 01	30	. 02
Right Turn Adjustment			SBR	.01*	NBR	.05*

TOTAL CAPACITY UTILIZATION . 55 . 40

65. Sanjon \& Thompson

2025 Scenario 2 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	2	3200	520	.16*	540	.17*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	170	. 11
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	460	.24*	640	.29*
EBR	0	0	300		300	
WBL	1	1600	120	.08*	140	.09*
WBT	2	3200	510	. 16	750	. 23
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P		PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	190	.12*	120	. 08
NBT	1	1600	40	. 10	60	.22*
NBR	0	0	120		290	
SBL	1	1600	30	. 02	20	.01*
SBT	1	1600	90	.06*	50	. 03
SBR	1	1600	110	. 07	70	. 04
EBL	1	1600	90	.06*	90	. 06
EBT	2	3200	340	. 11	790	.25*
EBR	d	1600	70	. 04	250	. 16
WBL	1	1600	200	. 13	220	.14*
WBT	2	3200	810	.25*	570	. 18
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 49		. 62

68. Seaward \& Thompson

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	. 10	280	.18*
NBT	2	3200	460	.14*	380	. 12
NBR	d	1600	150	. 09	150	. 09
SBL	1	1600	120	.08*	90	. 06
SBT	2	3200	330	. 10	280	.09*
SBR	d	1600	50	. 03	90	. 06
EBL	1	1600	80	. 05	90	. 06
EBT	2	3200	660	.23*	730	.26*
EBR	0	0	80		110	
WBL	2	3200	170	.05*	210	.07*
WBT	2	3200	410	. 13	750	. 23
WBR	1	1600	40	. 03	60	. 04
TOTAL CAPACITY UTILIZATION				. 50		. 60

71. Sanjon \& Harbor

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	150	.09*	400	.25*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	300	. 19	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	260	.16*	570	.36*
WBR	1	1600	480	. 30	250	. 16
Right Turn Adjustment			WBR	.07*		
TOTAL CAPACITY UTILIZATION				. 36		. 69

77. Day \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	230	.07*	340	.11*
SBT	0	0	0		0	
SBR	1	1600	90	. 06	110	. 07
EBL	1	1600	110	.07*	50	. 03
EBT	2	3200	490	. 15	900	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	960	.30*	780	. 24
WBR	d	1600	340	. 21	240	. 15

75. Ashwood \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	100	.06*
NBR	d	1600	40	. 03	70	. 04
SBL	1	1600	60	.04*	160	.10*
SBT	1	1600	50	. 03	80	. 05
SBR	1	1600	150	. 09	120	. 08
EBL	1	1600	80	.05*	170	. 11
EBT	2	3200	540	. 17	840	.26*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	560	.18*	590	. 18
WBR	d	1600	110	. 07	100	. 06
Right Turn Adjustment			SBR	.01*		
TOTAL CAPACITY UTILIZATION				. 31		. 46

85. Victoria \& Olivas Park

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	810	.25*	660	.21*
NBT	3	4800	1840	. 38	1660	. 35
NBR	1	1600	520	. 33	480	. 30
SBL	2	3200	480	. 15	200	. 06
SBT	3	4800	1510	.31*	1680	.35*
SBR	f		140		170	
EBL	2	3200	270	. 08	340	. 11
EBT	2	3200	180	.06*	260	.08*
EBR	f		240		910	
WBL	1	1600	160	.10*	350	.22*
WBT	2	3200	60	. 02	410	. 13
WBR	f		120		160	
TOTA	CAPACIT	UTILIZAI		. 72		. 86

86. Telephone \& Olivas Park

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	490	.15*	880	.28*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	230	. 14	410	. 26
EBL	2	3200	380	.12*	330	.10*
EBT	2	3200	320	. 10	510	. 16
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	410	.13*	470	.15*
WBR	1	1600	590	. 37	740	. 46
Right Turn Adjustment			WBR	.13*	WBR	.10*

TOTAL CAPACITY UTILIZATION . 55 . 65

92. Johnson \& Bristol

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	90	.06*
NBT	2	3200	380	. 12	470	. 15
NBR	f		20		290	
SBL	1	1600	20	. 01	10	. 01
SBT	2	3200	530	.17*	800	.26*
SBR	0	0	20		20	
EBL	1	1600	20	.01*	30	. 02
EBT	1	1600	30	. 02	250	.16*
EBR	1	1600	140	. 09	200	. 13
WBL	2	3200	190	. 06	110	.03*
WBT	1	1600	220	.14*	120	. 08
WBR	d	1600	20	. 01	70	. 04
TOTA	CAPACII	UTILIzAT		. 33		. 51

91. Johnson \& Ralston

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	.08*	150	.09*
NBT	2	3200	410	. 13	410	. 13
NBR	d	1600	10	. 01	100	. 06
SBL	1	1600	30	. 02	50	. 03
SBT	2	3200	380	.12*	670	.21*
SBR	d	1600	70	. 04	50	. 03
EBL	1	1600	40	.03*	90	. 06
EBT	1	1600	80	. 05	300	.19*
EBR	d	1600	120	. 08	150	. 09
WBL	1	1600	150	. 09	70	.04*
WBT	1	1600	320	.20*	160	. 10
WBR	d	1600	90	. 06	40	. 03
TOTAL CAPACITY UTILIZATION				. 43		. 53

94. Johnson \& North Bank

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	60	.04*
NBT	3	4800	130	. 03	330	. 07
NBR	d	1600	30	. 02	520	. 33
SBL	1	1600	20	. 01	90	. 06
SBT	3	4800	400	.13*	810	.20*
SBR	0	0	260	. 16	150	
EBL	2.5		200	. 06	650	. 20
EBT	1.5	6400	420	.13*	2240	.70*
EBR	1	1600	430	. 27	280	. 18
WBL	1.5		1840	.58*	1230	.38*
WBT	1.5	4800	170	. 11	210	. 13
WBR	1	1600	30	. 02	140	. 09
Right Turn Adjustment			EBR	.09*		
TOTAL CAPACITY UTILIZATION				. 99		1.32

95. Bristol \& Ramelli

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. $01 *$	10	.01*
NBT	1	1600	10	. 01	10	. 01
NBR	0	0	10		10	
SBL	1	1600	10	. 01	30	. 02
SBT	1	1600	20	.01*	30	.02*
SBR	1	1600	100	. 06	70	. 04
EBL	1	1600	10	.01*	110	.07*
EBT	2	3200	40	. 02	90	. 03
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	. 01
WBT	2	3200	160	.05*	80	.04*
WBR	0	0	10		40	
Right Turn Adjustment			SBR	.04*		
TOTAL CAPACITY UTILIZATION				. 12		. 14

100. Saticoy \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	190	. 12	150	.09*
NBT	1	1600	200	.13*	130	. 08
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	160	.10*	90	. 06
SBT	1	1600	120	. 08	140	.09*
SBR	1	1600	270	. 17	160	. 10
EBL	1	1600	130	.08*	180	. 11
EBT	2	3200	200	. 06	650	.20*
EBR	1	1600	100	. 06	190	. 12
WBL	1	1600	80	. 05	110	.07*
WBT	2	3200	350	.15*	480	. 16
WBR	0	0	130		30	

96. Montgomery \& North Bank

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	130	.08*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	270	. 17	160	. 10
EBL	1	1600	110	.07*	210	.13*
EBT	2	3200	130	. 04	440	. 14
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	550	.34*	320	.20*
WBR	d	1600	180	. 11	80	. 05
Right Turn Adjustment			SBR	.07*		
TOTAL CAPACITY UTILIZATION				. 54		. 43

101. Saticoy \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	190		80	
NBT	1	1600	70	.19*	60	.11*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	40	.05*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	210	.18*	400	.34*
EBR	0	0	70		140	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	270	. 17	270	. 17
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTA	CAPACII	Y UTILIzAT		. 49		. 52

102. Wells \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	250	.16*
NBT	1	1600	130	. 08	300	. 19
NBR	1	1600	50	. 03	250	. 16
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	280	.18*	200	.13*
SBR	1	1600	40	. 03	20	. 01
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	50	.17*	190	.24*
EBR	0	0	220		200	
WBL	1	1600	300	.19*	130	.08*
WBT	1	1600	160	. 11	100	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION .63 .61

104. Wells \& SR 126 EB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	830	. 17	1400	. 29
NBR	f		570		1440	
SBL	0	0	0		0	
SBT	3	4800	2490	.52*	1690	.35*
SBR	f		80		60	
EBL	1	1600	100	.06*	340	.21*
EBT	0	0	0		0	
EBR	1	1600	180	. 11	610	. 38
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.17*
TOTAL CAPACITY UTILIZATION				. 63		. 73

106. Wells \& Telephone

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	390	. 12
NBT	3	4800	1190	. 25	2750	.59*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2350	.49*	1880	. 39
SBR	1	1600	160	. 10	420	. 26
EBL	1.5		150	\{.05\}*	260	\{.08\}*
EBT	0.5	3200	-	. 05	0	. 08
EBR	2	3200	500	. 16	520	. 16
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.02*		
TOTAL CAPACITY UTILIZATION				. 68		. 70

114. California \& Thompson

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		30		30	
NBT	0.5	3200	10	.01*	20	.02*
NBR	1	1600	60	. 04	80	. 05
SBL	1.5		120		150	
SBT	1.5	4800	90	.05*	190	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	830	.31*	920	.32*
EBR	0	0	170		90	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	320	. 10	380	. 14
WBR	0	0	10		70	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	100	. 06
SBT	1	1600	270	.18*	330	.23*
SBR	0	0	10		30	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	550	.17*	620	.19*
EBR	f		400		550	
WBL	1	1600	200	.13*	200	.13*
WBT	2	3200	450	. 15	630	. 21
WBR	0	0	30		50	
TOTAL CAPACITY UTILIZATION				. 49		. 56

132. Ventura \& Stanley

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK		PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	330	.21*	290	.18*
NBT	1	1600	260	. 16	360	. 23
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	470	.29*	380	.24*
SBR	1	1600	530	. 33	390	. 24
EBL	1	1600	400	.25*	660	.41*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 2 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		480	.15*	540	.17*
SBT	0	4800	0		0	
SBR	1.5		70		20	
EBL	1	1600	120	.08*	530	.33*
EBT	2	3200	190	. 06	700	. 22
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	1010	.32*	400	.13*
WBR	f		780		880	

TOTAL CAPACITY UTILIZATION
. 55
160. Victoria \& US 101 NB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HoUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	2	3200	480	.15*	480	.15*
NBT	3	4800	1380	. 29	1840	. 38
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2440	.38*	2150	.34*
SBR	1	1600	130	. 08	370	. 23
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	910	.28*	600	.19*
WBT	0	0	0		0	
WBR	3	4800	860	. 18	1080	. 23

TOTAL CAPACITY UTILIZATION
.81
.68

138. Johnson \& US 101 SB Ramps

161. Victoria \& Valentine

2025 Scenario 2 (Alt. Net.) w/Baseline

TOTAL CAPACITY UTILIZATION
162. California \& Harbor

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	250	.16*	340	.21*
SBT	0	0	0		0	
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	10	. 01	80	.05*
EBT	1	1600	240	.15*	260	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	230	.11*
WBR	0	0	50		110	

TOTAL CAPACITY UTILIZATION
. 31
164. Seaward \& Poli

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		170	
NBT	1	1600	0	.18*	0	.20*
NBR	0	0	120		150	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	350	.22*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	230	.14*	90	.06*
WBT	1	1600	170	. 11	290	. 18
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 41
.48
163. Santa Clara \& Main

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	250	. 08	210	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	340	.11*	460	.15*
EBR	0	0	10		10	
WBL	1	1600	140	.09*	150	.09*
WBT	2	3200	360	. 12	480	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
. 28
165. Seaward \& Harbor

2025 Scenario 2 (Alt. Net.) w/Baseline

	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	70	. 04
NBT	2	3200	350	.13*	280	.11*
NBR	0	0	50		70	
SBL	2	3200	480	.15*	390	.12*
SBT	2	3200	180	. 06	300	. 09
SBR	1	1600	320	. 20	460	. 29
EBL	2	3200	370	. 12	390	. 12
EBT	2	3200	700	.23*	1190	.39*
EBR	0	0	20		50	
WBL	1	1600	20	.01*	30	.02*
WBT	2	3200	300	. 09	470	. 15
WBR	2	3200	880	. 28	1010	. 32
Right Turn Adjustment			WBR	.05*		
тOTA	CAPACIT	UTILIZAT		. 57		. 64

166. College \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.07*
NBR	0	0	60		90	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	600	.21*	910	.31*
EBR	0	0	60		70	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	730	. 23	690	. 22
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 34
169. Kimball \& Foothill

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	310	.19*	180	.11*
NBT	0	0	0		0	
NBR	1	1600	30	. 02	30	. 02
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	200	.30*	410	.38*
EBR	0	0	280		200	
WBL	1	1600	60	.04*	30	.02*
WBT	1	1600	530	. 33	210	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.53
168. Day \& Foothill

| 2025 | Scenario 2 | (Alt. Net.) w/Baseline | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 210 | $.13^{*}$ | 210 | $.13^{*}$ |
| NBT | 1 | 1600 | 30 | .02 | 30 | .02 |
| NBR | 1 | 1600 | 170 | .11 | 290 | .18 |
| | | | | | | |
| SBL | 0 | 0 | 50 | | 50 | |
| SBT | 1 | 1600 | 20 | $.04^{*}$ | 20 | $.04^{*}$ |
| SBR | 1 | 1600 | 30 | .02 | 50 | .03 |
| | | | | | | |
| EBL | 1 | 1600 | 110 | .07 | 80 | .05 |
| EBT | 1 | 1600 | 460 | $.41^{*}$ | 480 | $.44^{*}$ |
| EBR | 0 | 0 | 190 | | 220 | |
| | | | | | | |
| WBL | 1 | 1600 | 270 | $.17 *$ | 210 | $.13 *$ |
| WBT | 1 | 1600 | 410 | .31 | 430 | .30 |
| WBR | 0 | 0 | 90 | | 50 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
.75
170. Petit \& Foothill

2025 Scenario 2 (Alt. Net.) w/Baseline

		AM PK	HOUR	PM PK
LAOUR				
LANES				
CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	40		10	
NBT	1	1600	0	$.03 *$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
			0		0	
EBL	0	0	0		240	$.15^{*}$
EBT	1	1600	160	.10	30	.02
EBR	1	1600	30	.02		
					10	$\{.01\}^{*}$
WBL	0	0	10		200	.13
WBT	1	1600	480	$.31^{*}$	200	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 19
171. Saticoy \& Foothill

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	100		60	
NBT	1	1600	0	.08*	0	.05*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 13	320	.26*
EBR	0	0	60		90	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	430	.28*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.36
173. Victoria \& SR 126 WB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1170	. 28	2030	.49*
NBR	0	0	190		320	
SBL	0	0	0		0	
SBT	3	4800	1890	.43*	1480	. 33
SBR	0	0	180		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	600	. 38	370	. 23
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	180	. 11
Right Turn Adjustment			Multi	.40*	Multi	.22*
TOTAL CAPACITY UTILIZATION				. 83		. 71

172. Wells \& Foothill

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	130	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	50	. 04	210	.14*
EBR	1	1600	100	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	310	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 26

174. Petit \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline

			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	$.05 *$	40	$.03^{*}$
NBT	1	1600	10	.01	10	.01
NBR	1	1600	10	.01	20	.01
SBL	1	1600	20	.01	20	.01
SBT	1	1600	10	$.03 *$	30	$.03^{*}$
SBR	0	0	30		20	
EBL	1	1600	10	$.01^{*}$	10	$.01 *$
EBT	2	3200	290	.09	580	.18
EBR	1	1600	50	.03	100	.06
WBL	1	1600	10	.01	10	.01
WBT	1	1600	560	$.35 *$	320	$.20 *$
WBR	1	1600	10	.01	30	.02

TOTAL CAPACITY UTILIZATION . 44
175. Ventura \& North Bank

177. Wells \& SR 126 WB Ramps

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	510	. 16	1370	.43*
NBR	f		400		370	
SBL	0	0	0		0	
SBT	2	3200	1030	.32*	730	. 23
SBR	f		430		210	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1550		1020	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 32		. 49

176. Saticoy \& Darling

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	160	. 11	220	.14*
NBR	1	1600	110	. 07	20	. 01
SBL	0	0	60		10	\{.01\}*
SBT	1	1600	240	.19*	180	. 12
SBR	1	1600	80	. 05	70	. 04
EBL	0	0	60		60	\{.04\}*
EBT	1	1600	70	.10*	50	. 09
EBR	0	0	30		30	
WBL	0	0	80	\{.05\}*	50	
WBT	1	1600	20	. 08	70	.09*
WBR	0	0	30		20	

TOTAL CAPACITY UTILIZATION . 35
.28
178. SR-33 Ramps \& Stanley

2025 Scenario 2 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	720	.45	840	.52
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	270	.17	180	.11
EBR	0	0	0		0	
					0	
WBL	0	0	0		0	
WBT	1	1600	710	$.44^{*}$	930	$.58 *$
WBR	f		180		160	
Right Turn Adjustment	NBR	$.25^{*}$	NBR	$.17 *$		

179. SR-33 Ramps \& Shell

2025 Scenario 2 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	680		650	
SBT	1	1600	0	.44*	0	. 42^{*}
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	110	. 08
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	700	.48*	690	.50*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION .93

181. Ventura \& Ramona

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	40	. 03
NBT	1	1600	370	.24*	630	.40*
NBR	0	0	20		10	
SBL	1	1600	80	.05*	70	.04*
SBT	1	1600	390	. 26	480	. 32
SBR	0	0	20		30	
EBL	0	0	20	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 50
180. Estates \& Telegraph

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	50	. 03
NBT	1	1600	10	. 04	10	.07*
NBR	0	0	60		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	550	. 17	810	.25*
EBR	d	1600	50	. 03	60	. 04
WBL	1	1600	40	. 03	80	.05*
WBT	2	3200	670	.21*	800	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 28
.38
182. Olive \& Main St

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	590	.37*	440	.28*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	90	\{.06\}*	280	
EBT	1	1600	80	. 11	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	160	.11*	170	. 11
WBR	1	1600	190	. 12	450	. 28

TOTAL CAPACITY UTILIZATION
. 55
.61
190. Petit Av \& North Bank Dr

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	30	.02*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	300	. 19	280	. 18
EBL	1	1600	80	.05*	350	.22*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	120	.04*	80	.03*
WBR	d	1600	60	. 04	40	. 03
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 24		. 30

192. Los Angeles Av \& North Bank

2025 Scenario 2 (Alt. Net.) w/Baseline						
				HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	150	. 09
NBT	3	4800	1360	. 28	2920	.61*
NBR	d	1600	30	. 02	70	. 04
SBL	1	1600	110	. 07	170	.11*
SBT	3	4800	2600	.54*	2150	. 45
SBR	d	1600	150	. 09	90	. 06
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	130	. 08	150	. 09
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	10	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.02*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 66		. 82

191. Saticoy Av \& North Bank Dr

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	.01*
NBT	1	1600	30	.03*	20	. 02
NBR	0	0	10		10	
SBL	1	1600	20	.01*	50	. 03
SBT	1	1600	10	. 02	30	.04*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	30	.02*
EBT	2	3200	80	.03*	70	. 02
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	70	.02*
WBR	d	1600	60	. 04	120	. 08
Right Turn Adjustment			WBR	.01*	WBR	.04*
TOTAL CAPACITY UTILIZATION				. 08		. 13

193. Saticoy Av \& A St

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	250	.16*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	200	. 13	180	.11*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 18		. 12

194. Wells Rd \& A St

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	370	. 13	860	.33*
NBR	0	0	50		180	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	810	.26*	580	. 18
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	110	. 07	60	. 04
WBL	1	1600	160	.10*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.04*		

TOTAL CAPACITY UTILIZATION . 43 . 42

197. Kimball \& Ralston

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	10	. 01
NBT	3	4800	460	. 10	1410	.29*
NBR	1	1600	0	. 00	70	. 04
SBL	1	1600	0	. 00	0	. 00
SBT	3	4800	1220	.25*	620	. 13
SBR	1	1600	330	. 21	120	. 08
EBL	1	1600	20	.01*	250	.16*
EBT	1	1600	10	. 01	140	. 09
EBR	1	1600	30	. 02	70	. 04
WBL	1	1600	0	. 00	0	. 00
WBT	2	3200	100	.03*	30	.01*
WBR	1	1600	10	. 01	10	. 01

196. Ramelli \& Ralston

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	0	. 00	10	. 01
NBT	1	1600	10	. 01	30	.13*
NBR	0	0	10		170	
SBL	1	1600	10	. 01	0	. 00
SBT	1	1600	100	.08*	60	. 06
SBR	0	0	30		30	
EBL	1	1600	10	.01*	20	. 01
EBT	1	1600	60	. 05	300	.23*
EBR	0	0	20		60	
WBL	1	1600	50	. 03	10	.01*
WBT	1	1600	360	.24*	110	. 07
WBR	0	0	20		0	
TOTAL CAPACITY UTILIZATION				. 33		. 37

198. Montgomery \& Ralston

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	0	. 00	0	. 00
NBT	2	3200	260	.10*	190	.10*
NBR	0	0	60		130	
SBL	1	1600	10	.01*	40	.03*
SBT	2	3200	180	. 06	230	. 07
SBR	0	0	10		0	
EBL	1	1600	10	.01*	60	. 04
EBT	1	1600	10	. 01	80	.06*
EBR	0	0	0		20	
WBL	1	1600	150	. 09	70	.04*
WBT	1	1600	90	.14*	30	. 04
WBR	,	0	130		40	

199. Kimball \& North Bank

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	20	.01*	50	.03*
SBT	0	0	0		0	
SBR	2	3200	1240	. 39	670	. 21
EBL	2	3200	350	.11*	1360	.43*
EBT	2	3200	260	. 08	630	. 20
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	790	.27*	490	.18*
WBR	0	0	70		70	
Right Turn Adjustment			SBR	.30*		
TOTAL CAPACITY UTILIZATION				. 69		. 64

201. Mills \& B St

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	0	. 00	0	. 00
NBT	2	3200	1040	.33*	1160	.36*
NBR	1	1600	320	. 20	690	. 43
SBL	1	1600	280	.18*	190	.12*
SBT	2	3200	800	. 25	1300	. 41
SBR	1	1600	60	. 04	140	. 09
EBL	1	1600	80	. 05	110	. 07
EBT	1	1600	150	.09*	120	.08*
EBR	1	1600	0	. 00	0	. 00
WBL	2	3200	420	.13*	600	.19*
WBT	1	1600	80	. 05	150	. 09
WBR	1	1600	100	. 06	420	. 26

200. Harbor \& Mills

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P		PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	440	.14*	830	.26*
NBR	1	1600	320	. 20	190	. 12
SBL	1	1600	330	.21*	120	.08*
SBT	2	3200	570	. 18	750	. 23
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	50	.03*	400	.25*
WBT	0	0	0		0	
WBR	1	1600	40	. 03	280	. 18
Right Turn Adjustment			NBR	.04*		
TOTAL CAPACITY UTILIZATION				. 42		. 59

202. Telephone \& B St

2025 Scenario 2 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	260	.16*
NBT	2	3200	950	.30*	820	. 26
NBR	0	0	0		,	
SBL	0	0	0		0	
SBT	2	3200	370	. 12	1160	.36*
SBR	1	1600	80	. 05	430	. 27
EBL	1	1600	280	.18*	200	.13*
EBT	0	0	0		0	
EBR	1	1600	390	. 24	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

NON-COMMITTED
IMPROVEMENTS

27. Mills \& Main

2025 Scenario 2 (Alt. Net.) w/Non-Committed Lan						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	110	. 07	360	.23*
NBT	2	3200	300	.09*	490	. 15
NBR	1	1600	270	. 17	220	. 14
SBL	2.5		1020		1190	
SBT	1.5	6400	390	.23*	360	.25*
SBR	0		40		50	
EBL	2	3200	140	.04*	110	. 03
EBT	4	6400	990	. 15	960	.15*
EBR	1	1600	170	. 11	350	. 22
WBL	2	3200	370	. 12	400	.13*
WBT	3	4800	1090	.23*	1220	. 25
WBR	2	3200	1290	. 40	1140	. 36
Note: Assumes N/S Split Phasing						
TOTA	CAPACIT	Y UTILIZAT		. 59		. 76

105. Wells \& Darling

2025 Scenario 2 (Alt. Net.) w/Non-Committed Lan						
	LANES	CAPACITY	AM PK HoUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	50	. 03
NBT	3	4800	1200	. 25	2680	.56*
NBR	d	1600	70	. 04	170	. 11
SBL	2	3200	130	. 04	350	.11*
SBT	3	4800	2280	.48*	1790	. 37
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	30	.02*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	100		40	
WBL	2	3200	70	. 02	290	. 09
WBT	1	1600	30	.06*	40	.14*
WBR	0	0	60		190	

94. Johnson \& North Bank

2025 Scenario 2 (Alt. Net.) w/Non-Committed Lan						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	60	.04*
NBT	3	4800	130	. 03	330	. 07
NBR	d	1600	30	. 02	520	. 33
SBL	1	1600	20	. 01	90	. 06
SBT	3	4800	400	.13*	810	.20*
SBR	0	0	260	. 16	150	
EBL	2	3200	200	. 06	650	. 20
EBT	3	4800	420	.09*	2240	.47*
EBR	1	1600	430	. 27	280	. 18
WBL	3	4800	1840	.38*	1230	.26*
WBT	2	3200	170	. 06	210	. 11
WBR	0	0	30		140	
Right Turn Adjustment			EBR	.13*		
TOTAL CAPACITY UTILIZATION				. 79		. 97

175. Ventura \& North Bank

2025 Scenario 2 (Alt. Net.) w/Non-Committed Lan						
			AM PK	HOUR	PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	20		30	
SBT	1	1600	0	.06*	0	.10*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	440	. 28
EBT	3	4800	1190	. 25	3280	.68*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	490	.31*	410	. 26
WBR	1	1600	50	. 03	30	. 02

SCENARIO 3

1. Victoria \& Foothill

| 2025 Scenario 3 w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 150 | $.09 *$ | 240 | $.15^{*}$ |
| NBT | 1 | 1600 | 10 | .01 | 80 | .05 |
| NBR | 1 | 1600 | 180 | .11 | 330 | .21 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 60 | $.04 *$ | 20 | $.01^{*}$ |
| SBR | 1 | 1600 | 40 | .03 | 10 | .01 |
| | | | | | | |
| EBL | 1 | 1600 | 10 | $.01 *$ | 180 | .11 |
| EBT | 1 | 1600 | 300 | .19 | 460 | $.29 *$ |
| EBR | 1 | 1600 | 220 | .14 | 20 | .01 |
| | | | | | | |
| WBL | 2 | 3200 | 460 | .14 | 250 | $.08^{*}$ |
| WBT | 1 | 1600 | 560 | $.35 *$ | 330 | .21 |
| WBR | d | 1600 | 10 | .01 | 20 | .01 |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
. 49
. 53

3. Victoria \& Telegraph

2025 Scenario 3 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	680	.21*	1150	.36*
NBT	2	3200	540	. 17	900	. 28
NBR	1	1600	150	. 09	220	. 14
SBL	1	1600	150	. 09	200	. 13
SBT	3	4800	720	.15*	540	.11*
SBR	d	1600	40	. 03	30	. 02
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	350	\{.16\}*	720	\{.23\}*
EBR	1.5		690		790	\{.22\}
WBL	2	3200	340	.11*	230	.07*
WBT	2	3200	580	. 18	330	. 10
WBR	d	1600	50	. 03	60	. 04

TOTAL CAPACITY UTILIZATION .63 .77

2. Victoria \& Loma Vista

2025 Scenario 3 w/Baseline						
			AM PK	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	250	.16*
NBT	2	3200	270	. 08	540	. 17
NBR	d	1600	20	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	530	.17*	290	.09*
SBR	d	1600	110	. 07	20	. 01
EBL	,	0	70		20	
EBT	1	1600	30	.24*	30	.23*
EBR	0	0	280		320	
WBL	0	0	70	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 11	30	. 05
WBR	0	0	60		20	

TOTAL CAPACITY UTILIZATION . 56 . 50
4. Victoria \& Woodland

2025 Scenario 3 w/Baseline

5. Victoria \& SR 126 SB Ramps

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1430	. 23	2680	.43*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2550	.41*	1860	. 30
SBR	0	0	70		80	
EBL	1.5		220		160	
EBT	0.5	3200	190	.13*	130	.09*
EBR	1	1600	230	. 14	250	. 16
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	260	. 16	560	. 35
Right Turn Adjustment Multi Note: Assumes E/W Split Phasing				.03*	WBR	.35*
TOTAL	CAPACITY	Y UTILIzATI		. 57		. 87

7. Victoria \& Telephone

2025 Scenario 3 w/Baseline						
			AM P	HouR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	300	.09*	320	. 10
NBT	4	6400	1300	. 24	1650	.28*
NBR	0	0	260		150	
SBL	2	3200	340	. 11	350	.11*
SBT	4	6400	1730	.27*	1360	. 21
SBR	1	1600	370	. 23	400	. 25
EBL	2	3200	400	.13*	640	.20*
EBT	3	4800	390	. 10	900	. 21
EBR	0	0	80		120	
WBL	2	3200	220	. 07	290	. 09
WBT	3	4800	740	.15*	620	.13*
WBR	1	1600	170	. 11	320	. 20

TOTAL CAPACITY UTILIZATION

6. Victoria \& Thille

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1360	. 28	2490	.40*
NBR	0	0	480	. 30	50	
SBL	1	1600	170	. 11	40	.03*
SBT	4	6400	2170	.40*	1860	. 33
SBR	0	0	360		230	
EBL	1.5		240		320	
EBT	0.5	3200	30	.08*	10	.10*
EBR	1	1600	120	. 08	200	. 13
WBL	1	1600	30	. 02	120	. 08
WBT	1	1600	10	.02*	60	.08*
WBR	0	0	20		70	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 53		. 61

8. Victoria \& Ralston

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	260	.16*	410	.26*
NBT	4	6400	1430	. 24	1960	. 34
NBR	0	0	80		220	
SBL	1	1600	100	. 06	210	. 13
SBT	4	6400	1780	. $30 *$	1800	.30*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	140	. 09
EBT	1	1600	110	.07*	240	.15*
EBR	1	1600	220	. 14	320	. 20
WBL	1	1600	260	.16*	140	.09*
WBT	1	1600	230	. 14	130	. 08
WBR	1	1600	190	. 12	120	. 08

10. Victoria \& Moon

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	180	. 11
NBT	4	6400	1820	. 30	2240	.40*
NBR	0	0	100		330	
SBL	1	1600	40	. 03	120	.08*
SBT	4	6400	1950	.31*	1860	. 33
SBR	0	0	20		250	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	30	. 02	180	. 11
WBL	1	1600	300	.19*	140	.09*
WBT	1	1600	110	. 07	60	. 04
WBR	1	1600	70	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
. 57

15. Johnson \& Telephone

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	190	. 06
NBT	2	3200	170	. 11	230	.14*
NBR	0	0	170		400	. 25
SBL	1	1600	30	. 02	100	.06*
SBT	2	3200	170	.05*	210	. 07
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	30	. 02
EBT	3	4800	220	. 07	1080	.31*
EBR	0	0	170	. 11	430	
WBL	1	1600	320	. 20	360	.23*
WBT	3	4800	1390	.30*	540	. 12
WBR	0	0	60		40	

TOTAL CAPACITY UTILIZATION
.48
.74

14. Hill \& Telephone

2025 Scenario 3 w/Baseline

		AM PK	HOUR	PM PK HOUR	
LANES	CAPACITY	VOL	V/C	VOL	
		V/C			

NBL	0	0	50		30	
NBT	1	1600	100	$.10 *$	60	$.14^{*}$
NBR	0	0	10		140	
SBL	1	1600	50	$.03^{*}$	250	$.16^{*}$
SBT	1	1600	40	.03	70	.04
SBR	1	1600	70	.04	230	.14
EBL	1	1600	170	$.11^{*}$	110	.07
EBT	3	4800	510	.12	1210	$.29 *$
EBR	0	0	60		200	
WBL	1	1600	180	.11	30	$.02^{*}$
WBT	3	4800	1120	$.29 *$	720	.16
WBR	0	0	280		50	

TOTAL CAPACITY UTILIZATION . 53
.61
18. Seaward \& US 101 NB Ramps

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	610	.19*	650	.20*
NBT	2	3200	920	. 29	970	. 30
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	860	.27*	1080	.34*
SBR	1	1600	230	. 14	190	. 12
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	440	.14*	430	.13*
WBT	0	0	0		0	
WBR	2	3200	400	. 13	450	. 14

TOTAL CAPACITY UTILIZATION
.60

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	50	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		630		1060	
SBT	0.5	3200	50	.22*	80	.37*
SBR	0		10		40	
EBL	1	1600	130	.08*	160	.10*
EBT	2	3200	410	. 13	430	. 15
EBR	0	0	20		50	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	390	.24*	620	.39*
WBR	1	1600	320	. 20	320	. 20
Note: Assumes N/S Split Phasing						

23. Mills \& Loma Vista

2025 Scenario 3 w/Baseline						
			AM P	K Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		380	\{.14\}*	290	\{.10\}*
NBT	0.5	3200	70	. 14	20	. 10
NBR	1	1600	40	. 03	70	. 04
SBL	1	1600	40	. 03	20	. 01
SBT	1	1600	40	.04*	20	.03*
SBR	0	0	20		20	
EBL	1	1600	20	. 01	10	. 01
EBT	2	3200	340	.11*	620	.19*
EBR	d	1600	310	. 19	530	. 33
WBL	1	1600	80	.05*	80	.05*
WBT	2	3200	420	. 13	360	. 11
WBR	d	1600	60	. 04	20	. 01
Right Turn Adjustment					EBR	.07*
TOTAL CAPACITY UTILIZATION				. 34		. 44

20. Harbor \& Olivas Park

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	. 04	150	. 09
NBT	2	3200	880	.28*	1030	.32*
NBR	1	1600	520	. 33	250	. 16
SBL	2	3200	500	.16*	500	.16*
SBT	2	3200	610	. 19	1170	. 37
SBR	1	1600	140	. 09	120	. 08
EBL	1	1600	70	. 04	170	. 11
EBT	2	3200	150	.05*	250	.08*
EBR	d	1600	60	. 04	130	. 08
WBL	1	1600	80	.05*	420	.26*
WBT	2	3200	100	. 03	150	. 05
WBR	f		380		690	
Right Turn Adjustment			NBR	.01*		
TOTAL CAPACITY UTILIZATION				. 55		. 82

24. Mills \& Telegraph

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM PK	HOUR	PM Pk	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	,	1600	200	. 13	150	.09*
NBT	1	1600	420	.26*	260	. 16
NBR	1	1600	210	. 13	370	. 23
SBL	1	1600	60	.04*	130	. 08
SBT	2	3200	380	. 12	470	.15*
SBR	1	1600	10	. 01	10	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	350	.11*	550	.17*
EBR	1	1600	80	. 05	130	. 08
WBL	2	3200	260	.08*	220	.07*
WBT	2	3200	410	. 15	430	. 15
WBR	0	0	70		60	
Right Turn Adjustment					NBR	.02*
TOTAL CAPACITY UTILIZATION 49						. 50

25. Mills \& Maple

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	1000	.34*	830	.30*
NBR	0	0	80		120	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	730	. 24	910	. 30
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	220		210	
WBT	1	1600	20	.15*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 52 . 51

26. Mills \& Dean

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	100	.06*
NBT	2	3200	1210	.38*	950	. 30
NBR	1	1600	270	. 17	380	. 24
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	820	. 26	960	.31*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	220	. 14
WBL	2	3200	420	.13*	250	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.07*
TOTA	CAPACIT	UTILIZAT		. 54		. 54

28. US 101 NB Ramps \& Main

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	660	.21*	330	.10*
SBT	0	0	0		0	
SBR	3	4800	1680	. 35	1430	. 30
EBL	0	0	0		0	
EBT	3	4800	2300	.48*	2530	.53*
EBR	f		320		150	
WBL	2	3200	420	.13*	550	.17*
WBT	3	4800	1070	. 22	1810	. 38
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 82		. 80

29. SR 126 EB Ramps \& Main

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	260	. 08	410	.13*
EBT	3	4800	2660	.55*	2730	. 57
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1290	. 27	2420	. $50 *$
WBR	f		130		390	

TOTAL CAPACITY UTILIZATION . 55
31. Donlon \& Main

2025 Scenario 3 w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180		660	
NBT	0	3200	0	.07*	0	.24*
NBR	0.5		30		120	
SBL	1.5		400		330	
SBT	0.5	3200	180	.18*	130	.14*
SBR	1	1600	180	. 11	220	. 14
EBL	0	0	0		0	
EBT	4	6400	2000	.31*	2550	.40*
EBR	d	1600	220	. 14	140	. 09
WBL	2	3200	90	.03*	230	.07*
WBT	3	4800	1070	. 22	1630	. 34
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 3 w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		190	\{.06\}*	640	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	.01*
EBT	4	6400	2300	.36*	2460	. 38
EBR	d	1600	340	. 21	240	. 15
WBL	2	3200	90	.03*	170	. 05
WBT	3	4800	1230	. 26	2150	.45*
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 47
.68
32. Telephone \& Main

2025 Scenario 3 w/Baseline

			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	. 10	750	. 23
NBT	2	3200	360	.11*	1140	.36*
NBR	1	1600	80	. 05	320	. 20
SBL	1.5		240	. 15	460	
SBT	1.5	4800	1120	.35*	870	.28*
SBR	f		670		930	
EBL	2	3200	450	. 14	710	. 22
EBT	3	4800	1100	.23*	1550	.32*
EBR	f		440		460	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

33. US 101 NB Ramps \& Telephone

2025 Scenario 3 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		680		570	
NBT	0.5	3200	20	.22*	90	.21*
NBR	1	1600	290	. 18	410	. 26
SBL	0.5		40		10	
SBT	0	3200	0	\{.12\}*	0	\{.01\}*
SBR	1.5		360		240	
EBL	1	1600	20	.01*	290	.18*
EBT	3	4800	840	. 18	1940	. 40
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1030	.22*	1440	.30*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 57 . 70

35. Saratoga \& Telephone

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	20	. 01
NBT	1	1600	10	.08*	60	.14*
NBR	0	0	110		160	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	40	. 03	40	. 03
SBR	1	1600	30	. 02	20	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	730	. 15	1590	.33*
EBR	d	1600	50	. 03	160	. 10
WBL	1	1600	50	. 03	80	.05*
WBT	3	4800	940	.20*	1000	. 22
WBR	0	0	20		40	
TOTA	CAPACII	UTILIZAI		. 31		. 55

34. Portola \& Telephone

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	.08*	320	.10*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	140	. 09	60	. 04
EBL	1	1600	40	.03*	180	. 11
EBT	3	4800	710	. 15	1720	.36*
EBR	d	1600	230	. 14	320	. 20
WBL	1	1600	20	. 01	60	.04*
WBT	3	4800	880	.19*	950	. 20
WBR	,	0	20		30	
Right Turn Adjustment			SBR	.06*		
TOTAL CAPACITY UTILIZATION				. 37		. 51

38. Telephone \& Market

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	250	.16*
NBT	3	4800	800	.17*	1140	. 24
NBR	d	1600	90	. 06	110	. 07
SBL	1	1600	500	.31*	150	. 09
SBT	3	4800	510	. 11	870	.18*
SBR	d	1600	180	. 11	160	. 10
EBL	1	1600	30	. 02	220	.14*
EBT	1	1600	260	.16*	240	. 15
EBR	1	1600	230	. 14	310	. 19
WBL	1	1600	60	.04*	200	. 13
WBT	1	1600	140	. 09	400	.25*
WBR	1	1600	100	. 06	540	. 34
Right Turn Adjustment					WBR	.01*
TOTAL CAPACITY UTILIZATION				. 68		. 74

42. Telephone \& McGrath

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	310	.19*
NBT	3	4800	1010	. 21	1270	. 26
NBR	d	1600	340	. 21	100	. 06
SBL	1	1600	40	. 03	70	. 04
SBT	2	3200	680	.21*	1280	.40*
SBR	1	1600	40	. 03	40	. 03
EBL	1	1600	10	. 01	60	. 04
EBT	1	1600	30	.02*	20	.01*
EBR	1	1600	250	. 16	390	. 24
WBL	1	1600	90	.06*	300	.19*
WBT	1	1600	40	. 03	70	. 04
WBR	1	1600	30	. 02	150	. 09
Right Turn Adjustment			EBR	.04*	EBR	.09*

TOTAL CAPACITY UTILIZATION . 46 . 88

46. Seaward \& Main

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	.12*
NBT	1	1600	160	. 10	180	. 11
NBR	1	1600	320	. 20	290	. 18
SBL	1	1600	30	. 02	70	. 04
SBT	1	1600	160	.10*	100	.06*
SBR	1	1600	190	. 12	80	. 05
EBL	1	1600	100	. 06	90	. 06
EBT	2	3200	730	.23*	660	.21*
EBR	1	1600	190	. 12	120	. 08
WBL	0.5		100		170	
WBT	1.5	3200	510	. $20 *$	720	.31*
WBR	0		30		90	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	30	. 02
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	70	.02*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	40		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	770	.25*	770	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	40	. 03
WBT	2	3200	500	. 22	790	.29*
WBR	0	0	190		130	
TOTAL CAPACITY UTILIZATION				. 37		. 34

47. Main \& Loma Vista

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	K Hour	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	350	.11*	470	.15*
NBR	f		40		180	
SBL	1	1600	590	.37*	400	.25*
SBT	2	3200	580	. 18	640	. 21
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	350	. 11	490	. 15
TOTAL CAPACITY UTILIZATION				. 55		. 53

49. Main \& Telegraph

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		300	. 19	630	
NBT	1.5	4800	630	.20*	720	.28*
NBR	f		140		90	
SBL	1.5		200		270	. 17
SBT	1.5	4800	470	.15*	730	.24*
SBR	0		40		50	
EBL	0	0	0		0	
EBT	2	3200	310	. 10	430	. 13
EBR	f		700		620	
WBL	0	0	0		0	
WBT	1.5	4800	340	.11*	500	.16*
WBR	1.5		120		210	

50. Emma \& Main

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1050	.33*	1230	.38*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	80	.05*
WBT	3	4800	980	. 20	1520	. 32
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 41
.45

53. Kimball \& Telephone

```
2025 Scenario 3 w/Baseline
```

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	260	$.08^{*}$	490	$.15^{*}$
SBT	0	0	0		0	
SBR	2	3200	1210	.38	660	.21
EBL	2	3200	260	$.08^{*}$	980	$.31^{*}$
EBT	3	4800	320	.07	1020	.21
EBR	0	0	0		0	

WBL	0	0	0		0	
WBT	2	3200	910	$.28^{*}$	650	$.20^{*}$
WBR	1	1600	670	.42	360	.23

Right Turn Adjustment Multi .32*
TOTAL CAPACITY UTILIZATION
.76
55. Kimball \& SR 126 EB Ramps

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1350	. 28	850	.18*
NBR	f		120		440	
SBL	1	1600	30	. 02	30	.02*
SBT	3	4800	1480	.31*	880	. 18
SBR	0	0	0		0	
EBL	2	3200	120	.04*	400	.13*
EBT	0	0	10		0	
EBR	£		240		530	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

56. Kimball \& SR 126 WB Ramps

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	.18*	250	.08*
NBT	3	4800	820	. 17	790	. 16
NBR	d	1600	60	. 04	220	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	710	.15*	540	.11*
SBR	d	1600	190	. 12	90	. 06
EBL	1.5		40		40	
EBT	0.5	3200	10	.02*	10	.02*
EBR	1	1600	610	. 38	240	. 15
WBL	0	0	180		120	
WBT	1	1600	130	.19*	70	.12*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR .22* EBR .07* Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 76		. 40
60. Ramelli \& Telephone						
2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	170	. 11	520	. 33
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	0	. 00	10	. 01
EBT	3	4800	350	.08*	1470	.32*
EBR	0	0	40		80	
WBL	1	1600	430	.27*	180	.11*
WBT	3	4800	1650	. 34	1090	. 23
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.23*
TOTAL CAPACITY UTILIZATION				. 37		. 68

61. Montgomery \& Telephone

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	270	.17*	60	.04*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	30	. 02	140	. 09
SBL	1	1600	20	. 01	10	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	90	. 06	30	. 02
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	510	. 16	780	.24*
EBR	d	1600	90	. 06	120	. 08
WBL	1	1600	100	. 06	70	.04*
WBT	2	3200	1120	.35*	680	. 21
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*	NBR	.01*

TOTAL CAPACITY UTILIZATION . 58 . 35

65. Sanjon \& Thompson

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	550	.17*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	220	. 14
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	490	.25*	670	.31*
EBR	0	0	300		310	
WBL	1	1600	120	.08*	150	.09*
WBT	2	3200	520	. 16	790	. 25
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 3 w/Baseline						
			AM P		PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	150	. 09
NBT	1	1600	40	. 10	60	.19*
NBR	0	0	120		250	
SBL	1	1600	30	. 02	30	.02*
SBT	1	1600	80	.05*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	90	.06*	80	. 05
EBT	2	3200	320	. 10	780	.24*
EBR	d	1600	90	. 06	250	. 16
WBL	1	1600	150	. 09	210	.13*
WBT	2	3200	780	.24*	530	. 17
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 58

68. Seaward \& Thompson

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	. 06	210	.13*
NBT	2	3200	500	.16*	500	. 16
NBR	d	1600	220	. 14	190	. 12
SBL	1	1600	110	.07*	60	. 04
SBT	2	3200	380	. 12	360	.11*
SBR	d	1600	50	. 03	100	. 06
EBL	1	1600	90	. 06	80	. 05
EBT	2	3200	670	.23*	790	.28*
EBR	0	0	60		110	
WBL	2	3200	210	.07*	240	.08*
WBT	2	3200	430	. 13	790	. 25
WBR	1	1600	30	. 02	60	. 04
TOTAL CAPACITY UTILIZATION				. 53		.60

71. Sanjon \& Harbor

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	190	.12*	400	.25*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	120	. 08
EBL	1	1600	60	.04*	110	.07*
EBT	1	1600	280	. 18	480	. 30
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	260	.16*	600	.38*
WBR	1	1600	490	. 31	290	. 18
Right Turn Adjustment			WBR	.06*		

TOTAL CAPACITY UTILIZATION . 38 . 70

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	220	.07*	350	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	490	. 15	900	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	940	.29*	770	. 24
WBR	d	1600	330	. 21	250	. 16

75. Ashwood \& Telegraph

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	80	.05*
NBR	d	1600	40	. 03	70	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	50	. 03	70	. 04
SBR	1	1600	120	. 08	120	. 08
EBL	1	1600	80	.05*	150	. 09
EBT	2	3200	510	. 16	830	.26*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	540	.17*	590	. 18
WBR	d	1600	100	. 06	90	. 06
TOTAL CAPACITY UTILIZATION				. 29		. 46

85. Victoria \& Olivas Park

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	850	.27*	690	.22*
NBT	3	4800	1920	. 40	1810	. 38
NBR	1	1600	490	. 31	430	. 27
SBL	2	3200	510	. 16	230	. 07
SBT	3	4800	1640	.34*	1780	.37*
SBR	f		190		200	
EBL	2	3200	290	. 09	410	. 13
EBT	2	3200	180	.06*	250	.08*
EBR	f		240		900	
WBL	1	1600	110	.07*	360	.23*
WBT	2	3200	70	. 02	310	. 10
WBR	f		130		260	
TOTA	CAPACIT	UTILIZAI		. 74		. 90

86. Telephone \& Olivas Park

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	450	.14*	890	.28*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	500	. 31	910	. 57
EBL	2	3200	720	.23*	700	.22*
EBT	2	3200	400	. 13	560	. 18
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	480	.15*	450	.14*
WBR	1	1600	640	. 40	720	. 45
Right Turn Adjustment			WBR	.14*	Multi	.21*

TOTAL CAPACITY UTILIZATION . 68 . 87

2025 Scenario 3 w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	520	. 16	1000	. 31
NBR	f		190		1100	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	940	.30*	1170	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	20	.01*	280	.18*
EBR	1	1600	140	. 09	190	. 12
WBL	2	3200	1040	.33*	440	.14*
WBT	1	1600	270	. 17	160	. 10
WBR	d	1600	30	. 02	20	. 01
Right Turn Adjustment			EBR	.06*		

94. Johnson \& North Bank

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	110	.07*
NBT	3	4800	170	. 04	520	. 11
NBR	d	1600	20	. 01	190	. 12
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1550	.37*	1400	.33*
SBR	0	0	230		170	
EBL	2.5		440	.09*	1770	.37*
EBT	1.5	6400	70	. 04	340	. 21
EBR	1	1600	450	. 28	350	. 22
WBL	1.5		140		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.16*		

95. Bristol \& Ramelli

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	.01*
NBT	1	1600	20	.02*	10	. 02
NBR	0	0	10		20	
SBL	1	1600	10	.01*	30	. 02
SBT	1	1600	20	. 01	40	.03*
SBR	1	1600	300	. 19	90	. 06
EBL	1	1600	10	.01*	140	. 09
EBT	2	3200	200	. 07	680	.22*
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	.01*
WBT	2	3200	900	. $30 *$	390	. 13
WBR	0	0	70		30	
Right Turn Adjustment			SBR	.16*		
TOTAL CAPACITY UTILIZATION				. 50		. 27

100. Saticoy \& Telephone

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	190	.12*	100	. 06
SBT	1	1600	110	. 07	140	.09*
SBR	1	1600	260	. 16	160	. 10
EBL	1	1600	120	.08*	180	.11*
EBT	2	3200	220	. 07	650	. 20
EBR	1	1600	100	. 06	180	. 11
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	330	.15*	470	.17*
WBR	0	0	140		60	
TOTA	CAPACI	U UIILIzAT		. 48		. 46

96. Montgomery \& North Bank

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	120	.08*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	380	. 24	170	. 11
EBL	1	1600	100	.06*	320	.20*
EBT	2	3200	110	. 03	400	. 13
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	470	.29*	280	.18*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.14*		
TOTAL CAPACITY UTILIZATION				. 55		. 48

101. Saticoy \& Telegraph

2025 Scenario 3 w/Baseline						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	170		80	
NBT	1	1600	70	.18*	50	.10*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	30	. 02
EBT	1	1600	190	.17*	410	.35*
EBR	0	0	80		150	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	270	. 17	280	. 18
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 47		. 51

102. Wells \& Telegraph

| 2025 Scenario 3 w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 170 | $.11^{*}$ | 250 | $.16^{*}$ |
| NBT | 1 | 1600 | 130 | .08 | 290 | .18 |
| NBR | 1 | 1600 | 60 | .04 | 280 | .18 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 280 | $.18^{*}$ | 200 | $.13^{*}$ |
| SBR | 1 | 1600 | 40 | .03 | 30 | .02 |
| | | | | | | |
| EBL | 1 | 1600 | 20 | .01 | 40 | .03 |
| EBT | 1 | 1600 | 40 | $.16^{*}$ | 190 | $.25^{*}$ |
| EBR | 0 | 0 | 210 | | 210 | |
| | | | | | | |
| WBL | 1 | 1600 | 340 | $.21^{*}$ | 130 | $.08^{*}$ |
| WBT | 1 | 1600 | 150 | .10 | 100 | .08 |
| WBR | 0 | 0 | 10 | | 20 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
.66
104. Wells \& SR 126 EB Ramps

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	880	. 18	1450	. 30
NBR	f		590		1560	
SBL	0	0	0		0	
SBT	3	4800	2650	.55*	1730	.36*
SBR	f		80		60	
EBL	1	1600	100	.06*	320	.20*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	610	. 38
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.18*
TOTA	CAPACIT	UTILIZAT		. 66		. 74

106. Wells \& Telephone

2025 Scenario 3 w/Baseline						
			AM PK	K Hour	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	420	. 13
NBT	3	4800	1240	. 26	2920	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2510	.52*	1950	. 41
SBR	1	1600	130	. 08	420	. 26
EBL	1.5		160	\{.05\}*	240	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	540	. 17	540	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 72		. 73

114. California \& Thompson

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		30	. 02
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	60	. 04	90	. 06
SBL	1.5		130		140	
SBT	1.5	4800	80	.05*	180	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	880	.33*	960	.33*
EBR	0	0	160		90	
WBL	1	1600	70	.04*	80	.05*
WBT	2	3200	320	. 10	410	. 14
WBR	0	0	10		50	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 3 w/Baseline						
			AM PK	Hour	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	90	. 06
SBT	1	1600	270	.18*	350	.24*
SBR	0	0	10		30	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	590	.18*	670	.21*
EBR	f		400		530	
WBL	1	1600	200	.13*	200	.13*
WBT	2	3200	450	. 15	630	. 22
WBR	0	0	30		80	

TOTAL CAPACITY UTILIZATION
. 50
132. Ventura \& Stanley

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	330	.21*	300	.19*
NBT	1	1600	270	. 17	360	. 23
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	460	.29*	400	.25*
SBR	1	1600	530	. 33	370	. 23
EBL	1	1600	390	.24*	650	.41*
EBT	0	0	0		,	
EBR	1	1600	230	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
TOTA	CAPACIT	Y UTILIZAT		. 74		. 85

136. US 101 SB Ramps \& Valentine

2025 Scenario 3 w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		520	.16*	600	.19*
SBT	0	4800	0		0	
SBR	1.5		80		20	
EBL	1	1600	120	.08*	540	.34*
EBT	2	3200	180	. 06	700	. 22
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	1010	.32*	400	.13*
WBR	f		810		890	

TOTAL CAPACITY UTILIZATION
. 56
160. Victoria \& US 101 NB Ramps

2025 Scenario 3 w/Baseline						
			AM PK HoUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	560	.18*	600	.19*
NBT	3	4800	1400	. 29	1970	. 41
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2690	. 42 *	2200	.34*
SBR	1	1600	130	. 08	350	. 22
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	850	.27*	630	.20*
WBT	0	0	0		0	
WBR	3	4800	880	. 18	1150	. 24

138. Johnson \& US 101 SB Ramps

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	700	.44*
NBT	1	1600	140	. 09	550	. 34
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	640	.40*	400	.25*
SBR	f		1490		1610	
EBL	1	1600	110	.07*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	140	. 09	100	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 58
.85
161. Victoria \& Valentine

2025 Scenario 3 w/Baseline

			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	210	.07*
NBT	3	4800	1880	. 40	2430	. 52
NBR	0	0	20		50	
SBL	1	1600	40	. 03	50	. 03
SBT	2	3200	1760	.55*	1630	.51*
SBR	f		1680		1170	
EBL	2.5		300		640	
EBT	0.5	4800	40	.07*	20	.14*
EBR	1	1600	400	. 25	640	. 40
WBL	0	0	20		20	
WBT	1	1600	10	.02*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment			EBR	.10*	EBR	.19*
Note: Assumes E/W Split Phasing						
Note: Assumes Right-Turn Overlap for WBR EBR						

TOTAL CAPACITY UTILIZATION
162. California \& Harbor

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	230	.14*	330	.21*
SBT	0	0	0		0	
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	240	.12*
WBR	0	,	50		130	

TOTAL CAPACITY UTILIZATION
. 28
164. Seaward \& Poli

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		180	
NBT	1	1600	0	.18*	0	.22*
NBR	0	0	120		170	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	360	.23*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	240	.15*	100	.06*
WBT	1	1600	170	. 11	300	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION .42 . 51
163. Santa Clara \& Main

| 2025 | Scenario 3 w/Baseline | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 0 | 0 | 10 | $\{.01\}^{*}$ | 10 | $\{.01\}^{*}$ |
| NBT | 1 | 1600 | 10 | .01 | 10 | .01 |
| NBR | 2 | 3200 | 260 | .08 | 230 | .07 |
| | | | | | | |
| SBL | 0 | 0 | 50 | | 30 | |
| SBT | 1 | 1600 | 10 | $.04^{*}$ | 10 | $.03^{*}$ |
| SBR | 0 | 0 | 10 | | 10 | |
| | | | | | | |
| EBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| EBT | 2 | 3200 | 350 | $.11^{*}$ | 460 | $.15 *$ |
| EBR | 0 | 0 | 10 | | 10 | |
| | | | | | | |
| WBL | 1 | 1600 | 140 | $.09 *$ | 170 | $.11 *$ |
| WBT | 2 | 3200 | 360 | .12 | 500 | .17 |
| WBR | 0 | 0 | 30 | | 30 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION . 25
.30
165. Seaward \& Harbor

2025 Scenario 3 w/Baseline

			AM PK		HOUR	PM PK		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C		
NBL	1	1600	40	.03	80	.05		
NBT	2	3200	380	$.13^{*}$	300	$.11^{*}$		
NBR	0	0	30		50			
SBL	2	3200	730	$.23^{*}$	750	$.23^{*}$		
SBT	2	3200	190	.06	320	.10		
SBR	1	1600	310	.19	470	.29		
EBL	2	3200	340	.11	320	.10		
EBT	2	3200	690	$.22^{*}$	1300	$.42^{*}$		
EBR	0	0	20		40			
WBL	1	1600	20	$.01^{*}$	20	$.01^{*}$		
WBT	2	3200	300	.09	500	.16		
WBR	2	3200	1130	.35	1390	.43		
Right								
Turn Adjustment	WBR	$.06^{*}$						

166. College \& Telegraph

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.07*
NBR	0	0	60		90	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	580	.20*	890	.30*
EBR	0	0	60		80	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	690	. 22	670	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 33
169. Kimball \& Foothill

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	120	.08*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	210	. 26	390	.36*
EBR	0	0	210		190	
WBL	1	1600	70	. 04	20	.01*
WBT	1	1600	530	.33*	190	. 12
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 51
.45
168. Day \& Foothill

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	220	.14*
NBT	1	1600	30	. 02	30	. 02
NBR	1	1600	170	. 11	270	. 17
SBL	0	0	50		50	
SBT	1	1600	20	.04*	20	.04*
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	110	. 07	80	. 05
EBT	1	1600	450	.41*	480	.44*
EBR	0	0	200		230	
WBL	1	1600	240	.15*	210	.13*
WBT	1	1600	420	. 32	430	. 30
WBR	0	0	90		50	

TOTAL CAPACITY UTILIZATION . 73 . 75
170. Petit \& Foothill

2025 Scenario 3 w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	160	.10	30	.02
EBR	1	1600	40	.03		
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	480	$.31^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	100		50	
NBT	1	1600	0	.08*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 12	320	.26*
EBR	0	0	50		90	
WBL	0	0	20		20	\{.01 \}*
WBT	1	1600	430	.28*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 36 . 31
173. Victoria \& SR 126 WB Ramps

2025 Scenario 3 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1260	. 31	2150	. $52 *$
NBR	0	0	230		350	
SBL	0	0	0		0	
SBT	3	4800	2000	.46*	1540	. 34
SBR	0	0	190		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	620	. 39	410	. 26
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	200	. 13	150	. 09
Right Turn Adjustment			Multi	.41*	Multi	.21*
TOTAL CAPACITY UTILIZATION				. 87		. 73

172. Wells \& Foothill

2025 Scenario 3 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	210	.14*
EBR	1	1600	100	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 26
174. Petit \& Telegraph

2025 Scenario 3 w/Baseline

	LANES	CAPACITY	AM PK HoUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	50	.03*
NBT	1	1600	20	. 01	10	. 01
NBR	1	1600	10	. 01	20	. 01
SBL	1	1600	30	. 02	20	. 01
SBT	1	1600	20	.03*	30	.03*
SBR	0	0	30		20	
EBL	1	1600	10	.01*	10	.01*
EBT	2	3200	270	. 08	590	. 18
EBR	1	1600	50	. 03	90	. 06
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	530	.33*	320	.20*
WBR	1	1600	10	. 01	30	. 02

TOTAL CAPACITY UTILIZATION . 41
. 27
175. Ventura \& North Bank

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	80		70	
SBT	1	1600	0	.10*	0	.13*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	540	. 34
EBT	2	3200	940	. 29	2490	.78*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	.21*	420	. 26
WBR	1	1600	50	. 03	20	. 01

TOTAL CAPACITY UTILIZATION . 42
177. Wells \& SR 126 WB Ramps

2025 Scenario 3 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	. 17	1380	.43*
NBR	f		420		390	
SBL	0	0	0		0	
SBT	2	3200	1070	.33*	750	. 23
SBR	f		430		200	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1660		1040	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTA	CAPACIT	UTILIZAT		. 33		. 49

176. Saticoy \& Darling

2025 Scenario 3 w/Baseline						
			AM PK	K Hour	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	150	. 10	240	.16*
NBR	1	1600	110	. 07	30	. 02
SBL	0	0	50		10	\{.01\}*
SBT	1	1600	240	.18*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	60		60	
EBT	1	1600	70	.11*	60	.10*
EBR	0	0	40		40	
WBL	0	0	70	\{.04\}*	50	\{.03\}*
WBT	1	1600	20	. 08	70	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 34
. 30
178. SR-33 Ramps \& Stanley

2025 Scenario 3 w/Baseline

		AM PK HOUR	PM PK HOUR
LANES CAPACITY	VOL	V/C	VOL

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	710	.44	830	.52
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	280	.18	180	.11
EBR	0	0	0		0	
		0	0		0	
WBL	0	0	0	$.44^{*}$	910	$.57 *$
WBT	1	1600	710	.50		
WBR	f		180		170	
Right Turn Adjustment	NBR	$.24^{*}$	NBR	$.17 *$		

179. SR-33 Ramps \& Shell

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	700		680	
SBT	1	1600	0	.46*	0	.44*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.49*	740	.53*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION
.96
181. Ventura \& Ramona

2025 Scenario 3 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	50	. 03
NBT	1	1600	360	.24*	630	.41*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	80	.05*
SBT	1	1600	400	. 26	480	. 32
SBR	0	0	20		30	
EBL	0	0	20	\{.01 \}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 52
180. Estates \& Telegraph

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	80	.05*	60	. 04
NBT	1	1600	10	. 05	10	.07*
NBR	0	0	70		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	810	.25*
EBR	d	1600	60	. 04	70	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	660	.21*	780	. 24
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 29
.39
182. Olive \& Main St

2025 Scenario 3 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	1	1600	10	.01	10	.01
NBT	1	1600	10	$.01^{*}$	10	$.01^{*}$
NBR	0	0	10		10	
SBL	1	1600	590	$.37 *$	450	$.28^{*}$
SBT	1	1600	20	.06	30	.08
SBR	0	0	80		90	

EBL	0	0	90	$\{.06\}^{*}$	280	
EBT	1	1600	80	.11	220	$.31 *$
EBR	1	1600	10	.01	40	.03

$\begin{array}{rrrrrrc}\text { WBL } & 0 & 0 & 10 & & 10 & \{.01\}^{*} \\ \text { WBT } & 1 & 1600 & 170 & .11^{*} & 170 & .11 \\ \text { WBR } & 1 & 1600 & 200 & .13 & 450 & .28\end{array}$

TOTAL CAPACITY UTILIZATION
.55
.61
190. Petit Av \& North Bank Dr

2025 Scenario $3 \mathrm{w} /$ Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	250	. 16	240	. 15
EBL	1	1600	60	.04*	280	.18*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	120	.04*	90	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.10*		
TOTAL CAPACITY UTILIZATION				. 21		. 26

192. Los Angeles Av \& North Bank

2025 Scenario 3 w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1420	. 30	3130	.65*
NBR	d	1600	20	. 01	70	. 04
SBL	1	1600	110	. 07	170	.11*
SBT	3	4800	2800	.58*	2250	. 47
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	.10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	10	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 71		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	.01*	10	. 01
NBT	1	1600	30	. 03	20	.02*
NBR	0	0	20		10	
SBL	1	1600	20	. 01	60	.04*
SBT	1	1600	10	.03*	30	. 04
SBR	0	0	30		30	
EBL	1	1600	20	. 01	40	.03*
EBT	2	3200	90	.03*	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	80	.03*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.03*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	voL	V/C
NBL	0	0	0		0	
NBT	1	1600	230	.14*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 16		. 13

194. Wells Rd \& A St

2025 Scenario 3 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	130	. 08
NBT	2	3200	390	. 14	880	.33*
NBR	0	0	50		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	840	.27*	580	. 18
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	150	.09*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	40		10	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 44		. 42

NON-COMMITTED
IMPROVEMENTS
92. Johnson \& Bristol

2025 Scenario $3 \mathrm{w} /$ Non-Committed Lanes						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	520	. 16	1000	. 31
NBR	f		190		1100	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	940	.30*	1170	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	20	.01*	280	.18*
EBR	1	1600	140	. 09	190	. 12
WBL	2	3200	1040	.33*	440	.14*
WBT	1	1600	270	. 17	160	. 10
WBR	d	1600	30	. 02	20	. 01
Right Turn Adjustment			EBR	.06*		

105. Wells \& Darling

2025 Scenario $3 \mathrm{w} /$ Non-Committed Lanes						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1260	. 26	2860	.60*
NBR	d	1600	70	. 04	170	. 11
SBL	2	3200	120	. 04	340	.11*
SBT	3	4800	2420	. $50 *$	1860	. 39
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	100		40	
WBL	2	3200	60	. 02	280	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	
TOTAL CAPACITY UTILIZATION				. 63		. 89

161. Victoria \& Valentine

2025 Scenario $3 \mathrm{w} /$ Non-Committed Lanes						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	210	.07*
NBT	3	4800	1880	. 40	2430	. 52
NBR	0	0	20		50	
SBL	1	1600	40	. 03	50	. 03
SBT	2	3200	1760	.55*	1630	.51*
SBR	f		1680		1170	
EBL	2.5		300		640	
EBT	0.5	4800	40	.07*	20	.14*
EBR	2	3200	400	. 13	640	. 20
WBL	0	0	20		20	
WBT	1	1600	10	.02*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment					EBR	.01*
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 72		. 76

SCENARIO 3 (ALTERNATIVE NETWORK)

1. Victoria \& Foothill

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	230	.14*
NBT	1	1600	20	. 01	70	. 04
NBR	1	1600	190	. 12	340	. 21
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	60	.04*	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	.01*	180	. 11
EBT	1	1600	290	. 18	450	.28*
EBR	1	1600	220	. 14	20	. 01
WBL	2	3200	440	. 14	250	.08*
WBT	1	1600	580	.36*	330	. 21
WBR	d	1600	10	. 01	20	. 01
Right Turn Adjustment					NBR	.01*
TOTAL CAPACITY UTILIZATION				. 50		. 52

3. Victoria \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	K HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	.21*	1100	.34*
NBT	2	3200	530	. 17	870	. 27
NBR	1	1600	150	. 09	220	. 14
SBL	1	1600	150	. 09	190	. 12
SBT	3	4800	700	.15*	520	.11*
SBR	d	1600	40	. 03	30	. 02
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	350	\{.15\}*	720	\{.23\}*
EBR	1.5		630		760	\{.22\}
WBL	2	3200	330	.10*	220	.07*
WBT	2	3200	590	. 18	330	. 10
WBR	d	1600	50	. 03	60	. 04
TOTAL CAPACITY UTILIZATION				. 61		. 75

2. Victoria \& Loma Vista

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	240	.15*
NBT	2	3200	260	. 08	530	. 17
NBR	d	1600	20	. 01	40	. 03
SBL	,	1600	20	. 01	20	. 01
SBT	2	3200	530	.17*	280	.09*
SBR	d	1600	100	. 06	20	. 01
EBL	0	0	80		30	
EBT	1	1600	30	.23*	30	.23*
EBR	0	0	260		300	
WBL	,	0	60	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	30	. 05
WBR	0	0	60		20	
TOTAL CAPACITY UTILIZATION				. 55		. 49

4. Victoria \& Woodland

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	.13*	60	. 04
NBT	3	4800	1410	. 31	2040	.46*
NBR	0	0	80		160	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	1710	.36*	1530	. 32
SBR	0	0	30		10	
EBL	0	0	10		30	
EBT	1	1600	10	.11*	10	.04*
EBR	0	0	150		30	
WBL	1.5		260		100	
WBT	0.5	3200	10	.09*	10	.04*
WBR	0		30		20	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 69		. 55

5. Victoria \& SR 126 SB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1340	. 22	2560	.41*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2440	.39*	1800	. 29
SBR	0	0	70		80	
EBL	1.5		220		160	
EBT	0.5	3200	190	.13*	120	.09*
EBR	1	1600	220	. 14	230	. 14
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	250	. 16	550	. 34
Right Turn Adjustment Multi Note: Assumes E/W Split Phasing				.04*	WBR	.34*
TOTAL CAPACITY UTILIZATION				. 56		. 84

7. Victoria \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	310	.10*	320	. 10
NBT	4	6400	1280	. 24	1580	.27*
NBR	0	0	260		140	
SBL	2	3200	340	. 11	340	.11*
SBT	4	6400	1680	.26*	1320	. 21
SBR	1	1600	310	. 19	380	. 24
EBL	2	3200	330	.10*	600	.19*
EBT	3	4800	370	. 09	910	. 21
EBR	0	0	70		110	
WBL	2	3200	230	. 07	300	. 09
WBT	3	4800	720	.15*	620	.13*
WBR	1	1600	170	. 11	320	. 20

TOTAL CAPACITY UTILIZATION
.61
.70

6. Victoria \& Thille

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	HOUR	PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1270	. 26	2370	.38*
NBR	0	0	480	. 30	50	
SBL	1	1600	170	. 11	40	.03*
SBT	,	6400	2060	.38*	1800	. 32
SBR	0	0	350		220	
EBL	1.5		240		320	
EBT	0.5	3200	30	.08*	10	.10*
EBR	1	1600	120	. 08	200	. 13
WBL	1	1600	30	. 02	110	. 07
WBT	1	1600	10	.02*	70	.09*
WBR	0	0	20		70	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 51		. 60

8. Victoria \& Ralston

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	260	.16*	410	.26*
NBT	4	6400	1420	. 23	1890	. 33
NBR	0	0	80		220	
SBL	1	1600	100	. 06	200	. 13
SBT	4	6400	1740	.29*	1760	.29*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	120	. 08
EBT	1	1600	120	.08*	240	.15*
EBR	1	1600	220	. 14	330	. 21
WBL	1	1600	240	.15*	140	.09*
WBT	1	1600	230	. 14	130	. 08
WBR	1	1600	190	. 12	120	. 08
TOTAL CAPACITY UTILIZATION				. 68		. 79

10. Victoria \& Moon

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	180	. 11
NBT	4	6400	1820	. 30	2180	.39*
NBR	0	0	100		320	
SBL	1	1600	40	. 03	120	.08*
SBT	4	6400	1900	.30*	1840	. 33
SBR	0	0	20		250	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	30	. 02	170	. 11
WBL	1	1600	320	.20*	150	.09*
WBT	1	1600	100	. 06	60	. 04
WBR	1	1600	60	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
. 57

15. Johnson \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	.10*	190	. 06
NBT	2	3200	160	. 10	230	.14*
NBR	0	0	170	. 11	390	. 24
SBL	1	1600	30	. 02	100	.06*
SBT	2	3200	170	.05*	200	. 06
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	30	. 02
EBT	3	4800	210	. 07	1050	.31*
EBR	0	0	160	. 10	450	
WBL	1	1600	380	. 24	350	.22*
WBT	3	4800	1370	.30*	520	. 12
WBR	0	0	60		40	

TOTAL CAPACITY UTILIZATION
.48
.73

14. Hill \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	100	.10*	60	.14*
NBR	0	0	10		140	
SBL	1	1600	50	.03*	250	.16*
SBT	1	1600	30	. 02	70	. 04
SBR	1	1600	70	. 04	240	. 15
EBL	1	1600	170	.11*	110	. 07
EBT	3	4800	500	. 12	1220	.29*
EBR	0	0	60		190	
WBL	1	1600	180	. 11	30	.02*
WBT	3	4800	1100	.29*	700	. 16
WBR	0	0	280		50	

TOTAL CAPACITY UTILIZATION
.53
18. Seaward \& US 101 NB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	620	.19*	620	.19*
NBT	2	3200	740	. 23	810	. 25
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	770	.24*	810	.25*
SBR	1	1600	240	. 15	250	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	280	.09*	360	.11*
WBT	0	0	0		0	
WBR	2	3200	480	. 15	480	. 15

TOTAL CAPACITY UTILIZATION
. 52
. 55

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		670		1050	
SBT	0.5	3200	50	.23*	70	.36*
SBR	0		10		40	
EBL	1	1600	120	.08*	160	.10*
EBT	2	3200	410	. 13	430	. 15
EBR	0	0	20		40	
WBL	1	1600	30	. 02	30	. 02
WBT	1	1600	390	.24*	590	.37*
WBR	1	1600	320	. 20	330	. 21
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 58 . 86

23. Mills \& Loma Vista

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		360	\{.13\}*	300	\{.10\}*
NBT	0.5	3200	70	. 13	20	. 10
NBR	1	1600	50	. 03	70	. 04
SBL	1	1600	40	. 03	20	. 01
SBT	1	1600	40	.04*	20	.03*
SBR	0	0	20		20	
EBL	1	1600	20	. 01	10	. 01
EBT	2	3200	320	.10*	600	.19*
EBR	d	1600	320	. 20	550	. 34
WBL	1	1600	90	.06*	80	.05*
WBT	2	3200	420	. 13	340	. 11
WBR	d	1600	60	. 04	20	. 01
Right Turn Adjustment					EBR	.08*
TOTAL CAPACITY UTILIZATION				. 33		. 45

20. Harbor \& Olivas Park

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	. 06	130	. 08
NBT	2	3200	1030	.32*	1240	.39*
NBR	1	1600	430	. 27	160	. 10
SBL	2	3200	460	.14*	440	.14*
SBT	2	3200	660	. 21	1370	. 43
SBR	1	1600	150	. 09	150	. 09
EBL	1	1600	80	.05*	230	. 14
EBT	2	3200	80	. 03	160	.05*
EBR	d	1600	60	. 04	130	. 08
WBL	1	1600	70	. 04	360	.23*
WBT	2	3200	60	.02*	150	. 05
WBR	f		380		480	
TOTAL CAPACITY UTILIZATION				. 53		. 81

24. Mills \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	. 13	150	. 09
NBT	1	1600	430	.27*	280	.18*
NBR	1	1600	250	. 16	430	. 27
SBL	1	1600	60	.04*	130	.08*
SBT	2	3200	410	. 13	520	. 16
SBR	1	1600	10	. 01	20	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	310	.10*	540	.17*
EBR	1	1600	80	. 05	130	. 08
WBL	2	3200	300	.09*	270	.08*
WBT	2	3200	390	. 14	410	. 14
WBR	0	0	70		50	
Right Turn Adjustment					NBR	.03*
TOTAL CAPACITY UTILIZATION				. 50		. 54

25. Mills \& Maple

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	1060	.36*	940	.34*
NBR	0	0	100		140	
SBL	1	1600	60	.04*	120	.08*
SBT	2	3200	800	. 27	1030	. 34
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	260		260	
WBT	1	1600	20	.18*	20	.18*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 58
.60

27. Mills \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	110		430	
NBT	1	1600	300	.26*	600	.64*
NBR	1	1600	290	. 18	260	. 16
SBL	2.5		850	. 27	1170	
SBT	0.5	4800	600	.41*	380	.33*
SBR	0		50		50	
EBL	2	3200	130	.04*	140	.04*
EBT	4	6400	1000	. 16	940	. 15
EBR	1	1600	240	. 15	360	. 23
WBL	2	3200	330	. 10	380	. 12
WBT	3	4800	1170	.24*	1240	.26*
WBR	2	3200	1280	. 40	1010	. 32
Note: Assumes N/S Split Phasing						

26. Mills \& Dean

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	110	.07*
NBT	2	3200	1280	.40*	1090	. 34
NBR	1	1600	300	. 19	410	. 26
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	930	. 30	1130	.36*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	190	. 12
WBL	2	3200	450	.14*	270	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.05*
TOTAL CAPACITY UTILIZATION				. 57		. 58

28. US 101 NB Ramps \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	630	.20*	340	.11*
SBT	0	0	0		0	
SBR	3	4800	1790	. 37	1250	. 26
EBL	0	0	0		0	
EBT	3	4800	1830	.38*	2170	.45*
EBR	f		310		210	
WBL	2	3200	400	.13*	450	.14*
WBT	3	4800	990	. 21	1390	. 29
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 71		. 70

29. SR 126 EB Ramps \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	300	. 09	530	.17*
EBT	3	4800	2240	.47*	2350	. 49
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1210	. 25	1940	.40*
WBR	f		130		340	

TOTAL CAPACITY UTILIZATION
.47
31. Donlon \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		170		520	
NBT	0	3200	0	.07*	0	.23*
NBR	0.5		40		220	
SBL	1.5		320		320	
SBT	0.5	3200	180	.16*	100	.13*
SBR	1	1600	170	. 11	200	. 13
EBL	0	0	0		,	
EBT	4	6400	1820	.28*	2240	.35*
EBR	d	1600	140	. 09	140	. 09
WBL	2	3200	90	.03*	250	.08*
WBT	3	4800	1030	. 21	1350	. 28
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		170	\{.06\}*	540	\{.17\}*
NBT	0.5	3200	10	. 06	10	. 17
NBR	1	1600	70	. 04	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	2000	.31*	2190	.34*
EBR	d	1600	240	. 15	130	. 08
WBL	2	3200	100	.03*	190	.06*
WBT	3	4800	1170	. 25	1730	. 36
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.42
. 59
32. Telephone \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline

			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	. 08	530	. 17
NBT	2	3200	340	.11*	1100	.34*
NBR	1	1600	120	. 08	360	. 23
SBL	1.5		240	. 15	480	
SBT	1.5	4800	1050	.33*	870	.28*
SBR	f		720		900	
EBL	2	3200	430	. 13	690	. 22
EBT	3	4800	1010	.21*	1360	.28*
EBR	f		330		440	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	,	0	0		0	
Note: Assumes N/S Split Phasing						

33. US 101 NB Ramps \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		690		580	
NBT	0.5	3200	20	.22*	100	.21*
NBR	1	1600	270	. 17	410	. 26
SBL	0.5		40		10	
SBT	0	3200	0	.12*	0	\{.01\}*
SBR	1.5		340		230	
EBL	1	1600	20	.01*	270	.17*
EBT	3	4800	790	. 16	1900	. 40
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1020	.21*	1440	.30*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 56 . 69

35. Saratoga \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	30	. 02
NBT	1	1600	10	.08*	50	.14*
NBR	0	0	110		180	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	40	. 03	40	. 03
SBR	1	1600	30	. 02	20	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	670	. 14	1560	.33*
EBR	d	1600	50	. 03	160	. 10
WBL	1	1600	50	. 03	80	.05*
WBT	3	4800	910	.19*	980	. 21
WBR	0	0	20		40	
TOTAL CAPACITY UTILIZATION				. 30		. 55

34. Portola \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	.08*	330	.10*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	70	. 04
EBL	1	1600	40	.03*	180	. 11
EBT	3	4800	650	. 14	1690	.35*
EBR	d	1600	230	. 14	310	. 19
WBL	1	1600	20	. 01	60	.04*
WBT	3	4800	860	.18*	940	. 20
WBR	0	0	20		30	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 35		. 50

38. Telephone \& Market

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	. 08	110	. 07
NBT	3	4800	660	.14*	970	.20*
NBR	d	1600	140	. 09	110	. 07
SBL	1	1600	430	.27*	160	.10*
SBT	3	4800	370	. 08	880	. 18
SBR	d	1600	170	. 11	180	. 11
EBL	1	1600	100	. 06	240	.15*
EBT	1	1600	310	.19*	240	. 15
EBR	1	1600	60	. 04	110	. 07
WBL	1	1600	60	.04*	210	. 13
WBT	1	1600	130	. 08	430	.27*
WBR	1	1600	110	. 07	520	. 33
TOTAL CAPACITY UTILIZATION				. 64		. 72

42. Telephone \& McGrath

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	120	.08*
NBT	3	4800	830	. 17	970	. 20
NBR	d	1600	300	. 19	100	. 06
SBL	1	1600	60	. 04	60	. 04
SBT	2	3200	310	.10*	1130	.35*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	40	.03*
EBR	1	1600	110	. 07	210	. 13
WBL	1	1600	70	.04*	320	.20*
WBT	1	1600	40	. 03	140	. 09
WBR	1	1600	50	. 03	130	. 08
Right Turn Adjustment					EBR	.04*
TOTAL CAPACITY UTILIZATION				. 29		. 70

46. Seaward \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	220	.14*
NBT	1	1600	170	. 11	170	. 11
NBR	1	1600	260	. 16	210	. 13
SBL	1	1600	40	. 03	80	. 05
SBT	1	1600	140	.09*	80	.05*
SBR	1	1600	190	. 12	80	. 05
EBL	1	1600	110	. 07	90	. 06
EBT	2	3200	720	.23*	650	.20*
EBR	1	1600	200	. 13	140	. 09
WBL	0.5		80		130	
WBT	1.5	3200	460	.18*	680	.28*
WBR	0		20		90	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	50	.04*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	250	.08*	80	.03*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		40		10	\{.01\}*
EBT	1.5	3200	760	.25*	760	. 24
EBR	0		10		10	
WBL	1	1600	10	.01*	40	. 03
WBT	2	3200	500	. 21	770	.28*
WBR	0	0	160		140	
TOTAL CAPACITY UTILIZATION				. 38		. 34

47. Main \& Loma Vista

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	310	.10*	450	.14*
NBR	f		40		180	
SBL	1	1600	570	.36*	380	.24*
SBT	2	3200	550	. 18	590	. 19
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	340	. 11	440	. 14
TOTAL CAPACITY UTILIZATION				. 53		. 51

49. Main \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290	. 18	650	
NBT	1.5	4800	590	.18*	740	.29*
NBR	f		170		130	
SBL	1.5		190	. 12	250	. 16
SBT	1.5	4800	500	.17*	760	.25*
SBR	0		30		40	
EBL	0	0	0		0	
EBT	2	3200	250	. 08	370	. 12
EBR	f		710		640	
WBL	0	0	0		0	
WBT	1.5	4800	310	.10*	430	\{.13\}*
WBR	1.5		120		220	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 45 . 67

51. Lemon Grove \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	20	.03*	20	.03*
NBR	0		140	. 09	50	
SBL	1.5		40		90	
SBT	0.5	3200	10	.02*	10	.03*
SBR	1	1600	60	. 04	60	. 04
EBL	1	1600	30	. 02	60	. 04
EBT	2	3200	1180	.37*	1250	.39*
EBR	d	1600	10	. 01	40	. 03
WBL	1	1600	100	.06*	70	.04*
WBT	3	4800	970	. 21	1470	. 32
WBR	0	0	60		60	
Right Turn Adjustment NBR .01*						
Note	ssume	N/S Split	Phasin			

50. Emma \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1090	.34*	1280	.40*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	80	.05*
WBT	3	4800	970	. 20	1610	. 34
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 42
.47

53. Kimball \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	260	.08*	500	.16*
SBT	0	0	0		0	
SBR	2	3200	1190	. 37	640	. 20
EBL	2	3200	260	.08*	940	.29*
EBT	3	4800	320	. 07	1010	. 21
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	910	.28*	650	.20*
WBR	1	1600	680	. 43	360	. 23
Right Turn Adjustment			Multi	.32*		
TOTAL CAPACITY UTILIZATION				. 76		. 65

55. Kimball \& SR 126 EB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HoUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1350	. 28	850	.18*
NBR	f		120		410	
SBL	1	1600	30	. 02	30	.02*
SBT	3	4800	1460	. $30 *$	860	. 18
SBR	0	0	0		0	
EBL	2	3200	130	.04*	380	.12*
EBT	0	0	10		0	
EBR	f		240		550	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
TOTA	CAPACII	UTILIZAT		. 34		. 32

56. Kimball \& SR 126 WB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	.18*	250	.08*
NBT	3	4800	820	. 17	770	. 16
NBR	d	1600	60	. 04	220	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	690	.14*	530	.11*
SBR	d	1600	220	. 14	110	. 07
EBL	1.5		40		40	
EBT	0.5	3200	10	.02*	10	.02*
EBR	1	1600	620	. 39	240	. 15
WBL	0	0	170		120	
WBT	1	1600	140	.19*	70	.12*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR $\quad .23 *$ EBR $\quad .07 *$Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 76		. 40
60. Ramelli \& Telephone						
2025 Scenario 3 (Alt. Net.) w/Baseline						
LANES CAPACITY			AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	170	. 11	530	. 33
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	340	. 08	1430	.31*
EBR	0	0	40		80	
WBL	1	1600	370	. 23	190	.12*
WBT	3	4800	1680	.35*	1060	. 22
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.22*
TOTAL CAPACITY UTILIZATION				. 38		. 67

61. Montgomery \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	270	.17*	70	.04*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	20	. 01	140	. 09
SBL	1	1600	20	. 01	10	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	90	. 06	30	. 02
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	510	. 16	790	.25*
EBR	d	1600	80	. 05	120	. 08
WBL	1	1600	90	. 06	70	.04*
WBT	2	3200	1120	.35*	680	. 21
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*	NBR	.01*
TOTAL CAPACITY UTILIZATION				. 58		. 36

65. Sanjon \& Thompson

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	550	.17*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	160	. 10
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	470	.24*	670	.31*
EBR	0	0	300		310	
WBL	1	1600	120	.08*	140	.09*
WBT	2	3200	510	. 16	760	. 24
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P		PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	150	. 09
NBT	1	1600	40	. 10	60	.19*
NBR	0	0	120		250	
SBL	1	1600	30	. 02	30	.02*
SBT	1	1600	80	.05*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	80	.05*	80	. 05
EBT	2	3200	330	. 10	780	.24*
EBR	d	1600	90	. 06	250	. 16
WBL	1	1600	150	. 09	220	.14*
WBT	2	3200	790	.25*	520	. 16
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 59

68. Seaward \& Thompson

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	voL	V/C
NBL	1	1600	140	. 09	270	.17*
NBT	2	3200	460	.14*	420	. 13
NBR	d	1600	160	. 10	130	. 08
SBL	1	1600	120	.08*	80	. 05
SBT	2	3200	350	. 11	270	.08*
SBR	d	1600	50	. 03	100	. 06
EBL	1	1600	90	. 06	90	. 06
EBT	2	3200	640	.23*	770	.27*
EBR	0	0	80		100	
WBL	2	3200	160	.05*	200	.06*
WBT	2	3200	420	. 13	760	. 24
WBR	1	1600	30	. 02	70	. 04
TOTAL CAPACITY UTILIZATION				. 50		. 58

71. Sanjon \& Harbor

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	150	.09*	390	.24*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	120	. 08
EBL	1	1600	60	.04*	110	.07*
EBT	1	1600	310	. 19	480	. 30
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	590	.37*
WBR	1	1600	490	. 31	240	. 15
Right Turn Adjustment			WBR	.08*		

TOTAL CAPACITY UTILIZATION . 37 . 68

77. Day \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	230	.07*	340	.11*
SBT	0	0	0		0	
SBR	1	1600	90	. 06	110	. 07
EBL	1	1600	110	.07*	60	. 04
EBT	2	3200	480	. 15	890	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	940	.29*	770	. 24
WBR	d	1600	350	. 22	230	. 14

75. Ashwood \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	. 03	40	. 03
NBT	1	1600	60	.04*	100	.06*
NBR	d	1600	60	. 04	70	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	50	. 03	80	. 05
SBR	1	1600	150	. 09	120	. 08
EBL	1	1600	80	.05*	170	. 11
EBT	2	3200	510	. 16	850	.27*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	560	.18*	590	. 18
WBR	d	1600	100	. 06	90	. 06
TOTAL CAPACITY UTILIZATION				. 31		. 48

85. Victoria \& Olivas Park

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	2	3200	820	.26*	660	.21*
NBT	3	4800	1860	. 39	1760	. 37
NBR	1	1600	490	. 31	430	. 27
SBL	2	3200	500	. 16	220	. 07
SBT	3	4800	1620	.34*	1700	.35*
SBR	f		170		200	
EBL	2	3200	310	. 10	380	. 12
EBT	2	3200	200	.06*	270	.08*
EBR	f		230		920	
WBL	1	1600	110	.07*	340	.21*
WBT	2	3200	70	. 02	430	. 13
WBR	f		130		210	

86. Telephone \& Olivas Park

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	520	.16*	900	. $28 *$
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	300	. 19	430	. 27
EBL	2	3200	380	.12*	340	.11*
EBT	2	3200	360	. 11	550	. 17
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	440	.14*	530	.17*
WBR	1	1600	600	. 38	740	. 46
Right Turn Adjustment			WBR	.12*	WBR	.08*

TOTAL CAPACITY UTILIZATION . 56 . 66
92. Johnson \& Bristol

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	520	. 16	990	. 31
NBR	f		190		1090	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	970	.31*	1150	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	20	.01*	280	.18*
EBR	1	1600	140	. 09	190	. 12
WBL	2	3200	1000	.31*	460	.14*
WBT	1	1600	260	. 16	170	. 11
WBR	d	1600	30	. 02	10	. 01
Right Turn Adjustment			EBR	.06*		

TOTAL CAPACITY UTILIZATION
.71 .74

91. Johnson \& Ralston

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	110	.07*	130	.08*
NBT	1	1600	470	. 29	770	. 48
NBR	d	1600	20	. 01	170	. 11
SBL	1	1600	40	. 03	60	. 04
SBT	1	1600	750	.47*	880	.55*
SBR	d	1600	90	. 06	50	. 03
EBL	1	1600	40	.03*	80	. 05
EBT	1	1600	100	. 06	230	.14*
EBR	d	1600	110	. 07	260	. 16
WBL	1	1600	110	. 07	60	.04*
WBT	1	1600	230	.14*	90	. 06
WBR	d	1600	90	. 06	50	. 03
TOTAL CAPACITY UTILIZATION				. 71		. 81

94. Johnson \& North Bank

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	70	.04*
NBT	3	4800	170	. 04	520	. 11
NBR	d	1600	20	. 01	190	. 12
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1550	.37*	1390	.33*
SBR	0	0	230		170	
EBL	2.5		440	.09*	1750	.36*
EBT	1.5	6400	70	. 04	350	. 22
EBR	1	1600	450	. 28	340	. 21
WBL	1.5		140		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.16*		
TOTAL CAPACITY UTILIZATION				. 71		. 81

95. Bristol \& Ramelli

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	. 01
NBT	1	1600	20	.02*	10	.02*
NBR	0	0	10		20	
SBL	1	1600	10	.01*	30	.02*
SBT	1	1600	20	. 01	30	. 02
SBR	1	1600	260	. 16	110	. 07
EBL	1	1600	10	.01*	150	.09*
EBT	2	3200	200	. 07	670	. 21
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	. 01
WBT	2	3200	890	.30*	380	.13*
WBR	0	0	70		30	
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 47		. 26

100. Saticoy \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	190	.12*	100	. 06
SBT	1	1600	110	. 07	140	.09*
SBR	1	1600	260	. 16	160	. 10
EBL	1	1600	110	.07*	180	.11*
EBT	2	3200	220	. 07	650	. 20
EBR	1	1600	100	. 06	180	. 11
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	330	.15*	470	.17*
WBR	0	0	140		60	

96. Montgomery \& North Bank

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	,	10		10	
SBL	1	1600	40	.03*	120	.08*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	370	. 23	170	. 11
EBL	1	1600	100	.06*	310	.19*
EBT	2	3200	110	. 03	390	. 12
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	470	.29*	270	.17*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 54		. 46

101. Saticoy \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P		PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	170		80	
NBT	1	1600	70	.18*	50	.10*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	20	. 01
EBT	1	1600	190	.17*	410	.35*
EBR	0	0	80		150	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	280	. 18	280	. 18
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 47		. 51

102. Wells \& Telegraph

| 2025 Scenario 3 (Alt. Net.) w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HoUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 170 | $.11^{*}$ | 250 | $.16^{*}$ |
| NBT | 1 | 1600 | 130 | .08 | 290 | .18 |
| NBR | 1 | 1600 | 60 | .04 | 260 | .16 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 280 | $.18^{*}$ | 200 | $.13^{\star}$ |
| SBR | 1 | 1600 | 40 | .03 | 30 | .02 |
| | | | | | | |
| EBL | 1 | 1600 | 20 | .01 | 40 | .03 |
| EBT | 1 | 1600 | 40 | $.16^{*}$ | 190 | $.25^{*}$ |
| EBR | 0 | 0 | 210 | | 210 | |
| WBL | 1 | 1600 | 340 | $.21^{*}$ | 130 | $.08^{*}$ |
| WBT | 1 | 1600 | 150 | .10 | 100 | .08 |
| WBR | 0 | 0 | 10 | | 20 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
.66
.62

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1270	. 26	2840	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	1	1600	120	. 08	340	.21*
SBT	3	4800	2420	.50*	1850	. 39
SBR	d	1600	10	. 01	10	. 01
EBL	0	0	80		40	
EBT	1	1600	30	.13*	40	.08*
EBR	0	0	100		40	
WBL	1	1600	60	.04*	280	.18*
WBT	1	1600	30	. 06	40	. 15
WBR	0	0	70		200	

104. Wells \& SR 126 EB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	890	. 19	1430	. 30
NBR	f		590		1570	
SBL	0	0	0		0	
SBT	3	4800	2650	.55*	1730	.36*
SBR	f		80		60	
EBL	1	1600	100	.06*	330	.21*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	610	. 38
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.17*
TOTAL CAPACITY UTILIZATION				. 66		. 74

106. Wells \& Telephone

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	420	. 13
NBT	3	4800	1250	. 26	2900	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2510	.52*	1940	. 40
SBR	1	1600	130	. 08	420	. 26
EBL	1.5		160	\{.05\}*	240	\{.08\}*
EBT	0.5	3200	-	. 05	0	. 08
EBR	2	3200	540	. 17	540	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 72		. 73

114. California \& Thompson

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		30	. 02
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	50	. 03	90	. 06
SBL	1.5		120		150	
SBT	1.5	4800	90	.05*	190	.07*
SBR	0		10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	850	.32*	950	.33*
EBR	0	0	170		100	
WBL	1	1600	70	.04*	80	.05*
WBT	2	3200	310	. 10	380	. 14
WBR	0	0	10		70	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM PK	Hour
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	80	. 05
SBT	1	1600	270	.18*	340	.23*
SBR	0	0	10		30	
EBL	1	1600	20	. 01	20	. 01
EBT	2	3200	560	.18*	660	.21*
EBR	f		400		540	
WBL	1	1600	200	.13*	200	.13*
WBT	2	3200	450	. 15	620	. 21
WBR	0	0	30		60	
TOTAL CAPACITY UTILIZATION				. 50		. 58

132. Ventura \& Stanley

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	330	.21*	300	.19*
NBT	1	1600	270	. 17	360	. 23
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	460	.29*	390	.24*
SBR	1	1600	530	. 33	370	. 23
EBL	1	1600	390	.24*	660	.41*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		530	.17*	540	.17*
SBT	0	4800	0		0	
SBR	1.5		70		20	
EBL	1	1600	120	.08*	530	.33*
EBT	2	3200	180	. 06	680	. 21
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	980	.31*	400	.13*
WBR	f		810		880	

TOTAL CAPACITY UTILIZATION
. 56
160. Victoria \& US 101 NB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	530	.17*
NBT	3	4800	1380	. 29	1930	. 40
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2640	.41*	2180	.34*
SBR	1	1600	130	. 08	350	. 22
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	800	.25*	640	.20*
WBT	0	0	0		0	
WBR	3	4800	890	. 19	1110	. 23

TOTAL CAPACITY UTILIZATION .82 .71

138. Johnson \& US 101 SB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	700	.44*
NBT	1	1600	140	. 09	510	. 32
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	640	.40*	400	.25*
SBR	f		1490		1600	
EBL	1	1600	110	.07*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	130	. 08	80	. 05
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

161. Victoria \& Valentine

2025 Scenario 3 (Alt. Net.) w/Baseline

			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	220	.07*
NBT	3	4800	1840	. 39	2280	. 49
NBR	0	0	20		50	
SBL	1	1600	40	. 03	50	. 03
SBT	2	3200	1680	.52*	1620	.51*
SBR	f		1660		1160	
EBL	2.5		300		640	
EBT	0.5	4800	40	.07*	20	.14*
EBR	1	1600	410	. 26	560	. 35
WBL	0	0	20		30	
WBT	1	1600	10	.02*	30	.04*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment			EBR	.11*	EBR	.14*
Note: Assumes E/W Split Phasing						
Note: Assumes Right-Turn Overlap for WBR EBR						

TOTAL CAPACITY UTILIZATION
.80
162. California \& Harbor

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	250	.16*	340	.21*
SBT	0	0	0		0	
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	240	.15*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	240	.12*
WBR	0	0	50		130	

TOTAL CAPACITY UTILIZATION
. 31
.38
164. Seaward \& Poli

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	170		190	
NBT	1	1600	0	.18*	0	.22*
NBR	0	0	120		160	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	340	.21*
EBR	d	1600	80	. 05	150	. 09
WBL	1	1600	230	.14*	90	.06*
WBT	1	1600	170	. 11	290	. 18
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 41
.49

163. Santa Clara \& Main

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	260	. 08	210	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	350	.11*	470	.15*
EBR	0	0	10		10	
WBL	1	1600	140	.09*	160	.10*
WBT	2	3200	360	. 12	480	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
. 29
165. Seaward \& Harbor

2025 Scenario 3 (Alt. Net.) w/Baseline

			AM PK		HOUR	PM PK		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C		
NBL	1	1600	40	.03	70	.04		
NBT	2	3200	360	$.13^{*}$	280	$.11^{*}$		
NBR	0	0	50		80			
SBL	2	3200	500	$.16^{*}$	420	$.13^{*}$		
SBT	2	3200	180	.06	300	.09		
SBR	1	1600	310	.19	470	.29		
EBL	2	3200	330	.10	360	.11		
EBT	2	3200	740	$.24^{*}$	1260	$.41^{*}$		
EBR	0	0	20		40			
WBL	1	1600	20	$.01^{*}$	40	$.03^{*}$		
WBT	2	3200	310	.10	500	.16		
WBR	2	3200	920	.29	1090	.34		
Right								
Turn Adjustment	WBR	$.02^{*}$						

166. College \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.08*
NBR	0	0	50		110	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	590	.20*	910	.31*
EBR	0	0	60		80	
WBL	1	1600	130	.08*	50	.03*
WBT	2	3200	720	. 23	690	. 22
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 34
169. Kimball \& Foothill

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	120	.08*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	200	. 26	390	.36*
EBR	0	0	210		190	
WBL	1	1600	60	. 04	30	.02*
WBT	1	1600	530	.33*	190	. 12
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 51
.46
168. Day \& Foothill

| 2025 | Scenario | 3 | (Alt. Net.) w/Baseline | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 210 | $.13^{*}$ | 210 | $.13^{*}$ |
| NBT | 1 | 1600 | 30 | .02 | 30 | .02 |
| NBR | 1 | 1600 | 170 | .11 | 270 | .17 |
| | | | | | | |
| SBL | 0 | 0 | 50 | | 50 | |
| SBT | 1 | 1600 | 20 | $.04^{*}$ | 20 | $.04^{*}$ |
| SBR | 1 | 1600 | 30 | .02 | 50 | .03 |
| | | | | | | |
| EBL | 1 | 1600 | 110 | .07 | 80 | .05 |
| EBT | 1 | 1600 | 450 | $.40^{*}$ | 470 | $.43^{*}$ |
| EBR | 0 | 0 | 190 | | 220 | |
| | | | | | | |
| WBL | 1 | 1600 | 260 | $.16^{*}$ | 210 | $.13^{*}$ |
| WBT | 1 | 1600 | 410 | .31 | 430 | .30 |
| WBR | 0 | 0 | 90 | | 50 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION . 73
.73
170. Petit \& Foothill

2025 Scenario 3 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	160	.10	30	.02
EBR	1	1600	40	.03		
					10	$\{.01\}^{*}$
WBL	0	0	10		180	.12
WBT	1	1600	480	$.31^{*}$	180	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	100		50	
NBT	1	1600	0	.08*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 12	320	.26*
EBR	0	0	50		90	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	430	.28*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 36
173. Victoria \& SR 126 WB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1210	. 29	2100	.51*
NBR	0	0	200		340	
SBL	0	0	0		0	
SBT	3	4800	1920	.44*	1500	. 33
SBR	0	0	190		80	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	600	. 38	400	. 25
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	150	. 09
Right Turn Adjustment			Multi	.40*	Multi	.20*
TOTAL CAPACITY UTILIZATION				. 84		. 71

172. Wells \& Foothill

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	210	.14*
EBR	1	1600	100	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 26

174. Petit \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline

			AM PK		HOUR	PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	70	$.04^{*}$	50	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	20	.01	
SBL	1	1600	30	.02	20	.01	
SBT	1	1600	20	$.03 *$	30	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	270	.08	590	.18	
EBR	1	1600	50	.03	90	.06	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	530	$.33 *$	320	$.20 *$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 41
. 27
175. Ventura \& North Bank

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	80		60	
SBT	1	1600	0	.10*	0	.12*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	550	. 34
EBT	2	3200	940	. 29	2470	.77*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	.21*	380	. 24
WBR	1	1600	50	. 03	20	. 01

TOTAL CAPACITY UTILIZATION
. 42
177. Wells \& SR 126 WB Ramps

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	. 17	1370	.43*
NBR	f		430		380	
SBL	0	0	0		0	
SBT	2	3200	1070	.33*	750	. 23
SBR	f		430		200	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1660		1040	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 33		. 49

176. Saticoy \& Darling

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	KOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	150	. 10	230	.15*
NBR	1	1600	110	. 07	30	. 02
SBL	0	0	50		10	\{.01\}*
SBT	1	1600	240	.18*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	60		60	
EBT	1	1600	70	.11*	60	.10*
EBR	0	0	40		40	
WBL	0	0	70	\{.04\}*	50	\{.03\}*
WBT	,	1600	20	. 08	70	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 34
. 29
178. SR-33 Ramps \& Stanley

2025 Scenario 3 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES	CAPACITY	VOL	V/C	VOL
	V/C			

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	710	.44	830	.52
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	280	.18	180	.11
EBR	0	0	0		0	
		0	0		0	
WBL	0	0	0	$.44^{*}$	910	$.57 *$
WBT	1	1600	700			
WBR	f		180		170	
Right Turn Adjustment	NBR	$.24^{*}$	NBR	$.17 *$		

179. SR-33 Ramps \& Shell

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	700		680	
SBT	1	1600	0	.46*	0	.44*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.49*	740	.53*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION
.96
.98

181. Ventura \& Ramona

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	50	. 03
NBT	1	1600	360	.24*	630	.41*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	70	.04*
SBT	1	1600	400	. 26	470	. 31
SBR	0	0	20		30	
EBL	0	0	20	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
180. Estates \& Telegraph

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	50	. 03
NBT	1	1600	10	. 04	10	.07*
NBR	0	0	60		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	810	.25*
EBR	d	1600	60	. 04	60	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	660	.21*	790	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 28
. 39
182. Olive \& Main St

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	600	.38*	450	.28*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	90	\{.06\}*	280	
EBT	1	1600	80	. 11	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	170	.11*	170	. 11
WBR	1	1600	200	. 13	450	. 28

TOTAL CAPACITY UTILIZATION
.56
56 . 61
190. Petit Av \& North Bank Dr

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	260	. 16	240	. 15
EBL	1	1600	60	.04*	280	.18*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	90	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.10*		
TOTAL CAPACITY UTILIZATION				. 20		. 26

192. Los Angeles Av \& North Bank

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1430	. 30	3110	.65*
NBR	d	1600	20	. 01	70	. 04
SBL	1	1600	110	. 07	170	.11*
SBT	3	4800	2800	.58*	2240	. 47
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	.10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	10	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 71		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	20		10	
SBL	1	1600	20	.01*	60	.04*
SBT	1	1600	10	. 02	30	. 04
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	.03*
EBT	2	3200	90	.03*	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	80	.03*
WBR	d	1600	60	. 04	140	. 09
Right Turn Adjustment			WBR	.01*	WBR	.03*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	230	.14*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 16		. 13

194. Wells Rd \& A St

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	390	. 14	860	.32*
NBR	0	0	50		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	840	.27*	580	. 18
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	150	.09*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 44		. 41

201. Mills \& B St

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	0	. 00	0	. 00
NBT	2	3200	1100	.34*	1210	.38*
NBR	1	1600	400	. 25	750	. 47
SBL	1	1600	340	.21*	270	.17*
SBT	2	3200	820	. 26	1360	. 43
SBR	1	1600	70	. 04	150	. 09
EBL	1	1600	70	. 04	120	. 08
EBT	1	1600	150	.09*	120	.08*
EBR	1	1600	0	. 00	0	. 00
WBL	2	3200	400	.13*	640	.20*
WBT	1	1600	80	. 05	150	. 09
WBR	1	1600	150	. 09	490	. 31

200. Harbor \& Mills

2025 Scenario 3 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	.17*	940	.29*
NBR	1	1600	370	. 23	210	. 13
SBL	1	1600	290	.18*	140	.09*
SBT	2	3200	590	. 18	850	. 27
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	50	.03*	420	.26*
WBT	0	0	0		0	
WBR	1	1600	50	. 03	280	. 18
Right Turn Adjustment			NBR	.04*		
TOTAL CAPACITY UTILIZATION				. 42		. 64

202. Telephone \& B St

2025 Scenario 3 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	50	. 03	240	.15*
NBT	2	3200	950	.30*	840	. 26
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	480	. 15	1170	.37*
SBR	1	1600	70	. 04	460	. 29
EBL	1	1600	300	.19*	210	.13*
EBT	0	0	0		0	
EBR	1	1600	390	. 24	180	. 11
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

NON-COMMITTED
IMPROVEMENTS

27. Mills \& Main

2025 Scenario 3 (Alt. Net.) w/Non-Committed Lan						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	110	. 07	430	.27*
NBT	2	3200	300	.09*	600	. 19
NBR	1	1600	290	. 18	260	. 16
SBL	2.5		850		1170	
SBT	1.5	6400	600	.23*	380	.25*
SBR	0		50		50	
EBL	2	3200	130	.04*	140	.04*
EBT	4	6400	1000	. 16	940	. 15
EBR	1	1600	240	. 15	360	. 23
WBL	2	3200	330	. 10	380	. 12
WBT	3	4800	1170	.24*	1240	.26*
WBR	2	3200	1280	. 40	1010	. 32
Note: Assumes N/S Split Phasing						

105. Wells \& Darling

2025 Scenario 3 (Alt. Net.) w/Non-Committed Lan						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1270	. 26	2840	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	2	3200	120	. 04	340	.11*
SBT	3	4800	2420	.50*	1850	. 39
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	100		40	
WBL	2	3200	60	. 02	280	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	

TOTAL CAPACITY UTILIZATION
.63

SCENARIO 4

1. Victoria \& Foothill

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	240	.15*
NBT	1	1600	20	. 01	70	. 04
NBR	1	1600	190	. 12	350	. 22
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	60	.04*	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	.01*	170	. 11
EBT	1	1600	300	. 19	460	.29*
EBR	1	1600	220	. 14	20	. 01
WBL	2	3200	450	. 14	260	.08*
WBT	1	1600	570	.36*	330	. 21
WBR	d	1600	10	. 01	20	. 01
Right Turn Adjustment					NBR	.01*

TOTAL CAPACITY UTILIZATION . 50 . 54

3. Victoria \& Telegraph

2025 Scenario 4 w/Baseline						
			AM PK	K HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	.21*	1140	.36*
NBT	2	3200	550	. 17	920	. 29
NBR	1	1600	150	. 09	210	. 13
SBL	1	1600	190	. 12	200	. 13
SBT	3	4800	710	.15*	570	.12*
SBR	d	1600	40	. 03	20	. 01
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	380	\{.16\}*	730	\{.23\}*
EBR	1.5		660		780	\{.22\}
WBL	2	3200	390	.12*	220	.07*
WBT	2	3200	600	. 19	350	. 11
WBR	d	1600	60	. 04	70	. 04

2. Victoria \& Loma Vista

2025 Scenario 4 w/Baseline						
			AM PK	K HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	190	.12*	260	.16*
NBT	2	3200	270	. 08	560	. 18
NBR	d	1600	10	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	540	.17*	300	.09*
SBR	d	1600	100	. 06	10	. 01
EBL	0	0	70		20	
EBT	1	1600	40	.25*	30	.24*
EBR	0	0	290		330	
WBL	0	0	70	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 11	30	. 05
WBR	0	0	60		20	
total capacity utilization				. 58		. 51

4. Victoria \& Woodland

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	220	.14*	60	. 04
NBT	3	4800	1420	. 31	2120	.48*
NBR	0	0	70		170	
SBL	1	1600	20	. 01	20	.01*
SBT	3	4800	1810	.38*	1590	. 33
SBR	0	0	30		10	
EBL	0	0	10		20	
EBT	1	1600	10	.11*	10	.04*
EBR	0	0	150		30	
WBL	1.5		250		100	
WBT	0.5	3200	10	.09*	10	.04*
WBR	0		20		20	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 72		. 57

5. Victoria \& SR 126 SB Ramps

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1380	. 22	2670	.43*
NBR	0	0	50		50	
SBL	0	0	0		0	
SBT	4	6400	2600	. 42 *	1900	. 31
SBR	0	0	80		80	
EBL	1.5		220	. 14	140	. 09
EBT	0.5	3200	230	.14*	180	.11*
EBR	1	1600	220	. 14	220	. 14
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	260	. 16	590	. 37
Right Turn Adjustment WBR				.01*	WBR	.37*

7. Victoria \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	330	. 10
NBT	4	6400	1310	. 25	1660	.29*
NBR	0	0	270		170	
SBL	2	3200	360	. 11	410	.13*
SBT	4	6400	1820	.28*	1330	. 21
SBR	1	1600	300	. 19	380	. 24
EBL	2	3200	310	.10*	620	.19*
EBT	3	4800	390	. 09	970	. 23
EBR	0	0	50		120	
WBL	2	3200	300	. 09	360	. 11
WBT	3	4800	750	.16*	760	.16*
WBR	1	1600	180	. 11	330	. 21

TOTAL CAPACITY UTILIZATION

6. Victoria \& Thille

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	70	. 04
NBT	4	6400	1320	. 28	2480	.40*
NBR	0	0	460	. 29	60	
SBL	1	1600	170	. 11	40	.03*
SBT	4	6400	2200	.40*	1900	. 33
SBR	0	0	370		210	
EBL	1.5		240		330	
EBT	0.5	3200	20	.08*	10	.11*
EBR	1	1600	130	. 08	200	. 13
WBL	1	1600	30	. 02	90	. 06
WBT	1	1600	10	.02*	90	.10*
WBR	0	0	20		70	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 53		. 64

8. Victoria \& Ralston

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	240	.15*	380	.24*
NBT	4	6400	1470	. 24	2020	. 35
NBR	0	0	70		220	
SBL	1	1600	100	. 06	200	. 13
SBT	4	6400	1910	. $32 *$	1850	.31*
SBR	0	0	120		120	
EBL	1	1600	40	. 03	120	. 08
EBT	1	1600	150	.09*	290	.18*
EBR	1	1600	220	. 14	310	. 19
WBL	1	1600	240	.15*	190	.12*
WBT	1	1600	250	. 16	170	. 11
WBR	1	1600	200	. 13	140	. 09
TOTA	CAPACIT	UTILIZAI		. 71		. 85

10. Victoria \& Moon

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1830	. 31	2250	.41*
NBR	0	0	150		370	
SBL	1	1600	50	. 03	120	.08*
SBT	4	6400	2040	.32*	1960	. 35
SBR	0	0	20		250	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	30	. 02	160	. 10
WBL	1	1600	330	.21*	210	.13*
WBT	1	1600	120	. 08	60	. 04
WBR	1	1600	70	. 04	60	. 04

TOTAL CAPACITY UTILIZATION
.60

15. Johnson \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	360	.11*	250	. 08
NBT	2	3200	170	. 11	220	.14*
NBR	0	0	300	. 19	430	. 27
SBL	1	1600	80	. 05	160	.10*
SBT	2	3200	150	.05*	210	. 07
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	. 03	40	. 03
EBT	3	4800	280	.09*	1330	.35*
EBR	0	0	170	. 11	360	
WBL	1	1600	480	.30*	530	.33*
WBT	3	4800	1420	. 31	600	. 14
WBR	0	0	70		90	

TOTAL CAPACITY UTILIZATION
.55
. 92

14. Hill \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	110	.11*	60	.17*
NBR	0	0	10		190	
SBL	1	1600	60	.04*	240	.15*
SBT	1	1600	40	. 03	70	. 04
SBR	1	1600	80	. 05	230	. 14
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	550	. 13	1320	.31*
EBR	0	0	80		160	
WBL	1	1600	130	. 08	40	.03*
WBT	3	4800	1210	.31*	790	. 18
WBR	0	0	290		90	

TOTAL CAPACITY UTILIZATION
. 57
.66
18. Seaward \& US 101 NB Ramps

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	540	.17*	600	.19*
NBT	2	3200	860	. 27	900	. 28
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	730	.23*	950	.30*
SBR	1	1600	240	. 15	250	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	390	.12*	390	.12*
WBT	0	0	0		0	
WBR	2	3200	380	. 12	450	. 14

TOTAL CAPACITY UTILIZATION
.52

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 4 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		630		1000	
SBT	0.5	3200	30	.21*	70	.35*
SBR	0		10		50	
EBL	1	1600	130	.08*	160	.10*
EBT	2	3200	390	. 13	400	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	570	.36*
WBR	1	1600	310	. 19	310	. 19
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	130	.08*
NBT	2	3200	930	.29*	1120	. 35
NBR	1	1600	380	. 24	190	. 12
SBL	2	3200	170	.05*	170	. 05
SBT	2	3200	730	. 23	1190	.37*
SBR	1	1600	140	. 09	110	. 07
EBL	1	1600	70	.04*	160	. 10
EBT	2	3200	140	. 04	210	.07*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	50	. 03	420	.26*
WBT	2	3200	110	.03*	150	. 05
WBR	f		50		380	

TOTAL CAPACITY UTILIZATION
.41
.78

24. Mills \& Telegraph

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM Pk	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	140	. 09
NBT	1	1600	410	.26*	250	.16*
NBR	1	1600	210	. 13	390	. 24
SBL	1	1600	60	.04*	140	.09*
SBT	2	3200	360	. 11	460	. 14
SBR	1	1600	10	. 01	20	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	340	.11*	530	.17*
EBR	1	1600	80	. 05	130	. 08
WBL	2	3200	270	.08*	220	.07*
WBT	2	3200	410	. 15	420	. 15
WBR	0	0	70		70	
Right Turn Adjustment					NBR	.03*
TOTAL CAPACITY UTILIZATION . 49				. 49		. 52

25. Mills \& Maple

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	990	.34*	830	.29*
NBR	0	0	100		100	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	720	. 24	890	. 30
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	220		210	
WBT	1	1600	20	.15*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 52 . 50

26. Mills \& Dean

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	100	.06*
NBT	2	3200	1220	.38*	940	. 29
NBR	1	1600	280	. 18	370	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	810	. 26	930	.30*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	220	. 14
WBL	2	3200	410	.13*	250	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.07*
TOTA	CAPACIT	UTILIZAT		. 54		. 53

28. US 101 NB Ramps \& Main

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	610	.19*	330	.10*
SBT	0	0	0		0	
SBR	3	4800	1700	. 35	1340	. 28
EBL	0	0	0		0	
EBT	3	4800	2270	.47*	2480	.52*
EBR	f		310		160	
WBL	2	3200	390	.12*	520	.16*
WBT	3	4800	1010	. 21	1800	. 38
WBR	0	0	0		0	
TOTA	CAPACIT	Y UTILIZAI		. 78		. 78

29. SR 126 EB Ramps \& Main

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	280	. 09	420	.13*
EBT	3	4800	2560	.53*	2660	. 55
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1210	. 25	2370	.49*
WBR	f		140		320	

TOTAL CAPACITY UTILIZATION
. 53
31. Donlon \& Main

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		560	
NBT	0	3200	0	.06*	0	.23*
NBR	0.5		40		170	
SBL	1.5		380		350	
SBT	0.5	3200	150	.17*	80	.13*
SBR	1	1600	180	. 11	210	. 13
EBL	0	0	0		0	
EBT	4	6400	1960	.31*	2380	.37*
EBR	d	1600	210	. 13	210	. 13
WBL	2	3200	110	.03*	250	.08*
WBT	3	4800	1060	. 22	1580	. 33
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	650	\{.21\}*
NBT	0.5	3200	10	. 06	10	. 21
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	2250	.35*	2380	.37*
EBR	d	1600	300	. 19	260	. 16
WBL	2	3200	100	.03*	180	.06*
WBT	3	4800	1180	. 25	2000	. 42
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.46

32. Telephone \& Main

2025 Scenario 4 w/Baseline

			AM PK		HOUR	PM PK		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C		
NBL	2	3200	250	.08	670	.21		
NBT	2	3200	250	$.08^{*}$	1080	$.34^{*}$		
NBR	1	1600	90	.06	290	.18		
SBL	1.5		260	.16	590			
SBT	1.5	4800	1000	$.31 *$	720	$.27^{*}$		
SBR	f		750		970			
EBL	2	3200	460	.14	760	.24		
EBT	3	4800	1080	$.23^{*}$	1390	$.29 *$		
EBR	f		410		460			
WBL	0	0	0		0			
WBT	0	0	0		0			
WBR	0	0	0		0			

Note: Assumes N/S Split Phasing
TOTAL CAPACITY UTILIZATION . 62
. 90

33. US 101 NB Ramps \& Telephone

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		680		530	
NBT	0.5	3200	30	.22*	80	.19*
NBR	1	1600	270	. 17	400	. 25
SBL	0.5		40		10	
SBT	0	3200	0	.12*	0	\{.01\}*
SBR	1.5		340		230	
EBL	1	1600	20	.01*	290	.18*
EBT	3	4800	740	. 15	1950	. 41
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1020	.21*	1530	.32*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						
TOTA	CAPACIT	UTILIZAT		. 56		. 70

35. Saratoga \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	. 04	20	. 01
NBT	1	1600	10	.08*	60	.15*
NBR	0	0	110		180	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	40	. 03	40	. 03
SBR	1	1600	30	. 02	20	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	630	. 13	1610	.34*
EBR	d	1600	60	. 04	180	. 11
WBL	1	1600	50	. 03	80	.05*
WBT	3	4800	930	.20*	1080	. 24
WBR	0	0	20		50	
TOTA	CAPACIT	Y UTILIZAT		. 31		. 57

34. Portola \& Telephone

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	260	.08*	320	.10*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	620	. 13	1760	.37*
EBR	d	1600	230	. 14	300	. 19
WBL	1	1600	20	. 01	60	.04*
WBT	3	4800	870	.19*	1040	. 23
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 36		. 52

38. Telephone \& Market

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	. 09	200	. 13
NBT	3	4800	540	.11*	890	.19*
NBR	d	1600	90	. 06	100	. 06
SBL	1	1600	490	.31*	160	.10*
SBT	3	4800	290	. 06	690	. 14
SBR	d	1600	170	. 11	160	. 10
EBL	1	1600	60	. 04	210	.13*
EBT	1	1600	270	.17*	240	. 15
EBR	1	1600	160	. 10	300	. 19
WBL	1	1600	50	.03*	170	. 11
WBT	1	1600	130	. 08	370	.23*
WBR	1	1600	110	. 07	610	. 38
Right Turn Adjustment					WBR	.07*
total capacity utilizarion				. 62		. 72

42. Telephone \& McGrath

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	230	.14*
NBT	3	4800	670	. 14	940	. 20
NBR	d	1600	280	. 18	90	. 06
SBL	1	1600	70	. 04	70	. 04
SBT	2	3200	320	.10*	1060	.33*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	70	.04*	30	.02*
EBR	1	1600	120	. 08	330	. 21
WBL	1	1600	60	.04*	290	.18*
WBT	1	1600	30	. 02	100	. 06
WBR	1	1600	60	. 04	160	. 10
Right Turn Adjustment					EBR	.08*
TOTAL CAPACITY UTILIZATION				. 29		. 75

46. Seaward \& Main

2025 Scenario 4 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	180	.11*
NBT	1	1600	150	. 09	180	. 11
NBR	1	1600	320	. 20	270	. 17
SBL	1	1600	40	. 03	70	. 04
SBT	1	1600	150	.09*	90	.06*
SBR	1	1600	180	. 11	80	. 05
EBL	1	1600	120	. 08	90	. 06
EBT	2	3200	730	.23*	670	.21*
EBR	1	1600	140	. 09	100	. 06
WBL	0.5		100		190	
WBT	1.5	3200	510	.20*	700	.30*
WBR	0		30		80	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	80	.03*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	750	.25*	750	. 24
EBR	0		10		10	
WBL	1	1600	10	.01*	50	. 03
WBT	2	3200	500	. 21	750	.28*
WBR	0	0	170		130	
TOTAL CAPACITY UTILIZATION				. 37		. 34

47. Main \& Loma Vista

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	340	.11*	470	.15*
NBR	f		40		160	
SBL	1	1600	600	.38*	410	.26*
SBT	2	3200	570	. 18	630	. 20
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	130	\{.08\}*
WBT	1	1600	30	. 05	40	. 11
WBR	2	3200	350	. 11	470	. 15
TOTA	CAPACI	Y UTILIZAT		. 56		. 54

49. Main \& Telegraph

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		300		550	
NBT	1.5	4800	580	.18*	720	.26*
NBR	f		140		90	
SBL	1.5		190	. 12	250	. 16
SBT	1.5	4800	480	.16*	640	.22*
SBR	0		40		50	
EBL	0	0	0		0	
EBT	2	3200	310	. 10	420	. 13
EBR	f		670		630	
WBL	0	0	0		0	
WBT	1.5	4800	340	.11*	480	.15*
WBR	1.5		120		190	

50. Emma \& Main

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1030	.32*	1150	.36*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	90	.06*
WBT	3	4800	940	. 20	1450	. 30
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 40
.44

53. Kimball \& Telephone

2025 Scenario 4 w/Baseline

| | | AM PK HOUR | PM PK HOUR |
| :--- | :--- | :--- | :--- | :--- |
| LANES CAPACITY | VOL | V/C | vOL |

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	500	$.16^{*}$	650	$.20^{*}$
SBT	0	0	0		0	
SBR	2	3200	1140	.36	640	.20
EBL	2	3200	330	$.10^{*}$	800	$.25^{*}$
EBT	3	4800	480	.10	1300	.27
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	1070	$.33^{*}$	930	$.29 *$
WBR	1	1600	790	.49	590	.37
Right Turn Adjustment	Multi	$.16^{*}$				
Wint						

TOTAL CAPACITY UTILIZATIOM
.75
55. Kimball \& SR 126 EB Ramps

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1490	.31*	920	. 19
NBR	f		150		420	
SBL	1	1600	30	.02*	20	. 01
SBT	3	4800	1550	. 32	940	.20*
SBR	0	0	0		0	
EBL	2	3200	130	.04*	430	.13*
EBT	0	0	10		0	
EBR	£		330		600	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

56. Kimball \& SR 126 WB Ramps

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	700	.22*	320	.10*
NBT	3	4800	850	. 18	820	. 17
NBR	d	1600	60	. 04	230	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	740	.15*	590	.12*
SBR	d	1600	190	. 12	100	. 06
EBL	1.5		40		40	
EBT	0.5	3200	10	.02*	10	.02*
EBR	1	1600	670	. 42	270	. 17
WBL	0	0	170		110	
WBT	1	1600	140	.19*	90	.13*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR Note: Assumes E/W Split Phasing				.23*	EBR	.07*
TOTAL CAPACITY UTILIZATION				. 81		. 44

60. Ramelli \& Telephone

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	120	.08*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	220	. 14	480	. 30
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	510	. 13	1620	.40*
EBR	0	0	130		280	
WBL	1	1600	350	. 22	240	.15*
WBT	3	4800	1800	.38*	1300	. 27
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.10*

61. Montgomery \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	330	.21*	150	.09*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	40	. 03	140	. 09
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	60	.04*	20	.01*
SBR	1	1600	90	. 06	40	. 03
EBL	1	1600	10	.01*	50	. 03
EBT	2	3200	570	. 18	810	.25*
EBR	d	1600	160	. 10	190	. 12
WBL	1	1600	160	. 10	110	.07*
WBT	2	3200	1100	.34*	750	. 23
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*		

TOTAL CAPACITY UTILIZATION . 61 . 42

65. Sanjon \& Thompson

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	520	.16*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	210	. 13
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	470	.23*	670	.30*
EBR	0	0	280		290	
WBL	1	1600	130	.08*	140	.09*
WBT	2	3200	520	. 16	750	. 23
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	140	. 09
NBT	1	1600	40	. 11	50	.20*
NBR	0	0	140		270	
SBL	1	1600	40	. 03	30	.02*
SBT	1	1600	60	.04*	50	. 03
SBR	1	1600	120	. 08	90	. 06
EBL	1	1600	90	.06*	90	. 06
EBT	2	3200	330	. 10	800	.25*
EBR	d	1600	90	. 06	270	. 17
WBL	1	1600	210	. 13	210	.13*
WBT	2	3200	800	.25*	580	. 18
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 60

68. Seaward \& Thompson

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	130	. 08	240	.15*
NBT	2	3200	440	.14*	460	. 14
NBR	d	1600	230	. 14	170	. 11
SBL	1	1600	100	.06*	60	. 04
SBT	2	3200	330	. 10	340	.11*
SBR	d	1600	50	. 03	70	. 04
EBL	1	1600	80	. 05	80	. 05
EBT	2	3200	660	.23*	760	.26*
EBR	0	0	70		80	
WBL	2	3200	200	.06*	280	.09*
WBT	2	3200	420	. 13	740	. 23
WBR	1	1600	40	. 03	70	. 04
TOTAL CAPACITY UTILIZATION				. 49		. 61

71. Sanjon \& Harbor

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	180	.11*	380	.24*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	260	. 16	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	590	.37*
WBR	1	1600	470	. 29	250	. 16
Right Turn Adjustment			WBR	.05*		
TOTAL CAPACITY UTILIZATION				. 36		. 69

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	230	.07*	360	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	490	. 15	910	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	960	. $30 *$	780	. 24
WBR	d	1600	320	. 20	260	. 16

75. Ashwood \& Telegraph

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	70	.04*
NBR	d	1600	40	. 03	60	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	50	. 03	60	. 04
SBR	1	1600	140	. 09	120	. 08
EBL	1	1600	80	.05*	160	. 10
EBT	2	3200	520	. 16	820	.26*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	530	.17*	570	. 18
WBR	d	1600	110	. 07	90	. 06
Right Turn Adjustment			SBR	.01*		
TOTAL CAPACITY UTILIZATION				. 30		. 45

85. Victoria \& Olivas Park

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	670	. 21	580	.18*
NBT	3	4800	1890	.39*	1830	. 38
NBR	1	1600	560	. 35	460	. 29
SBL	2	3200	520	.16*	220	. 07
SBT	3	4800	1520	. 32	1630	.34*
SBR	f		50		90	
EBL	2	3200	130	. 04	180	. 06
EBT	2	3200	160	.05*	230	.07*
EBR	f		190		960	
WBL	1	1600	130	.08*	370	.23*
WBT	2	3200	50	. 02	370	. 12
WBR	f		120		220	

86. Telephone \& Olivas Park

2025 Scenario 4 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	370	.12*	960	.30*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	160	. 10	680	. 43
EBL	2	3200	480	.15*	400	.13*
EBT	2	3200	220	. 07	290	. 09
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	170	.05*	270	.08*
WBR	1	1600	580	. 36	740	. 46
Right Turn Adjustment			WBR	.22*	Multi	.17*

TOTAL CAPACITY UTILIZATION . 56 . 70

2025 Scenario 4 w/Baseline						
			AM	Hour	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	70	.04*
NBT	2	3200	660	. 21	1090	. 34
NBR	f		350		1210	
SBL	1	1600	10	. 01	20	. 01
SBT	2	3200	1040	.33*	1150	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	20	. 01
EBT	1	1600	50	.03*	340	.21*
EBR	1	1600	150	. 09	190	. 12
WBL	2	3200	1170	.37*	740	.23*
WBT	1	1600	280	. 18	220	. 14
WBR	d	1600	50	. 03	30	. 02
Right Turn Adjustment			EBR	.04*		

TOTAL CAPACITY UTILIZATION
79
.85

91. Johnson \& Ralston

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	130	.08*
NBT	2	3200	630	. 20	810	. 25
NBR	d	1600	50	. 03	230	. 14
SBL	1	1600	50	. 03	60	. 04
SBT	2	3200	820	.26*	970	.30*
SBR	d	1600	80	. 05	50	. 03
EBL	1	1600	40	.03*	80	. 05
EBT	1	1600	140	. 09	310	.19*
EBR	d	1600	100	. 06	200	. 13
WBL	1	1600	120	. 08	80	.05*
WBT	1	1600	340	.21*	210	. 13
WBR	d	1600	100	. 06	90	. 06
TOTAL CAPACITY UTILIZATION				. 56		. 62

94. Johnson \& North Bank

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	60	.04*
NBT	3	4800	210	. 04	520	. 11
NBR	d	1600	40	. 03	300	. 19
SBL	1	1600	100	. 06	210	. 13
SBT	3	4800	1620	.39*	1480	.35*
SBR	0	0	230		180	
EBL	2.5		650	.14*	1780	.37*
EBT	1.5	6400	140	. 09	550	. 34
EBR	1	1600	410	. 26	300	. 19
WBL	1.5		290		440	
WBT	1.5	4800	210	.10*	260	.15*
WBR	1	1600	70	. 04	250	. 16
Right Turn Adjustment EBR .09*						
Note: Assumes E/W Split Phasing						
TOTA	CAPACIT	Y UTILIzAI		. 76		. 91

95. Bristol \& Ramelli

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	. 01
NBT	1	1600	20	.02*	10	.02*
NBR	0	0	10		20	
SBL	1	1600	20	.01*	70	.04*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	260	. 16	190	. 12
EBL	1	1600	10	.01*	60	. 04
EBT	2	3200	410	. 13	890	.28*
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	.01*
WBT	2	3200	1120	.37*	660	. 23
WBR	0	0	70		60	
Right Turn Adjustment			SBR	.13*	SBR	.02*
TOTAL CAPACITY UTILIZATION				. 54		. 37

100. Saticoy \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	190	.12*	100	. 06
SBT	1	1600	110	. 07	140	.09*
SBR	1	1600	280	. 18	170	. 11
EBL	1	1600	130	.08*	190	.12*
EBT	2	3200	260	. 08	710	. 22
EBR	1	1600	110	. 07	190	. 12
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	390	.16*	510	.18*
WBR	0	0	130		60	
TOTA	CAPACIT	UTILIZAT		. 49		. 48

96. Montgomery \& North Bank

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	50	.03*	110	.07*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	520	. 33	220	. 14
EBL	1	1600	140	.09*	330	.21*
EBT	2	3200	120	. 04	420	. 13
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	480	.30*	270	.17*
WBR	d	1600	230	. 14	80	. 05
Right Turn Adjustment			SBR	.21*		
TOTAL CAPACITY UTILIZATION				. 66		. 47

101. Saticoy \& Telegraph

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	190		70	
NBT	1	1600	70	.19*	50	.10*
NBR	0	0	50		40	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	20	. 01
EBT	1	1600	190	.17*	410	.35*
EBR	0	0	80		150	
WBL	1	1600	60	.04*	30	.02*
WBT	1	1600	250	. 16	270	. 17
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTA	CAPACI	Y UTILIZAT		. 49		. 51

102. Wells \& Telegraph

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	250	.16*
NBT	1	1600	130	. 08	290	. 18
NBR	1	1600	60	. 04	270	. 17
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	270	.17*	210	.13*
SBR	1	1600	50	. 03	20	. 01
EBL	1	1600	20	. 01	50	. 03
EBT	1	1600	40	.16*	190	.25*
EBR	0	0	220		210	
WBL	1	1600	320	.20*	130	.08*
WBT	1	1600	150	. 10	100	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.63
.62

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1240	. 26	2850	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	1	1600	130	. 08	350	.22*
SBT	3	4800	2420	. $50 *$	1840	. 38
SBR	d	1600	10	. 01	20	. 01
EBL	0	0	80		40	
EBT	1	1600	30	.13*	40	.08*
EBR	0	0	90		40	
WBL	1	1600	60	.04*	270	.17*
WBT	1	1600	30	. 06	40	. 16
WBR	0	0	70		210	

104. Wells \& SR 126 EB Ramps

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	860	. 18	1460	. 30
NBR	f		590		1560	
SBL	0	0	0		0	
SBT	3	4800	2660	.55*	1750	.36*
SBR	f		80		50	
EBL	1	1600	110	.07*	350	.22*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	610	. 38
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.04*	EBR	.16*
TOTA	CAPACIT	UTILIZAT		. 66		. 74

106. Wells \& Telephone

2025 Scenario 4 w/Baseline						
			AM PK	K Hour	PM P	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	370	.12*	470	. 15
NBT	3	4800	1230	. 26	2900	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2490	.52*	1930	. 40
SBR	1	1600	140	. 09	410	. 26
EBL	1.5		150	\{.05\}*	250	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	590	. 18	590	. 18
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 74		. 73

114. California \& Thompson

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		40	
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	50	. 03	80	. 05
SBL	1.5		120		170	
SBT	1.5	4800	80	.05*	150	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	830	.31*	920	.32*
EBR	0	0	150		110	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	330	. 11	380	. 14
WBR	0	0	10		60	

115. Chestnut \& Thompson

| 2025 | Scenario 4 w/Baseline | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 0 | 0 | 10 | $\{.01\}^{*}$ | 10 | $\{.01\}^{*}$ |
| NBT | 1 | 1600 | 10 | .02 | 10 | .02 |
| NBR | 0 | 0 | 10 | | 10 | |
| | | | | | | |
| SBL | 1 | 1600 | 40 | .03 | 80 | .05 |
| SBT | 1 | 1600 | 270 | $.18^{*}$ | 320 | $.22^{*}$ |
| SBR | 0 | 0 | 10 | | 30 | |
| | | | | | | |
| EBL | 1 | 1600 | 10 | .01 | 20 | .01 |
| EBT | 2 | 3200 | 550 | $.17 *$ | 660 | $.21^{*}$ |
| EBR | f | | 390 | | 530 | |
| | | | | | | |
| WBL | 1 | 1600 | 210 | $.13^{*}$ | 210 | $.13^{*}$ |
| WBT | 2 | 3200 | 460 | .15 | 620 | .22 |
| WBR | 0 | 0 | 30 | | 70 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
.49
. 57
132. Ventura \& Stanley

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	340	.21*	320	.20*
NBT	1	1600	270	. 17	350	. 22
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	470	.29*	380	.24*
SBR	1	1600	510	. 32	380	. 24
EBL	1	1600	390	.24*	680	.43*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	160	. 10
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		350	.11*	400	.13*
SBT	0	4800	0		0	
SBR	1.5		80	. 05	20	
EBL	1	1600	70	.04*	450	.28*
EBT	2	3200	240	. 08	780	. 24
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	990	.31*	400	.13*
WBR	f		850		950	

TOTAL CAPACITY UTILIZATION
.46
160. Victoria \& US 101 NB Ramps

2025 Scenario 4 w/Baseline						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	470	.15*
NBT	3	4800	1440	. 30	2040	. 43
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2810	.44*	2340	.37*
SBR	1	1600	150	. 09	390	. 24
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	730	.23*	510	.16*
WBT	0	0	0		0	
WBR	3	4800	910	. 19	1210	. 25
Right Turn Adjustment					WBR	.02*
TOTAL CAPACITY UTILIZATION				. 83		. 70

138. Johnson \& US 101 SB Ramps

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	680	.43*
NBT	1	1600	160	. 10	520	. 33
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	580	.36*	400	.25*
SBR	f		1700		1860	
EBL	1	1600	170	.11*	360	.23*
EBT	0	0	0		0	
EBR	1	1600	120	. 08	80	. 05
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 56
. 91
161. Victoria \& Valentine

2025 Scenario 4 w/Baseline

			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	200	.06*
NBT	3	4800	1700	. 36	2160	. 46
NBR	0	0	20		60	
SBL	1	1600	50	. 03	50	. 03
SBT	2	3200	1720	.54*	1580	.49*
SBR	f		1720		1240	
EBL	2.5		360		750	
EBT	0.5	4800	50	.09*	30	.16*
EBR	1	1600	220	. 14	410	. 26
WBL	0	0	20		20	
WBT	1	1600	10	.02*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment					EBR	.04*
Note: Assumes E/W Split Phasing						
Note: Assumes Right-Turn Overlap for WBR EBR						

TOTAL CAPACITY UTILIZATION . 73 . 78
162. California \& Harbor

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	220	.14*	320	.20*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	60	. 04
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 06	240	.11*
WBR	0	,	40		120	

TOTAL CAPACITY UTILIZATION
. 28
164. Seaward \& Poli

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		170	
NBT	1	1600	0	.18*	0	.21*
NBR	0	0	130		160	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	350	.22*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	230	.14*	100	.06*
WBT	1	1600	170	. 11	300	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.41
.49
163. Santa Clara \& Main

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	250	. 08	220	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	330	.11*	460	.15*
EBR	0	0	10		10	
WBL	1	1600	150	.09*	160	.10*
WBT	2	3200	360	. 12	480	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
. 29
165. Seaward \& Harbor

2025 Scenario 4 w/Baseline

166. College \& Telegraph

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.07*	0	.07*
NBR	0	0	70		90	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	570	.20*	890	.30*
EBR	0	0	60		70	
WBL	1	1600	100	.06*	50	.03*
WBT	2	3200	700	. 22	660	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 33
169. Kimball \& Foothill

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	290	.18*	120	.08*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	200	. 26	390	.36*
EBR	0	0	210		180	
WBL	1	1600	70	. 04	20	.01*
WBT	1	1600	530	.33*	200	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 51
.45
168. Day \& Foothill

| 2025 Scenario 4 w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 210 | $.13^{*}$ | 220 | $.14^{*}$ |
| NBT | 1 | 1600 | 30 | .02 | 30 | .02 |
| NBR | 1 | 1600 | 170 | .11 | 260 | .16 |
| | | | | | | |
| SBL | 0 | 0 | 50 | | 50 | |
| SBT | 1 | 1600 | 20 | $.04^{*}$ | 20 | $.04^{*}$ |
| SBR | 1 | 1600 | 30 | .02 | 50 | .03 |
| | | | | | | |
| EBL | 1 | 1600 | 110 | .07 | 80 | .05 |
| EBT | 1 | 1600 | 460 | $.41^{*}$ | 480 | $.44^{*}$ |
| EBR | 0 | 0 | 200 | | 220 | |
| | | | | | | |
| WBL | 1 | 1600 | 250 | $.16^{*}$ | 210 | $.13 *$ |
| WBT | 1 | 1600 | 410 | .31 | 430 | .30 |
| WBR | 0 | 0 | 90 | | 50 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION . 74
170. Petit \& Foothill

2025 Scenario 4 w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	160	.10	30	.02
EBR	1	1600	40	.03		
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	480	$.31^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario $4 \mathrm{w} /$ Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	110		60	
NBT	1	1600	0	.08*	0	.05*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	130	. 12	310	.25*
EBR	0	0	60		90	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	420	.28*	170	. 12
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 36 . 31
173. Victoria \& SR 126 WB Ramps

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1240	. 30	2190	.53*
NBR	0	0	200		350	
SBL	0	0	0		0	
SBT	3	4800	2030	.46*	1560	. 34
SBR	0	0	180		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	670	. 42	450	. 28
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	140	. 09
Right Turn Adjustment			Multi	.43*	Multi	.23*
TOTAL CAPACITY UTILIZATION				. 89		. 76

172. Wells \& Foothill

2025 Scenario 4 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	200	.13*
EBR	1	1600	90	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	50	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 25
174. Petit \& Telegraph

2025 Scenario 4 w/Baseline

			AM PK		HOUR	PM PK		HoUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C		
NBL	1	1600	80	$.05 *$	40	$.03^{*}$		
NBT	1	1600	20	.01	10	.01		
NBR	1	1600	10	.01	20	.01		
SBL	1	1600	30	.02	20	.01		
SBT	1	1600	20	$.03 *$	20	$.03^{*}$		
SBR	0	0	30		20			
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$		
EBT	2	3200	280	.09	590	.18		
EBR	1	1600	50	.03	90	.06		
WBL	1	1600	10	.01	10	.01		
WBT	1	1600	530	$.33 *$	310	$.19 *$		
WBR	1	1600	10	.01	30	.02		

TOTAL CAPACITY UTILIZATION . 42 . 26
175. Ventura \& North Bank

2025 Scenario 4 w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	90		60	
SBT	1	1600	0	.10*	0	.12*
SBR	0	0	70		130	
EBL	1	1600	160	.10*	500	. 31
EBT	2	3200	1220	. 38	2670	.83*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	440	.28*	470	. 29
WBR	1	1600	80	. 05	40	. 03

TOTAL CAPACITY UTILIZATION
. 48
177. Wells \& SR 126 WB Ramps

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	540	. 17	1390	.43*
NBR	f		410		400	
SBL	0	0	0		0	
SBT	2	3200	1060	.33*	750	. 23
SBR	f		430		210	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1680		1050	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTA	CAPACIT	UTILIZAT		. 33		. 49

176. Saticoy \& Darling

2025 Scenario 4 w/Baseline						
			AM PK	K HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	170	. 11	240	.16*
NBR	1	1600	110	. 07	30	. 02
SBL	0	0	60		10	\{.01\}*
SBT	1	1600	260	.20*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	60		50	
EBT	1	1600	80	.11*	60	.09*
EBR	0	0	40		40	
WBL	0	0	80	\{.05\}*	50	\{.03\}*
WBT	1	1600	20	. 08	70	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 37
. 29
178. SR-33 Ramps \& Stanley

2025 Scenario 4 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	700	.44	860	.54
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		180	.11
EBT	1	1600	280	.18	0	
EBR	0	0	0		0	
		0	0		0	
WBL	0	0	700	$.44 *$	930	$.58 *$
WBT	1	1600	190		170	
WBR	f					
Right Turn Adjustment	NBR	$.24 *$	NBR	$.19 *$		

179. SR-33 Ramps \& Shell

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	700		680	
SBT	1	1600	0	.46*	0	.44*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	110	. 08
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.49*	730	.53*
WBR	0	0	70		120	

TOTAL CAPACITY UTILIZATION
.96
181. Ventura \& Ramona

2025 Scenario 4 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	50	. 03
NBT	1	1600	370	.24*	650	.42*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	70	.04*
SBT	1	1600	390	. 26	490	. 33
SBR	0	0	20		30	
EBL	0	0	20	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 52
180. Estates \& Telegraph

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	50	. 03
NBT	1	1600	10	. 05	10	.07*
NBR	0	0	70		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	820	.26*
EBR	d	1600	60	. 04	60	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	670	.21*	790	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 29 .40
182. Olive \& Main St

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	590	.37*	470	.29*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	90	\{.06\}*	280	
EBT	1	1600	80	. 11	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	160	.11*	170	. 11
WBR	1	1600	190	. 12	450	. 28

TOTAL CAPACITY UTILIZATION
. 55
55 . 62
190. Petit Av \& North Bank Dr

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	30	.02*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	290	. 18	240	. 15
EBL	1	1600	60	.04*	330	.21*
EBT	2	3200	80	. 03	150	. 05
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	110	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 22		. 29

192. Los Angeles Av \& North Bank

2025 Scenario 4 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	220	. 14
NBT	3	4800	1470	. 31	3170	.66*
NBR	d	1600	30	. 02	70	. 04
SBL	1	1600	110	. 07	160	.10*
SBT	3	4800	2840	.59*	2280	. 48
SBR	d	1600	140	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	160	. 10	170	. 11
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	20	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.04*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 73		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	20		10	
SBL	1	1600	20	.01*	60	.04*
SBT	1	1600	10	. 02	40	. 04
SBR	0	0	20		30	
EBL	1	1600	20	.01*	40	.03*
EBT	2	3200	110	. 03	90	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	60	.02*	110	.03*
WBR	d	1600	60	. 04	160	. 10
Right Turn Adjustment			WBR	.01*	WBR	.04*
TOTAL CAPACITY UTILIZATION				. 08		. 16

193. Saticoy Av \& A St

2025 Scenario 4 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	260	.16*	140	. 09
NBR	1	1600	10	. 01	40	. 03
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	220	. 14	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	,	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTA	CAPACIT	Y UTILIzAT		. 18		. 13

194. Wells Rd \& A St

2025 Scenario 4 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	380	. 14	870	.33*
NBR	0	0	60		180	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	820	.26*	590	. 19
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	160	.10*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 44		. 42

NON-COMMITTED
IMPROVEMENTS

15. Johnson \& Telephone

2025 Scenario $4 \mathrm{w} /$ Non-Committed Lanes						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	360	.11*	250	. 08
NBT	2	3200	170	. 11	220	.14*
NBR	0	0	300	. 19	430	. 27
SBL	1	1600	80	. 05	160	.10*
SBT	2	3200	150	. $05 *$	210	. 07
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	. 03	40	. 03
EBT	3	4800	280	.06*	1330	.28*
EBR	1	1600	170	. 11	360	. 23
WBL	1	1600	480	. $30 *$	530	.33*
WBT	3	4800	1420	. 31	600	. 14
WBR	0	0	70		90	

TOTAL CAPACITY UTILIZATION . 52
.85
94. Johnson \& North Bank

2025 Scenario $4 \mathrm{w} /$ Non-Committed Lanes						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	60	.04*
NBT	3	4800	210	. 04	520	. 11
NBR	d	1600	40	. 03	300	. 19
SBL	1	1600	100	. 06	210	. 13
SBT	3	4800	1620	.34*	1480	.31*
SBR	1	1600	230	. 14	180	. 11
EBL	2.5		650	.14*	1780	.37*
EBT	1.5	6400	140	. 09	550	. 34
EBR	1	1600	410	. 26	300	. 19
WBL	1.5		290		440	
WBT	1.5	4800	210	.10*	260	.15*
WBR	1	1600	70	. 04	250	. 16
Right Turn Adjustment EBR .09*Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 71		. 87

105. Wells \& Darling

2025 Scenario $4 \mathrm{w} /$ Non-Committed Lanes						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1240	. 26	2850	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	2	3200	130	. 04	350	.11*
SBT	3	4800	2420	.50*	1840	. 38
SBR	d	1600	10	. 01	20	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	90		40	
WBL	2	3200	60	. 02	270	. 08
WBT	1	1600	30	.06*	40	.16*
WBR	0	0	70		210	

TOTAL CAPACITY UTILIZATION

SCENARIO 4 (ALTERNATIVE NETWORK)

1. Victoria \& Foothill

| 2025 Scenario 4 | (Alt. Net.) w/Baseline | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 150 | $.09 *$ | 240 | $.15^{*}$ |
| NBT | 1 | 1600 | 20 | .01 | 70 | .04 |
| NBR | 1 | 1600 | 190 | .12 | 320 | .20 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 60 | $.04 *$ | 20 | $.01^{*}$ |
| SBR | 1 | 1600 | 40 | .03 | 10 | .01 |
| | | | | | | |
| EBL | 1 | 1600 | 10 | $.01 *$ | 170 | .11 |
| EBT | 1 | 1600 | 300 | .19 | 470 | $.29 *$ |
| EBR | 1 | 1600 | 220 | .14 | 20 | .01 |
| | | | | | | |
| WBL | 2 | 3200 | 440 | .14 | 250 | $.08^{*}$ |
| WBT | 1 | 1600 | 570 | $.36^{*}$ | 330 | .21 |
| WBR | d | 1600 | 10 | .01 | 30 | .02 |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
. 50
. 53

3. Victoria \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	.21*	1160	.36*
NBT	2	3200	540	. 17	880	. 28
NBR	1	1600	150	. 09	230	. 14
SBL	1	1600	200	. 13	210	. 13
SBT	3	4800	710	.15*	530	.11*
SBR	d	1600	40	. 03	20	. 01
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	370	\{.16\}*	750	\{.23\}*
EBR	1.5		670		760	\{.21\}
WBL	2	3200	390	.12*	210	.07*
WBT	2	3200	610	. 19	340	. 11
WBR	d	1600	60	. 04	90	. 06

TOTAL CAPACITY UTILIZATION .64 .77

2. Victoria \& Loma Vista

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	190	.12*	270	.17*
NBT	2	3200	270	. 08	530	. 17
NBR	d	1600	10	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	540	.17*	280	.09*
SBR	d	1600	100	. 06	20	. 01
EBL	0	0	80		20	
EBT	1	1600	40	.26*	30	.24*
EBR	0	0	300		330	
WBL	0	0	70	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 11	30	. 05
WBR	0	0	60		20	

4. Victoria \& Woodland

2025 Scenario 4 (Alt. Net.) w/Baseline

			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	60	. 04
NBT	3	4800	1410	. 31	2120	.48*
NBR	0	0	70		170	
SBL	1	1600	20	. 01	20	.01*
SBT	3	4800	1800	.38*	1540	. 32
SBR	0	0	40		10	
EBL	0	0	20		20	
EBT	1	1600	10	.11*	10	.04*
EBR	0	0	140		30	
WBL	1.5		250		100	
WBT	0.5	3200	10	.09*	10	.04*
WBR	0		30		20	
Note: Assumes E/W Split Phasing						

5. Victoria \& SR 126 SB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1320	. 21	2540	.40*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2540	.41*	1810	. 30
SBR	0	0	100		90	
EBL	1.5		220		150	
EBT	0.5	3200	190	.13*	110	.08*
EBR	1	1600	220	. 14	230	. 14
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	260	. 16	560	. 35
Right Turn Adjustment Multi .02* WBR .35*Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 56		. 83

7. Victoria \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	310	.10*	330	. 10
NBT	4	6400	1250	. 24	1510	.26*
NBR	0	0	270		140	
SBL	2	3200	360	. 11	370	.12*
SBT	4	6400	1760	.28*	1280	. 20
SBR	1	1600	310	. 19	400	. 25
EBL	2	3200	320	.10*	630	.20*
EBT	3	4800	360	. 09	950	. 23
EBR	0	0	50		130	
WBL	2	3200	160	. 05	310	. 10
WBT	3	4800	720	.15*	650	.14*
WBR	1	1600	190	. 12	350	. 22

TOTAL CAPACITY UTILIZATION
.63
.72

6. Victoria \& Thille

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1260	. 26	2350	.38*
NBR	0	0	460	. 29	60	
SBL	1	1600	170	. 11	40	.03*
SBT	4	6400	2150	.39*	1820	. 32
SBR	0	0	360		200	
EBL	1.5		230		330	
EBT	0.5	3200	20	.08*	10	.11*
EBR	1	1600	130	. 08	200	. 13
WBL	1	1600	30	. 02	90	. 06
WBT	1	1600	10	.02*	90	.10*
WBR	0	0	20		70	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 52		. 62

8. Victoria \& Ralston

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	220	.14*	380	.24*
NBT	4	6400	1450	. 24	1850	. 33
NBR	0	0	60		230	
SBL	1	1600	110	. 07	200	. 13
SBT	4	6400	1740	.29*	1760	.29*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	110	. 07
EBT	1	1600	160	.10*	320	.20*
EBR	1	1600	210	. 13	300	. 19
WBL	1	1600	250	.16*	220	.14*
WBT	1	1600	280	. 18	170	. 11
WBR	1	1600	170	. 11	140	. 09
TOTA	CAPACIT	UTILIzAT		. 69		. 87

10. Victoria \& Moon

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1780	. 30	2090	.39*
NBR	0	0	150		420	
SBL	1	1600	30	. 02	110	.07*
SBT	4	6400	1900	.30*	1890	. 33
SBR	0	0	20		240	
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	70	.04*	80	.05*
EBR	1	1600	30	. 02	160	. 10
WBL	1	1600	330	.21*	200	.13*
WBT	1	1600	120	. 08	50	. 03
WBR	1	1600	70	. 04	40	. 03

TOTAL CAPACITY UTILIZATION
. 58

15. Johnson \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	.10*	190	. 06
NBT	2	3200	180	. 09	230	.13*
NBR	0	0	120		200	
SBL	1	1600	40	. 03	90	.06*
SBT	2	3200	170	.05*	200	. 06
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	40	. 03
EBT	3	4800	270	. 08	1110	.34*
EBR	0	0	180	. 11	510	
WBL	1	1600	120	. 08	200	.13*
WBT	3	4800	1300	.28*	590	. 13
WBR	0	0	60		50	

TOTAL CAPACITY UTILIZATION

14. Hill \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	90	.09*	60	.10*
NBR	0	0	10		80	
SBL	1	1600	60	.04*	260	.16*
SBT	1	1600	30	. 02	60	. 04
SBR	1	1600	60	. 04	240	. 15
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	560	. 13	1350	.30*
EBR	0	0	50		110	
WBL	1	1600	110	. 07	30	.02*
WBT	3	4800	1090	.29*	750	. 17
WBR	0	0	290		60	

TOTAL CAPACITY UTILIZATION
.53
. 58
18. Seaward \& US 101 NB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	540	.17*	600	.19*
NBT	2	3200	860	. 27	910	. 28
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	730	.23*	950	.30*
SBR	1	1600	240	. 15	250	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	380	.12*	390	.12*
WBT	0	0	0		0	
WBR	2	3200	380	. 12	450	. 14

TOTAL CAPACITY UTILIZATION
.52

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		620		1010	
SBT	0.5	3200	40	.21*	70	.35*
SBR	0		10		50	
EBL	1	1600	130	.08*	160	.10*
EBT	2	3200	380	. 13	400	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	570	.36*
WBR	1	1600	310	. 19	310	. 19
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	130	.08*
NBT	2	3200	930	.29*	1120	. 35
NBR	1	1600	390	. 24	190	. 12
SBL	2	3200	170	.05*	170	. 05
SBT	2	3200	720	. 23	1190	.37*
SBR	1	1600	140	. 09	110	. 07
EBL	1	1600	70	.04*	160	. 10
EBT	2	3200	140	. 04	210	.07*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	50	. 03	420	.26*
WBT	2	3200	110	.03*	150	. 05
WBR	f		50		370	
TOTAL CAPACITY UTILIZATION				. 41		. 78

24. Mills \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	140	. 09
NBT	1	1600	410	.26*	250	.16*
NBR	1	1600	210	. 13	370	. 23
SBL	1	1600	60	.04*	140	.09*
SBT	2	3200	360	. 11	450	. 14
SBR	1	1600	10	. 01	20	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	340	.11*	530	.17*
EBR	1	1600	70	. 04	130	. 08
WBL	2	3200	270	.08*	220	.07*
WBT	2	3200	410	. 15	420	. 15
WBR	0	0	70		70	
Right Turn Adjustment					NBR	.02*
TOTAL CAPACITY UTILIZATION . 49						. 51

25. Mills \& Maple

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	990	.34*	820	.29*
NBR	0	0	100		100	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	720	. 24	880	. 29
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	210		210	
WBT	1	1600	20	.14*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 51
. 50

27. Mills \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	30		30	
NBT	1	1600	70	.06*	80	.07*
NBR	1	1600	340	. 21	240	. 15
SBL	2.5		1180		1300	
SBT	0.5	4800	80	.27*	90	.29*
SBR	0		40		20	
EBL	2	3200	100	.03*	100	.03*
EBT	4	6400	1050	. 16	1080	. 17
EBR	1	1600	20	. 01	30	. 02
WBL	2	3200	170	. 05	370	. 12
WBT	3	4800	1110	.23*	1370	.29*
WBR	2	3200	1420	. 44	1380	. 43
Right Turn Adjustment Multi . 0 Note: Assumes N/S Split Phasing						

26. Mills \& Dean

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	140	.09*
NBT	2	3200	1220	.38*	930	. 29
NBR	1	1600	260	. 16	370	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	800	. 26	930	.30*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	220	. 14
WBL	2	3200	400	.13*	250	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.05*
TOTAL CAPACITY UTILIZATION				. 54		. 54

28. US 101 NB Ramps \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	580	.18*	320	.10*
SBT	0	0	0		0	
SBR	3	4800	1710	. 36	1360	. 28
EBL	0	0	0		0	
EBT	3	4800	2250	.47*	2480	.52*
EBR	f		310		150	
WBL	2	3200	390	.12*	520	.16*
WBT	3	4800	990	. 21	1750	. 36
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 77		. 78

29. SR 126 EB Ramps \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	300	. 09	460	.14*
EBT	3	4800	2500	.52*	2620	. 55
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1190	. 25	2320	.48*
WBR	f		130		300	

TOTAL CAPACITY UTILIZATION
. 52
31. Donlon \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		560	
NBT	0	3200	0	.06*	0	.23*
NBR	0.5		30		170	
SBL	1.5		390		350	
SBT	0.5	3200	140	.17*	80	.13*
SBR	1	1600	180	. 11	210	. 13
EBL	0	0	0		0	
EBT	4	6400	1900	.30*	2350	.37*
EBR	d	1600	220	. 14	210	. 13
WBL	2	3200	110	.03*	250	.08*
WBT	3	4800	1040	. 22	1550	. 32
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	640	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	2190	.34*	2340	.37*
EBR	d	1600	300	. 19	260	. 16
WBL	2	3200	100	.03*	180	.06*
WBT	3	4800	1150	. 24	1970	. 41
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.45
.65
32. Telephone \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline

			AM P	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	. 08	680	. 21
NBT	2	3200	250	.08*	1090	.34*
NBR	1	1600	90	. 06	290	. 18
SBL	1.5		250	. 16	520	
SBT	1.5	4800	1010	.32*	720	.26*
SBR	f		740		940	
EBL	2	3200	450	. 14	740	. 23
EBT	3	4800	1070	.22*	1390	.29*
EBR	f		390		460	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

33. US 101 NB Ramps \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		680		530	
NBT	0.5	3200	30	.22*	80	.19*
NBR	1	1600	260	. 16	400	. 25
SBL	0.5		40		10	
SBT	0	3200	0	.12*	0	\{.01\}*
SBR	1.5		340		250	
EBL	1	1600	20	.01*	300	.19*
EBT	3	4800	720	. 15	1920	. 40
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1010	.21*	1410	.30*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						

34. Portola \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	260	.08*	300	.09*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	610	. 13	1730	.36*
EBR	d	1600	210	. 13	310	. 19
WBL	1	1600	20	. 01	60	.04*
WBT	3	4800	840	.18*	940	. 20
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 35		. 50

38. Telephone \& Market

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	. 09	200	. 13
NBT	3	4800	540	.11*	900	.19*
NBR	d	1600	90	. 06	100	. 06
SBL	1	1600	500	.31*	160	.10*
SBT	3	4800	280	. 06	690	. 14
SBR	d	1600	170	. 11	160	. 10
EBL	1	1600	60	. 04	220	.14*
EBT	1	1600	270	.17*	240	. 15
EBR	1	1600	150	. 09	300	. 19
WBL	1	1600	50	.03*	170	. 11
WBT	1	1600	130	. 08	360	.23*
WBR	1	1600	120	. 08	590	. 37
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 62		. 72

42. Telephone \& McGrath

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	220	.14*
NBT	3	4800	670	. 14	940	. 20
NBR	d	1600	280	. 18	90	. 06
SBL	1	1600	70	. 04	70	. 04
SBT	2	3200	310	.10*	1060	.33*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	60	.04*	30	.02*
EBR	1	1600	120	. 08	330	. 21
WBL	1	1600	60	.04*	290	.18*
WBT	1	1600	30	. 02	100	. 06
WBR	1	1600	60	. 04	160	. 10
Right Turn Adjustment					EBR	.08*
TOTAL CAPACITY UTILIZATION				. 29		. 75

46. Seaward \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	170	.11*
NBT	1	1600	150	. 09	180	. 11
NBR	1	1600	320	. 20	270	. 17
SBL	1	1600	30	. 02	70	. 04
SBT	1	1600	150	.09*	90	.06*
SBR	1	1600	180	. 11	80	. 05
EBL	1	1600	120	. 08	90	. 06
EBT	2	3200	730	.23*	670	.21*
EBR	1	1600	140	. 09	100	. 06
WBL	0.5		100		190	
WBT	1.5	3200	510	.20*	700	.30*
WBR	0		30		80	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	80	.03*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	750	.25*	760	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	40	. 03
WBT	2	3200	500	. 21	750	.27*
WBR	0	0	180		120	
TOTAL CAPACITY UTILIZATION				. 37		. 33

47. Main \& Loma Vista

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	340	.11*	470	.15*
NBR	f		40		170	
SBL	1	1600	610	.38*	400	.25*
SBT	2	3200	570	. 18	630	. 20
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	130	\{.08\}*
WBT	1	1600	30	. 05	40	. 11
WBR	2	3200	350	. 11	460	. 14
TOTAL CAPACITY UTILIZATION				. 56		. 53

49. Main \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290	. 18	540	
NBT	1.5	4800	580	.18*	720	.26*
NBR	f		140		90	
SBL	1.5		190	. 12	250	. 16
SBT	1.5	4800	470	.16*	630	.21*
SBR	0		40		50	
EBL	0	0	1		0	
EBT	2	3200	310	. 10	420	. 13
EBR	f		670		630	
WBL	0	0	0		0	
WBT	1.5	4800	340	.11*	490	.15*
WBR	1.5		120		190	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 45 . 62

51. Lemon Grove \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		30		50	
NBT	1.5	3200	20	.03*	20	.03*
NBR	0		100	. 06	40	
SBL	1.5		30		70	
SBT	0.5	3200	10	.01*	10	.03*
SBR	1	1600	70	. 04	70	. 04
EBL	1	1600	40	. 03	60	. 04
EBT	2	3200	1050	.33*	1090	.34*
EBR	d	1600	60	. 04	70	. 04
WBL	1	1600	30	.02*	30	.02*
WBT	3	4800	920	. 20	1260	. 27
WBR	0	0	50		50	
Note: Assumes N/S Split Phasing						

50. Emma \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1030	.32*	1150	.36*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	90	.06*
WBT	3	4800	940	. 20	1440	. 30
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.40
.44

53. Kimball \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	100		30	
NBT	0	0	440		1090	
NBR	0	0	30		40	
SBL	2	3200	230	.07*	520	.16*
SBT	0	0	950		560	
SBR	2	3200	640	. 20	380	. 12
EBL	2	3200	130	.04*	200	.06*
EBT	3	4800	300	. 06	890	. 21
EBR	0	0	10		130	
WBL	0	0	80		40	
WBT	2	3200	740	.26*	670	.22*
WBR	1	1600	650	. 41	430	. 27
Right Turn Adjustment			Multi	.26*		
TOTAL CAPACITY UTILIZATION				. 63		. 44

55. Kimball \& SR 126 EB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1590	.33*	1170	.24*
NBR	f		150		490	
SBL	1	1600	20	.01*	20	.01*
SBT	3	4800	1640	. 34	1040	. 22
SBR	0	0	0		0	
EBL	2	3200	120	.04*	300	.09*
EBT	0	0	10		0	
EBR	£		410		690	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 38 . 34

56. Kimball \& SR 126 WB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	750	.23*	420	.13*
NBT	3	4800	900	. 19	840	. 18
NBR	d	1600	60	. 04	230	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	790	.16*	650	.14*
SBR	d	1600	180	. 11	100	. 06
EBL	1.5		40		40	
EBT	0.5	3200	10	.02*	10	.02*
EBR	1	1600	690	. 43	300	. 19
WBL	0	0	180		110	
WBT	1	1600	130	.19*	80	.12*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR Note: Assumes E/W Split Phasing				.24*	EBR	.07*
TOTAL CAPACITY UTILIZATION				. 84		. 48

60. Ramelli \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	70	.04*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	40	. 03	20	. 01
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	340	. 08	1220	.29*
EBR	0	0	60		170	
WBL	1	1600	150	. 09	130	.08*
WBT	3	4800	1300	.27*	930	. 20
WBR	0	0	0		10	
TOTA	CAPACIT	UTILIZAT		. 35		. 42

61. Montgomery \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	20	.01*
NBT	1	1600	90	. 06	20	. 01
NBR	d	1600	70	. 04	200	. 13
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	80	.05*	30	.02*
SBR	1	1600	80	. 05	20	. 01
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	540	. 17	870	.27*
EBR	d	1600	30	. 02	10	. 01
WBL	1	1600	240	. 15	90	.06*
WBT	2	3200	1050	.33*	700	. 22
WBR	1	1600	10	. 01	30	. 02
Right Turn Adjustment					NBR	.06*

TOTAL CAPACITY UTILIZATION . 52 . 42

65. Sanjon \& Thompson

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	520	.16*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	210	. 13
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	460	.23*	650	.29*
EBR	0	0	280		290	
WBL	1	1600	130	.08*	140	.09*
WBT	2	3200	520	. 16	750	. 23
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	190	.12*	150	. 09
NBT	1	1600	40	. 11	60	.19*
NBR	0	0	130		240	
SBL	1	1600	30	. 02	30	.02*
SBT	1	1600	80	.05*	50	. 03
SBR	1	1600	120	. 08	80	. 05
EBL	1	1600	100	.06*	100	. 06
EBT	2	3200	340	. 11	870	.27*
EBR	d	1600	80	. 05	250	. 16
WBL	1	1600	180	. 11	230	.14*
WBT	2	3200	840	.26*	560	. 18
WBR	a	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 49		. 62

68. Seaward \& Thompson

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	130	. 08	240	.15*
NBT	2	3200	440	.14*	460	. 14
NBR	d	1600	240	. 15	170	. 11
SBL	1	1600	100	.06*	60	. 04
SBT	2	3200	340	. 11	340	.11*
SBR	d	1600	50	. 03	70	. 04
EBL	1	1600	80	. 05	80	. 05
EBT	2	3200	650	.23*	750	.26*
EBR	0	0	70		90	
WBL	2	3200	200	.06*	290	.09*
WBT	2	3200	420	. 13	750	. 23
WBR	1	1600	40	. 03	70	. 04
TOTAL CAPACITY UTILIZATION				. 49		. 61

71. Sanjon \& Harbor

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	180	.11*	380	.24*
SBT	0	0	0		0	
SBR	1	1600	70	. 04	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	260	. 16	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	590	.37*
WBR	1	1600	470	. 29	250	. 16
Right Turn Adjustment			WBR	.05*		
TOTAL CAPACITY UTILIZATION				. 36		. 69

77. Day \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	240	.08*	340	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	500	. 16	910	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	950	.30*	780	. 24
WBR	d	1600	330	. 21	260	. 16

75. Ashwood \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	80	.05*
NBR	d	1600	40	. 03	70	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	40	. 03	60	. 04
SBR	1	1600	140	. 09	120	. 08
EBL	1	1600	80	.05*	150	. 09
EBT	2	3200	510	. 16	810	.25*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	520	.16*	570	. 18
WBR	d	1600	110	. 07	90	. 06
Right Turn Adjustment			SBR	.01*		
TOTAL CAPACITY UTILIZATION				. 29		. 45

85. Victoria \& Olivas Park

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	670	. 21	560	.18*
NBT	3	4800	1870	.39*	1810	. 38
NBR	1	1600	560	. 35	490	. 31
SBL	2	3200	490	.15*	200	. 06
SBT	3	4800	1510	. 31	1630	.34*
SBR	f		50		90	
EBL	2	3200	130	. 04	180	. 06
EBT	2	3200	160	.05*	220	.07*
EBR	f		190		950	
WBL	1	1600	140	.09*	380	.24*
WBT	2	3200	40	. 01	370	. 12
WBR	f		120		210	
TOTA	CAPACIT	UTILIZAI		. 68		. 83

86. Telephone \& Olivas Park

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	360	.11*	940	.29*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	160	. 10	680	. 43
EBL	2	3200	480	.15*	400	.13*
EBT	2	3200	220	. 07	290	. 09
EBR	d.	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	170	.05*	270	.08*
WBR	1	1600	580	. 36	720	. 45
Right Turn Adjustment			WBR	.23*	Multi	.18*
TOTAL CAPACITY UTILIZATION				. 56		. 70

92. Johnson \& Bristol

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	60	.04*
NBT	2	3200	380	. 12	620	. 19
NBR	f		80		730	
SBL	1	1600	30	. 02	10	. 01
SBT	2	3200	660	.21*	890	.28*
SBR	0	0	20		20	
EBL	1	1600	20	.01*	40	. 03
EBT	1	1600	50	. 03	270	.17*
EBR	1	1600	150	. 09	190	. 12
WBL	2	3200	450	. 14	240	.08*
WBT	1	1600	290	.18*	150	. 09
WBR	d	1600	20	. 01	70	. 04
Right Turn Adjustment			EBR	.03*		

91. Johnson \& Ralston

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	150	.09*
NBT	2	3200	440	. 14	580	. 18
NBR	d	1600	20	. 01	100	. 06
SBL	1	1600	40	. 03	60	. 04
SBT	2	3200	520	.16*	770	.24*
SBR	d	1600	80	. 05	50	. 03
EBL	1	1600	40	.03*	90	. 06
EBT	1	1600	120	. 08	370	.23*
EBR	d	1600	110	. 07	150	. 09
WBL	1	1600	160	. 10	70	.04*
WBT	1	1600	360	.23*	240	. 15
WBR	d	1600	90	. 06	40	. 03
TOTAL CAPACITY UTILIZATION				. 48		. 60

94. Johnson \& North Bank

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	60	.04*
NBT	3	4800	140	. 03	480	. 10
NBR	d	1600	50	. 03	370	. 23
SBL	1	1600	10	. 01	60	. 04
SBT	3	4800	680	.19*	940	.23*
SBR	0	0	240		170	
EBL	2.5		240	. 08	960	. 30
EBT	1.5	6400	450	.14*	1720	.54*
EBR	1	1600	460	. 29	280	. 18
WBL	1.5		1360	.43*	1200	.38*
WBT	1.5	4800	180	. 11	280	. 18
WBR	,	1600	20	. 01	100	. 06
Right Turn Adjustment			EBR	.10*		

95. Bristol \& Ramelli

2025 Scenario 4 (Alt. Net.) w/Baseline						
				Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	40	.03*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	310	. 19	180	. 11
EBL	1	1600	50	.03*	300	.19*
EBT	2	3200	70	. 03	220	. 07
EBR	0	0	10		10	
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	290	.11*	140	.06*
WBR	0	0	60		60	
Right Turn Adjustment			SBR	.14*		
TOTAL CAPACITY UTILIZATION				. 32		. 29

100. Saticoy \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	190	. 12	150	.09*
NBT	1	1600	200	.13*	140	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	180	.11*	90	. 06
SBT	1	1600	110	. 07	140	.09*
SBR	1	1600	280	. 18	170	. 11
EBL	1	1600	130	.08*	200	.13*
EBT	2	3200	220	. 07	690	. 22
EBR	1	1600	100	. 06	200	. 13
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	380	.16*	500	.18*
WBR	0	,	130		60	

96. Montgomery \& North Bank

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	50	.03*	150	.09*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	220	. 14	140	. 09
EBL	1	1600	100	.06*	150	.09*
EBT	2	3200	130	. 04	400	. 13
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	470	.29*	310	.19*
WBR	d	1600	220	. 14	80	. 05
Right Turn Adjustment			SBR	.04*		
TOTAL CAPACITY UTILIZATION				. 45		. 39

101. Saticoy \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HouR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	190		80	
NBT	1	1600	70	.19*	60	.11*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	40	.05*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	30	. 02
EBT	1	1600	190	.17*	410	.34*
EBR	0	0	80		140	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	250	. 16	270	. 17
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 48		. 52

102. Wells \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	250	.16*
NBT	1	1600	130	. 08	300	. 19
NBR	1	1600	60	. 04	250	. 16
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	270	.17*	210	.13*
SBR	1	1600	40	. 03	20	. 01
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	40	.16*	190	.25*
EBR	0	0	210		210	
WBL	1	1600	340	.21*	130	.08*
WBT	1	1600	140	. 09	100	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.64
.62

2025 Scenario 4 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1230	. 26	2830	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	1	1600	120	. 08	350	.22*
SBT	3	4800	2420	.50*	1820	. 38
SBR	d	1600	10	. 01	10	. 01
EBL	0	0	80		40	
EBT	1	1600	30	.13*	40	.08*
EBR	0	0	90		40	
WBL	1	1600	70	.04*	300	.19*
WBT	1	1600	30	. 06	40	. 14
WBR	0	0	60		190	

104. Wells \& SR 126 EB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	840	. 18	1420	. 30
NBR	f		590		1560	
SBL	0	0	0		0	
SBT	3	4800	2650	.55*	1730	.36*
SBR	f		80		50	
EBL	1	1600	110	.07*	350	.22*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	600	. 38
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.04*	EBR	.16*
TOTAL CAPACITY UTILIZATION				. 66		. 74

106. Wells \& Telephone

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	340	.11*	430	. 13
NBT	3	4800	1220	. 26	2890	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2490	.52*	1920	. 40
SBR	1	1600	150	. 09	430	. 27
EBL	1.5		150	\{.05\}*	250	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	540	. 17	560	. 18
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 73		. 73

114. California \& Thompson

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		30	. 02
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	50	. 03	90	. 06
SBL	1.5		120		170	
SBT	1.5	4800	80	.05*	160	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	830	.31*	910	.32*
EBR	0	0	150		110	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	330	. 11	390	. 14
WBR	0	0	10		70	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	40	. 03	80	. 05
SBT	1	1600	270	.18*	310	.21*
SBR	0	0	10		30	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	560	.18*	650	.20*
EBR	f		390		530	
WBL	1	1600	210	.13*	210	.13*
WBT	2	3200	460	. 15	620	. 21
WBR	0	0	30		60	
TOTAL CAPACITY UTILIZATION				. 50		. 55

132. Ventura \& Stanley

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P		PM P	hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	340	.21*	320	.20*
NBT	1	1600	270	. 17	350	. 22
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	470	.29*	380	.24*
SBR	1	1600	520	. 33	380	. 24
EBL	1	1600	390	.24*	680	.43*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	160	. 10
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 74		. 87

136. US 101 SB Ramps \& Valentine

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		360	.11*	400	.13*
SBT	0	4800	0		0	
SBR	1.5		90	. 06	20	
EBL	1	1600	90	.06*	460	.29*
EBT	2	3200	220	. 07	780	. 24
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	1010	.32*	400	.13*
WBR	f		810		890	

TOTAL CAPACITY UTILIZATION
.49
. 55
160. Victoria \& US 101 NB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HoUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	2	3200	500	.16*	530	.17*
NBT	3	4800	1430	. 30	1940	. 40
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2710	. $42 *$	2250	.35*
SBR	1	1600	120	. 08	380	. 24
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	750	.23*	520	.16*
WBT	0	0	0		0	
WBR	3	4800	890	. 19	1170	. 24

TOTAL CAPACITY UTILIZATION
.81
.68

138. Johnson \& US 101 SB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	660	.41*
NBT	1	1600	160	. 10	570	. 36
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	620	.39*	400	.25*
SBR	f		1840		2050	
EBL	1	1600	160	.10*	340	.21*
EBT	0	0	0		0	
EBR	1	1600	120	. 08	90	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

161. Victoria \& Valentine

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	200	.06*
NBT	3	4800	1680	. 35	2130	. 46
NBR	0	0	20		60	
SBL	1	1600	50	. 03	50	. 03
SBT	2	3200	1670	.52*	1560	.49*
SBR	f		1700		1180	
EBL	2.5		340		750	
EBT	0.5	4800	50	.08*	30	.16*
EBR	1	1600	230	. 14	410	. 26
WBL	0	0	20		20	
WBT	1	1600	10	.02*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment Note: Assumes E/W Split Phasing					EBR	.04*
Note	Assumes	Right-Tur	Overl	for W	EBR	

TOTAL CAPACITY UTILIZATION
162. California \& Harbor

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	220	.14*	320	.20*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	60	. 04
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 06	240	.11*
WBR	0	0	40		120	

TOTAL CAPACITY UTILIZATION
. 28
.36
164. Seaward \& Poli

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		170	
NBT	1	1600	0	.18*	0	.21*
NBR	0	0	130		160	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	360	.23*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	230	.14*	100	.06*
WBT	1	1600	170	. 11	300	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.41
.50
163. Santa Clara \& Main

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	250	. 08	220	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	330	.11*	460	.15*
EBR	0	0	10		10	
WBL	1	1600	150	.09*	160	.10*
WBT	2	3200	360	. 12	480	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
. 29
165. Seaward \& Harbor

2025 Scenario 4 (Alt. Net.) w/Baseline

	LANES	CAPACITY	AM PK Hour		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	70	. 04
NBT	2	3200	360	.13*	310	.12*
NBR	0	0	40		60	
SBL	2	3200	550	.17*	580	.18*
SBT	2	3200	200	. 06	320	. 10
SBR	1	1600	310	. 19	460	. 29
EBL	2	3200	400	.13*	360	. 11
EBT	2	3200	590	. 19	1170	.38*
EBR	0	0	20		50	
WBL	1	1600	20	. 01	30	.02*
WBT	2	3200	270	.08*	460	. 14
WBR	2	3200	900	. 28	1170	. 37
Right Turn Adjustment			WBR	.07*		
TOTAL	CAPACI	Y UTILIZAI		. 58		. 70

166. College \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.06*
NBR	0	0	60		80	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	570	.20*	870	.29*
EBR	0	0	60		70	
WBL	1	1600	100	.06*	50	.03*
WBT	2	3200	690	. 22	660	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 32
.38
169. Kimball \& Foothill

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	290	.18*	140	.09*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	30	. 02
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	200	. 26	400	.38*
EBR	0	0	220		200	
WBL	1	1600	70	. 04	20	.01*
WBT	1	1600	530	.33*	210	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 51
.48
168. Day \& Foothill

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	220	.14*
NBT	1	1600	30	. 02	30	. 02
NBR	1	1600	170	. 11	260	. 16
SBL	0	0	50		50	
SBT	1	1600	20	.04*	20	.04*
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	110	. 07	80	. 05
EBT	1	1600	460	.41*	480	.44*
EBR	0	0	200		220	
WBL	1	1600	250	.16*	210	.13*
WBT	1	1600	410	. 31	430	. 30
WBR	0	0	90		50	

TOTAL CAPACITY UTILIZATION
.74
170. Petit \& Foothill

2025 Scenario 4 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	150	.09	30	.02
EBR	1	1600	40	.03		
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	480	$.31^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	110		60	
NBT	1	1600	0	.08*	0	.05*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	130	. 12	310	.25*
EBR	0	0	60		90	
WBL	0	0	20		20	\{.01 \}*
WBT	1	1600	420	.28*	170	. 12
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 36
173. Victoria \& SR 126 WB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1190	. 29	2140	. $52 *$
NBR	0	0	200		340	
SBL	0	0	0		0	
SBT	3	4800	2000	.45*	1500	. 33
SBR	0	0	180		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	640	. 40	420	. 26
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	230	. 14	180	. 11
Right Turn Adjustment			Multi	. 42 *	Multi	.23*
TOTAL CAPACITY UTILIZATION				. 87		. 75

172. Wells \& Foothill

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	K HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	,	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	50	. 04	200	.13*
EBR	1	1600	90	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	50	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33 . 25

174. Petit \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	.04*	40	.03*
NBT	1	1600	10	. 01	10	. 01
NBR	1	1600	10	. 01	20	. 01
SBL	1	1600	30	. 02	20	. 01
SBT	1	1600	10	.03*	30	.03*
SBR	0	0	30		20	
EBL	1	1600	10	.01*	10	.01*
EBT	2	3200	280	. 09	580	. 18
EBR	1	1600	50	. 03	90	. 06
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	530	.33*	320	.20*
WBR	1	1600	10	. 01	30	. 02

TOTAL CAPACITY UTILIZATION . 41
. 27
175. Ventura \& North Bank

177. Wells \& SR 126 WB Ramps

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	. 17	1380	.43*
NBR	f		400		380	
SBL	0	0	0		0	
SBT	2	3200	1070	.33*	750	. 23
SBR	f		430		210	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1660		1040	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 33		. 49

176. Saticoy \& Darling

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	170	. 11	240	.16*
NBR	1	1600	110	. 07	30	. 02
SBL	0	0	60		10	\{.01\}*
SBT	1	1600	250	.19*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	60		60	
EBT	1	1600	80	.11*	60	.10*
EBR	0	0	40		40	
WBL	0	0	80	\{.05\}*	50	\{.03\}*
WBT	1	1600	20	. 08	60	. 08
WBR	0	0	30		10	

178. SR-33 Ramps \& Stanley

2025 Scenario 4 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK HOUR
LANES CAPACITY	VOL	V/C	VOL

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	700	.44	860	.54
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	280	.18	180	.11
EBR	0	0	0		0	
		0	0		0	
WBL	0	0	0	$.44^{*}$	930	$.58 *$
WBT	1	1600	700	.50		
WBR	f		190		170	
Right Turn Adjustment	NBR	$.24^{*}$	NBR	$.19 *$		

179. SR-33 Ramps \& Shell

2025 Scenario 4 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	700		680	
SBT	1	1600	0	.46*	0	.44*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	110	. 08
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.49*	730	.53*
WBR	0	0	70		120	

TOTAL CAPACITY UTILIZATION
.96
.98

181. Ventura \& Ramona

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	370	.24*	650	.42*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	80	.05*
SBT	1	1600	390	. 26	480	. 32
SBR	0	0	20		30	
EBL	0	0	20	\{.01 \}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 53
180. Estates \& Telegraph

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	50	. 03
NBT	1	1600	10	. 05	10	.07*
NBR	0	0	70		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	820	.26*
EBR	d	1600	60	. 04	60	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	660	.21*	790	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 29 .40
182. Olive \& Main St

TOTAL CAPACITY UTILIZATION
. 55
. 62
190. Petit Av \& North Bank Dr

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	30	.02*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	280	. 18	270	. 17
EBL	1	1600	90	.06*	320	.20*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	100	.03*
WBR	d	1600	60	. 04	40	. 03
Right Turn Adjustment			SBR	.11*		
TOTAL CAPACITY UTILIZATION				. 22		. 28

192. Los Angeles Av \& North Bank

2025 Scenario 4 (Alt. Net.) w/Baseline						
				HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1430	. 30	3120	.65*
NBR	d	1600	30	. 02	70	. 04
SBL	1	1600	120	. 08	160	.10*
SBT	3	4800	2790	.58*	2240	. 47
SBR	d	1600	140	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	. 10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	20	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 71		. 85

191. Saticoy Av \& North Bank Dr

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P		PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	.01*
NBT	1	1600	30	.03*	20	. 02
NBR	0	0	20		10	
SBL	1	1600	20	.01*	50	. 03
SBT	,	1600	10	. 02	40	.04*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	30	.02*
EBT	2	3200	90	.03*	90	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	90	.03*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.04*
TOTAL CAPACITY UTILIZATION				. 08		. 14

193. Saticoy Av \& A St

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	260	.16*	150	. 09
NBR	1	1600	10	. 01	40	. 03
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	180	.11*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 18		. 12

194. Wells Rd \& A St

2025 Scenario 4 (Alt. Net.) w/Baseline						
				HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	380	. 14	850	.32*
NBR	0	0	60		180	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	840	.27*	590	. 19
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	160	.10*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.05*		

TOTAL CAPACITY UTILIZATION . 45 . 41

197. Kimball \& Ralston

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	. 01
NBT	3	4800	380	. 08	740	.15*
NBR	1	1600	80	. 05	100	. 06
SBL	1	1600	0	. 00	0	. 00
SBT	3	4800	690	.14*	480	. 10
SBR	1	1600	250	. 16	150	. 09
EBL	1	1600	10	.01*	280	.18*
EBT	1	1600	50	. 03	280	. 18
EBR	1	1600	40	. 03	80	. 05
WBL	1	1600	0	. 00	0	. 00
WBT	2	3200	280	.09*	70	.02*
WBR	1	1600	10	. 01	80	. 05
Right Turn Adjustment			SBR	.01*	WBR	.03*
TOTAL CAPACITY UTILIZATION				. 26		. 38

196. Ramelli \& Ralston

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	.01*	10	. 01
NBT	1	1600	30	. 07	90	.29*
NBR	0	0	80		370	
SBL	1	1600	10	. 01	10	.01*
SBT	1	1600	280	.20*	170	. 15
SBR	0	0	40		70	
EBL	1	1600	10	.01*	30	. 02
EBT	1	1600	120	. 09	330	.26*
EBR	0	,	30		90	
WBL	1	1600	70	. 04	10	.01*
WBT	1	1600	390	.26*	170	. 11
WBR	0	0	20		10	
TOTAL CAPACITY UTILIZATION				. 48		. 57

198. Montgomery \& Ralston

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	0	. 00
NBT	2	3200	120	. 06	170	.09*
NBR	0	0	60		120	
SBL	1	1600	0	. 00	40	.03*
SBT	2	3200	70	.04*	70	. 03
SBR	0	0	150	. 09	30	
EBL	1	1600	10	.01*	110	. 07
EBT	1	1600	30	. 03	100	.08*
EBR	0	0	10		30	
WBL	1	1600	120	. 08	60	.04*
WBT	1	1600	110	.14*	40	. 04
WBR	0	0	110		20	
Right Turn Adjustment			SBR	.04*		
TOTAL CAPACITY UTILIZATION				. 25		. 24

199. Kimball \& North Bank

2025 Scenario 4 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	40	.03*
SBT	0	0	0		0	
SBR	1	1600	680	. 43	470	. 29
EBL	1	1600	310	.19*	740	.46*
EBT	2	3200	260	. 08	780	. 24
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	690	.23*	420	.15*
WBR	0	0	40		50	
Right Turn Adjustment			SBR	.26*		
TOTAL CAPACITY UTILIZATION				. 71		. 64

NON-COMMITTED
IMPROVEMENTS
94. Johnson \& North Bank

2025 Scenario 4 (Alt. Net.) w/Non-Committed Lan						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	.06*	60	.04*
NBT	3	4800	140	. 03	480	. 10
NBR	d	1600	50	. 03	370	. 23
SBL	1	1600	10	. 01	60	. 04
SBT	3	4800	680	.19*	940	.23*
SBR	0	0	240		170	
EBL	2	3200	240	. 08	960	. 30
EBT	3	4800	450	.09*	1720	.36*
EBR	1	1600	460	. 29	280	. 18
WBL	3	4800	1360	.28*	1200	.25*
WBT	2	3200	180	. 06	280	. 12
WBR	0	0	20		100	
Right Turn Adjustment			EBR	.15*		

105. Wells \& Darling

2025 Scenario 4 (Alt. Net.) w/Non-Committed Lan						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1230	. 26	2830	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	2	3200	120	. 04	350	.11*
SBT	3	4800	2420	. $50 *$	1820	. 38
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	90		40	
WBL	2	3200	70	. 02	300	. 09
WBT	1	1600	30	.06*	40	.14*
WBR	0	0	60		190	
TOTAL CAPACITY UTILIZATION				. 63		. 87

175. Ventura \& North Bank

2025 Scenario 4 (Alt. Net.) w/Non-Committed Lan						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	30		30	
SBT	1	1600	0	.06*	0	.10*
SBR	0	0	70		130	
EBL	1	1600	160	.10*	470	. 29
EBT	3	4800	1290	. 27	3060	.64*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	490	.31*	480	. 30
WBR	1	1600	50	. 03	30	. 02
TOTAL CAPACITY UTILIZATION				. 47		. 74

SCENARIO 5

1. Victoria \& Foothill

2025 Scenario 5 w/Baseline						
			AM PK HoUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	.09*	240	.15*
NBT	1	1600	20	. 01	70	. 04
NBR	1	1600	190	. 12	330	. 21
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	60	. $04 *$	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	. 01 *	180	. 11
EBT	1	1600	300	. 19	460	.29*
EBR	1	1600	220	. 14	20	. 01
WBL	2	3200	450	. 14	240	.08*
WBT	1	1600	560	.35*	330	. 21
WBR	d	1600	10	. 01	20	. 01

TOTAL CAPACITY UTILIZATION
. 49
. 53

3. Victoria \& Telegraph

2025 Scenario 5 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	670	.21*	1150	.36*
NBT	2	3200	540	. 17	890	. 28
NBR	1	1600	140	. 09	210	. 13
SBL	1	1600	150	. 09	200	. 13
SBT	3	4800	720	.15*	540	.11*
SBR	d	1600	40	. 03	20	. 01
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	350	\{.16\}*	710	\{.22\}*
EBR	1.5		690		780	\{.22\}
WBL	2	3200	340	.11*	220	.07*
WBT	2	3200	580	. 18	340	. 11
WBR	d	1600	50	. 03	60	. 04

TOTAL CAPACITY UTILIZATION .63 .76

2. Victoria \& Loma Vista

2025 Scenario 5 w/Baseline						
			AM PK	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	260	.16*
NBT	2	3200	270	. 08	540	. 17
NBR	d	1600	20	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	530	.17*	280	.09*
SBR	d	1600	100	. 06	10	. 01
EBL	0	0	70		20	
EBT	1	1600	40	.24*	30	.23*
EBR	0	0	270		320	
WBL	0	0	60	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	30	. 05
WBR	0	0	60		20	

TOTAL CAPACITY UTILIZATION . 56 . 50
4. Victoria \& Woodland

2025 Scenario 5 w/Baseline

5. Victoria \& SR 126 SB Ramps

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1380	. 22	2630	.42*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2530	.41*	1830	. 30
SBR	0	0	70		90	
EBL	1.5		230		160	
EBT	0.5	3200	190	.13*	130	.09*
EBR	1	1600	250	. 16	240	. 15
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	250	. 16	560	. 35
Right Turn Adjustment Multi Note: Assumes E/W Split Phasing				.05*	WBR	. $35 *$
TOTAL	CAPACIT	Y UTILIzATI		. 59		. 86

7. Victoria \& Telephone

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	320	. 10
NBT	4	6400	1300	. 25	1580	.27*
NBR	0	0	270		130	
SBL	2	3200	360	. 11	350	.11*
SBT	4	6400	1760	.28*	1360	. 21
SBR	1	1600	320	. 20	360	. 23
EBL	2	3200	320	.10*	660	.21*
EBT	3	4800	330	. 08	860	. 20
EBR	0	0	70		110	
WBL	2	3200	250	. 08	310	. 10
WBT	3	4800	700	.15*	610	.13*
WBR	1	1600	180	. 11	320	. 20

6. Victoria \& Thille

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1310	. 27	2420	.39*
NBR	0	0	450	. 28	60	
SBL	1	1600	180	. 11	40	.03*
SBT	4	6400	2160	.39*	1830	. 32
SBR	0	0	360		230	
EBL	1.5		240		350	
EBT	0.5	3200	30	.08*	10	.11*
EBR	1	1600	120	. 08	200	. 13
WBL	1	1600	30	. 02	110	. 07
WBT	1	1600	10	.02*	70	.09*
WBR	0	0	20		80	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 52		. 62

8. Victoria \& Ralston

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	410	.26*
NBT	4	6400	1460	. 24	1880	. 33
NBR	0	0	70		220	
SBL	1	1600	100	. 06	210	. 13
SBT	4	6400	1830	. $30 *$	1810	.30*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	130	. 08
EBT	1	1600	110	.07*	240	.15*
EBR	1	1600	220	. 14	330	. 21
WBL	1	1600	220	.14*	130	.08*
WBT	1	1600	230	. 14	130	. 08
WBR	1	1600	190	. 12	120	. 08
TOTA	CAPACIT	Y UTILIzAT		. 67		. 79

10. Victoria \& Moon

2025 Scenario 5 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1840	. 30	2160	.39*
NBR	0	0	100		340	
SBL	1	1600	50	. 03	120	.08*
SBT	4	6400	1920	.30*	1860	. 33
SBR	0	0	20		250	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	30	. 02	170	. 11
WBL	1	1600	290	.18*	160	.10*
WBT	1	1600	130	. 08	50	. 03
WBR	1	1600	70	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
.55

15. Johnson \& Telephone

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	.10*	190	. 06
NBT	2	3200	160	. 10	230	.14*
NBR	0	0	170	. 11	440	. 28
SBL	1	1600	30	. 02	100	.06*
SBT	2	3200	170	.05*	200	. 06
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	30	. 02
EBT	3	4800	200	. 06	1040	.31*
EBR	0	0	170	. 11	460	
WBL	1	1600	340	. 21	350	.22*
WBT	3	4800	1400	.30*	540	. 12
WBR	0	0	60		40	

TOTAL CAPACITY UTILIZATION

14. Hill \& Telephone

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	100	.10*	60	.14*
NBR	0	0	10		140	
SBL	1	1600	50	.03*	250	.16*
SBT	1	1600	30	. 02	70	. 04
SBR	1	1600	60	. 04	240	. 15
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	490	. 11	1200	.29*
EBR	0	,	60		180	
WBL	1	1600	190	. 12	30	.02*
WBT	3	4800	1110	.29*	710	. 16
WBR	0	0	290		60	

TOTAL CAPACITY UTILIZATION . 53
.61
18. Seaward \& US 101 NB Ramps

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	.18*	610	.19*
NBT	2	3200	900	. 28	920	. 29
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	740	.23*	950	.30*
SBR	1	1600	240	. 15	250	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	380	.12*	370	.12*
WBT	0	0	0		0	
WBR	2	3200	350	. 11	440	. 14

TOTAL CAPACITY UTILIZATION
.53

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		660		1050	
SBT	0.5	3200	40	.22*	70	.37*
SBR	0		10		50	
EBL	1	1600	120	.08*	160	.10*
EBT	2	3200	400	. 13	400	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	580	.36*
WBR	1	1600	310	. 19	290	. 18
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	60	. 04	140	.09*
NBT	2	3200	950	.30*	1100	. 34
NBR	1	1600	380	. 24	190	. 12
SBL	2	3200	190	.06*	160	. 05
SBT	2	3200	740	. 23	1210	.38*
SBR	1	1600	130	. 08	120	. 08
EBL	1	1600	70	.04*	170	. 11
EBT	2	3200	140	. 04	210	.07*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	40	. 03	410	.26*
WBT	2	3200	110	.03*	140	. 04
WBR	f		50		390	
TOTAL CAPACITY UTILIZATION				. 43		. 80

24. Mills \& Telegraph

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM Pk	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	150	.09*
NBT	1	1600	400	.25*	240	. 15
NBR	1	1600	200	. 13	380	. 24
SBL	1	1600	60	.04*	130	. 08
SBT	2	3200	370	. 12	470	.15*
SBR	1	1600	10	. 01	20	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	350	.11*	560	.18*
EBR	1	1600	80	. 05	140	. 09
WBL	2	3200	270	.08*	220	.07*
WBT	2	3200	400	. 15	440	. 16
WBR	0	0	70		60	
Right Turn Adjustment					NBR	.03*
TOTAL CAPACITY UTILIZATION . 48						. 52

25. Mills \& Maple

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	970	.33*	820	.29*
NBR	0	0	90		100	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	720	. 24	890	. 30
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	220		210	
WBT	1	1600	20	.15*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 51
. 50

26. Mills \& Dean

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	140	.09*
NBT	2	3200	1180	.37*	920	. 29
NBR	1	1600	290	. 18	360	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	810	. 26	930	.30*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	220	. 14
WBL	2	3200	410	.13*	250	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.05*
TOTA	CAPACIT	UTILIZAT		. 53		. 54

28. US 101 NB Ramps \& Main

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	590	.18*	320	.10*
SBT	0	0	0		0	
SBR	3	4800	1670	. 35	1370	. 29
EBL	0	0	0		0	
EBT	3	4800	2260	.47*	2500	.52*
EBR	f		320		170	
WBL	2	3200	410	.13*	530	.17*
WBT	3	4800	1030	. 21	1800	. 38
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 78		. 79

29. SR 126 EB Ramps \& Main

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	270	. 08	410	.13*
EBT	3	4800	2530	.53*	2690	. 56
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1240	. 26	2380	. $50 *$
WBR	f		140		320	

TOTAL CAPACITY UTILIZATION
. 53
31. Donlon \& Main

2025 Scenario 5 w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		610	
NBT	0	3200	0	.06*	0	.24*
NBR	0.5		30		170	
SBL	1.5		400		360	
SBT	0.5	3200	140	.17*	90	.14*
SBR	1	1600	180	. 11	220	. 14
EBL	0	0	0		0	
EBT	4	6400	1920	.30*	2410	.38*
EBR	d	1600	210	. 13	200	. 13
WBL	2	3200	100	.03*	250	.08*
WBT	3	4800	1060	. 22	1570	. 33
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	620	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	.01*
EBT	4	6400	2220	.35*	2420	. 38
EBR	d	1600	310	. 19	250	. 16
WBL	2	3200	90	.03*	180	. 06
WBT	3	4800	1200	. 25	2050	.43*
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.46
32. Telephone \& Main

2025 Scenario 5 w/Baseline

	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	2	3200	260	. 08	680	. 21
NBT	2	3200	250	.08*	1050	.33*
NBR	1	1600	70	. 04	290	. 18
SBL	1.5		240	. 15	470	
SBT	1.5	4800	1000	.31*	690	.24*
SBR	f		730		950	
EBL	2	3200	440	. 14	750	. 23
EBT	3	4800	1090	.23*	1440	.30*
EBR	f		400		460	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

Note: Assumes N/S Split Phasing
TOTAL CAPACITY UTILIZATION . 62
.87

33. US 101 NB Ramps \& Telephone

2025 Scenario 5 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		670		520	
NBT	0.5	3200	30	.22*	80	.19*
NBR	1	1600	260	. 16	410	. 26
SBL	0.5		40		10	
SBT	0	3200	0	\{.11\}*	0	\{.01\}*
SBR	1.5		330		230	
EBL	1	1600	20	.01*	290	.18*
EBT	3	4800	700	. 15	1890	. 39
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1000	.21*	1370	.29*
WBR	0	0	10		10	
Right Turn Adjustment					NBR	.01*
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 55		. 68

35. Saratoga \& Telephone

2025 Scenario 5 w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	30	. 02
NBT	1	1600	10	.08*	60	.15*
NBR	0	0	110		180	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	30	. 02	30	. 02
SBR	1	1600	30	. 02	20	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	590	. 12	1570	.33*
EBR	d	1600	80	. 05	160	. 10
WBL	1	1600	50	. 03	80	.05*
WBT	3	4800	900	.19*	940	. 20
WBR	0	0	20		40	
TOTA	CAPACIT	Y UTILIZAT		. 30		. 56

34. Portola \& Telephone

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	.08*	300	.09*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	600	. 13	1700	.35*
EBR	d	1600	200	. 13	300	. 19
WBL	1	1600	20	. 01	70	.04*
WBT	3	4800	840	.18*	880	. 19
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 35		. 49

38. Telephone \& Market

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	. 09	200	. 13
NBT	3	4800	550	.11*	870	.18*
NBR	d	1600	100	. 06	100	. 06
SBL	1	1600	480	.30*	160	.10*
SBT	3	4800	280	. 06	690	. 14
SBR	d	1600	180	. 11	160	. 10
EBL	1	1600	50	. 03	220	.14*
EBT	1	1600	270	.17*	250	. 16
EBR	1	1600	170	. 11	280	. 18
WBL	1	1600	50	.03*	170	. 11
WBT	1	1600	130	. 08	380	.24*
WBR	1	1600	120	. 08	630	. 39
Right Turn Adjustment					WBR	.07*

42. Telephone \& McGrath

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	220	.14*
NBT	3	4800	680	. 14	930	. 19
NBR	d	1600	280	. 18	100	. 06
SBL	1	1600	70	. 04	70	. 04
SBT	2	3200	320	.10*	1050	.33*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	70	.04*	30	.02*
EBR	1	1600	120	. 08	340	. 21
WBL	1	1600	60	.04*	290	.18*
WBT	1	1600	30	. 02	90	. 06
WBR	1	1600	70	. 04	150	. 09
Right Turn Adjustment					EBR	.08*
TOTAL CAPACITY UTILIZATION				. 29		. 75

46. Seaward \& Main

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	190	.12*
NBT	1	1600	150	. 09	180	. 11
NBR	1	1600	320	. 20	270	. 17
SBL	1	1600	30	. 02	70	. 04
SBT	1	1600	150	.09*	90	.06*
SBR	1	1600	180	. 11	80	. 05
EBL	1	1600	120	. 08	80	. 05
EBT	2	3200	760	.24*	670	.21*
EBR	1	1600	140	. 09	120	. 08
WBL	0.5		100		170	
WBT	1.5	3200	520	.20*	730	.30*
WBR	0		30		70	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	70	.02*
SBT	1	1600	20	. 05	10	. 01
SBR	0	0	60		10	
EBL	0.5		20		20	\{.01\}*
EBT	1.5	3200	790	.26*	780	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	40	. 03
WBT	2	3200	500	. 22	790	.29*
WBR	0	0	190		130	
TOTAL CAPACITY UTILIZATION				. 38		. 34

47. Main \& Loma Vista

2025 Scenario 5 w/Baseline						
			AM P	K Hour	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	350	.11*	470	.15*
NBR	f		40		180	
SBL	1	1600	590	.37*	400	.25*
SBT	2	3200	600	. 19	640	. 21
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	350	. 11	470	. 15
TOTA	CAPACIT	Y UTILIZAT		. 55		. 53

49. Main \& Telegraph

2025 Scenario $5 \mathrm{w} /$ Baseline						
			AM PK	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290		620	
NBT	1.5	4800	570	.18*	710	.28*
NBR	f		170		80	
SBL	1.5		190	. 12	280	. 18
SBT	1.5	4800	480	.16*	700	.23*
SBR	0		40		50	
EBL	0	0	0		0	
EBT	2	3200	320	. 10	430	. 13
EBR	f		680		620	
WBL	0	0	0		0	
WBT	1.5	4800	340	.11*	500	.16*
WBR	1.5		120		210	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 45 . 67

51. Lemon Grove \& Main

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		30		50	
NBT	1.5	3200	20	.03*	20	.03*
NBR	0		100	. 06	30	
SBL	1.5		30		70	
SBT	0.5	3200	10	.01*	10	.03*
SBR	1	1600	70	. 04	70	. 04
EBL	1	1600	40	. 03	60	. 04
EBT	2	3200	1060	.33*	1120	.35*
EBR	d	1600	60	. 04	80	. 05
WBL	1	1600	30	.02*	30	.02*
WBT	3	4800	950	. 21	1340	. 29
WBR	0	0	50		50	
Right Turn Adjustment NBR .01*						

50. Emma \& Main

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1040	.33*	1210	.38*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	90	.06*
WBT	3	4800	960	. 20	1490	. 31
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 41
.46

53. Kimball \& Telephone

2025 Scenario 5 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	vOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	260	$.08^{*}$	500	$.16^{*}$
SBT	0	0	0		0	
SBR	2	3200	1230	.38	660	.21
EBL	2	3200	250	$.08^{*}$	990	$.31^{*}$
EBT	3	4800	320	.07	990	.21
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	900	$.28^{*}$	650	$.20^{*}$
WBR	1	1600	670	.42	360	.23
Right Turn Adjustment	Multi	$.32^{*}$				

TOTAL CAPACITY UTILIZATION
.76
55. Kimball \& SR 126 EB Ramps

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1330	. 28	860	.18*
NBR	f		110		430	
SBL	1	1600	30	. 02	30	.02*
SBT	3	4800	1490	.31*	870	. 18
SBR	0	0	0		0	
EBL	2	3200	120	.04*	400	.13*
EBT	0	0	10		0	
EBR	f		240		530	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

56. Kimball \& SR 126 WB Ramps

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	.18*	250	.08*
NBT	3	4800	800	. 17	800	. 17
NBR	d	1600	60	. 04	220	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	710	.15*	550	.11*
SBR	d	1600	180	. 11	100	. 06
EBL	1.5		40		30	
EBT	0.5	3200	10	.02*	10	.01*
EBR	1	1600	630	. 39	230	. 14
WBL	0	0	180		120	
WBT	1	1600	130	.19*	70	.12*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR .23* EBR .07* Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 77		. 39

60. Ramelli \& Telephone

2025 Scenario 5 w/Baseline						
			AM	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	1	1600	0	. 00	0	. 00
NBR	1	1600	170	. 11	510	. 32
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	340	. 08	1460	.32*
EBR	0	0	40		80	
WBL	1	1600	400	. 25	200	.13*
WBT	3	4800	1680	.35*	1080	. 23
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.20*

61. Montgomery \& Telephone

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	60	.04*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	20	. 01	140	. 09
SBL	1	1600	20	. 01	10	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	90	. 06	20	. 01
EBL	1	1600	10	.01*	50	. 03
EBT	2	3200	520	. 16	780	.24*
EBR	d	1600	90	. 06	120	. 08
WBL	1	1600	100	. 06	70	.04*
WBT	2	3200	1090	.34*	680	. 21
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*	NBR	.01*

TOTAL CAPACITY UTILIZATION . 58 . 35

65. Sanjon \& Thompson

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	500	.16*	510	.16*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	210	. 13
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	490	.24*	700	.32*
EBR	0	0	290		310	
WBL	1	1600	130	.08*	140	.09*
WBT	2	3200	530	. 17	780	. 24
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 5 w/Baseline						
			AM P		PM	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	160	. 10
NBT	1	1600	40	. 11	60	.19*
NBR	0	0	130		250	
SBL	1	1600	30	. 02	30	.02*
SBT	1	1600	80	.05*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	90	.06*	80	. 05
EBT	2	3200	330	. 10	760	.24*
EBR	d	1600	90	. 06	250	. 16
WBL	1	1600	150	. 09	210	.13*
WBT	2	3200	770	.24*	520	. 16
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 58

68. Seaward \& Thompson

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	100	. 06	200	.13*
NBT	2	3200	470	.15*	470	. 15
NBR	d	1600	240	. 15	170	. 11
SBL	1	1600	90	.06*	50	. 03
SBT	2	3200	350	. 11	340	.11*
SBR	d	1600	60	. 04	90	. 06
EBL	1	1600	80	. 05	90	. 06
EBT	2	3200	670	.23*	790	.28*
EBR	0	0	60		110	
WBL	2	3200	200	.06*	270	.08*
WBT	2	3200	430	. 13	750	. 23
WBR	1	1600	30	. 02	60	. 04
TOTA	CAPACIT	Y UTILIZAT		. 50		. 60

71. Sanjon \& Harbor

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	160	.10*	380	.24*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	120	. 08
EBL	1	1600	60	.04*	110	.07*
EBT	1	1600	290	. 18	480	. 30
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	590	.37*
WBR	1	1600	470	. 29	260	. 16
Right Turn Adjustment			WBR	.05*		
TOTAL CAPACITY UTILIZATION				. 35		. 68

77. Day \& Telegraph

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	230	.07*	350	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	490	. 15	900	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	940	.29*	800	. 25
WBR	d	1600	330	. 21	240	. 15

75. Ashwood \& Telegraph

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	90	.06*
NBR	d	1600	40	. 03	60	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	40	. 03	70	. 04
SBR	1	1600	150	. 09	120	. 08
EBL	1	1600	80	.05*	150	. 09
EBT	2	3200	520	. 16	820	.26*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	520	.16*	580	. 18
WBR	d	1600	110	. 07	100	. 06
Right Turn Adjustment			SBR	.01*		
TOTAL CAPACITY UTILIZATION				. 29		. 47

85. Victoria \& Olivas Park

2025 Scenario 5 w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	670	. 21	570	.18*
NBT	3	4800	1840	.38*	1780	. 37
NBR	1	1600	540	. 34	440	. 28
SBL	2	3200	490	.15*	210	. 07
SBT	3	4800	1490	. 31	1600	.33*
SBR	f		50		80	
EBL	2	3200	120	. 04	170	. 05
EBT	2	3200	170	.05*	230	.07*
EBR	f		190		970	
WBL	1	1600	130	.08*	360	.23*
WBT	2	3200	50	. 02	370	. 12
WBR	f		120		200	
TOTA	CAPACIT	Y UTILIZAI		. 66		. 81

86. Telephone \& Olivas Park

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	370	.12*	970	.30*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	150	. 09	670	. 42
EBL	2	3200	480	.15*	390	.12*
EBT	2	3200	210	. 07	280	. 09
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	180	.06*	270	.08*
WBR	1	1600	570	. 36	720	. 45
Right Turn Adjustment			WBR	.21*	Multi	.16*

TOTAL CAPACITY UTILIZATION . 56 . 68

92. Johnson \& Bristol

2025 Scenario 5 w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	520	. 16	1030	. 32
NBR	f		190		1080	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	950	.30*	1150	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	20	.01*	270	.17*
EBR	1	1600	130	. 08	190	. 12
WBL	2	3200	1030	.32*	460	.14*
WBT	1	1600	260	. 16	160	. 10
WBR	d	1600	20	. 01	10	. 01
Right Turn Adjustment			EBR	.05*		

TOTAL CAPACITY UTILIZATION
.70 .73

91. Johnson \& Ralston

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	110	.07*	130	.08*
NBT	2	3200	470	. 15	810	. 25
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	40	. 03	60	. 04
SBT	2	3200	710	.22*	900	.28*
SBR	d	1600	90	. 06	50	. 03
EBL	1	1600	40	.03*	80	. 05
EBT	1	1600	90	. 06	240	.15*
EBR	d	1600	110	. 07	250	. 16
WBL	1	1600	120	. 08	60	.04*
WBT	1	1600	230	.14*	100	. 06
WBR	d	1600	90	. 06	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 55

94. Johnson \& North Bank

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	60	.04*
NBT	3	4800	170	. 04	520	. 11
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1550	.37*	1410	.33*
SBR	0	0	230		170	
EBL	2.5		440	.09*	1780	.37*
EBT	1.5	6400	70	. 04	340	. 21
EBR	1	1600	420	. 26	310	. 19
WBL	1.5		150		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.14*		

TOTAL CAPACITY UTILIZATION . 6982
95. Bristol \& Ramelli

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	.01*
NBT	1	1600	20	.02*	10	. 02
NBR	0	0	10		20	
SBL	1	1600	10	.01*	30	. 02
SBT	1	1600	10	. 01	40	.03*
SBR	1	1600	280	. 18	110	. 07
EBL	1	1600	20	.01*	120	. 08
EBT	2	3200	200	. 07	680	.22*
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	.01*
WBT	2	3200	900	. $30 *$	390	. 13
WBR	0	0	60		30	
Right Turn Adjustment			SBR	.15*		
TOTAL CAPACITY UTILIZATION				. 49		. 27

100. Saticoy \& Telephone

2025 Scenario 5 w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	80	. 05
SBL	1	1600	190	.12*	100	. 06
SBT	1	1600	110	. 07	150	.09*
SBR	1	1600	260	. 16	160	. 10
EBL	1	1600	110	.07*	170	.11*
EBT	2	3200	220	. 07	650	. 20
EBR	1	1600	100	. 06	180	. 11
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	330	.14*	470	.17*
WBR	0	0	130		60	

96. Montgomery \& North Bank

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	120	.08*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	380	. 24	170	. 11
EBL	1	1600	100	.06*	320	.20*
EBT	2	3200	120	. 04	400	. 13
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	460	.29*	280	.18*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.14*		
TOTAL CAPACITY UTILIZATION				. 55		. 48

101. Saticoy \& Telegraph

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	170		80	
NBT	1	1600	70	.18*	60	.11*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	20	. 01
EBT	1	1600	190	.17*	410	.35*
EBR	0	0	80		150	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	270	. 17	280	. 18
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 47		. 52

102. Wells \& Telegraph

| 2025 Scenario | 5 | w/Baseline | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 160 | $.10^{*}$ | 250 | $.16^{*}$ |
| NBT | 1 | 1600 | 120 | .08 | 290 | .18 |
| NBR | 1 | 1600 | 60 | .04 | 260 | .16 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 270 | $.17 *$ | 200 | $.13^{*}$ |
| SBR | 1 | 1600 | 50 | .03 | 30 | .02 |
| | | | | | | |
| EBL | 1 | 1600 | 20 | .01 | 50 | .03 |
| EBT | 1 | 1600 | 50 | $.17 *$ | 190 | $.25^{*}$ |
| EBR | 0 | 0 | 220 | | 210 | |
| | | | | | | |
| WBL | 1 | 1600 | 310 | $.19 *$ | 130 | $.08^{*}$ |
| WBT | 1 | 1600 | 150 | .10 | 100 | .08 |
| WBR | 0 | 0 | 10 | | 20 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION .63 .62
104. Wells \& SR 126 EB Ramps

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	890	. 19	1420	. 30
NBR	f		590		1580	
SBL	0	0	0		0	
SBT	3	4800	2680	.56*	1730	.36*
SBR	f		80		50	
EBL	1	1600	100	.06*	330	.21*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	620	. 39
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.18*
TOTAL CAPACITY UTILIZATION				. 67		. 75

106. Wells \& Telephone

2025 Scenario 5 w/Baseline						
			AM PK	K Hour	PM P	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	420	. 13
NBT	3	4800	1260	. 26	2910	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2530	.53*	1940	. 40
SBR	1	1600	130	. 08	410	. 26
EBL	1.5		160	\{.05\}*	240	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	550	. 17	540	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 73		. 73

114. California \& Thompson

2025 Scenario 5 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		40	
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	60	. 04	70	. 04
SBL	1.5		120		180	
SBT	1.5	4800	100	.05*	150	.07*
SBR	0		10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	900	.33*	990	.34*
EBR	0	0	160		110	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	330	. 11	440	. 15
WBR	0	0	10		50	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 5 w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	110	. 07
SBT	1	1600	280	.18*	300	.21*
SBR	0	0	10		30	
EBL	1	1600	20	. 01	10	. 01
EBT	2	3200	600	.19*	700	.22*
EBR	f		400		570	
WBL	1	1600	210	.13*	180	.11*
WBT	2	3200	470	. 16	670	. 23
WBR	0	-	30		70	

TOTAL CAPACITY UTILIZATION
.51
. 55
132. Ventura \& Stanley

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	340	.21*
NBT	1	1600	290	. 18	390	. 24
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	480	.30*	410	.26*
SBR	1	1600	510	. 32	320	. 20
EBL	1	1600	350	.22*	580	.36*
EBT	0	0	0		0	
EBR	1	1600	260	. 16	160	. 10
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		380	.12*	460	.14*
SBT	0	4800	0		0	
SBR	1.5		100	. 06	20	
EBL	1	1600	100	.06*	480	.30*
EBT	2	3200	200	. 06	740	. 23
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	980	.31*	400	.13*
WBR	-		820		900	

TOTAL CAPACITY UTILIZATION
. 49
160. Victoria \& US 101 NB Ramps

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	530	.17*	540	.17*
NBT	3	4800	1390	. 29	1900	. 40
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2690	. 42 *	2220	.35*
SBR	1	1600	130	. 08	350	. 22
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	710	.22*	490	.15*
WBT	0	0	0		0	
WBR	3	4800	920	. 19	1160	. 24

TOTAL CAPACITY UTILIZATION
.81
.67
138. Johnson \& US 101 SB Ramps

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	690	.43*
NBT	1	1600	130	. 08	490	. 31
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	600	.38*	380	.24*
SBR	f		1500		1610	
EBL	1	1600	120	.08*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	120	. 08	90	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 57
.83
161. Victoria \& Valentine

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	200	.06*
NBT	3	4800	1640	. 35	2090	. 45
NBR	0	0	20		50	
SBL	1	1600	40	. 03	50	. 03
SBT	2	3200	1640	.51*	1490	.47*
SBR	f		1670		1180	
EBL	2.5		340		730	
EBT	0.5	4800	40	.08*	20	.16*
EBR	1	1600	250	. 16	450	. 28
WBL	0	0	10		20	
WBT	1	1600	10	.01*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment					EBR	.06*
Note: Assumes E/W Split Phasing						
Note: Assumes Right-Turn Overlap for WBR EBR						

TOTAL CAPACITY UTILIZATION
162. California \& Harbor

2025 Scenario 5 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	240	.15*	310	.19*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	60	. 04
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	230	.11*
WBR	0	0	50		130	

TOTAL CAPACITY UTILIZATION
. 29
164. Seaward \& Poli

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		170	
NBT	1	1600	0	.18*	0	.21*
NBR	0	0	130		160	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	.09*	370	.23*
EBR	d	1600	80	. 05	130	. 08
WBL	1	1600	230	.14*	100	.06*
WBT	1	1600	170	. 11	300	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.41
. 50
163. Santa Clara \& Main

2025 Scenario $5 \mathrm{w} /$ Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	260	. 08	230	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	360	.12*	490	.16*
EBR	0	0	10		10	
WBL	1	1600	150	.09*	170	.11*
WBT	2	3200	370	. 13	500	. 17
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 26
. 31
165. Seaward \& Harbor

2025 Scenario 5 w/Baseline

166. College \& Telegraph

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.07*	0	.06*
NBR	0	0	70		80	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	580	.20*	890	.30*
EBR	0	0	60		70	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	680	. 21	660	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 34
169. Kimball \& Foothill

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	290	.18*	110	.07*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	210	. 26	390	.36*
EBR	0	0	210		190	
WBL	1	1600	70	. 04	20	.01*
WBT	1	1600	520	.33*	200	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.51
.44
168. Day \& Foothill

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	220	.14*
NBT	1	1600	30	. 02	30	. 02
NBR	1	1600	170	. 11	270	. 17
SBL	0	0	50		50	
SBT	1	1600	20	.04*	20	.04*
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	110	. 07	80	. 05
EBT	1	1600	450	.41*	480	.44*
EBR	0	0	200		220	
WBL	1	1600	250	.16*	220	.14*
WBT	1	1600	410	. 31	430	. 30
WBR	0	0	90		50	

170. Petit \& Foothill

2025 Scenario 5 w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	160	.10	20	.01
EBR	1	1600	40	.03		
					10	
WBL	0	0	10		10	$\{.01\}^{*}$
WBT	1	1600	480	$.31^{*}$	190	.13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario 5 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	100		50	
NBT	1	1600	0	.08*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 12	310	.25*
EBR	0	0	50		90	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	430	.28*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 36
173. Victoria \& SR 126 WB Ramps

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1220	. 30	2140	. $52 *$
NBR	0	0	230		360	
SBL	0	0	0		0	
SBT	3	4800	2000	.46*	1520	. 34
SBR	0	0	190		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	610	. 38	410	. 26
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	150	. 09
Right Turn Adjustment			Multi	.39*	Multi	.21*
TOTAL CAPACITY UTILIZATION				. 85		. 73

172. Wells \& Foothill

2025 Scenario 5 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	130	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	210	.14*
EBR	1	1600	100	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 26
174. Petit \& Telegraph

2025 Scenario 5 w/Baseline

			AM PK		HOUR	PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	70	$.04^{*}$	50	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	20	.01	
SBL	1	1600	30	.02	20	.01	
SBT	1	1600	20	$.03^{*}$	20	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	270	.08	600	.19	
EBR	1	1600	50	.03	90	.06	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	520	$.33^{*}$	330	$.21^{*}$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 41 . 28
175. Ventura \& North Bank

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	80		40	
SBT	1	1600	0	.10*	0	.11*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	540	. 34
EBT	2	3200	910	. 28	2490	.78*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	.21*	360	. 23
WBR	1	1600	50	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 42
177. Wells \& SR 126 WB Ramps

2025 Scenario 5 w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	520	. 16	1370	.43*
NBR	f		440		380	
SBL	0	0	0		0	
SBT	2	3200	1050	.33*	750	. 23
SBR	f		420		200	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1700		1030	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTA	CAPACIT	UTILIZAT		. 33		. 49

176. Saticoy \& Darling

2025 Scenario 5 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	150	. 10	230	.15*
NBR	1	1600	110	. 07	20	. 01
SBL	0	0	60		10	\{.01\}*
SBT	1	1600	240	.19*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	60		60	
EBT	1	1600	70	.11*	60	.10*
EBR	0	0	40		40	
WBL	0	0	70	\{.04\}*	50	\{.03\}*
WBT	1	1600	20	. 08	70	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 35
.29
178. SR-33 Ramps \& Stanley

2025 Scenario 5 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	630	. 39	740	. 46
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	,	0		0	
EBT	1	1600	350	. 22	240	. 15
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	570	.36*	780	.49*
WBR	f		210		250	
Right Turn Adjustment			NBR	.28*	NBR	.20*

179. SR-33 Ramps \& Shell

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	840		850	
SBT	1	1600	0	.53*	0	.54*
SBR	0	0	10		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	150	. 10	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	860	.59*	760	.56*
WBR	0	0	80		140	
TOTA	CAPACITY	Y UTILIZAT		1.13		1.11

181. Ventura \& Ramona

2025 Scenario 5 w/Baseline						
			AM PK	K HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	50	. 03
NBT	1	1600	370	. 24	660	.43*
NBR	0	0	20		20	
SBL	1	1600	90	. 06	70	.04*
SBT	1	1600	440	.29*	520	. 35
SBR	0	0	20		40	
EBL	0	0	20		30	
EBT	1	1600	30	.04*	40	.06*
EBR	0	0	10		20	
WBL	0	0	10	\{.01\}*	10	\{.01\}*
WBT	1	1600	20	. 03	40	. 04
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.36
. 54
180. Estates \& Telegraph

2025 Scenario 5 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	60	. 04
NBT	1	1600	10	. 05	10	.07*
NBR	0	0	70		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	810	.25*
EBR	d	1600	60	. 04	60	. 04
WBL	1	1600	40	. 03	90	.06*
WBT	2	3200	640	.20*	810	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 28
.39
182. Olive \& Main St

2025 Scenario 5 w/Baseline						
			AM P	Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	700	.44*	570	.36*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	90	\{.06\}*	280	
EBT	1	1600	80	. 11	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	180	.12*	160	. 11
WBR	1	1600	200	. 13	520	. 33

TOTAL CAPACITY UTILIZATION
.63
190. Petit Av \& North Bank Dr

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	70	.04*
SBT	0	0	0		0	
SBR	1	1600	260	. 16	240	. 15
EBL	1	1600	60	.04*	290	.18*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	80	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.10*		
TOTAL CAPACITY UTILIZATION				. 20		. 25

192. Los Angeles Av \& North Bank

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1440	. 30	3120	.65*
NBR	d	1600	20	. 01	60	. 04
SBL	1	1600	120	. 08	170	.11*
SBT	3	4800	2820	.59*	2240	. 47
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	. 10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	10	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 72		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	.01*	10	.01*
NBT	1	1600	30	. 03	20	. 02
NBR	0	0	20		10	
SBL	1	1600	20	. 01	50	. 03
SBT	1	1600	10	.03*	30	.04*
SBR	0	0	30		30	
EBL	1	1600	20	. 01	40	.03*
EBT	2	3200	100	.03*	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	80	.03*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.04*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 5 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	240	.15*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTA	CAPACI	Y UTILIZAT		. 17		. 13

194. Wells Rd \& A St

2025 Scenario 5 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	380	. 13	860	.32*
NBR	0	0	50		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	810	.26*	590	. 19
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	150	.09*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	40		10	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 43		. 41

NON-COMMITTED
IMPROVEMENTS
105. Wells \& Darling

2025 Scenario $5 \mathrm{w} /$ Non-Committed Lanes						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1280	. 27	2840	.59*
NBR	d	1600	70	. 04	170	. 11
SBL	2	3200	130	. 04	350	.11*
SBT	3	4800	2440	.51*	1840	. 38
SBR	d	1600	10	. 01	20	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	100		40	
WBL	2	3200	60	. 02	280	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	

TOTAL CAPACITY UTILIZATION . 64
179. SR-33 Ramps \& Shell

2025 Scenario 5 w/Non-Cormitted Lanes						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	840	.52*	850	.53*
SBT	0	0	0		0	
SBR	1	1600	10	. 01	20	. 01
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	150	. 10	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	860	.27*	760	.24*
WBR	1	1600	80	. 05	140	. 09

TOTAL CAPACITY UTILIZATION
.80
.78

SCENARIO 5 (ALTERNATIVE NETWORK)

1. Victoria \& Foothill

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	.09*	240	.15*
NBT	1	1600	20	. 01	70	. 04
NBR	1	1600	190	. 12	320	. 20
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	60	.04*	20	.01*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	.01*	180	. 11
EBT	1	1600	290	. 18	460	.29*
EBR	1	1600	220	. 14	20	. 01
WBL	2	3200	450	. 14	240	.08*
WBT	1	1600	560	.35*	330	. 21
WBR	d	1600	10	. 01	20	. 01

TOTAL CAPACITY UTILIZATION
. 49
. 53

3. Victoria \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	K HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	.21*	1150	.36*
NBT	2	3200	540	. 17	880	. 28
NBR	1	1600	140	. 09	210	. 13
SBL	1	1600	160	. 10	210	. 13
SBT	3	4800	730	.15*	540	.11*
SBR	d	1600	40	. 03	20	. 01
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	350	\{.16\}*	710	\{.22\}*
EBR	1.5		670		780	\{.22\}
WBL	2	3200	330	.10*	230	.07*
WBT	2	3200	580	. 18	330	. 10
WBR	d	1600	50	. 03	60	. 04

TOTAL CAPACITY UTILIZATION .62 .76

2. Victoria \& Loma Vista

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	260	.16*
NBT	2	3200	270	. 08	530	. 17
NBR	d	1600	20	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	530	.17*	280	.09*
SBR	d	1600	110	. 07	20	. 01
EBL	0	0	70		20	
EBT	1	1600	40	.25*	30	.24*
EBR	0	0	290		330	
WBL	0	0	70	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 11	30	. 05
WBR	0	0	60		20	

4. Victoria \& Woodland

2025 Scenario 5 (Alt. Net.) w/Baseline

5. Victoria \& SR 126 SB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1360	. 22	2570	.41*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2440	.39*	1810	. 30
SBR	0	0	70		90	
EBL	1.5		230		160	
EBT	0.5	3200	190	.13*	130	.09*
EBR	1	1600	250	. 16	240	. 15
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	260	. 16	560	. 35
Right Turn Adjustment Multi				.06*	WBR	.35*

7. Victoria \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	320	. 10
NBT	4	6400	1290	. 24	1510	.26*
NBR	0	0	270		160	
SBL	2	3200	360	. 11	350	.11*
SBT	4	6400	1680	.26*	1350	. 21
SBR	1	1600	310	. 19	370	. 23
EBL	2	3200	320	.10*	660	.21*
EBT	3	4800	330	. 08	860	. 20
EBR	0	0	70		110	
WBL	2	3200	230	. 07	280	. 09
WBT	3	4800	720	.15*	610	.13*
WBR	1	1600	170	. 11	320	. 20
TOTA	CAPACIT	UTILIZAT		. 61		. 71

6. Victoria \& Thille

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1300	. 27	2360	.38*
NBR	0	0	450	. 28	60	
SBL	1	1600	170	. 11	40	.03*
SBT	4	6400	2080	.38*	1820	. 32
SBR	0	0	350		220	
EBL	1.5		240		340	
EBT	0.5	3200	30	.08*	10	.11*
EBR	1	1600	120	. 08	200	. 13
WBL	1	1600	30	. 02	110	. 07
WBT	1	1600	10	.02*	70	.09*
WBR	0	0	20		80	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 51		. 61

8. Victoria \& Ralston

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	410	.26*
NBT	4	6400	1470	. 24	1840	. 33
NBR	0	0	70		270	
SBL	1	1600	100	. 06	190	. 12
SBT	4	6400	1740	.29*	1790	.30*
SBR	0	0	110		110	
EBL	1	1600	40	. 03	130	. 08
EBT	1	1600	110	.07*	240	.15*
EBR	1	1600	230	. 14	320	. 20
WBL	1	1600	300	.19*	170	.11*
WBT	1	1600	240	. 15	120	. 08
WBR	1	1600	170	. 11	120	. 08
TOTA	CAPACIT	Y UTILIzAT		. 71		. 82

10. Victoria \& Moon

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1840	. 30	2150	.40*
NBR	0	0	110		410	
SBL	1	1600	40	. 03	110	.07*
SBT	4	6400	1930	.30*	1870	. 33
SBR	0	0	20		260	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	80	.05*
EBR	1	1600	30	. 02	180	. 11
WBL	1	1600	320	.20*	150	.09*
WBT	1	1600	110	. 07	50	. 03
WBR	1	1600	70	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
. 57

15. Johnson \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	.10*	190	. 06
NBT	2	3200	170	. 11	220	.14*
NBR	0	0	230	. 14	240	. 15
SBL	1	1600	40	. 03	100	.06*
SBT	2	3200	170	.05*	200	. 06
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	.03*	30	. 02
EBT	3	4800	210	. 07	1040	.31*
EBR	0	0	180	. 11	470	
WBL	1	1600	170	. 11	350	.22*
WBT	3	4800	1360	.30*	520	. 12
WBR	0	0	60		50	

TOTAL CAPACITY UTILIZATION
.48
.73
14. Hill \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		20	
NBT	1	1600	100	.10*	50	.13*
NBR	0	0	10		130	
SBL	1	1600	50	.03*	250	.16*
SBT	1	1600	30	. 02	70	. 04
SBR	1	1600	60	. 04	240	. 15
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	500	. 11	1220	.29*
EBR	0	0	50		180	
WBL	1	1600	130	. 08	30	.02*
WBT	3	4800	1120	.29*	690	. 16
WBR	0	0	290		70	

TOTAL CAPACITY UTILIZATION
.53
18. Seaward \& US 101 NB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	580	.18*	590	.18*
NBT	2	3200	890	. 28	930	. 29
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	740	.23*	940	.29*
SBR	1	1600	220	. 14	250	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	380	.12*	370	.12*
WBT	0	0	0		0	
WBR	2	3200	360	. 11	440	. 14

TOTAL CAPACITY UTILIZATION
. 53
.59

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		640		1060	
SBT	0.5	3200	30	.21*	70	.37*
SBR	0		10		50	
EBL	1	1600	120	.08*	170	.11*
EBT	2	3200	400	. 13	410	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	590	.37*
WBR	1	1600	310	. 19	290	. 18
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	140	.09*
NBT	2	3200	950	.30*	1100	. 34
NBR	1	1600	390	. 24	190	. 12
SBL	2	3200	190	.06*	160	. 05
SBT	2	3200	740	. 23	1210	.38*
SBR	1	1600	130	. 08	120	. 08
EBL	1	1600	70	.04*	170	. 11
EBT	2	3200	140	. 04	210	.07*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	40	. 03	410	.26*
WBT	2	3200	110	.03*	140	. 04
WBR	f		50		380	
TOTAL CAPACITY UTILIZATION				. 43		. 80

24. Mills \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	150	.09*
NBT	1	1600	400	.25*	240	. 15
NBR	1	1600	200	. 13	370	. 23
SBL	1	1600	60	.04*	130	. 08
SBT	2	3200	360	. 11	460	.14*
SBR	1	1600	10	. 01	20	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	350	.11*	550	.17*
EBR	1	1600	80	. 05	140	. 09
WBL	2	3200	270	.08*	220	.07*
WBT	2	3200	390	. 14	440	. 16
WBR	0	0	70		60	
Right Turn Adjustment					NBR	.03*
TOTAL CAPACITY UTILIZATION				. 48		. 50

25. Mills \& Maple

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	970	.33*	810	.29*
NBR	0	0	90		110	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	720	. 24	880	. 29
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	220		210	
WBT	1	1600	20	.15*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 51
. 50

27. Mills \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	30		30	
NBT	1	1600	70	.06*	80	.07*
NBR	1	1600	350	. 22	230	. 14
SBL	2.5		1200		1310	
SBT	0.5	4800	80	.28*	90	.30*
SBR	0		40		20	
EBL	2	3200	110	.03*	90	.03*
EBT	4	6400	1050	. 16	1110	. 17
EBR	1	1600	20	. 01	30	. 02
WBL	2	3200	170	. 05	360	. 11
WBT	3	4800	1120	.23*	1420	. $30 *$
WBR	2	3200	1410	. 44	1380	. 43
Right Turn Adjustment NBR Note: Assumes N/S Split Phasing				.08*		

26. Mills \& Dean

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	150	.09*
NBT	2	3200	1180	.37*	920	. 29
NBR	1	1600	290	. 18	360	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	810	. 26	930	.30*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	230	. 14
WBL	2	3200	410	.13*	250	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.05*
TOTA	CAPACIT	UTILIZAT		. 53		. 54

28. US 101 NB Ramps \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	580	.18*	320	.10*
SBT	0	0	0		0	
SBR	3	4800	1680	. 35	1370	. 29
EBL	0	0	0		0	
EBT	3	4800	2260	.47*	2510	.52*
EBR	f		320		160	
WBL	2	3200	410	.13*	530	.17*
WBT	3	4800	1020	. 21	1780	. 37
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 78		. 79

29. SR 126 EB Ramps \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	270	. 08	420	.13*
EBT	3	4800	2530	.53*	2680	. 56
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1240	. 26	2370	.49*
WBR	f		130		310	

TOTAL CAPACITY UTILIZATION
. 53
31. Donlon \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		560	
NBT	0	3200	0	.06*	0	.23*
NBR	0.5		30		170	
SBL	1.5		390		360	
SBT	0.5	3200	140	.17*	90	.14*
SBR	1	1600	180	. 11	220	. 14
EBL	0	0	0		0	
EBT	4	6400	1920	.30*	2410	.38*
EBR	d	1600	220	. 14	200	. 13
WBL	2	3200	100	.03*	250	.08*
WBT	3	4800	1060	. 22	1580	. 33
WBR	0	0	0		,	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	630	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	2230	.35*	2410	.38*
EBR	d	1600	290	. 18	250	. 16
WBL	2	3200	90	.03*	180	.06*
WBT	3	4800	1200	. 25	2020	. 42
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.46
32. Telephone \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline

			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	. 08	700	. 22
NBT	2	3200	250	.08*	1050	.33*
NBR	1	1600	70	. 04	280	. 18
SBL	1.5		240	. 15	470	
SBT	1.5	4800	1000	.31*	700	.24*
SBR	f		730		940	
EBL	2	3200	440	. 14	750	. 23
EBT	3	4800	1090	.23*	1450	.30*
EBR	f		400		460	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

33. US 101 NB Ramps \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		680		530	
NBT	0.5	3200	30	.22*	80	.19*
NBR	1	1600	260	. 16	410	. 26
SBL	0.5		40		10	
SBT	0	3200	0	.12*	0	\{.01\}*
SBR	1.5		340		230	
EBL	1	1600	20	.01*	290	.18*
EBT	3	4800	700	. 15	1890	. 39
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	990	.21*	1360	.29*
WBR	0	0	10		10	
Right Turn Adjustment					NBR	.01*
Note: Assumes N/S Split Phasing						

35. Saratoga \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	30	. 02
NBT	1	1600	10	.08*	60	.14*
NBR	0	0	110		170	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	30	. 02	30	. 02
SBR	1	1600	30	. 02	10	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	590	. 12	1560	.33*
EBR	d	1600	80	. 05	170	. 11
WBL	1	1600	50	. 03	90	.06*
WBT	3	4800	910	.19*	940	. 20
WBR	0	0	20		40	
TOTAL CAPACITY UTILIZATION				. 30		. 56

34. Portola \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	2	3200	240	.08*	290	.09*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	600	. 13	1700	.35*
EBR	d	1600	200	. 13	290	. 18
WBL	1	1600	20	. 01	70	.04*
WBT	3	4800	850	.18*	880	. 19
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 35		. 49

38. Telephone \& Market

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	. 09	170	. 11
NBT	3	4800	550	.11*	890	.19*
NBR	d	1600	90	. 06	100	. 06
SBL	1	1600	480	.30*	160	.10*
SBT	3	4800	280	. 06	690	. 14
SBR	d	1600	180	. 11	160	. 10
EBL	1	1600	50	. 03	210	.13*
EBT	1	1600	270	.17*	250	. 16
EBR	1	1600	170	. 11	290	. 18
WBL	1	1600	50	.03*	170	. 11
WBT	1	1600	130	. 08	380	.24*
WBR	1	1600	110	. 07	610	. 38
Right Turn Adjustment					WBR	.06*
			TOTAL CAPACITY UTILIZATION 61	. 61		. 72

42. Telephone \& McGrath

46. Seaward \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	180	.11*
NBT	1	1600	150	. 09	170	. 11
NBR	1	1600	320	. 20	270	. 17
SBL	1	1600	30	. 02	70	. 04
SBT	1	1600	150	.09*	90	.06*
SBR	1	1600	190	. 12	90	. 06
EBL	1	1600	110	. 07	90	. 06
EBT	2	3200	760	.24*	680	.21*
EBR	1	1600	140	. 09	110	. 07
WBL	0.5		90		160	
WBT	1.5	3200	530	. $20 *$	710	.30*
WBR	0		30		80	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P		PM PK	Hour
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	250	.08*	70	.02*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	780	.26*	770	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	40	. 03
WBT	2	3200	530	. 22	790	.28*
WBR	0	0	180		120	
TOTAL CAPACITY UTILIZATION				. 38		. 33

47. Main \& Loma Vista

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	340	.11*	450	.14*
NBR	f		40		180	
SBL	1	1600	600	.38*	400	.25*
SBT	2	3200	610	. 19	640	. 21
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	120	\{.08\}*
WBT	1	1600	30	. 05	40	. 10
WBR	2	3200	370	. 12	480	. 15
TOTA	CAPACII	UTILIZAT		. 56		. 52

49. Main \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290		610	
NBT	1.5	4800	560	.18*	710	.28*
NBR	f		180		80	
SBL	1.5		190	. 12	280	. 18
SBT	1.5	4800	490	.17*	710	.23*
SBR	0		40		40	
EBL	0	0	0		0	
EBT	2	3200	330	. 10	430	. 13
EBR	f		670		620	
WBL	0	0	0		0	
WBT	1.5	4800	330	.10*	510	.16*
WBR	1.5		120		190	
Note: Assumes N/S Split Phasing						

TOTAL CAPACITY UTILIZATION . 45 . 67

51. Lemon Grove \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		30		50	
NBT	1.5	3200	20	.03*	20	.03*
NBR	0		100	. 06	40	
SBL	1.5		30		70	
SBT	0.5	3200	10	.01*	10	.03*
SBR	1	1600	70	. 04	70	. 04
EBL	1	1600	40	. 03	60	. 04
EBT	2	3200	1060	.33*	1120	.35*
EBR	d	1600	60	. 04	80	. 05
WBL	1	1600	30	.02*	30	.02*
WBT	3	4800	940	. 21	1330	. 29
WBR	0	0	50		50	
Right Turn Adjustment NBR .01*						
Note	ssumes	N/S Split	Phasin			

50. Emma \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1040	.33*	1210	.38*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	90	.06*
WBT	3	4800	960	. 20	1490	. 31
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.41
.46

53. Kimball \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	80		10	
NBT	0	0	120		1030	
NBR	0	0	10		10	
SBL	2	3200	240	.08*	460	.14*
SBT	0	0	530		100	
SBR	2	3200	870	. 27	600	. 19
EBL	2	3200	190	.06*	210	. 07
EBT	3	4800	320	. 07	1060	.23*
EBR	0	0	10		30	
WBL	0	0	220		110	\{.07\}*
WBT	2	3200	670	.28*	590	. 22
WBR	1	1600	620	. 39	290	. 18
Right Turn Adjustment			Multi	.24*		
TOTAL CAPACITY UTILIZATION				. 66		. 44

55. Kimball \& SR 126 EB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1350	. 28	930	.19*
NBR	f		110		550	
SBL	1	1600	20	. 01	30	.02*
SBT	3	4800	1630	.34*	880	. 18
SBR	0	0	0		0	
EBL	2	3200	120	.04*	380	.12*
EBT	0	0	10		0	
EBR	£		240		550	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 38 . 33

56. Kimball \& SR 126 WB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	600	.19*	260	.08*
NBT	3	4800	810	. 17	830	. 17
NBR	d	1600	60	. 04	220	. 14
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	730	.15*	560	.12*
SBR	d	1600	170	. 11	100	. 06
EBL	1.5		40		30	
EBT	0.5	3200	10	.02*	10	.01*
EBR	1	1600	740	. 46	230	. 14
WBL	0	0	180		120	
WBT	1	1600	130	.19*	70	.12*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR .30* EBR \quad.07*Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 85		. 40

60. Ramelli \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	20	.01*
NBT	1	1600	0	. 00	0	. 00
NBR	1	1600	40	. 03	40	. 03
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	420	. 09	1270	.28*
EBR	0	0	30		70	
WBL	1	1600	110	. 07	120	.08*
WBT	3	4800	1470	.31*	1050	. 22
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 35		. 38

61. Montgomery \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	220	.14*	90	.06*
NBT	1	1600	80	. 05	10	. 01
NBR	d	1600	10	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	1	1600	40	.03*	10	.01*
SBR	1	1600	110	. 07	40	. 03
EBL	1	1600	10	.01*	60	. 04
EBT	2	3200	590	. 18	970	.30*
EBR	d	1600	30	. 02	30	. 02
WBL	1	1600	50	. 03	30	.02*
WBT	2	3200	1130	.35*	690	. 22
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.03*		

63. Petit \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	160	. 10
NBT	1	1600	40	. 11	50	.16*
NBR	0	0	130		210	
SBL	1	1600	40	. 03	40	.03*
SBT	1	1600	80	.05*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	90	.06*	90	. 06
EBT	2	3200	330	. 10	770	.24*
EBR	d	1600	90	. 06	240	. 15
WBL	1	1600	180	. 11	200	.13*
WBT	2	3200	770	.24*	540	. 17
WBR	a	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 46		. 56

68. Seaward \& Thompson

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	. 08	200	.13*
NBT	2	3200	480	.15*	480	. 15
NBR	d	1600	210	. 13	180	. 11
SBL	1	1600	80	.05*	50	. 03
SBT	2	3200	350	. 11	330	.10*
SBR	d	1600	60	. 04	100	. 06
EBL	1	1600	70	. 04	90	. 06
EBT	2	3200	690	.23*	780	.27*
EBR	0	0	40		90	
WBL	2	3200	190	.06*	280	.09*
WBT	2	3200	430	. 13	760	. 24
WBR	1	1600	30	. 02	60	. 04
TOTAL CAPACITY UTILIZATION				. 49		. 59

71. Sanjon \& Harbor

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	160	.10*	400	.25*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	120	. 08
EBL	1	1600	60	.04*	110	.07*
EBT	1	1600	290	. 18	480	. 30
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	600	.38*
WBR	1	1600	470	. 29	260	. 16
Right Turn Adjustment			WBR	.05*		
TOTAL CAPACITY UTILIZATION				. 35		. 70

77. Day \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	230	.07*	340	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	100	.06*	50	. 03
EBT	2	3200	490	. 15	900	.28*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	930	.29*	800	. 25
WBR	d	1600	330	. 21	240	. 15

75. Ashwood \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	50	.03*	90	.06*
NBR	d	1600	50	. 03	60	. 04
SBL	1	1600	70	.04*	170	.11*
SBT	1	1600	50	. 03	70	. 04
SBR	1	1600	140	. 09	120	. 08
EBL	1	1600	80	.05*	160	. 10
EBT	2	3200	510	. 16	830	.26*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	60	.04*
WBT	2	3200	510	.16*	580	. 18
WBR	d	1600	110	. 07	100	. 06
Right Turn Adjustment			SBR	.01*		
TOTAL CAPACITY UTILIZATION				. 29		. 47

85. Victoria \& Olivas Park

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	670	. 21	560	.18*
NBT	3	4800	1840	.38*	1790	. 37
NBR	1	1600	540	. 34	450	. 28
SBL	2	3200	490	.15*	210	. 07
SBT	3	4800	1490	. 31	1600	.33*
SBR	f		50		80	
EBL	2	3200	120	. 04	170	. 05
EBT	2	3200	170	.05*	230	.07*
EBR	f		190		970	
WBL	1	1600	130	.08*	360	.23*
WBT	2	3200	50	. 02	370	. 12
WBR	f		120		200	
TOTA	CAPACIT	UTILIZAI		. 66		. 81

86. Telephone \& Olivas Park

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	370	.12*	970	.30*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	150	. 09	670	. 42
EBL	2	3200	490	.15*	390	.12*
EBT	2	3200	210	. 07	280	. 09
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	180	.06*	270	.08*
WBR	1	1600	570	. 36	720	. 45
Right Turn Adjustment			WBR	.21*	Multi	.16*

TOTAL CAPACITY UTILIZATION . 56 . 68

92. Johnson \& Bristol

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	70	.04*
NBT	2	3200	520	. 16	820	. 26
NBR	f		190		1330	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	840	.27*	1150	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	10	.01*	220	.14*
EBR	1	1600	130	. 08	200	. 13
WBL	2	3200	1180	.37*	450	.14*
WBT	1	1600	230	. 14	130	. 08
WBR	d	1600	10	. 01	20	. 01
Right Turn Adjustment			EBR	.05*		

TOTAL CAPACITY UTILIZATION
72

91. Johnson \& Ralston

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	140	.09*
NBT	2	3200	520	. 16	620	. 19
NBR	d	1600	10	. 01	250	. 16
SBL	1	1600	30	. 02	60	. 04
SBT	2	3200	570	.18*	910	.28*
SBR	d	1600	90	. 06	50	. 03
EBL	1	1600	50	.03*	80	. 05
EBT	1	1600	60	. 04	300	.19*
EBR	d	1600	110	. 07	240	. 15
WBL	1	1600	220	. 14	70	.04*
WBT	1	1600	350	.22*	140	. 09
WBR	d	1600	100	. 06	30	. 02
TOTAL CAPACITY UTILIZATION				. 49		. 60

94. Johnson \& North Bank

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P		PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	60	.04*
NBT	3	4800	160	. 03	520	. 11
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1580	.38*	1400	.33*
SBR	0	0	230		170	
EBL	2.5		450	.09*	1790	.37*
EBT	1.5	6400	70	. 04	340	. 21
EBR	1	1600	420	. 26	310	. 19
WBL	1.5		150		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.14*		
TOTAL CAPACITY UTILIZATION				. 70		. 82

95. Bristol \& Ramelli

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	1	1600	10	. 01	10	. 01
NBR	0	0	10		10	
SBL	1	1600	10	. 01	20	. 01
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	220	. 14	120	. 08
EBL	1	1600	30	.02*	90	. 06
EBT	2	3200	160	. 05	850	.27*
EBR	0	0	10		10	
WBL	1	1600	30	. 02	30	.02*
WBT	2	3200	1050	.34*	340	. 12
WBR	0	0	30		30	
Right Turn Adjustment			SBR	.11*		
TOTAL CAPACITY UTILIZATION				. 49		. 31

100. Saticoy \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	190	. 12	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	90	. 06
SBL	1	1600	190	.12*	90	. 06
SBT	1	1600	110	. 07	150	.09*
SBR	1	1600	260	. 16	160	. 10
EBL	1	1600	110	.07*	160	.10*
EBT	2	3200	230	. 07	650	. 20
EBR	1	1600	100	. 06	190	. 12
WBL	1	1600	80	. 05	110	. 07
WBT	2	3200	340	.15*	490	.17*
WBR	0	0	130		60	

96. Montgomery \& North Bank

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	140	.09*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	220	. 14	100	. 06
EBL	1	1600	60	.04*	90	.06*
EBT	2	3200	110	. 03	320	. 10
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	480	.30*	240	.15*
WBR	d	1600	180	. 11	70	. 04
Right Turn Adjustment			SBR	.06*		
TOTAL CAPACITY UTILIZATION				. 46		. 32

101. Saticoy \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P		PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	170		80	
NBT	1	1600	70	.18*	50	.10*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	30	.04*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	30	. 02
EBT	1	1600	200	.18*	420	.36*
EBR	0	0	80		150	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	270	. 17	280	. 18
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 48		. 52

102. Wells \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	250	.16*
NBT	1	1600	120	. 08	290	. 18
NBR	1	1600	60	. 04	260	. 16
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	270	.17*	200	.13*
SBR	1	1600	50	. 03	30	. 02
EBL	1	1600	20	. 01	50	. 03
EBT	1	1600	50	.17*	190	.25*
EBR	0	0	220		210	
WBL	1	1600	320	.20*	130	.08*
WBT	1	1600	150	. 10	100	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.65
.62

2025 Scenario 5 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1270	. 26	2790	.58*
NBR	d	1600	70	. 04	160	. 10
SBL	1	1600	120	. 08	370	.23*
SBT	3	4800	2400	. $50 *$	1840	. 38
SBR	d	1600	10	. 01	20	. 01
EBL	0	0	80		40	
EBT	1	1600	30	.13*	40	.08*
EBR	0	0	100		40	
WBL	1	1600	70	.04*	280	.18*
WBT	1	1600	30	. 06	40	. 15
WBR	0	0	70		200	

104. Wells \& SR 126 EB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	880	. 18	1400	. 29
NBR	f		590		1550	
SBL	0	0	0		0	
SBT	3	4800	2640	.55*	1730	.36*
SBR	f		80		50	
EBL	1	1600	100	.06*	330	.21*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	640	. 40
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.19*
TOTAL CAPACITY UTILIZATION				. 66		. 76

106. Wells \& Telephone

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	K Hour	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	450	. 14
NBT	3	4800	1250	. 26	2860	.61*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2490	.52*	1940	. 40
SBR	1	1600	140	. 09	410	. 26
EBL	1.5		160	\{.05\}*	220	\{.07\}*
EBT	0.5	3200	0	. 05	0	. 07
EBR	2	3200	560	. 18	550	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.04*		
TOTAL CAPACITY UTILIZATION				. 73		. 71

114. California \& Thompson

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		30		40	. 03
NBT	0.5	3200	20	.02*	40	.03*
NBR	1	1600	60	. 04	70	. 04
SBL	1.5		180		170	
SBT	1.5	4800	110	.06*	200	.08*
SBR	0		10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	850	.31*	980	.35*
EBR	0	0	150		130	
WBL	1	1600	70	.04*	80	.05*
WBT	2	3200	320	. 10	430	. 15
WBR	0	0	10		50	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	40	. 03	100	. 06
SBT	1	1600	310	.20*	370	.25*
SBR	0	0	10		30	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	640	.20*	710	.22*
EBR	f		390		540	
WBL	1	1600	210	.13*	170	.11*
WBT	2	3200	460	. 15	650	. 23
WBR	0	0	30		80	
TOTAL CAPACITY UTILIZATION				. 54		. 59

132. Ventura \& Stanley

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	50	.03*
NBT	1	1600	310	. 19	470	. 29
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	500	. 31 *	430	.27*
SBR	1	1600	460	. 29	280	. 18
EBL	1	1600	330	.21*	510	.32*
EBT	0	0	0		0	
EBR	1	1600	200	. 13	120	. 08
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 5 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		370	.12*	450	.14*
SBT	0	4800	0		0	
SBR	1.5		100	. 06	20	
EBL	1	1600	90	.06*	480	.30*
EBT	2	3200	210	. 07	740	. 23
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	980	.31*	390	.12*
WBR	f		810		900	

TOTAL CAPACITY UTILIZATION
.49
. 56
160. Victoria \& US 101 NB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	520	.16*	510	.16*
NBT	3	4800	1390	. 29	1940	. 40
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2690	.42*	2220	.35*
SBR	1	1600	130	. 08	350	. 22
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	710	.22*	490	.15*
WBT	0	0	0		0	
WBR	3	4800	920	. 19	1150	. 24
Right Turn Adjustment					WBR	.01*
TOTA	CAPACIT	UTILIZAT		. 80		. 67

138. Johnson \& US 101 SB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	690	.43*
NBT	1	1600	130	. 08	490	. 31
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	600	.38*	380	.24*
SBR	f		1520		1600	
EBL	1	1600	120	.08*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	120	. 08	90	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 57
.83
161. Victoria \& Valentine

2025 Scenario 5 (Alt. Net.) w/Baseline

TOTAL CAPACITY UTILIZATION . 68
162. California \& Harbor

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	240	.15*	390	.24*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	50	. 03
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	260	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	240	.12*
WBR	0	0	50		140	

TOTAL CAPACITY UTILIZATION
. 29
.41
164. Seaward \& Poli

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		170	
NBT	1	1600	0	.18*	0	.21*
NBR	0	0	130		160	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	370	.23*
EBR	d	1600	80	. 05	130	. 08
WBL	1	1600	230	.14*	100	.06*
WBT	1	1600	170	. 11	300	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.41
.50
163. Santa Clara \& Main

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	260	. 08	230	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	360	.12*	470	.15*
EBR	0	0	10		10	
WBL	1	1600	150	.09*	170	.11*
WBT	2	3200	390	. 13	510	. 17
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 26
. 30
165. Seaward \& Harbor

2025 Scenario 5 (Alt. Net.) w/Baseline

	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	70	. 04
NBT	2	3200	360	.13*	310	.12*
NBR	0	0	40		60	
SBL	2	3200	560	.18*	590	.18*
SBT	2	3200	190	. 06	310	. 10
SBR	1	1600	310	. 19	430	. 27
EBL	2	3200	430	.13*	380	. 12
EBT	2	3200	600	. 19	1200	.39*
EBR	0	0	20		60	
WBL	1	1600	20	. 01	30	.02*
WBT	2	3200	270	.08*	480	. 15
WBR	2	3200	920	. 29	1150	. 36
Right Turn Adjustment			WBR	.07*		
TOTAL	CAPACIT	Y UTILIzAI		. 59		. 71

166. College \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.07*
NBR	0	0	60		90	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	570	.20*	890	.30*
EBR	0	0	60		70	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	670	. 21	670	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 33
169. Kimball \& Foothill

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	290	.18*	120	.08*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	210	. 26	390	.36*
EBR	0	0	210		190	
WBL	1	1600	70	. 04	20	.01*
WBT	1	1600	520	.33*	200	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 51
.45
168. Day \& Foothill

| 2025 | Scenario | 5 | (Alt. Net.) w/Baseline | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 210 | $.13^{*}$ | 220 | $.14^{*}$ |
| NBT | 1 | 1600 | 30 | .02 | 30 | .02 |
| NBR | 1 | 1600 | 170 | .11 | 270 | .17 |
| | | | | | | |
| SBL | 0 | 0 | 50 | | 50 | |
| SBT | 1 | 1600 | 20 | $.04^{*}$ | 20 | $.04^{*}$ |
| SBR | 1 | 1600 | 30 | .02 | 50 | .03 |
| | | | | | | |
| EBL | 1 | 1600 | 110 | .07 | 80 | .05 |
| EBT | 1 | 1600 | 450 | $.41^{*}$ | 480 | $.44^{*}$ |
| EBR | 0 | 0 | 200 | | 220 | |
| | | | | | | |
| WBL | 1 | 1600 | 240 | $.15^{*}$ | 220 | $.14^{*}$ |
| WBT | 1 | 1600 | 410 | .31 | 430 | .30 |
| WBR | 0 | 0 | 90 | | 50 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
.73
170. Petit \& Foothill

2025 Scenario 5 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		230	$.14^{*}$
EBT	1	1600	160	.10	30	.02
EBR	1	1600	40	.03		
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	480	$.31^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 34
. 18
171. Saticoy \& Foothill

2025 Scenario 5 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	100		50	
NBT	1	1600	0	.08*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	140	. 12	310	.26*
EBR	0	0	50		100	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	420	.28*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 36
173. Victoria \& SR 126 WB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1210	. 30	2110	.51*
NBR	0	0	230		360	
SBL	0	0	0		0	
SBT	3	4800	1980	.45*	1510	. 33
SBR	0	0	190		90	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	530	. 33	410	. 26
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	210	. 13	160	. 10
Right Turn Adjustment			Multi	.35*	Multi	.22*
TOTAL CAPACITY UTILIZATION				. 80		. 73

172. Wells \& Foothill

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	200	.13*
EBR	1	1600	100	. 06	120	. 08
WBL	0	0	70		30	\{.02\}*
WBT	1	1600	300	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
. 25

174. Petit \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline

			AM PK		HOUR	PM PK	
	LANESR	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	70	$.04 *$	50	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	20	.01	
SBL	1	1600	30	.02	20	.01	
SBT	1	1600	20	$.03 *$	20	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	270	.08	600	.19	
EBR	1	1600	50	.03	90	.06	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	520	$.33 *$	330	$.21^{*}$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 41 . 28
175. Ventura \& North Bank

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	80		40	
SBT	1	1600	0	.10*	0	.11*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	540	. 34
EBT	2	3200	910	. 28	2500	.78*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	.21*	360	. 23
WBR	1	1600	50	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 42
177. Wells \& SR 126 WB Ramps

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	530	. 17	1360	.43*
NBR	f		420		360	
SBL	0	0	0		0	
SBT	2	3200	1060	.33*	750	. 23
SBR	f		420		200	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1670		1030	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	180	. 11	100	. 06
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 33		. 49

176. Saticoy \& Darling

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	140	. 09	220	.14*
NBR	1	1600	110	. 07	20	. 01
SBL	0	0	60		10	\{.01 \}
SBT	1	1600	240	.19*	190	. 13
SBR	1	1600	80	. 05	90	. 06
EBL	0	0	70		60	\{.04\}*
EBT	1	1600	70	.11*	60	. 10
EBR	0	0	40		40	
WBL	0	0	70	\{.04\}*	50	
WBT	1	1600	20	. 08	70	.09*
WBR	0	0	30		20	

TOTAL CAPACITY UTILIZATION . 35
.28
178. SR-33 Ramps \& Stanley

2025 Scenario 5 (Alt. Net.) w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES	CAPACITY	VOL	V/C	VOL
	V/C			

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	590	.37	650	.41
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	340	.21	240	.15
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	510	$.32^{*}$	640	$.40^{*}$
WBR	f		200		260	
Right						

179. SR-33 Ramps \& Shell

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	830		830	
SBT	1	1600	0	. 52 *	0	.53*
SBR	0	0	10		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	150	. 10	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	860	.59*	750	. $56 *$
WBR	0	0	80		150	
TOTA	CAPACI	Y UTILIzAT		1.12		1.10

181. Ventura \& Ramona

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	50	.03*
NBT	1	1600	250	. 16	470	. 31
NBR	0	0	10		20	
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	380	.24*	470	.30*
SBR	0	0	10		10	
EBL	0	0	10		10	
EBT	1	1600	10	.04*	10	.05*
EBR	0	0	40		60	
WBL	0	0	10	\{.01\}*	10	\{.01\}*
WBT	1	1600	10	. 02	10	. 02
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 33
.39
180. Estates \& Telegraph

2025 Scenario 5 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	60	. 04
NBT	1	1600	10	. 05	10	.07*
NBR	0	0	70		100	
SBL	0	0	10		10	\{.01\}*
SBT	1	1600	10	.02*	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	540	. 17	810	.25*
EBR	d	1600	70	. 04	60	. 04
WBL	1	1600	40	. 03	90	.06*
WBT	2	3200	640	.20*	810	. 25
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 28
.39
182. Olive \& Main St

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	670	.42*	540	.34*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	70		100	
EBL	0	0	70	\{.04\}*	280	
EBT	1	1600	80	. 09	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	220	.14*	170	. 11
WBR	1	1600	210	. 13	450	. 28

TOTAL CAPACITY UTILIZATION
.61
.67
190. Petit Av \& North Bank Dr

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	70	.04*
SBT	0	0	0		0	
SBR	1	1600	270	. 17	190	. 12
EBL	1	1600	60	.04*	240	.15*
EBT	2	3200	60	. 02	120	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	100	.03*	90	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.11*		
TOTAL CAPACITY UTILIZATION				. 21		. 22

192. Los Angeles Av \& North Bank

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	200	. 13
NBT	3	4800	1430	. 30	3100	.65*
NBR	d	1600	20	. 01	60	. 04
SBL	1	1600	120	. 08	170	.11*
SBT	3	4800	2800	.58*	2250	. 47
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	.10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	10	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 71		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P		PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	.01*
NBT	1	1600	30	.03*	20	. 02
NBR	0	0	20		10	
SBL	1	1600	20	.01*	50	. 03
SBT	,	1600	10	. 02	40	.04*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	30	.02*
EBT	2	3200	100	.03*	70	. 02
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	90	.03*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.04*
TOTAL CAPACITY UTILIZATION				. 08		. 14

193. Saticoy Av \& A St

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	240	.15*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	210	. 13	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 17		. 13

194. Wells Rd \& A St

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	140	. 09
NBT	2	3200	390	. 14	850	.32*
NBR	0	0	50		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	820	.26*	590	. 19
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	160	.10*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	30		10	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 44		. 41

197. Kimball \& Ralston

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HouR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	10	. 01
NBT	3	4800	60	. 01	560	.12*
NBR	1	1600	0	. 00	20	. 01
SBL	1	1600	0	. 00	0	. 00
SBT	3	4800	340	.07*	70	. 01
SBR	1	1600	440	. 28	130	. 08
EBL	1	1600	70	.04*	490	.31*
EBT	1	1600	10	. 01	120	. 08
EBR	1	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	0	. 00
WBT	2	3200	70	.02*	30	.01*
WBR	1	1600	20	. 01	0	. 00
Right Turn Adjustment			SBR	.18*		

196. Ramelli \& Ralston

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	.01*	10	. 01
NBT	1	1600	20	. 04	50	.11*
NBR	0	0	50		120	
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	110	.11*	30	. 03
SBR	0	0	70		20	
EBL	1	1600	20	.01*	10	. 01
EBT	1	1600	40	. 03	500	.33*
EBR	0	0	10		20	
WBL	1	1600	140	. 09	60	.04*
WBT	1	1600	410	.26*	100	. 07
WBR	0	,	10		10	
TOTAL CAPACITY UTILIZATION				. 39		. 48

198. Montgomery \& Ralston

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	0	. 00	0	. 00
NBT	2	3200	210	.08*	70	.04*
NBR	0	0	60		110	. 07
SBL	1	1600	10	.01*	40	.03*
SBT	2	3200	130	. 04	200	. 06
SBR	0	0	10		0	
EBL	1	1600	0	. 00	20	. 01
EBT	1	1600	10	. 01	70	.06*
EBR	0	0	0		20	
WBL	1	1600	140	. 09	60	.04*
WBT	1	1600	90	.13*	30	. 08
WBR	,	0	120		90	

199. Kimball \& North Bank

2025 Scenario 5 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	10	.01*	10	.01*
SBT	0	0	0		0	
SBR	1	1600	330	. 21	60	. 04
EBL	1	1600	10	.01*	550	.34*
EBT	2	3200	180	. 06	420	. 13
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	670	.23*	350	.12*
WBR	0	0	50		20	
Right Turn Adjustment			SBR	.19*		
TOTAL CAPACITY UTILIZATION				. 44		. 47

NON-COMMITTED
IMPROVEMENTS
105. Wells \& Darling

2025 Scenario 5 (Alt. Net.) w/Non-Committed Lan						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1270	. 26	2790	.58*
NBR	d	1600	70	. 04	160	. 10
SBL	2	3200	120	. 04	370	.12*
SBT	3	4800	2400	. $50 *$	1840	. 38
SBR	d	1600	10	. 01	20	. 01
EBL	1	1600	80	. $05 *$	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	100		40	
WBL	2	3200	70	. 02	280	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	

TOTAL CAPACITY UTILIZATION
. 63
.88
179. SR-33 Ramps \& Shell

2025 Scenario 5 (Alt. Net.) w/Non-Committed Lan						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	830	.52*	830	.52*
SBT	0	0	0		0	
SBR	1	1600	10	. 01	20	. 01
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	150	. 10	100	. 07
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	860	.27*	750	.23*
WBR	1	1600	80	. 05	150	. 09

TOTAL CAPACITY UTILIZATION
.80 .76

SCENARIO 6

1. Victoria \& Foothill

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	270	.17*
NBT	1	1600	20	. 01	80	. 05
NBR	1	1600	370	. 23	520	. 33
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	40	. 03	10	. 01
EBL	1	1600	10	. 01	180	. 11
EBT	1	1600	330	.21*	500	.31*
EBR	1	1600	230	. 14	20	. 01
WBL	2	3200	600	.19*	510	.16*
WBT	1	1600	610	. 38	360	. 23
WBR	d	1600	10	. 01	20	. 01
Right Turn Adjustment					NBR	.03*

TOTAL CAPACITY UTILIZATION . 53 . 69

3. Victoria \& Telegraph

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	570	. 18	1070	.33*
NBT	2	3200	710	.22*	1050	. 33
NBR	1	1600	400	. 25	470	. 29
SBL	1	1600	270	.17*	220	. 14
SBT	3	4800	780	. 16	760	.16*
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	70	. 04	40	. 03
EBT	1.5	4800	430	\{.17\}*	740	\{.26\}*
EBR	1.5		670		880	
WBL	2	3200	580	.18*	370	.12*
WBT	2	3200	660	. 21	470	. 15
WBR	d	1600	100	. 06	140	. 09
TOTA	CAPACIT	Y UTILIZAT		. 74		. 87

2. Victoria \& Loma Vista

2025 Scenario 6 w/Baseline						
			AM P	K HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	240	.15*	280	.18*
NBT	2	3200	420	. 13	750	. 23
NBR	d	1600	20	. 01	40	. 03
SBL	1	1600	20	. 01	20	. 01
SBT	2	3200	690	.22*	500	.16*
SBR	d	1600	80	. 05	40	. 03
EBL	0	0	90		40	
EBT	1	1600	50	.27*	30	.25*
EBR	0	0	290		330	
WBL	0	0	70	\{.04\}*	30	\{.02\}*
WBT	1	1600	40	. 10	40	. 06
WBR	0	0	50		20	
TOTAL CAPACITY UTILIZATION				. 68		. 61

4. Victoria \& Woodland

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	230	.14*	50	. 03
NBT	3	4800	1750	. 41	2400	.59*
NBR	0	0	210		440	
SBL	1	1600	10	. 01	50	.03*
SBT	3	4800	2130	.45*	2000	. 42
SBR	0	0	20		10	
EBL	0	0	10		30	
EBT	1	1600	10	.10*	10	.04*
EBR	0	0	140		30	
WBL	1.5		400		320	
WBT	0.5	3200	10	.13*	10	.11*
WBR	0		20		20	
Note: Assumes E/W Split Phasing						
тОTA	CAPACII	UTILIzAT		. 82		. 77

5. Victoria \& SR 126 SB Ramps

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	v/C
NBL	0	0	0		0	
NBT	4	6400	1600	. 26	2850	.45*
NBR	0	0	50		40	
SBL	0	0	0		0	
SBT	4	6400	2810	.45*	2180	. 37
SBR	0	0	90		190	
EBL	1.5		320		300	
EBT	0.5	3200	200	.16*	130	.13*
EBR	1	1600	200	. 13	170	. 11
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	270	. 17	570	. 36
Right Turn Adjustment WBR Note: Assumes E/W Split Phasing				.03*	WBR	.36*

7. Victoria \& Telephone

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	260	.08*	320	. 10
NBT	4	6400	1490	. 27	1730	.29*
NBR	0	0	260		150	
SBL	2	3200	360	. 11	340	.11*
SBT	4	6400	1930	.30*	1530	. 24
SBR	1	1600	340	. 21	450	. 28
EBL	2	3200	340	.11*	700	.22*
EBT	3	4800	350	. 08	860	. 20
EBR	0	0	40		110	
WBL	2	3200	210	. 07	300	. 09
WBT	3	4800	710	.15*	660	.14*
WBR	1	1600	170	. 11	330	. 21

TOTAL CAPACITY UTILIZATION

6. Victoria \& Thille

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	60	. 04
NBT	4	6400	1520	. 31	2630	.42*
NBR	0	0	460		50	
SBL	1	1600	190	. 12	40	.03*
SBT	4	6400	2350	.43*	2110	. 37
SBR	0	0	390		230	
EBL	1.5		260		370	
EBT	0.5	3200	30	.09*	10	.12*
EBR	1	1600	110	. 07	200	. 13
WBL	1	1600	30	. 02	90	. 06
WBT	1	1600	10	.02*	90	.11*
WBR	0	0	20		80	
Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 57		. 68

8. Victoria \& Ralston

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	400	.25*
NBT	4	6400	1570	. 25	2020	. 35
NBR	0	0	50		230	
SBL	1	1600	100	. 06	200	. 13
SBT	4	6400	1940	. $32 *$	1970	.33*
SBR	0	0	110		120	
EBL	1	1600	40	. 03	140	. 09
EBT	1	1600	110	.07*	240	.15*
EBR	1	1600	230	. 14	320	. 20
WBL	1	1600	290	.18*	130	.08*
WBT	1	1600	230	. 14	120	. 08
WBR	1	1600	190	. 12	120	. 08
TOTA	CAPACIT	UTILIZAI		. 73		. 81

10. Victoria \& Moon

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	.03*	190	. 12
NBT	4	6400	1940	. 32	2280	.41*
NBR	0	0	110		350	
SBL	1	1600	40	. 03	120	.08*
SBT	4	6400	2090	.33*	1980	. 35
SBR	0	0	30		270	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	30	. 02	170	. 11
WBL	1	1600	320	.20*	160	.10*
WBT	1	1600	110	. 07	50	. 03
WBR	1	1600	60	. 04	50	. 03

TOTAL CAPACITY UTILIZATION
.60
.65

15. Johnson \& Telephone

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	330	.10*	190	. 06
NBT	2	3200	160	. 10	240	.15*
NBR	0	0	180	. 11	430	. 27
SBL	1	1600	30	. 02	100	.06*
SBT	2	3200	170	.05*	200	. 06
SBR	d	1600	40	. 03	40	. 03
EBL	1	1600	50	. 03	30	. 02
EBT	3	4800	210	.07*	1070	.31*
EBR	0	0	170	. 11	400	
WBL	1	1600	440	.28*	420	.26*
WBT	3	4800	1370	. 30	560	. 13
WBR	0	0	60		40	

TOTAL CAPACITY UTILIZATION
. 50
.78

14. Hill \& Telephone

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		30	
NBT	1	1600	90	.09*	60	.16*
NBR	0	0	10		170	
SBL	1	1600	60	.04*	240	.15*
SBT	1	1600	30	. 02	70	. 04
SBR	1	1600	70	. 04	240	. 15
EBL	1	1600	170	.11*	100	. 06
EBT	3	4800	500	. 12	1160	.28*
EBR	0	0	70		200	
WBL	1	1600	190	. 12	30	.02*
WBT	3	4800	1090	.29*	730	. 16
WBR	0	0	280		60	

TOTAL CAPACITY UTILIZATION . 53
.61
18. Seaward \& US 101 NB Ramps

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	550	.17*	600	.19*
NBT	2	3200	860	. 27	910	. 28
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	720	.23*	980	.31*
SBR	1	1600	240	. 15	240	. 15
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	380	.12*	390	.12*
WBT	0	0	0		0	
WBR	2	3200	400	. 13	460	. 14

TOTAL CAPACITY UTILIZATION
. 52

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 6 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		630		1000	
SBT	0.5	3200	40	.21*	70	.35*
SBR	0		10		50	
EBL	1	1600	130	.08*	150	.09*
EBT	2	3200	370	. 12	400	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	570	.36*
WBR	1	1600	300	. 19	320	. 20
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	140	.09*
NBT	2	3200	930	.29*	1100	. 34
NBR	1	1600	390	. 24	200	. 13
SBL	2	3200	170	.05*	170	. 05
SBT	2	3200	730	. 23	1200	.38*
SBR	1	1600	150	. 09	110	. 07
EBL	1	1600	70	.04*	170	. 11
EBT	2	3200	140	. 04	210	.07*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	50	. 03	420	.26*
WBT	2	3200	100	.03*	140	. 04
WBR	f		50		390	

TOTAL CAPACITY UTILIZATION
.41
.80

24. Mills \& Telegraph

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	150	. 09
NBT	1	1600	420	.26*	270	.17*
NBR	1	1600	250	. 16	380	. 24
SBL	1	1600	60	.04*	150	.09*
SBT	2	3200	390	. 12	480	. 15
SBR	1	1600	20	. 01	20	. 01
EBL	1	1600	30	. 02	20	. 01
EBT	2	3200	360	.11*	580	.18*
EBR	1	1600	80	. 05	130	. 08
WBL	2	3200	250	.08*	220	.07*
WBT	2	3200	440	. 16	460	. 16
WBR	0	0	60		60	
Right Turn Adjustment					NBR	.02*
TOTAL CAPACITY UTILIZATION				. 49		. 53

25. Mills \& Maple

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	1040	.36*	840	.30*
NBR	0	0	110		120	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	720	. 24	910	. 30
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	210		210	
WBT	1	1600	20	.14*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION . 53 . 51

26. Mills \& Dean

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	100	.06*
NBT	2	3200	1260	.39*	970	. 30
NBR	1	1600	280	. 18	370	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	810	. 26	950	.31*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	200	. 13
WBL	2	3200	410	.13*	260	.08*
WBT	1	1600	50	. 05	50	. 06
WBR	0	0	30		40	
Right Turn Adjustment					EBR	.06*
TOTAL CAPACITY UTILIZATION				. 55		. 53

28. US 101 NB Ramps \& Main

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	650	.20*	360	.11*
SBT	0	0	0		0	
SBR	3	4800	1730	. 36	1350	. 28
EBL	0	0	0		0	
EBT	3	4800	2250	.47*	2540	.53*
EBR	f		320		160	
WBL	2	3200	390	.12*	520	.16*
WBT	3	4800	1040	. 22	1810	. 38
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 79		. 80

29. SR 126 EB Ramps \& Main

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	270	. 08	460	.14*
EBT	3	4800	2590	.54*	2710	. 56
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1240	. 26	2380	. $50 *$
WBR	f		130		360	

TOTAL CAPACITY UTILIZATION
. 54
31. Donlon \& Main

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		620	
NBT	0	3200	0	.06*	0	.25*
NBR	0.5		30		170	
SBL	1.5		380		360	
SBT	0.5	3200	140	.16*	80	.14*
SBR	1	1600	180	. 11	210	. 13
EBL	0	0	0		0	
EBT	4	6400	1940	.30*	2390	.37*
EBR	d	1600	230	. 14	230	. 14
WBL	2	3200	100	.03*	250	.08*
WBT	3	4800	1040	. 22	1580	. 33
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 6 w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	630	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	.01*
EBT	4	6400	2250	.35*	2430	. 38
EBR	d	1600	320	. 20	250	. 16
WBL	2	3200	80	.03*	170	. 05
WBT	3	4800	1190	. 25	2090	.44*
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.46
32. Telephone \& Main

2025 Scenario 6 w/Baseline

			AM PK		HOUR	PM PK		HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C		
NBL	2	3200	250	.08	680	.21		
NBT	2	3200	260	$.08^{*}$	1090	$.34^{*}$		
NBR	1	1600	80	.05	280	.18		
SBL	1.5		270	.17	550			
SBT	1.5	4800	1000	$.31 *$	730	$.27^{*}$		
SBR	f		720		960			
EBL	2	3200	450	.14	760	.24		
EBT	3	4800	1080	$.23^{*}$	1410	$.29 *$		
EBR	f		410		450			
WBL	0	0	0		0			
WBT	0	0	0		0			
WBR	0	0	0		0			

Note: Assumes N/S Split Phasing
TOTAL CAPACITY UTILIZATION . 62

33. US 101 NB Ramps \& Telephone

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		660		520	
NBT	0.5	3200	30	.22*	80	.19*
NBR	1	1600	320	. 20	390	. 24
SBL	0.5		40		10	.01*
SBT	0	3200	0	.12*	0	
SBR	1.5		350		230	\{.00\}
EBL	1	1600	20	.01*	300	.19*
EBT	3	4800	730	. 15	1950	. 41
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1010	.21*	1500	.31*
WBR	0	0	10		10	
Note: Assumes N/S Split Phasing						
TOTA	CAPACII	UTILIZAT		. 56		. 70

35. Saratoga \& Telephone

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	. 04	30	. 02
NBT	1	1600	10	.08*	70	.15*
NBR	0	0	110		170	
SBL	1	1600	30	.02*	40	.03*
SBT	1	1600	40	. 03	40	. 03
SBR	1	1600	50	. 03	20	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	670	. 14	1620	.34*
EBR	d	1600	50	. 03	170	. 11
WBL	1	1600	60	. 04	90	.06*
WBT	3	4800	900	.19*	1090	. 23
WBR	0	0	20		30	
TOTA	CAPACIT	UTILIZAT		. 30		. 58

34. Portola \& Telephone

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	300	.09*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	20	. 01	30	. 02
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	70	. 04
EBL	1	1600	40	.03*	170	. 11
EBT	3	4800	650	. 14	1760	.37*
EBR	d	1600	230	. 14	310	. 19
WBL	1	1600	20	. 01	80	.05*
WBT	3	4800	870	.19*	1030	. 22
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 36		. 52

38. Telephone \& Market

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	. 09	220	.14*
NBT	3	4800	540	.11*	880	. 18
NBR	d	1600	90	. 06	100	. 06
SBL	1	1600	520	.33*	160	. 10
SBT	3	4800	280	. 06	700	.15*
SBR	d	1600	180	. 11	160	. 10
EBL	1	1600	60	. 04	220	.14*
EBT	1	1600	280	.18*	240	. 15
EBR	1	1600	160	. 10	290	. 18
WBL	1	1600	50	.03*	170	. 11
WBT	1	1600	120	. 08	380	.24*
WBR	1	1600	120	. 08	610	. 38
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 65		. 73

42. Telephone \& McGrath

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	230	.14*
NBT	3	4800	670	. 14	950	. 20
NBR	d	1600	280	. 18	100	. 06
SBL	1	1600	70	. 04	70	. 04
SBT	2	3200	310	.10*	1060	.33*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	60	.04*	30	.02*
EBR	1	1600	130	. 08	330	. 21
WBL	1	1600	70	.04*	280	.18*
WBT	1	1600	30	. 02	100	. 06
WBR	1	1600	60	. 04	160	. 10
Right Turn Adjustment					EBR	.08*
TOTAL CAPACITY UTILIZATION				. 29		. 75

46. Seaward \& Main

2025 Scenario 6 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	. 03	190	.12*
NBT	1	1600	160	.10*	190	. 12
NBR	1	1600	310	. 19	270	. 17
SBL	1	1600	40	.03*	80	. 05
SBT	1	1600	150	. 09	100	.06*
SBR	1	1600	200	. 13	80	. 05
EBL	1	1600	120	. 08	90	. 06
EBT	2	3200	730	.23*	680	.21*
EBR	1	1600	160	. 10	110	. 07
WBL	0.5		100		190	
WBT	1.5	3200	500	.19*	700	.30*
WBR	0		20		70	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	40	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	80	.03*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	770	.25*	770	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	50	. 03
WBT	2	3200	500	. 21	760	.28*
WBR	0	0	160		130	
TOTAL CAPACITY UTILIZATION				. 37		. 34

47. Main \& Loma Vista

2025 Scenario 6 w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	310	.10*	470	.15*
NBR	f		40		170	
SBL	1	1600	620	.39*	430	.27*
SBT	2	3200	560	. 18	630	. 20
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	130	\{.08\}*
WBT	1	1600	30	. 05	40	. 11
WBR	2	3200	370	. 12	480	. 15
TOTA	CAPACIT	Y UTILIZAT		. 56		. 55

49. Main \& Telegraph

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290	. 18	620	
NBT	1.5	4800	580	.18*	700	.28*
NBR	f		160		80	
SBL	1.5		190	. 12	250	. 16
SBT	1.5	4800	480	.16*	750	.25*
SBR	0		40		50	
EBL	0	0	0		0	
EBT	2	3200	330	. 10	450	. 14
EBR	f		660		600	
WBL	0	0	0		0	
WBT	1.5	4800	360	.11*	490	.15*
WBR	1.5		120		210	

50. Emma \& Main

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1020	.32*	1220	.38*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	80	.05*
WBT	3	4800	960	. 20	1480	. 31
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 40
.45

53. Kimball \& Telephone

2025 Scenario 6 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	270	$.08 *$	540	$.17 *$
SBT	0	0	0		0	
SBR	2	3200	1370	.43	840	.26
EBL	2	3200	320	$.10 *$	1090	$.34^{*}$
EBT	3	4800	310	.06	960	.20
EBR	0	0	0		0	

WBL	0	0	0		0	
WBT	2	3200	870	$.27 *$	630	$.20^{*}$
WBR	1	1600	720	.45	390	.24

Right Turn Adjustment Multi .39*
TOTAL CAPACITY UTILIZATION
84
55. Kimball \& SR 126 EB Ramps

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1470	. 31	1010	.21*
NBR	f		120		430	
SBL	1	1600	20	. 01	60	.04*
SBT	3	4800	1660	.35*	970	. 20
SBR	0	0	0		0	
EBL	2	3200	120	.04*	400	.13*
EBT	0	0	10		0	
EBR	f		250		690	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

56. Kimball \& SR 126 WB Ramps

2025 Scenario 6 w/Baseline						
			AM	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	670	.21*	270	.08*
NBT	3	4800	860	. 18	930	. 19
NBR	d	1600	60	. 04	210	. 13
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	860	.18*	660	.14*
SBR	d	1600	230	. 14	150	. 09
EBL	1.5		90		60	
EBT	0.5	3200	10	.03*	10	.02*
EBR	1	1600	650	. 41	250	. 16
WBL	0	0	170		110	
WBT	1	1600	130	.19*	70	.11*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment EBR .22* EBR .08* Note: Assumes E/W Split Phasing						
TOTAL CAPACITY UTILIZATION				. 83		. 43

60. Ramelli \& Telephone

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	.01*	20	.01*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	210	. 13	560	. 35
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	3	4800	350	. 08	1490	.33*
EBR	0	0	40		80	
WBL	1	1600	450	. 28	250	.16*
WBT	3	4800	1740	.36*	1180	. 25
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.21*
TOTAL CAPACITY UTILIZATION				. 39		. 72

61. Montgomery \& Telephone

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	280	.18*	70	.04*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	20	. 01	130	. 08
SBL	1	1600	20	. 01	10	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	90	. 06	20	. 01
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	510	. 16	780	.24*
EBR	d	1600	80	. 05	130	. 08
WBL	1	1600	90	. 06	70	.04*
WBT	2	3200	1120	.35*	690	. 22
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*		

TOTAL CAPACITY UTILIZATION . 59 . 34

65. Sanjon \& Thompson

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	510	.16*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	210	. 13
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	480	.24*	690	.31*
EBR	0	0	280		290	
WBL	1	1600	140	.09*	140	.09*
WBT	2	3200	530	. 17	770	. 24
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	150	. 09
NBT	1	1600	40	. 10	60	.19*
NBR	0	0	120		250	
SBL	1	1600	40	. 03	30	.02*
SBT	1	1600	70	.04*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	80	.05*	90	. 06
EBT	2	3200	320	. 10	760	.24*
EBR	d	1600	90	. 06	250	. 16
WBL	1	1600	150	. 09	210	.13*
WBT	2	3200	760	.24*	540	. 17
WBR	d	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 44		. 58

68. Seaward \& Thompson

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	130	. 08	220	.14*
NBT	2	3200	470	.15*	490	. 15
NBR	d	1600	220	. 14	170	. 11
SBL	1	1600	100	.06*	60	. 04
SBT	2	3200	350	. 11	370	.12*
SBR	d	1600	60	. 04	90	. 06
EBL	1	1600	80	. 05	90	. 06
EBT	2	3200	660	.23*	780	.28*
EBR	0	0	70		110	
WBL	2	3200	200	.06*	260	.08*
WBT	2	3200	430	. 13	760	. 24
WBR	1	1600	40	. 03	60	. 04
TOTA	CAPACIT	UTILIZAI		. 50		. 62

71. Sanjon \& Harbor

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	180	.11*	380	.24*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	260	. 16	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	570	.36*
WBR	1	1600	470	. 29	250	. 16
Right Turn Adjustment			WBR	.05*		

TOTAL CAPACITY UTILIZATION . 36 . 68

77. Day \& Telegraph

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	270	.08*	350	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	,	1600	100	.06*	60	. 04
EBT	2	3200	530	. 17	960	.30*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	940	.29*	810	. 25
WBR	d	1600	320	. 20	290	. 18

75. Ashwood \& Telegraph

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	. 03	40	. 03
NBT	1	1600	60	.04*	90	.06*
NBR	d	1600	60	. 04	70	. 04
SBL	1	1600	80	.05*	160	.10*
SBT	1	1600	40	. 03	60	. 04
SBR	1	1600	130	. 08	140	. 09
EBL	1	1600	80	.05*	180	. 11
EBT	2	3200	550	. 17	890	.28*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	70	.04*
WBT	2	3200	550	.17*	610	. 19
WBR	d	1600	110	. 07	100	. 06
TOTAL CAPACITY UTILIZATION				. 31		. 48

85. Victoria \& Olivas Park

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	. 21	580	.18*
NBT	3	4800	1910	.40*	1800	. 38
NBR	1	1600	540	. 34	450	. 28
SBL	2	3200	490	.15*	230	. 07
SBT	3	4800	1510	. 31	1640	.34*
SBR	f		40		90	
EBL	2	3200	130	. 04	170	. 05
EBT	2	3200	160	.05*	230	.07*
EBR	f		200		960	
WBL	1	1600	130	.08*	360	.23*
WBT	2	3200	50	. 02	380	. 12
WBR	f		120		220	
TOTA	CAPACIT	UTILIZAT		. 68		. 82

86. Telephone \& Olivas Park

2025 Scenario 6 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10		10	
NBT	1	1600	10	.02*	10	.02*
NBR	0	0	10		10	
SBL	2	3200	380	.12*	950	.30*
SBT	1	1600	10	. 01	10	. 01
SBR	d	1600	150	. 09	680	. 43
EBL	2	3200	480	.15*	400	.13*
EBT	2	3200	210	. 07	280	. 09
EBR	d	1600	10	. 01	10	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	2	3200	170	.05*	270	.08*
WBR	1	1600	570	. 36	740	. 46
Right Turn Adjustment			WBR	.22*	Multi	.17*

TOTAL CAPACITY UTILIZATION . 56 . 70

2025 Scenario 6 w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	520	. 16	1010	. 32
NBR	f		190		1120	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	1060	.33*	1170	.37*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	30	.02*	290	.18*
EBR	1	1600	130	. 08	200	. 13
WBL	2	3200	990	.31*	510	.16*
WBT	1	1600	260	. 16	160	. 10
WBR	d	1600	30	. 02	10	. 01
Right Turn Adjustment			EBR	.04*		

91. Johnson \& Ralston

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	110	.07*	130	.08*
NBT	2	3200	480	. 15	810	. 25
NBR	d	1600	40	. 03	170	. 11
SBL	1	1600	50	. 03	60	. 04
SBT	2	3200	810	.25*	910	.28*
SBR	d	1600	90	. 06	50	. 03
EBL	,	1600	40	.03*	80	. 05
EBT	1	1600	110	. 07	240	.15*
EBR	d	1600	100	. 06	270	. 17
WBL	1	1600	130	. 08	60	.04*
WBT	1	1600	280	.18*	90	. 06
WBR	d	1600	90	. 06	50	. 03
TOTAL CAPACITY UTILIZATION				. 53		. 55

94. Johnson \& North Bank

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	70	.04*
NBT	3	4800	170	. 04	520	. 11
NBR	d	1600	20	. 01	180	. 11
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1590	.38*	1450	.34*
SBR	0	0	230		170	
EBL	2.5		450	.09*	1790	.37*
EBT	1.5	6400	70	. 04	350	. 22
EBR	1	1600	440	. 28	320	. 20
WBL	1.5		150		240	
WBT	1.5	4800	80	.05*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.16*		
TOTAL CAPACITY UTILIZATION				. 72		. 83

95. Bristol \& Ramelli

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	.01*
NBT	1	1600	30	.03*	10	. 02
NBR	0	0	10		20	
SBL	1	1600	10	.01*	30	. 02
SBT	1	1600	20	. 01	40	.03*
SBR	1	1600	270	. 17	150	. 09
EBL	1	1600	10	.01*	170	.11*
EBT	2	3200	200	. 07	670	. 21
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	. 01
WBT	2	3200	880	.29*	390	.13*
WBR	0	0	60		30	
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 47		. 28

100. Saticoy \& Telephone

| 2025 | Scenario 6 w/Baseline | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 180 | .11 | 130 | $.08^{*}$ |
| NBT | 1 | 1600 | 210 | $.13^{*}$ | 150 | .09 |
| NBR | 1 | 1600 | 120 | .08 | 90 | .06 |
| | | | | | | |
| SBL | 1 | 1600 | 200 | $.13^{*}$ | 100 | .06 |
| SBT | 1 | 1600 | 120 | .08 | 140 | $.09 *$ |
| SBR | 1 | 1600 | 250 | .16 | 160 | .10 |
| | | | | | | |
| EBL | 1 | 1600 | 110 | $.07 *$ | 190 | $.12^{*}$ |
| EBT | 2 | 3200 | 210 | .07 | 640 | .20 |
| EBR | 1 | 1600 | 100 | .06 | 180 | .11 |
| | | | | | | |
| WBL | 1 | 1600 | 80 | .05 | 110 | .07 |
| WBT | 2 | 3200 | 330 | $.14^{*}$ | 450 | $.16^{*}$ |
| WBR | 0 | 0 | 130 | | 60 | |
| | | | | | | |

96. Montgomery \& North Bank

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	10		10	
SBL	1	1600	40	.03*	130	.08*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	370	. 23	180	. 11
EBL	1	1600	100	.06*	320	.20*
EBT	2	3200	110	. 03	390	. 12
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	460	.29*	270	.17*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 54		. 47

101. Saticoy \& Telegraph

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	0	0	180		80	
NBT	1	1600	90	.20*	60	.11*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.09*	50	.06*
SBR	0	0	60		20	
EBL	1	1600	20	. 01	20	. 01
EBT	1	1600	210	.19*	450	.37*
EBR	0	0	100		140	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	290	. 18	290	. 18
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 51		. 56

102. Wells \& Telegraph

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	280	.18*
NBT	1	1600	170	. 11	340	. 21
NBR	1	1600	60	. 04	240	. 15
SBL	1	1600	10	. 01	10	. 01
SBT	1	1600	320	.20*	230	.14*
SBR	1	1600	50	. 03	30	. 02
EBL	1	1600	20	. 01	50	. 03
EBT	1	1600	50	.17*	210	.29*
EBR	0	0	220		250	
WBL	1	1600	320	.20*	130	.08*
WBT	1	1600	170	. 11	110	. 08
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
. 68
.69
104. Wells \& SR 126 EB Ramps

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	920	. 19	1460	. 30
NBR	f		590		1590	
SBL	0	0	0		0	
SBT	3	4800	2670	.56*	1770	.37*
SBR	f		90		50	
EBL	1	1600	100	.06*	340	.21*
EBT	0	0	0		0	
EBR	1	1600	170	. 11	630	. 39
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.05*	EBR	.18*
TOTAL CAPACITY UTILIZATION				. 67		. 76

106. Wells \& Telephone

2025 Scenario 6 w/Baseline						
			AM PK	K Hour	PM P	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	410	. 13
NBT	3	4800	1270	. 27	2940	.63*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2500	. 52 *	1980	. 41
SBR	1	1600	140	. 09	420	. 26
EBL	1.5		160	\{.05\}*	240	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	560	. 18	540	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.04*		
TOTAL CAPACITY UTILIZATION				. 73		. 74

114. California \& Thompson

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		40	
NBT	0.5	3200	10	.02*	30	.02*
NBR	1	1600	50	. 03	70	. 04
SBL	1.5		130		170	
SBT	1.5	4800	70	.05*	170	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	830	.31*	940	.33*
EBR	0	0	150		100	
WBL	1	1600	60	.04*	80	.05*
WBT	2	3200	320	. 10	390	. 14
WBR	0	0	10		60	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	80	. 05
SBT	1	1600	260	.17*	320	.22*
SBR	0	0	10		30	
EBL	1	1600	20	. 01	20	. 01
EBT	2	3200	560	.18*	680	.21*
EBR	f		390		520	
WBL	1	1600	210	.13*	210	.13*
WBT	2	3200	460	. 15	630	. 22
WBR	0	0	30		70	

TOTAL CAPACITY UTILIZATION
.49
. 57

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	330	.21*	300	.19*
NBT	1	1600	270	. 17	360	. 23
NBR	0	0	0		,	
SBL	,	0	0		0	
SBT	1	1600	470	.29*	380	.24*
SBR	1	1600	510	. 32	370	. 23
EBL	1	1600	380	.24*	660	.41*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 6 w/Baseline						
			AM PK HoUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		360	.11*	420	.13*
SBT	0	4800	0		0	
SBR	1.5		90	. 06	20	
EBL	1	1600	40	.03*	440	.28*
EBT	2	3200	260	. 08	780	. 24
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	980	.31*	390	.12*
WBR	f		930		930	

TOTAL CAPACITY UTILIZATION
. 45
160. Victoria \& US 101 NB Ramps

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	550	.17*	520	.16*
NBT	3	4800	1420	. 30	1960	. 41
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	4	6400	2860	.45*	2340	.37*
SBR	1	1600	130	. 08	360	. 23
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	690	.22*	500	.16*
WBT	0	0	0		0	
WBR	3	4800	980	. 20	1230	. 26
Right Turn Adjustment					WBR	.01*
TOTAL CAPACITY UTILIZATION				. 84		. 70

138. Johnson \& US 101 SB Ramps

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	700	.44*
NBT	1	1600	130	. 08	500	. 31
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	620	.39*	410	.26*
SBR	f		1540		1640	
EBL	1	1600	110	.07*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	120	. 08	90	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 56
.86
161. Victoria \& Valentine

2025 Scenario 6 w/Baseline

			AM P	HOUR	PM P	Hour			
	LANES	CAPACITY	VOL	V/C	VOL	V/C			
NBL	2	3200	250	.08*	200	.06*			
NBT	3	4800	1720	. 36	2130	. 45			
NBR	0	0	20		50				
SBL	1	1600	40	. 03	50	. 03			
SBT	2	3200	1660	.52*	1600	.50*			
SBR	f		1790		1210				
EBL	2.5		380		770				
EBT	0.5	4800	50	.09*	20	.16*			
EBR	1	1600	230	. 14	410	. 26			
WBL	0	0	20		20				
WBT	1	1600	10	.02*	30	.03*			
WBR	1	1600	80	. 05	100	. 06			
Right Turn Adjustment					EBR	.04*			
			Note: Assumes E/W Split Phasing						

TOTAL CAPACITY UTILIZATION
.71
162. California \& Harbor

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	210	.13*	320	.20*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	60	. 04
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	230	.11*
WBR	0	,	50		120	

TOTAL CAPACITY UTILIZATION
. 27
164. Seaward \& Poli

2025 Scenario 6 w/Baseline						
			AM PK HoUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		160	
NBT	1	1600	0	.19*	0	.21*
NBR	0	0	140		180	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	360	.23*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	250	.16*	110	.07*
WBT	1	1600	160	. 10	310	. 19
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
163. Santa Clara \& Main

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM P	HoUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	260	. 08	220	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	340	.11*	470	.15*
EBR	0	0	10		10	
WBL	1	1600	150	.09*	160	.10*
WBT	2	3200	360	. 12	480	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
. 29
165. Seaward \& Harbor

2025 Scenario 6 w/Baseline

			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	70	. 04
NBT	2	3200	360	.12*	310	.12*
NBR	0	0	30		60	
SBL	2	3200	560	.18*	600	.19*
SBT	2	3200	190	. 06	320	. 10
SBR	1	1600	300	. 19	470	. 29
EBL	2	3200	400	.13*	350	. 11
EBT	2	3200	590	. 19	1170	.38*
EBR	0	0	20		50	
WBL	1	1600	10	. 01	30	.02*
WBT	2	3200	270	.08*	450	. 14
WBR	2	3200	910	. 28	1180	. 37
Right Turn Adjustment			WBR	.06*		
TOTAL CAPACITY UTILIZATIO				. 57		. 71

166. College \& Telegraph

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.08*
NBR	0	0	50		100	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	630	.22*	960	.32*
EBR	0	0	70		70	
WBL	1	1600	120	.08*	50	.03*
WBT	2	3200	700	. 22	710	. 22
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 36
169. Kimball \& Foothill

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	360	.23*	250	.16*
NBT	0	0	0		0	
NBR	1	1600	30	. 02	30	. 02
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	210	.37*	420	.48*
EBR	0	0	380		340	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	580	. 36	230	. 14
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
168. Day \& Foothill

2025 Scenario 6 w/Baseline						
			AM	HOUR	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	210	.13*
NBT	1	1600	30	. 02	30	. 02
NBR	1	1600	170	. 11	320	. 20
SBL	0	0	50		50	
SBT	1	1600	20	.04*	20	.04*
SBR	1	1600	30	. 02	50	. 03
EBL	1	1600	110	. 07	80	. 05
EBT	1	1600	490	.44*	470	.45*
EBR	0	0	210		250	
WBL	1	1600	300	.19*	250	.16*
WBT	1	1600	410	. 31	440	. 31
WBR	0	0	90		50	

TOTAL CAPACITY UTILIZATION . 80 . 78
170. Petit \& Foothill

2025 Scenario 6 w/Baseline

		AM PK HOUR	PM PK hour	
LANES CAPACITY	VOL	V / C	VOL	V / C

NBL	0	0	50		10	
NBT	1	1600	0	$.04^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		250	$.16^{*}$
EBT	1	1600	180	.11	20	.01
EBR	1	1600	30	.02		
					10	$\{.01\}^{*}$
WBL	0	0	10		220	.14
WBT	1	1600	520	$.33^{*}$	220	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION . 37
. 20
171. Saticoy \& Foothill

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	130		50	
NBT	1	1600	0	.09*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	160	. 13	340	.28*
EBR	0	0	50		100	
WBL	0	0	20		20	\{.01\}*
WBT	1	1600	440	.29*	220	. 15
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 38
173. Victoria \& SR 126 WB Ramps

2025 Scenario 6 w/Baseline						
			AM PK	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1550	. 36	2660	.62*
NBR	0	0	200		320	
SBL	0	0	0		0	
SBT	3	4800	2320	.54*	2000	. 45
SBR	0	0	260		170	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	590	. 37	450	. 28
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	290	. 18	160	. 10
Right Turn Adjustment			Multi	.41*	Multi	.25*
TOTAL CAPACITY UTILIZATION				. 95		. 87

172. Wells \& Foothill

2025 Scenario 6 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	140	.09*	170	.11*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	0	0	10	\{.01\}*	10	
EBT	1	1600	50	. 04	200	.13*
EBR	1	1600	120	. 08	140	. 09
WBL	0	0	80		30	\{.02\}*
WBT	1	1600	290	.24*	60	. 06
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION . 36
. 28
174. Petit \& Telegraph

2025 Scenario 6 w/Baseline

			AM PK		Hour	PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	80	$.05 *$	40	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	10	.01	
SBL	1	1600	20	.01	20	.01	
SBT	1	1600	10	$.03 *$	20	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	310	.10	630	.20	
EBR	1	1600	60	.04	90	.06	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	560	$.35 *$	340	$.21^{*}$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 44 . 28
175. Ventura \& North Bank

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	80		50	
SBT	1	1600	0	.10*	0	.11*
SBR	0	0	80		130	
EBL	1	1600	180	.11*	550	. 34
EBT	2	3200	930	. 29	2500	.78*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	.21*	370	. 23
WBR	1	1600	50	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 42
177. Wells \& SR 126 WB Ramps

2025 Scenario 6 w/Baseline						
			AM PK HoUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	560	. 18	1390	.43*
NBR	f		430		400	
SBL	0	0	0		0	
SBT	2	3200	1070	.33*	780	. 24
SBR	f		460		210	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1690		1040	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	190	. 12	110	. 07
Right Turn Adjustment			WBR	.01*	WBR	.07*
TOTAL	CAPACIT	Y UTILIZAT		. 34		. 50

176. Saticoy \& Darling

2025 Scenario 6 w/Baseline						
			AM PK Hour		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	160	. 11	250	.16*
NBR	1	1600	110	. 07	20	. 01
SBL	0	0	60		10	\{.01\}*
SBT	1	1600	260	. $20 *$	200	. 13
SBR	1	1600	80	. 05	80	. 05
EBL	0	0	70		50	
EBT	1	1600	80	.12*	60	.09*
EBR	0	0	40		40	
WBL	0	0	60	\{.04\}*	40	\{.02\}*
WBT	1	1600	20	. 07	70	. 08
WBR	0	0	30		20	

TOTAL CAPACITY UTILIZATION . 37 .28
178. SR-33 Ramps \& Stanley

2025 Scenario 6 w/Baseline

		AM PK HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	690	.43	830	.52
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	280	.18	180	.11
EBR	0	0	0		0	
					0	
WBL	0	0	0		0	
WBT	1	1600	690	$.43^{*}$	900	$.56^{*}$
WBR	f		180		180	
Right Turn Adjustment	NBR	$.24^{*}$	NBR	$.18^{*}$		

179. SR-33 Ramps \& Shell

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	700		680	
SBT	1	1600	0	.46*	0	.44*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	110	. 08
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.49*	740	.53*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION
.96
181. Ventura \& Ramona

2025 Scenario 6 w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	50	. 03
NBT	1	1600	360	.24*	630	.41*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	80	.05*
SBT	1	1600	390	. 26	470	. 31
SBR	0	0	20		30	
EBL	0	0	20	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 52
180. Estates \& Telegraph

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	70	. 04	50	. 03
NBT	1	1600	10	.05*	10	.06*
NBR	0	0	70		80	
SBL	0	0	10	\{.01\}*	10	\{.01\}*
SBT	1	1600	10	. 02	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	560	. 18	900	.28*
EBR	d	1600	50	. 03	60	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	650	.20*	830	. 26
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 27
.41
182. Olive \& Main St

2025 Scenario 6 w/Baseline						
			AM PK	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	580	.36*	460	.29*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	80	\{.05\}*	280	
EBT	1	1600	80	. 10	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	170	.11*	170	. 11
WBR	1	1600	200	. 13	450	. 28

TOTAL CAPACITY UTILIZATION
.53
. 62
190. Petit Av \& North Bank Dr

2025 Scenario 6 w/Baseline						
			AM P	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	30	.02*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	250	. 16	240	. 15
EBL	1	1600	60	.04*	300	.19*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	110	.03*	80	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.11*		
TOTAL CAPACITY UTILIZATION				. 20		. 27

192. Los Angeles Av \& North Bank

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1450	. 30	3130	.65*
NBR	d	1600	20	. 01	70	. 04
SBL	1	1600	110	. 07	170	.11*
SBT	3	4800	2810	.59*	2280	. 48
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	120	.08*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	140	. 09	160	. 10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	20	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 72		. 87

191. Saticoy Av \& North Bank Dr

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	.01*	10	. 01
NBT	1	1600	30	. 03	20	.02*
NBR	0	0	20		10	
SBL	1	1600	20	. 01	60	.04*
SBT	1	1600	10	.03*	40	. 04
SBR	0	0	30		30	
EBL	1	1600	20	. 01	40	.03*
EBT	2	3200	90	.03*	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	80	.03*
WBR	d	1600	60	. 04	150	. 09
Right Turn Adjustment			WBR	.01*	WBR	.03*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	270	.17*	140	. 09
NBR	1	1600	10	. 01	30	. 02
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	230	. 14	190	.12*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 19		. 13

194. Wells Rd \& A St

2025 Scenario 6 w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	130	. 08
NBT	2	3200	430	. 15	900	.33*
NBR	0	0	50		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	870	.28*	650	. 21
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	120	. 08	60	. 04
WBL	1	1600	150	.09*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	40		0	
Right Turn Adjustment			EBR	.05*		
TOTAL CAPACITY UTILIZATION				. 45		. 42

NON-COMMITTED
IMPROVEMENTS
105. Wells \& Darling

2025 Scenario $6 \mathrm{w} /$ Non-Committed Lanes						
	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1290	. 27	2880	. $60 *$
NBR	d	1600	60	. 04	170	. 11
SBL	2	3200	130	. 04	350	.11*
SBT	3	4800	2430	. $51 *$	1900	. 40
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	80	.05*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	90		40	
WBL	2	3200	60	. 02	280	. 09
WBT	1	1600	30	.06*	40	.15*
WBR	0	0	70		200	

TOTAL CAPACITY UTILIZATION . 64 . 89

SCENARIO 6 (ALTERNATIVE NETWORK)

1. Victoria \& Foothill

| 2025 Scenario 6 (Alt. Net.) w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 150 | $.09 *$ | 250 | $.16^{*}$ |
| NBT | 1 | 1600 | 20 | .01 | 60 | .04 |
| NBR | 1 | 1600 | 110 | .07 | 60 | .04 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 60 | $.04^{*}$ | 20 | $.01^{*}$ |
| SBR | 1 | 1600 | 40 | .03 | 10 | .01 |
| | | | | | | |
| EBL | 1 | 1600 | 10 | $.01 *$ | 190 | .12 |
| EBT | 1 | 1600 | 360 | .23 | 540 | $.34^{*}$ |
| EBR | 1 | 1600 | 250 | .16 | 30 | .02 |
| | | | | | | |
| WBL | 2 | 3200 | 140 | .04 | 170 | $.05^{*}$ |
| WBT | 1 | 1600 | 630 | $.39 *$ | 390 | .24 |
| WBR | d | 1600 | 10 | .01 | 20 | .01 |
| | | | | | | |

TOTAL CAPACITY UTILIZATION
. 53
. 56

3. Victoria \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	590	. 18	1020	. $32 *$
NBT	2	3200	490	.15*	710	. 22
NBR	1	1600	210	. 13	230	. 14
SBL	1	1600	260	.16*	140	. 09
SBT	3	4800	480	. 10	480	.10*
SBR	d	1600	50	. 03	30	. 02
EBL	1	1600	60	. 04	40	. 03
EBT	1.5	4800	480	\{.17\}*	780	\{.25\}*
EBR	1.5		590		810	
WBL	2	3200	270	.08*	240	.08*
WBT	2	3200	650	. 20	520	. 16
WBR	d	1600	70	. 04	80	. 05
TOTAL CAPACITY UTILIZATION				. 56		. 75

2. Victoria \& Loma Vista

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HouR
	LANES	CAPACITY	VOL		VOL	V/C
NBL	1	1600	180	.11*	240	.15*
NBT	2	3200	210	. 07	360	. 11
NBR	d	1600	30	. 02	50	. 03
SBL	1	1600	40	. 03	20	. 01
SBT	2	3200	380	.12*	200	.06*
SBR	d	1600	50	. 03	10	. 01
EBL	0	0	80		20	
EBT	1	1600	90	.29*	220	.29*
EBR	0	0	300		220	
WBL	0	0	70	\{.04\}*	110	\{.07\}*
WBT	1	1600	190	. 20	210	. 22
WBR	0	0	60		30	
TOTAL CAPACITY UTILIZATION				. 56		. 57

4. Victoria \& Woodland

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	210	.13*	50	. 03
NBT	3	4800	1340	. 31	1800	.39*
NBR	0	0	150		90	
SBL	1	1600	10	. 01	30	.02*
SBT	3	4800	1380	.29*	1540	. 32
SBR	0	0	30		10	
EBL	0	0	20		20	
EBT	1	1600	20	.10*	20	.04*
EBR	0	0	120		20	
WBL	1.5		370		130	
WBT	0.5	3200	20	.13*	20	.06*
WBR	0		30		30	
Note: Assumes E/W Split Phasing						
TOTAL	CAPACIT	U UTILIZAI		. 65		. 51

5. Victoria \& SR 126 SB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	4	6400	1250	. 20	2210	.36*
NBR	0	0	50		70	
SBL	0	0	0		0	
SBT	4	6400	1900	.32*	1500	. 26
SBR	0	0	130		180	
EBL	1.5		300		240	
EBT	0.5	3200	170	.15*	100	.11*
EBR	1	1600	240	. 15	220	. 14
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	160	. 10	360	. 23
Right Turn Adjustment WBR				.01*	WBR	.23*
Note:	Assumes	E/W Split	Phasing			

7. Victoria \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	300	.09*	320	. 10
NBT	4	6400	1210	. 23	1350	.27*
NBR	0	0	280		390	
SBL	2	3200	200	. 06	200	.06*
SBT	4	6400	1380	.22*	1140	. 18
SBR	1	1600	250	. 16	400	. 25
EBL	2	3200	330	.10*	520	. 16
EBT	3	4800	390	. 09	1170	.27*
EBR	0	0	60		110	
WBL	2	3200	570	. 18	560	.18*
WBT	3	4800	950	.20*	770	. 16
WBR	1	1600	120	. 08	290	. 18

TOTAL CAPACITY UTILIZATION
.61
.78

6. Victoria \& Thille

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	60	. 04
NBT	4	6400	1170	.24*	2040	.33*
NBR	0	0	450	. 28	50	
SBL	1	1600	170	.11*	40	.03*
SBT	4	6400	1570	. 29	1540	. 27
SBR	0	0	310		180	
EBL	1.5		240		320	
EBT	0.5	3200	30	.08*	10	.10*
EBR	1	1600	130	. 08	190	. 12
WBL	1	1600	30	. 02	90	. 06
WBT	1	1600	10	.02*	100	.11*
WBR	0	0	20		80	
Right Turn Adjustment NBR .02*						
Note: Assumes E/W Split Phasing						
TOTA	CAPACIT	Y UTILIZAT		. 47		. 57

8. Victoria \& Ralston

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	250	.16*	400	.25*
NBT	4	6400	1410	. 24	1850	. 35
NBR	0	0	100		360	
SBL	1	1600	100	. 06	190	. 12
SBT	4	6400	1760	.29*	1850	.31*
SBR	0	0	120		120	
EBL	1	1600	40	. 03	170	. 11
EBT	1	1600	110	.07*	230	.14*
EBR	1	1600	210	. 13	310	. 19
WBL	1	1600	360	.23*	160	.10*
WBT	1	1600	210	. 13	110	. 07
WBR	1	1600	120	. 08	120	. 08
TOTA	CAPACIT	UTILIzAT		. 75		. 80

10. Victoria \& Moon

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	190	. 12
NBT	4	6400	1840	. 31	2230	.40*
NBR	0	0	130		340	
SBL	1	1600	30	. 02	100	.06*
SBT	4	6400	2020	.32*	1960	. 34
SBR	0	0	10		220	
EBL	1	1600	30	. 02	70	. 04
EBT	1	1600	70	.04*	90	.06*
EBR	1	1600	20	. 01	150	. 09
WBL	1	1600	290	.18*	150	.09*
WBT	1	1600	120	. 08	60	. 04
WBR	1	1600	50	. 03	50	. 03

TOTAL CAPACITY UTILIZATION
.56
.61

15. Johnson \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	300	.09*	140	. 04
NBT	2	3200	680	. 22	1200	.38*
NBR	0	0	20		10	
SBL	1	1600	30	. 02	130	.08*
SBT	2	3200	970	.30*	960	. 30
SBR	d	1600	380	. 24	150	. 09
EBL	1	1600	80	.05*	340	.21*
EBT	3	4800	180	. 06	940	. 25
EBR	0	0	110	. 07	250	
WBL	1	1600	10	. 01	80	. 05
WBT	3	4800	1310	.29*	550	.12*
WBR	0	0	70		40	
TOTAL CAPACITY UTILIZATION				. 73		. 79

14. Hill \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	50		40	
NBT	1	1600	150	.13*	160	.21*
NBR	0	0	10		130	
SBL	1	1600	60	.04*	90	.06*
SBT	1	1600	30	. 02	120	. 08
SBR	1	1600	480	. 30	500	. 31
EBL	1	1600	280	.18*	370	.23*
EBT	3	4800	390	. 09	1370	. 30
EBR	0	0	40		60	
WBL	1	1600	260	. 16	30	. 02
WBT	3	4800	1280	.32*	730	.16*
WBR	0	0	240		30	
Right Turn Adjustment			SBR	.02*		
TOTAL CAPACITY UTILIZATION				. 69		. 66

18. Seaward \& US 101 NB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	550	.17*	590	.18*
NBT	2	3200	870	. 27	910	. 28
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	2	3200	720	.23*	950	.30*
SBR	1	1600	240	. 15	250	. 16
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	380	.12*	400	.13*
WBT	0	0	0		0	
WBR	2	3200	380	. 12	450	. 14
TOTAL CAPACITY UTILIZATION				. 52		. 61

19. Monmouth/US 101 SB \& Harbor

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0.5		20		30	
NBT	1.5	3200	30	.03*	40	.03*
NBR	0		40		40	
SBL	1.5		630		990	
SBT	0.5	3200	40	.21*	70	.34*
SBR	0		10		40	
EBL	1	1600	120	.08*	140	.09*
EBT	2	3200	370	. 12	410	. 14
EBR	0	0	20		40	
WBL	1	1600	20	. 01	30	. 02
WBT	1	1600	370	.23*	560	.35*
WBR	1	1600	300	. 19	300	. 19
Note: Assumes N/S Split Phasing						

20. Harbor \& Olivas Park

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	140	.09*
NBT	2	3200	930	.29*	1090	. 34
NBR	1	1600	390	. 24	200	. 13
SBL	2	3200	170	.05*	170	. 05
SBT	2	3200	720	. 23	1190	.37*
SBR	1	1600	140	. 09	110	. 07
EBL	1	1600	70	.04*	160	. 10
EBT	2	3200	140	. 04	210	.07*
EBR	d	1600	70	. 04	130	. 08
WBL	1	1600	50	. 03	420	.26*
WBT	2	3200	110	.03*	140	. 04
WBR	f		50		380	

TOTAL CAPACITY UTILIZATION . 41
.79

24. Mills \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	200	. 13	140	. 09
NBT	1	1600	420	.26*	250	.16*
NBR	1	1600	190	. 12	350	. 22
SBL	1	1600	60	.04*	150	.09*
SBT	2	3200	370	. 12	460	. 14
SBR	1	1600	20	. 01	20	. 01
EBL	1	1600	30	. 02	30	. 02
EBT	2	3200	360	.11*	590	.18*
EBR	1	1600	80	. 05	140	. 09
WBL	2	3200	250	.08*	210	.07*
WBT	2	3200	440	. 15	460	. 16
WBR	0	0	50		60	
Right Turn Adjustment					NBR	.01*
TOTAL CAPACITY UTILIZATION				. 49		. 51

25. Mills \& Maple

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	80	. 05
NBT	2	3200	980	.34*	780	.27*
NBR	0	0	100		90	
SBL	1	1600	50	.03*	110	.07*
SBT	2	3200	700	. 23	880	. 29
SBR	0	0	50		60	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	0	0	200		200	
WBT	1	1600	20	.14*	20	.14*
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
. 51
.48

27. Mills \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	30		30	
NBT	1	1600	70	.06*	90	.08*
NBR	1	1600	330	. 21	230	. 14
SBL	2.5		1150		1310	
SBT	0.5	4800	70	.26*	90	.30*
SBR	0		40		30	
EBL	2	3200	100	.03*	90	.03*
EBT	4	6400	1030	. 16	1050	. 16
EBR	1	1600	20	. 01	30	. 02
WBL	2	3200	170	. 05	350	. 11
WBT	3	4800	1110	.23*	1350	.28*
WBR	2	3200	1400	. 44	1350	. 42
Right Turn Adjustment Multi .08*						

26. Mills \& Dean

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	160	.10*
NBT	2	3200	1200	.38*	880	. 28
NBR	1	1600	260	. 16	370	. 23
SBL	1	1600	30	.02*	40	. 03
SBT	2	3200	780	. 25	920	.30*
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	. 03
EBT	1	1600	20	.01*	30	.02*
EBR	1	1600	20	. 01	250	. 16
WBL	2	3200	380	.12*	250	.08*
WBT	1	1600	50	. 05	50	. 05
WBR	0	0	30		30	
Right Turn Adjustment					EBR	.06*
TOTAL CAPACITY UTILIZATION				. 53		. 56

28. US 101 NB Ramps \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	560	.18*	340	.11*
SBT	0	0	0		0	
SBR	3	4800	1700	. 35	1370	. 29
EBL	0	0	0		0	
EBT	3	4800	2190	.46*	2450	.51*
EBR	f		320		160	
WBL	2	3200	380	.12*	510	.16*
WBT	3	4800	980	. 20	1690	. 35
WBR	0	0	0		0	
TOTAL CAPACITY UTILIZATION				. 76		. 78

29. SR 126 EB Ramps \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	2	3200	250	. 08	450	.14*
EBT	3	4800	2450	.51*	2610	. 54
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1160	. 24	2250	.47*
WBR	f		130		300	

TOTAL CAPACITY UTILIZATION
. 51
31. Donlon \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		160		590	
NBT	0	3200	0	.06*	0	.24*
NBR	0.5		30		170	
SBL	1.5		350		350	
SBT	0.5	3200	170	.16*	80	.13*
SBR	1	1600	180	. 11	210	. 13
EBL	0	0	0		0	
EBT	4	6400	1870	.29*	2290	.36*
EBR	d	1600	190	. 12	210	. 13
WBL	2	3200	90	.03*	250	.08*
WBT	3	4800	970	. 20	1400	. 29
WBR	0	0	0		0	
Note: Assumes N/S Split Phasing						

30. Callens \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		180	\{.06\}*	630	\{.20\}*
NBT	0.5	3200	10	. 06	10	. 20
NBR	1	1600	40	. 03	120	. 08
SBL	0	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	20	. 01
EBT	4	6400	2140	.33*	2320	.36*
EBR	d	1600	300	. 19	260	. 16
WBL	2	3200	90	.03*	170	.05*
WBT	3	4800	1120	. 24	1890	. 40
WBR	0	0	10		10	

TOTAL CAPACITY UTILIZATION
.44
.63
32. Telephone \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline

			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	250	. 08	580	. 18
NBT	2	3200	260	.08*	1170	.37*
NBR	1	1600	80	. 05	290	. 18
SBL	1.5		250	. 16	570	
SBT	1.5	4800	1080	.34*	740	.27*
SBR	f		670		900	
EBL	2	3200	440	. 14	710	. 22
EBT	3	4800	1070	.22*	1370	.29*
EBR	f		350		450	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	,	0	0		0	
Note: Assumes N/S Split Phasing						
TOTA	CAPACIT	Y UTILIZAT		. 64		. 93

33. US 101 NB Ramps \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		650		530	
NBT	0.5	3200	30	.21*	80	.19*
NBR	1	1600	290	. 18	400	. 25
SBL	0.5		40		10	.01*
SBT	0	3200	0	.12*	0	
SBR	1.5		340		220	\{.00\}
EBL	1	1600	20	.01*	300	.19*
EBT	3	4800	720	. 15	1980	. 41
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	3	4800	1030	.22*	1470	.31*
WBR	0	0	10		20	
Note: Assumes N/S Split Phasing						
TOTA	CAPACII	Y UTILIZAT		. 56		. 70

35. Saratoga \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	. 04	20	. 01
NBT	1	1600	10	.08*	60	.13*
NBR	0	0	110		150	
SBL	1	1600	40	.03*	40	.03*
SBT	1	1600	40	. 03	30	. 02
SBR	1	1600	10	. 01	10	. 01
EBL	1	1600	20	.01*	10	. 01
EBT	3	4800	660	. 14	1680	.35*
EBR	d	1600	40	. 03	150	. 09
WBL	1	1600	60	. 04	90	.06*
WBT	3	4800	1000	.21*	1100	. 24
WBR	0	0	20		40	
TOTAL CAPACITY UTILIZATION				. 33		. 57

34. Portola \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	220	.07*	280	.09*
NBT	1	1600	10	. 01	40	. 03
NBR	1	1600	10	. 01	70	. 04
SBL	1	1600	30	. 02	40	. 03
SBT	1	1600	10	.01*	20	.01*
SBR	1	1600	130	. 08	80	. 05
EBL	1	1600	40	.03*	180	. 11
EBT	3	4800	610	. 13	1790	.37*
EBR	d	1600	220	. 14	320	. 20
WBL	1	1600	20	. 01	80	.05*
WBT	3	4800	920	.20*	1010	. 22
WBR	0	0	20		40	
Right Turn Adjustment			SBR	.05*		
TOTAL CAPACITY UTILIZATION				. 36		. 52

38. Telephone \& Market

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	voL	V/C
NBL	1	1600	140	. 09	180	. 11
NBT	3	4800	540	.11*	900	.19*
NBR	d	1600	90	. 06	90	. 06
SBL	1	1600	510	.32*	160	.10*
SBT	3	4800	290	. 06	690	. 14
SBR	d	1600	180	. 11	160	. 10
EBL	1	1600	50	. 03	220	.14*
EBT	1	1600	270	.17*	240	. 15
EBR	1	1600	140	. 09	300	. 19
WBL	1	1600	50	.03*	170	. 11
WBT	1	1600	120	. 08	400	.25*
WBR	1	1600	120	. 08	620	. 39
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 63		. 74

42. Telephone \& McGrath

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	220	.14*
NBT	3	4800	670	. 14	910	. 19
NBR	d	1600	280	. 18	100	. 06
SBL	1	1600	80	. 05	70	. 04
SBT	2	3200	300	.09*	1060	.33*
SBR	1	1600	60	. 04	50	. 03
EBL	1	1600	20	. 01	70	. 04
EBT	1	1600	60	.04*	30	.02*
EBR	1	1600	120	. 08	320	. 20
WBL	1	1600	70	.04*	280	.18*
WBT	1	1600	30	. 02	90	. 06
WBR	1	1600	60	. 04	170	. 11
Right Turn Adjustment					EBR	.07*

TOTAL CAPACITY UTILIZATION . 28 . 74

46. Seaward \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	. 03	200	.13*
NBT	1	1600	170	.11*	180	. 11
NBR	1	1600	300	. 19	280	. 18
SBL	1	1600	30	.02*	80	. 05
SBT	1	1600	140	. 09	90	.06*
SBR	1	1600	190	. 12	80	. 05
EBL	1	1600	120	. 08	90	. 06
EBT	2	3200	730	.23*	670	.21*
EBR	1	1600	150	. 09	110	. 07
WBL	0.5		100		190	
WBT	1.5	3200	520	.20*	700	.30*
WBR	0		20		70	
Note: Assumes E/W Split Phasing						

45. Catalina \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	20	. 01
NBT	1	1600	30	.03*	10	.02*
NBR	0	0	10		20	
SBL	2	3200	240	.08*	70	.02*
SBT	1	1600	20	. 04	10	. 01
SBR	0	0	50		10	
EBL	0.5		30		20	\{.01\}*
EBT	1.5	3200	760	.25*	760	. 25
EBR	0		10		10	
WBL	1	1600	10	.01*	50	. 03
WBT	2	3200	500	. 21	760	.28*
WBR	0	0	170		130	
TOTAL CAPACITY UTILIZATION				. 37		. 33

47. Main \& Loma Vista

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	K Hour	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	320	.10*	480	.15*
NBR	f		40		180	
SBL	1	1600	600	.38*	440	.28*
SBT	2	3200	560	. 18	620	. 20
SBR	0	0	10		20	
EBL	0	0	10		20	
EBT	1	1600	60	.04*	60	.05*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	50	\{.03\}*	130	\{.08\}*
WBT	1	1600	30	. 05	40	. 11
WBR	2	3200	380	. 12	480	. 15
TOTAL CAPACITY UTILIZATION				. 55		. 56

49. Main \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		290	. 18	630	
NBT	1.5	4800	590	.18*	680	.27*
NBR	f		150		80	
SBL	1.5		180	. 11	260	. 16
SBT	1.5	4800	470	.16*	700	.23*
SBR	0		40		50	
EBL	0	0	0		0	
EBT	2	3200	330	. 10	440	. 14
EBR	f		660		600	
WBL	0	0	0		0	
WBT	1.5	4800	360	.11*	480	.15*
WBR	1.5		120		210	
Note: Assumes N/S Split Phasing						

50. Emma \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	30	.02*
NBT	0	0	0		0	
NBR	1	1600	80	. 05	40	. 03
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	1020	.32*	1180	.37*
EBR	1	1600	60	. 04	70	. 04
WBL	1	1600	60	.04*	80	.05*
WBT	3	4800	950	. 20	1480	. 31
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.40
.44

53. Kimball \& Telephone

55. Kimball \& SR 126 EB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1260	.26*	480	.10*
NBR	f		110		340	
SBL	1	1600	20	.01*	100	.06*
SBT	3	4800	1090	. 23	590	. 12
SBR	0	0	0		0	
EBL	2	3200	120	.04*	250	.08*
EBT	0	0	10		0	
EBR	f		250		670	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.31
. 24

56. Kimball \& SR 126 WB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	680	.21*	280	.09*
NBT	3	4800	650	. 14	330	. 07
NBR	d	1600	40	. 03	130	. 08
SBL	1	1600	10	. 01	10	. 01
SBT	3	4800	290	.06*	360	.08*
SBR	d	1600	180	. 11	100	. 06
EBL	1.5		110		70	
EBT	0.5	3200	10	.04*	10	.03*
EBR	1	1600	710	. 44	230	. 14
WBL	0	0	110		100	
WBT	1	1600	120	.14*	70	.11*
WBR	1	1600	10	. 01	40	. 03
Right Turn Adjustment Multi Note: Assumes E/W Split Phasing				.26*	EBR	.04*
TOTAL CAPACITY UTILIZATION				. 71		. 35

60. Ramelli \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	30	.02*	20	.01*
NBT	1	1600	0	. 00	10	. 01
NBR	1	1600	200	. 13	490	. 31
SBL	1	1600	0	. 00	0	. 00
SBT	1	1600	0	.01*	10	.01*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	3	4800	170	.04*	910	.21*
EBR	0	0	40		100	
WBL	1	1600	410	.26*	280	.18*
WBT	3	4800	1250	. 26	780	. 16
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.15*
TOTAL CAPACITY UTILIZATION				. 33		. 56

61. Montgomery \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	270	.17*	70	.04*
NBT	1	1600	80	. 05	20	. 01
NBR	d	1600	30	. 02	110	. 07
SBL	1	1600	20	. 01	10	. 01
SBT	1	1600	60	.04*	30	.02*
SBR	1	1600	90	. 06	30	. 02
EBL	1	1600	10	.01*	40	. 03
EBT	2	3200	510	. 16	790	.25*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	90	. 06	60	.04*
WBT	2	3200	1120	.35*	700	. 22
WBR	1	1600	10	. 01	20	. 01
Right Turn Adjustment			SBR	.01*		

TOTAL CAPACITY UTILIZATION . 58 . 35
65. Sanjon \& Thompson

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HoUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	510	.16*	510	.16*
NBT	0	0	0		0	
NBR	1	1600	180	. 11	210	. 13
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	470	.23*	680	.30*
EBR	0	0	280		280	
WBL	1	1600	130	.08*	140	.09*
WBT	2	3200	520	. 16	770	. 24
WBR	0	0	0		0	

63. Petit \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	180	.11*	160	. 10
NBT	1	1600	40	. 11	50	.19*
NBR	0	0	130		250	
SBL	1	1600	40	. 03	30	.02*
SBT	1	1600	70	.04*	50	. 03
SBR	1	1600	120	. 08	70	. 04
EBL	1	1600	80	.05*	90	. 06
EBT	2	3200	310	. 10	760	.24*
EBR	d	1600	100	. 06	220	. 14
WBL	1	1600	150	. 09	220	.14*
WBT	2	3200	760	.24*	540	. 17
WBR	a	1600	20	. 01	50	. 03
TOTAL CAPACITY UTILIZATION				. 44		. 59

68. Seaward \& Thompson

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	voL	V/C	VOL	V/C
NBL	1	1600	130	. 08	190	.12*
NBT	2	3200	460	.14*	490	. 15
NBR	d	1600	230	. 14	170	. 11
SBL	1	1600	90	.06*	60	. 04
SBT	2	3200	340	. 11	370	.12*
SBR	d	1600	60	. 04	100	. 06
EBL	1	1600	70	. 04	90	. 06
EBT	2	3200	660	.23*	780	.28*
EBR	0	0	70		100	
WBL	2	3200	190	.06*	260	.08*
WBT	2	3200	430	. 13	760	. 24
WBR	1	1600	40	. 03	60	. 04
TOTAL CAPACITY UTILIZATION				. 49		. 60

71. Sanjon \& Harbor

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	Hour	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	170	.11*	370	.23*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	120	. 08
EBL	1	1600	60	.04*	120	.08*
EBT	1	1600	260	. 16	470	. 29
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	250	.16*	570	.36*
WBR	1	1600	470	. 29	250	. 16
Right Turn Adjustment			WBR	.05*		

TOTAL CAPACITY UTILIZATION . 36 . 67

77. Day \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	2	3200	260	.08*	360	.11*
SBT	0	0	0		0	
SBR	1	1600	80	. 05	100	. 06
EBL	1	1600	100	.06*	60	. 04
EBT	2	3200	540	. 17	960	.30*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	940	.29*	830	. 26
WBR	d	1600	330	. 21	290	. 18

75. Ashwood \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	40	. 03
NBT	1	1600	60	.04*	90	.06*
NBR	d	1600	60	. 04	60	. 04
SBL	1	1600	80	.05*	160	.10*
SBT	1	1600	50	. 03	60	. 04
SBR	1	1600	130	. 08	150	. 09
EBL	1	1600	90	.06*	160	. 10
EBT	2	3200	510	. 16	880	.28*
EBR	d	1600	20	. 01	60	. 04
WBL	1	1600	40	. 03	70	.04*
WBT	2	3200	540	.17*	600	. 19
WBR	d	1600	110	. 07	100	. 06
TOTAL CAPACITY UTILIZATION				. 32		. 48

85. Victoria \& Olivas Park

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	660	. 21	530	.17*
NBT	3	4800	1900	.40*	1840	. 38
NBR	1	1600	540	. 34	450	. 28
SBL	2	3200	530	.17*	210	. 07
SBT	3	4800	1540	. 32	1620	.34*
SBR	f		50		90	
EBL	2	3200	130	. 04	170	. 05
EBT	2	3200	150	.05*	230	.07*
EBR	f		190		960	
WBL	1	1600	130	.08*	370	.23*
WBT	2	3200	40	. 01	370	. 12
WBR	f		110		210	
TOTAL CAPACITY UTILIZATION				. 70		. 81

86. Telephone \& Olivas Park

TOTAL CAPACITY UTILIZATION . 56 . 66
92. Johnson \& Bristol

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	80	.05*
NBT	2	3200	720	. 23	1240	. 39
NBR	f		240		1130	
SBL	1	1600	10	. 01	10	. 01
SBT	2	3200	1190	.38*	1290	.41*
SBR	0	0	10		20	
EBL	1	1600	10	. 01	30	. 02
EBT	1	1600	20	.01*	280	.18*
EBR	1	1600	130	. 08	200	. 13
WBL	2	3200	1050	.33*	560	.18*
WBT	1	1600	270	. 17	160	. 10
WBR	d	1600	10	. 01	10	. 01
Right Turn Adjustment			EBR	.05*		

TOTAL CAPACITY UTILIZATION
79
.82

91. Johnson \& Ralston

2025 Scenario 6 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	80	.05*	110	.07*
NBT	2	3200	760	. 24	1180	. 37
NBR	d	1600	20	. 01	30	. 02
SBL	1	1600	50	. 03	50	. 03
SBT	2	3200	1050	.33*	1140	.36*
SBR	d	1600	110	. 07	90	. 06
EBL	1	1600	40	.03*	140	. 09
EBT	1	1600	90	. 06	270	.17*
EBR	d	1600	70	. 04	180	. 11
WBL	1	1600	60	. 04	50	.03*
WBT	1	1600	210	.13*	100	. 06
WBR	d	1600	110	. 07	70	. 04

94. Johnson \& North Bank

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	50	.03*	60	.04*
NBT	3	4800	180	. 04	550	. 11
NBR	d	1600	20	. 01	160	. 10
SBL	1	1600	10	. 01	70	. 04
SBT	3	4800	1760	.42*	1560	.36*
SBR	0	0	240		180	
EBL	2.5		660	.14*	1990	.41*
EBT	1.5	6400	70	. 04	350	. 22
EBR	1	1600	380	. 24	320	. 20
WBL	1.5		150	. 05	240	
WBT	1.5	4800	70	.04*	140	.08*
WBR	1	1600	20	. 01	80	. 05
Right Turn Adjustment			EBR	.09*		
TOTAL CAPACITY UTILIZATION				. 72		. 89

95. Bristol \& Ramelli

2025 Scenario 6 (Alt. Net.) w/Baseline						
				HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	20	. 01	20	.01*
NBT	1	1600	30	.03*	10	. 02
NBR	0	0	10		20	
SBL	1	1600	10	.01*	30	. 02
SBT	1	1600	20	. 01	40	.03*
SBR	1	1600	350	. 22	210	. 13
EBL	1	1600	60	.04*	220	.14*
EBT	2	3200	210	. 07	620	. 20
EBR	0	0	10		10	
WBL	1	1600	20	. 01	10	. 01
WBT	2	3200	860	.29*	370	.13*
WBR	0	0	70		30	
Right Turn Adjustment			SBR	.16*		
TOTAL CAPACITY UTILIZATION				. 53		. 31

100. Saticoy \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	180	. 11	140	.09*
NBT	1	1600	200	.13*	150	. 09
NBR	1	1600	120	. 08	80	. 05
SBL	1	1600	180	.11*	90	. 06
SBT	1	1600	110	. 07	140	.09*
SBR	1	1600	240	. 15	150	. 09
EBL	1	1600	110	.07*	160	. 10
EBT	2	3200	220	. 07	660	.21*
EBR	1	1600	100	. 06	180	. 11
WBL	1	1600	80	. 05	110	.07*
WBT	2	3200	320	.14*	490	. 17
WBR	0	0	130		50	

96. Montgomery \& North Bank

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	,	10		10	
SBL	1	1600	40	.03*	140	.09*
SBT	1	1600	10	. 01	30	. 02
SBR	1	1600	370	. 23	170	. 11
EBL	1	1600	110	.07*	300	.19*
EBT	2	3200	110	. 03	360	. 11
EBR	1	1600	10	. 01	20	. 01
WBL	1	1600	10	. 01	10	. 01
WBT	1	1600	440	.28*	270	.17*
WBR	d	1600	210	. 13	80	. 05
Right Turn Adjustment			SBR	.13*		
TOTAL CAPACITY UTILIZATION				. 54		. 47

101. Saticoy \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	180		80	
NBT	1	1600	80	.19*	40	.09*
NBR	0	0	50		30	
SBL	0	0	10		20	
SBT	1	1600	70	.08*	50	.06*
SBR	0	0	50		20	
EBL	1	1600	20	. 01	50	. 03
EBT	1	1600	210	.18*	420	.34*
EBR	0	0	70		130	
WBL	1	1600	50	.03*	30	.02*
WBT	1	1600	300	. 19	270	. 17
WBR	1	1600	10	. 01	10	. 01
Note: Assumes N/S Split Phasing						
TOTAL CAPACITY UTILIZATION				. 48		. 51

102. Wells \& Telegraph

| 2025 Scenario 6 (Alt. Net.) w/Baseline | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | AM PK | HOUR | PM PK | HOUR |
| | LANES | CAPACITY | VOL | V/C | VOL | V/C |
| | | | | | | |
| NBL | 1 | 1600 | 160 | $.10^{*}$ | 240 | $.15^{*}$ |
| NBT | 1 | 1600 | 150 | .09 | 270 | .17 |
| NBR | 1 | 1600 | 60 | .04 | 290 | .18 |
| | | | | | | |
| SBL | 1 | 1600 | 10 | .01 | 10 | .01 |
| SBT | 1 | 1600 | 260 | $.16^{*}$ | 210 | $.13^{*}$ |
| SBR | 1 | 1600 | 60 | .04 | 30 | .02 |
| | | | | | | |
| EBL | 1 | 1600 | 20 | .01 | 50 | .03 |
| EBT | 1 | 1600 | 50 | $.17^{*}$ | 170 | $.24^{*}$ |
| EBR | 0 | 0 | 220 | | 210 | |
| | | | | | | |
| WBL | 1 | 1600 | 320 | $.20 *$ | 130 | $.08^{*}$ |
| WBT | 1 | 1600 | 140 | .09 | 100 | .08 |
| WBR | 0 | 0 | 10 | | 20 | |
| | | | | | | |

TOTAL CAPACITY UTILIZATION .63 .60

104. Wells \& SR 126 EB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	HOUR	PM	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	920	. 19	1450	. 30
NBR	f		590		1560	
SBL	0	0	0		0	
SBT	3	4800	2650	.55*	1710	.36*
SBR	f		90		60	
EBL	1	1600	90	.06*	260	.16*
EBT	0	0	0		0	
EBR	1	1600	190	. 12	670	. 42
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	
Right Turn Adjustment			EBR	.06*	EBR	.26*
TOTAL CAPACITY UTILIZATION				. 67		. 78

106. Wells \& Telephone

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	320	.10*	440	. 14
NBT	3	4800	1240	. 26	2900	.62*
NBR	0	0	10		70	
SBL	1	1600	10	. 01	20	.01*
SBT	3	4800	2510	.52*	1950	. 41
SBR	1	1600	130	. 08	420	. 26
EBL	1.5		160	\{.05\}*	240	\{.08\}*
EBT	0.5	3200	0	. 05	0	. 08
EBR	2	3200	530	. 17	540	. 17
WBL	0	0	10		10	
WBT	1	1600	10	.02*	10	.02*
WBR	0	0	10		10	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 72		. 73

114. California \& Thompson

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1.5		40		40	
NBT	0.5	3200	10	.02*	20	.02*
NBR	1	1600	50	. 03	80	. 05
SBL	1.5		120		180	
SBT	1.5	4800	80	.05*	140	.07*
SBR	0		20		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	820	. $30 *$	920	.33*
EBR	0	0	150		120	
WBL	1	1600	60	.04*	90	.06*
WBT	2	3200	320	. 10	390	. 14
WBR	0	0	10		50	
Note: Assumes N/S Split Phasing						

115. Chestnut \& Thompson

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HouR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 02	10	. 02
NBR	0	0	10		10	
SBL	1	1600	30	. 02	80	. 05
SBT	1	1600	250	.16*	320	.22*
SBR	0	0	10		30	
EBL	1	1600	10	. 01	20	. 01
EBT	2	3200	550	.17*	680	.21*
EBR	f		400		520	
WBL	1	1600	200	.13*	210	.13*
WBT	2	3200	460	. 15	630	. 22
WBR	0	0	30		70	
TOTAL CAPACITY UTILIZATION				. 47		. 57

132. Ventura \& Stanley

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	330	.21*	300	.19*
NBT	1	1600	270	. 17	360	. 23
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	470	.29*	390	.24*
SBR	1	1600	510	. 32	370	. 23
EBL	1	1600	380	.24*	660	.41*
EBT	0	0	0		0	
EBR	1	1600	230	. 14	140	. 09
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

136. US 101 SB Ramps \& Valentine

2025 Scenario 6 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1.5		350	.11*	410	.13*
SBT	0	4800	0		0	
SBR	1.5		90	. 06	20	
EBL	1	1600	80	.05*	440	.28*
EBT	2	3200	230	. 07	780	. 24
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	990	.31*	390	.12*
WBR	f		800		890	

TOTAL CAPACITY UTILIZATION
.47
160. Victoria \& US 101 NB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	500	.16*	470	.15*
NBT	3	4800	1450	. 30	2040	. 43
NBR	0	0	,		-	
SBL	0	0	,		0	
SBT	4	6400	2760	.43*	2280	.36*
SBR	1	1600	130	. 08	350	. 22
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	2	3200	740	.23*	490	.15*
WBT	0	0	0		0	
WBR	3	4800	870	. 18	1130	. 24
Right Turn Adjustment					WBR	.03*
TOTAL CAPACITY UTILIZATION				. 82		. 69

138. Johnson \& US 101 SB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK Hour		PM PK HoUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	160	.10*	690	.43*
NBT	1	1600	140	. 09	520	. 33
NBR	0	0	0		0	
SBL	0	0	0		0	
SBT	1	1600	580	.36*	410	.26*
SBR	f		1670		1740	
EBL	1	1600	100	.06*	240	.15*
EBT	0	0	0		0	
EBR	1	1600	120	. 08	90	. 06
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	0	0	0		0	

161. Victoria \& Valentine

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	2	3200	240	.08*	200	.06*
NBT	3	4800	1690	. 36	2170	. 46
NBR	0	0	20		50	
SBL	1	1600	40	. 03	50	. 03
SBT	2	3200	1740	.54*	1570	.49*
SBR	f		1670		1170	
EBL	2.5		340		760	
EBT	0.5	4800	50	.08*	20	.16*
EBR	1	1600	230	. 14	410	. 26
WBL	0	0	10		20	
WBT	1	1600	10	.01*	30	.03*
WBR	1	1600	80	. 05	100	. 06
Right Turn Adjustment Note: Assumes E/W Split Phasing					EBR	.04*
Note	Assumes	Right-Tur	Overl	for W	EBR	

TOTAL CAPACITY UTILIZATION
.71
162. California \& Harbor

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	220	.14*	320	.20*
SBT	0	0	0		0	
SBR	1	1600	40	. 03	60	. 04
EBL	1	1600	20	. 01	80	.05*
EBT	1	1600	230	.14*	250	. 16
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	160	. 07	230	.11*
WBR	0	0	50		110	

TOTAL CAPACITY UTILIZATION
. 28
164. Seaward \& Poli

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	160		160	
NBT	1	1600	0	.19*	0	.21*
NBR	0	0	150		180	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	150	.09*	350	.22*
EBR	d	1600	80	. 05	140	. 09
WBL	1	1600	230	.14*	100	.06*
WBT	1	1600	170	. 11	330	. 21
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION .42 . 49
163. Santa Clara \& Main

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK	HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	\{.01\}*
NBT	1	1600	10	. 01	10	. 01
NBR	2	3200	260	. 08	220	. 07
SBL	0	0	50		30	
SBT	1	1600	10	.04*	10	.03*
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	2	3200	340	.11*	470	.15*
EBR	0	0	10		10	
WBL	1	1600	140	.09*	160	.10*
WBT	2	3200	370	. 13	490	. 16
WBR	0	0	30		30	

TOTAL CAPACITY UTILIZATION . 25
. 29
165. Seaward \& Harbor

2025 Scenario 6 (Alt. Net.) w/Baseline

	LANES	CAPACITY	AM PK Hour		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	1	1600	40	. 03	70	. 04
NBT	2	3200	360	.12*	310	.12*
NBR	0	0	30		60	
SBL	2	3200	550	.17*	600	.19*
SBT	2	3200	190	. 06	320	. 10
SBR	1	1600	300	. 19	450	. 28
EBL	2	3200	410	.13*	350	. 11
EBT	2	3200	580	. 19	1170	.38*
EBR	0	0	20		50	
WBL	1	1600	10	. 01	30	.02*
WBT	2	3200	270	.08*	450	. 14
WBR	2	3200	900	. 28	1170	. 37
Right Turn Adjustment			WBR	.07*		
TOTAL	CAPACIT	Y UTILIzAI		. 57		. 71

166. College \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK Hour	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	40		20	
NBT	1	1600	0	.06*	0	.08*
NBR	0	0	60		100	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	2	3200	580	.20*	940	.32*
EBR	0	0	60		70	
WBL	1	1600	110	.07*	50	.03*
WBT	2	3200	690	. 22	710	. 22
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 33
169. Kimball \& Foothill

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	270	.17*	50	.03*
NBT	0	0	0		0	
NBR	1	1600	20	. 01	30	. 02
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	220	. 21	470	.38*
EBR	0	0	110		130	
WBL	1	1600	70	. 04	30	.02*
WBT	1	1600	610	.38*	200	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 55
168. Day \& Foothill

2025	Scenario	6	(Alt. Net.) w/Baseline				
				AM PK	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	210	$.13^{*}$	200	$.13^{*}$	
NBT	1	1600	30	.02	30	.02	
NBR	1	1600	170	.11	280	.18	
SBL	0	0	50		50		
SBT	1	1600	20	$.04^{*}$	20	$.04^{*}$	
SBR	1	1600	30	.02	50	.03	
EBL	1	1600	110	.07	80	.05	
EBT	1	1600	530	$.44^{*}$	550	$.48^{*}$	
EBR	0	0	180		210		
WBL	1	1600	300	$.19 *$	220	$.14^{*}$	
WBT	1	1600	430	.33	490	.34	
WBR	0	0	90		50		

TOTAL CAPACITY UTILIZATION . 80
.79
170. Petit \& Foothill

2025 Scenario 6 (Alt. Net.) w/Baseline

		AM PK	HOUR	PM PK	HOUR
LANES					
CAPACITY	VOL	V/C	VOL	V/C	

NBL	0	0	40		10	
NBT	1	1600	0	$.03^{*}$	0	$.03^{*}$
NBR	0	0	10		30	
					0	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0			
					0	
EBL	0	0	0		280	$.18^{*}$
EBT	1	1600	180	.11	30	.02
EBR	1	1600	30	.02		
					10	$\{.01\}^{*}$
WBL	0	0	10		190	.13
WBT	1	1600	570	$.36^{*}$	190	
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
.39
. 22
171. Saticoy \& Foothill

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK HOUR		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	120		50	
NBT	1	1600	0	.09*	0	.04*
NBR	0	0	20		20	
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	160	. 13	380	.30*
EBR	0	0	50		100	
WBL	0	0	20		20	\{.01 \}*
WBT	1	1600	500	.33*	180	. 13
WBR	0	0	0		0	

TOTAL CAPACITY UTILIZATION
. 42
. 35
173. Victoria \& SR 126 WB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	3	4800	1120	. 28	1760	.44*
NBR	0	0	210		350	
SBL	0	0	0		0	
SBT	3	4800	1510	.37*	1350	. 32
SBR	0	0	270		180	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	1	1600	490	. 31	390	. 24
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	300	. 19	170	. 11
Right Turn Adjustment			Multi	.43*	Multi	.26*
TOTAL CAPACITY UTILIZATION				. 80		. 70

172. Wells \& Foothill

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK	K HOUR	PM PK	K Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	120	.08*	120	.08*
NBT	0	0	10		10	
NBR	1	1600	40	. 03	80	. 05
SBL	,	0	10		10	
SBT	1	1600	10	.02*	10	.02*
SBR	0	0	10		10	
EBL	,	0	10	\{.01\}*	10	
EBT	1	1600	60	. 04	230	.15*
EBR	1	1600	120	. 08	140	. 09
WBL	,	0	60		30	\{.02\}*
WBT	1	1600	340	.26*	60	. 06
WBR	0	0	10		10	

174. Petit \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline

			AM PK		HOUR	PM PK	
	LANESR	CAPACITY	VOL	V/C	VOL	V/C	
NBL	1	1600	100	$.06^{*}$	50	$.03^{*}$	
NBT	1	1600	20	.01	10	.01	
NBR	1	1600	10	.01	10	.01	
SBL	1	1600	30	.02	20	.01	
SBT	1	1600	20	$.03^{*}$	30	$.03^{*}$	
SBR	0	0	30		20		
EBL	1	1600	10	$.01^{*}$	10	$.01^{*}$	
EBT	2	3200	280	.09	610	.19	
EBR	1	1600	60	.04	130	.08	
WBL	1	1600	10	.01	10	.01	
WBT	1	1600	570	$.36 *$	320	$.20^{*}$	
WBR	1	1600	10	.01	30	.02	

TOTAL CAPACITY UTILIZATION . 46 . 27
175. Ventura \& North Bank

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK Hour		PM PK HOUR	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	70		40	
SBT	1	1600	0	.09*	0	.11*
SBR	0	0	80		130	
EBL	1	1600	160	. 10	560	. 35
EBT	2	3200	1090	.34*	2690	.84*
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	340	. 21	360	. 23
WBR	1	1600	40	. 03	30	. 02

TOTAL CAPACITY UTILIZATION
.43
.95
177. Wells \& SR 126 WB Ramps

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	2	3200	520	. 16	1310	.41*
NBR	f		460		390	
SBL	0	0	0		0	
SBT	2	3200	1050	.33*	710	. 22
SBR	f		360		190	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	f		1690		1050	
WBL	0	0	0		0	
WBT	0	0	0		0	
WBR	1	1600	190	. 12	100	. 06
Right Turn Adjustment					WBR	.06*
TOTAL CAPACITY UTILIZATION				. 33		. 47

176. Saticoy \& Darling

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM PK	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	10	\{.01\}*	10	
NBT	1	1600	140	. 09	210	.14*
NBR	1	1600	110	. 07	30	. 02
SBL	0	0	60		10	\{.01\}*
SBT	1	1600	220	.18*	180	. 12
SBR	1	1600	80	. 05	80	. 05
EBL	0	0	60		50	
EBT	1	1600	80	.11*	60	.09*
EBR	0	0	40		40	
WBL	0	0	60	\{.04\}*	40	\{.02\}*
WBT	1	1600	20	. 07	70	. 08
WBR	0	0	30		10	

TOTAL CAPACITY UTILIZATION . 34 . 26
178. SR-33 Ramps \& Stanley

2025 Scenario 6 (Alt. Net.) w/Baseline

		AM PK	HOUR	PM PK HOUR	
LANES CAPACITY	VOL	V/C	VOL	V/C	

NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	1	1600	690	.43	830	.52
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
					0	
EBL	0	0	0		0	
EBT	1	1600	280	.18	180	.11
EBR	0	0	0		0	
					0	
WBL	0	0	0		0	
WBT	1	1600	690	$.43^{*}$	900	$.56^{*}$
WBR	f		180		180	
Right Turn Adjustment	NBR	$.24^{*}$	NBR	$.18^{*}$		

179. SR-33 Ramps \& Shell

2025 Scenario 6 (Alt. Net.) w/Baseline						
	LANES	CAPACITY	AM PK HOUR		PM PK Hour	
			VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	0	0	700		680	
SBT	1	1600	0	.46*	0	.44*
SBR	0	0	30		20	
EBL	0	0	10	\{.01\}*	10	\{.01\}*
EBT	1	1600	140	. 09	110	. 08
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	1	1600	720	.49*	740	.53*
WBR	0	0	70		110	

TOTAL CAPACITY UTILIZATION
.96
.98

181. Ventura \& Ramona

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	. 02	40	. 03
NBT	1	1600	360	.24*	620	.40*
NBR	0	0	20		20	
SBL	1	1600	80	.05*	70	.04*
SBT	1	1600	400	. 26	470	. 31
SBR	0	0	10		30	
EBL	0	0	20	\{.01\}*	30	\{.02\}*
EBT	1	1600	10	. 03	20	. 04
EBR	0	0	10		20	
WBL	0	0	10		20	
WBT	1	1600	20	.03*	30	.04*
WBR	0	0	10		20	

TOTAL CAPACITY UTILIZATION
.33
. 50
180. Estates \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	K HOUR	PM PK	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	70	. 04	50	. 03
NBT	1	1600	10	.05*	10	.06*
NBR	0	0	70		90	
SBL	,	0	10	\{.01\}*	10	\{.01\}*
SBT	1	1600	10	. 02	10	. 02
SBR	0	0	10		10	
EBL	1	1600	10	.01*	10	. 01
EBT	2	3200	570	. 18	890	.28*
EBR	d	1600	60	. 04	60	. 04
WBL	1	1600	30	. 02	90	.06*
WBT	2	3200	660	.21*	840	. 26
WBR	d	1600	20	. 01	10	. 01

TOTAL CAPACITY UTILIZATION . 28
.41
182. Olive \& Main St

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	10	.01*	10	.01*
NBR	0	0	10		10	
SBL	1	1600	580	.36*	450	.28*
SBT	1	1600	20	. 06	30	. 08
SBR	0	0	80		90	
EBL	0	0	80	\{.05\}*	280	
EBT	1	1600	80	. 10	220	.31*
EBR	1	1600	10	. 01	40	. 03
WBL	0	0	10		10	\{.01\}*
WBT	1	1600	170	.11*	160	. 11
WBR	1	1600	210	. 13	450	. 28

TOTAL CAPACITY UTILIZATION
. 53
190. Petit Av \& North Bank Dr

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	Hour	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	0	0	0		0	
NBR	0	0	0		0	
SBL	1	1600	40	.03*	80	.05*
SBT	0	0	0		0	
SBR	1	1600	240	. 15	230	. 14
EBL	1	1600	50	.03*	280	.18*
EBT	2	3200	60	. 02	140	. 04
EBR	0	0	0		0	
WBL	0	0	0		0	
WBT	2	3200	100	.03*	90	.03*
WBR	d	1600	70	. 04	40	. 03
Right Turn Adjustment			SBR	.10*		
TOTAL CAPACITY UTILIZATION				. 19		. 26

192. Los Angeles Av \& North Bank

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM	Hour	PM P	Hour
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	90	.06*	190	. 12
NBT	3	4800	1420	. 30	3120	.65*
NBR	d	1600	20	. 01	70	. 04
SBL	1	1600	110	. 07	170	.11*
SBT	3	4800	2800	.58*	2250	. 47
SBR	d	1600	150	. 09	80	. 05
EBL	1	1600	50	.03*	110	.07*
EBT	1	1600	10	. 01	20	. 01
EBR	1	1600	150	. 09	160	.10
WBL	1	1600	50	. 03	60	. 04
WBT	1	1600	20	.01*	20	.01*
WBR	1	1600	100	. 06	170	. 11
Right Turn Adjustment			EBR	.03*	WBR	.02*
TOTAL CAPACITY UTILIZATION				. 71		. 86

191. Saticoy Av \& North Bank Dr

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P		PM PK	
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	10	. 01	10	. 01
NBT	1	1600	30	.03*	20	.02*
NBR	0	0	20		10	
SBL	1	1600	20	.01*	60	.04*
SBT	1	1600	10	. 02	40	. 04
SBR	0	0	20		30	
EBL	1	1600	20	. 01	40	.03*
EBT	2	3200	100	.03*	80	. 03
EBR	d	1600	0	. 00	10	. 01
WBL	1	1600	0	. 00	10	. 01
WBT	2	3200	40	. 01	90	.03*
WBR	d	1600	60	. 04	140	. 09
Right Turn Adjustment			WBR	.01*	WBR	.03*
TOTAL CAPACITY UTILIZATION				. 08		. 15

193. Saticoy Av \& A St

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	0	0	0		0	
NBT	1	1600	250	.16*	130	. 08
NBR	1	1600	10	. 01	20	. 01
SBL	1	1600	10	.01*	20	. 01
SBT	1	1600	190	. 12	170	.11*
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	0	0	0		0	
EBR	0	0	0		0	
WBL	1	1600	20	.01*	10	.01*
WBT	0	0	0		0	
WBR	1	1600	20	. 01	10	. 01
TOTAL CAPACITY UTILIZATION				. 18		. 12

194. Wells Rd \& A St

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	100	. 06
NBT	2	3200	390	. 14	850	.32*
NBR	0	0	60		170	
SBL	1	1600	10	. 01	40	.03*
SBT	2	3200	800	.25*	570	. 18
SBR	0	0	10		10	
EBL	1	1600	10	. 01	10	. 01
EBT	1	1600	10	.01*	10	.01*
EBR	1	1600	90	. 06	60	. 04
WBL	1	1600	140	.09*	80	.05*
WBT	1	1600	10	. 03	10	. 01
WBR	0	0	40		0	
Right Turn Adjustment			EBR	.03*		
TOTAL CAPACITY UTILIZATION				. 40		. 41

206. Johnson \& Telegraph

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	170	.11*	270	.17*
NBT	2	3200	350	. 11	690	. 22
NBR	1	1600	180	. 11	720	. 45
SBL	1	1600	10	. 01	20	. 01
SBT	2	3200	600	.19*	380	.12*
SBR	1	1600	100	. 06	90	. 06
EBL	1	1600	20	. 01	40	. 03
EBT	2	3200	250	.08*	560	.18*
EBR	1	1600	320	. 20	320	. 20
WBL	1	1600	570	.36*	250	.16*
WBT	2	3200	330	. 10	340	. 11
WBR	1	1600	70	. 04	30	. 02
Right Turn Adjustment			EBR	.04*	NBR	.05*

205. Johnson \& Woodland

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	150	.09*	260	. 16
NBT	2	3200	660	. 23	1710	.59*
NBR	0	0	90		180	
SBL	1	1600	0	. 00	10	.01*
SBT	2	3200	1490	.47*	950	. 30
SBR	0	0	0		0	
EBL	1	1600	I	. 00	,	. 00
EBT	1	1600	10	.01*	20	.01*
EBR	1	1600	160	. 10	260	. 16
WBL	1	1600	110	.07*	130	.08*
WBT	1	1600	30	. 03	10	. 01
WBR	0	0	10		,	
Right Turn Adjustment			EBR	. 02 *		
TOTAL CAPACITY UTILIZATION				. 66		. 69

207. Johnson \& Loma Vista

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM PK	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	60	.04*	120	. 08
NBT	1	1600	100	. 06	360	.23*
NBR	1	1600	130	. 08	250	. 16
SBL	1	1600	0	. 00	0	. 00
SBT	2	3200	350	.11*	140	. 04
SBR	1	1600	30	. 02	10	. 01
EBL	1	1600	0	. 00	10	. 01
EBT	1	1600	60	.04*	210	.13*
EBR	1	1600	130	. 08	140	. 09
WBL	1	1600	190	.12*	200	.13*
WBT	1	1600	170	. 11	180	. 11
WBR	1	1600	10	. 01	10	. 01
Right Turn Adjustment			EBR	.01*		
TOTAL CAPACITY UTILIZATION				. 32		. 49

208. Johnson \& Foothill

2025 Scenario 6 (Alt. Net.) w/Baseline						
			AM P	HOUR	PM P	HOUR
	LANES	CAPACITY	VOL	V/C	VOL	V/C
NBL	1	1600	0	. 00	20	.01*
NBT	0	0	0		0	
NBR	1	1600	100	. 06	370	. 23
SBL	0	0	0		0	
SBT	0	0	0		0	
SBR	0	0	0		0	
EBL	0	0	0		0	
EBT	1	1600	350	. 22	610	.38*
EBR	1	1600	130	. 08	20	. 01
WBL	1	1600	250	. 16	140	.09*
WBT	1	1600	840	.52*	240	. 15
WBR	0	0	0		0	
Right Turn Adjustment					NBR	.15*
TOTAL CAPACITY UTILIZATION				. 52		. 63

NON-COMMITTED
IMPROVEMENTS

105. Wells \& Darling

2025 Scenario 6 (Alt. Net.) w/Non-Committed Lan						
	LANES	CAPACITY	AM PK HOUR		PM PK HOUR	
			VOL	V/C	VOL	V/C
NBL	1	1600	30	.02*	40	. 03
NBT	3	4800	1270	. 26	2840	.59*
NBR	d	1600	60	. 04	170	. 11
SBL	2	3200	130	. 04	360	.11*
SBT	3	4800	2430	. 51 *	1870	. 39
SBR	d	1600	10	. 01	10	. 01
EBL	1	1600	90	.06*	40	.03*
EBT	1	1600	30	. 08	40	. 05
EBR	0	0	90		40	
WBL	2	3200	50	. 02	280	. 09
WBT	1	1600	30	.07*	40	.16*
WBR	0	0	80		210	

TOTAL CAPACITY UTILIZATION . 66 . 89

Appendix B CIRCULATION ELEMENT COMMUNITY INPUT

This appendix summarizes input received from community outreach programs, most notably the Ventura Vision and the Comprehensive Plan Advisory Committee work. It is intended to acknowledge comments received from those work efforts and to document their role in formulating the Circulation Element recommendations.

VENTURA VISION

In 1999 and 2000 a comprehensive outreach program was carried out guided by a broad based Citizens Outreach Committee. That effort culminated in the "Ventura Vision, Seize the Future" document of March 2000. This vision document articulated a shared vision to guide the community in the future, including guiding principles, vision statements, and strategies for pursuing those visions. With respect to circulation, the following statement of high-priority strategies was noted:

> Our Accessible Community. Develop a balanced transportation system by encouraging land use modifications and "transportation systems management" to reduce traffic congestion; upgrading road maintenance, improving and diversifying local transit systems; promoting a regional rail strategy; enhancing parking through better use of existing structures and new structures at strategic locations; facilitating bicycle and pedestrian access through an interconnected system of bike and walking paths; and exploring ways to improve the community's access to air transportation.

As embodied in this statement and as outlined in the section entitled "Our Accessible Community," the vision identified its central goal as seeking an integrated multi-modal transportation system in which bus, rail, bicycle and pedestrian modes can reduce dependency on the automobile for transportation. The overall goal of the Circulation Element articulates this vision as do specific objectives such as listed in the transit, bicycle and pedestrian components of the Element. In addition, implementing strategies from the Vision document have been directly or indirectly incorporated into the Element in the form of specific programs.

COMPREHENSIVE PLAN ADVISORY COMMITTEE (CPAC)

A special Comprehensive Plan Advisory Committee (CPAC) met over a number of months in early 2002 to provide input to the Comprehensive Plan update process. This committee provided a forum to address Comprehensive Plan issues and to thereby supplement the results of the major community outreach program described above.

The meeting in which Circulation was the main topic was held on March 13, 2002, and numerous comments were received from CPAC members and from public attendees at that meeting. The comments were grouped into four topics, 1) arterial street, 2) public transit, 3) bikeways and 4) pedestrians. The first three of these are addressed here, and the fourth is discussed under separate cover. For each subject area, the comments are listed and the actions taken with respect to those comments noted. In some cases the comments pertain to a specific traffic issue that would not be within the purview of the General Plan, but is nevertheless an important concern with respect to circulation. These have been compiled so that the information can be forwarded to the appropriate department within the City. Most comments provided valuable input to the Circulation Element preparation process and were an important consideration in the development of the Circulation Element. The following sections discuss the three topic areas.

ARTERIAL STREETS

The CPAC and public comments on arterial streets are summarized in Table B-1. Discussion on specific subject areas follows.

Customized Street Classification (Comments S1.1, S1.4, S1.6, S1.12, S1.13, S1.15, S2.6, S2.7, S2.8)

The potential for customizing street classifications in the Circulation Element was presented at the March 13 meeting. The comments received indicate a general interest in adopting this approach and the arterial street component of Circulation Element has been prepared accordingly. The previous chapter of this report discussed design classifications and functional classifications, the latter addressing the customizing of the classification system for arterial streets.

Table B-1		
ARTERIAL STREETS CPAC and Public Comments - March 13, 2002		
COMM		ACTION*
S1 - CPAC COMMENTS		
S1.1	Do not widen Ventura Avenue, custom approach needed	CE
S1.2	Connect Cameron	CE(D)
S1.3	Need traffic signals on the Avenue	N\&F
S1.4	Custom approach needed to extend Olive north of Stanley to Sycamore Village	CE
S1.5	Solve the north/south traffic for future development	CE(D)
S1.6	Apply "custom approach" citywide	CE
S1.7	Hwy 101 / Harbor; Northbound Hwy 101 off-ramp / road to Channel Drive/ Borchard	CE
S1.8	Roundabout at Main and Mills	CE(D)
S1.9	Extend Mills south along Arundell Barranca to Harbor Blvd.	CE(D)
S1.10	State Route 126 westbound to Hwy 101 southbound	N\&F
S1.11	Poli, from North Pacific to North Victoria, should be 1) reconstruct to 2 lanes 2) Remove side parking 3) slow to 30 mph 4) install bike / pedestrian side lanes 5) calm traffic 6) move traffic to Loma Vista	CE(D)
S1.12	Need custom approach along Main and Thompson	CE
S1.13	Needs to be pedestrian friendly along Main and Thompson and where Main and Thompson meet Telegraph	CE
S1.14	Extend Arundell to Schooner Drive	CE(D)
S1.15	Special treatment to Foothill Road	CE(D)
S1.16	Extend Johnson Drive north to Foothill Road	CE(D)
S1.17	Extend Kimball south across Santa Clara River to Oxnard	CE(D)
S1.18	Extend south Johnson Drive eastbound along Santa Clara River and then north to Bristol Road	CE(D)
S1.19	Provide roadway from Bristol across Santa Clara River into Oxnard	CE(D)
S1.20	Extend Loma Vista at Petit all the way to Amador	CE(D)
S1.21	Extend Balboa at Newport all the way to Wells	$\mathrm{CE}(\mathrm{D})$
S1.22	Extend North Bank Drive northeast to Bristol Road	
S2 - PUBLIC COMMENTS		
S2.1	Stanley to 33 onramp needs to be improved - very dangerous	N\&F
S2.2	Extend Olive north to connect with Ventura Avenue north of Stanley.	CE
S2.3	Need traffic calming on Olive esp. near the Boys \& Girls Club.	CE
S2.4	Connect the 2 parts of Cameron.	CE(D)

Table B-1 (cont) ARTERIAL STREETS CPAC and Public Comments - March 13, 2002		
COMM		ACTION*
S2 - PUBLIC COMMENTS (cont)		
S2.5	Need additional traffic signals on Ventura Avenue especially south of Stanley.	N\&F
S2.6	Customize Main though Midtown - similar to Downtown - with wide sidewalks and pedestrian amenities	CE(D)
S2.7	Customize 5 points as Midtown entry	CE(D)
S2.8	As stated in plan, retain "county" character of Foothill Road. Retain 2 lanes, enhance with bike path, and lower speed limit. No additional traffic can be accommodated.	CE(D)
S2.9	Recognize that Foothill carries substantial traffic, which will increase - 4 lanes needed.	CE(D)
S2.10	Foothill Road cannot take additional traffic from Hall Canyon, Barlow Canyon, and Sexton Canyon as proposed by Lloyd Corp. and Mariano Rancho.	CE(D)
S2.11	Traffic calming speed bumps or more stop signs on through streets between Foothill and Loma Vista, esp. Sexton Hall, Dorothy, and Agnus.	CE
S2.12	Callens onto East Main - takes much time to get out driveway onto Main traffic.	N\&F
S2.13	Poli Street and Foothill Road cannot be widened. It is an old route to Santa Paula - It can't take much more traffic	CE
S2.14	Is there a road planned for access to the Lloyd Properties on the other side of the hills, north side, and running east to west?	N\&F
S2.15	Anticipate potential future development of agricultural parcels north of Highway 126 - identify future extension of Johnson Drive across freeway north through agricultural parcels.	CE
S2.16	Anticipate potential future development of agricultural parcels in inner city greenbelt - easterly extension of Balboa Street and Loma Vista Road.	CE
S2.17	Anticipate potential future development of inner city greenbelt parcels by identifying future extension of roadways through agricultural properties such as Kimball, Ralston, and any other streets. Identify need for specific plan to establish possible road design standards, location of roads, etc. City needs to investigate economic feasibility of extending Kimball south to Oxnard - identify whether this will occur in general plan time frame.	CE
S2.18	Mills Road should be put through to Foothill	CE
S2.19	Safer intersections downtown	N\&F
* Actions taken are as follows:		
N\&F CE CE(D)	Comment not directly applicable to the Circulation Element but has been noted and forwarded to the appro Comment is being addressed in the Circulation Element Update Comment is being addressed in the Circulation Element Update and is discussed here in the text	ty Department

New Roadways (Comments S1.2, S1.9, S1.14, S1.16, S1.17, S1.18, S1.19, S1.20, S1.21, S1.22, S2.15, S2.16, S2.18)

There are a number of new roadways on the current Circulation Element and these are being evaluated as part of preparing the Circulation Element update. Those being indicated in the comments as potentially desirable are as follows:

Southward extension of Mills across US-101
Extension of Arundell to Schooner Drive
Extension of Johnson Drive north to Foothill Road
Extension of Johnson Drive eastward along the Santa Clara River to connect to Bristol
Extension of Loma Vista at Petit to Armador
Extension of Balboa at Newport to Wells

An additional comment (S2.4) suggested connecting the two parts of Cameron. At the present time, Cameron is not on the Circulation Element and hence unless it was to be added to the Element such an extension would be a local subdivision issue rather than a Comp Plan issue. While an extension could help provide north/south capacity parallel to Ventura Avenue, there are issues involved such as bisecting an existing park and residential neighborhood. Without an assessment of feasibility, it is not recommended at this time that Cameron be added to the Circulation Element.

Additional Crossing(s) of the Santa Clara River (Comments S1.19, S2.17)

The question of an additional crossing of the Santa Clara River east of US-101 is currently being addressed in a joint study by the County of Ventura, the City of Ventura and the City of Oxnard. Since the location and sizing of one or more bridges affects all three entities, that cooperative study will evaluate a number of alternatives and the potential impacts/benefits to the communities involved. It is anticipated that this Comprehensive Plan process will have the benefits of the results of that study and thereby be able to incorporate recommendations into the Circulation Element update.

Foothill Road (Comments S2.8, S2.9, S2.10, S2.13)

While one of the public comments (S2.9) appears to contradict the others by suggesting a fourlane road should be built, the general consensus is that Foothill Road has a special character and should
remain at two lanes (as articulated in the Vision Plan). One of the purposes of devising customized functional classifications is to address this special roadway and its needs and limitations. Special functional classifications are aimed at preserving or attaining a desirable character while providing adequate carrying capacity for the forecast traffic volumes. Discussions on this can be found in the traffic forecasting results (Chapter 3.0) and in the development of functional classifications (Chapter 4.0).

Roundabouts (Comment S1.8)

The comment suggests a roundabout at Main and Mills, presumably to address the high traffic volume at this location. Unfortunately, a roundabout to accommodate this volume would require considerable right-of-way and not necessarily be more effective than a signalized intersection. At the same time, the comment introduces the concept of roundabouts as a traffic control devise for deployment in the City. Roundabouts have been used in various locations in the United States, including some locations with relatively high traffic volumes. The greater use, however, has been as traffic calming devises and as a means of creating a more local character to a street (compared to traffic signal control at an intersection). The suggestion here is that roundabout intersections be considered as part of the toolbox for the traffic calming measures and if found desirable, could be deployed accordingly.

PUBLIC TRANSIT

The CPAC and public comments on Transit are summarized in Table B-2. The following discussion addresses specific subject areas.

Train Depot/Transit Centers (Comments T1.3, T1.4, T1.5, T1.9, T2.6, T2.10)

These comments reflect an awareness of the role that transit stations/centers can have in promoting transit use. Policies and programs plus the associated discussion in the Circulation Element respond to these, and emphasize its importance. Since the City has a greater degree of control over providing such amenities (compared to train and bus routing and scheduling) it represents an appropriate directive to pursue such facilities through a variety of actions, both public and private.

Table B-2 PUBLIC TRANSIT CPAC and Public Comments - March 13, 2002		
COMM		ACTION*
T1-CPAC COMMENTS		
T1.1	Public transit should focus on transit dependent areas	N\&F
T1.2	Smaller buses could be used during off peak hours	N\&F
T1.3	The depot should be in the Front Street area between Kalorama and Laurel.	CE(D)
T1.4	The depot should be located at Front Street at Figueroa	CE(D)
T1.5	Put a transit center at Pacific View mall on Telegraph	CE(D)
T1.6	Seniors need a way to get to the center of the mall.	CE(D)
T1.7	Pedestrian access to transit is problematic at Victoria and Telephone	N\&F
T1.8	Improve public transit, bus stops, facilities in the Westside	CE
T1.9	Metrolink Station at Los Angeles Avenue and Azahar.	CE(D)
T1.10	Kneeling busses need to be routed to senior apartments and complexes and large senior housing areas	CE
T1.11	Priority should not be given to ADA over seniors.	--
T1.12	Subsidize seniors' taxicab CHITS	N\&F
T2 - PUBLIC COMMENTS		
T2.1	Use smaller buses which use non-polluting fuel	N\&F
T2.2	North-south connections to SCAT east-west routes	N\&F
T2.3	More public transit in small buses that neighborhoods	N\&F
T2.4	Slow traffic, narrow roads, use transit	--
T2.5	Mass transit with bike, surfboards, skateboard storage	N\&F
T2.6	Bus stops need to be upgraded. Middle class people with transit options don't want to sit on dirty benches in the sun or rain. Bike racks on buses are very good. We need a multi-modal transit center downtown.	CE(D)
T2.7	Trolley transit route from downtown through midtown to mall to Harbor back by beach to downtown runs every 30 minutes.	--
T2.8	Publicly subsidized mass transit	--
T2.9	School only through $6^{\text {th }}$	--
T2.10	Transportation (bus service) should be available to the train station	N\&F
* Actions taken are as follows:		
N\&F CE CE(D)	Comment not directly applicable to the Circulation Element but has been noted and forwarded to the app Comment is being addressed in the Circulation Element Update Comment is being addressed in the Circulation Element Update and is discussed here in the text	ity Department

BIKEWAYS

The CPAC and public comments on bikeways are summarized in Table B`-3. Discussion on specific areas of interest or concern follows:

Additions or Modifications to Bikeway System (Comments B1.1, B1.2, B1.3, B1.6, B1.7, B1.8, B2.4, B2.5, B2.6, B2.7, B2.12)

The comments include a number of suggestions for modifying and/or expanding the General Bikeway Plan. Such suggestions need to be considered in the next update process for that plan and included if appropriate.

One of the key roles of the Circulation Element is to ensure compatibility between the bikeway plan and the Functional Classifications of the roadways used by the designated bike routes or trails. All functional classifications have the ability to provide a Class II bike lane provided the right-of-way is in accordance with the design classification. In some cases, the functional classification supports the potential inclusion of a Class I bike path in the standard cross-section (e.g., the Two-Lane Boulevard). The intent is to provide as much flexibility as possible in enhancing and expanding the Citywide bikeway system.

Table B-3 GENERAL BIKEWAY PLAN CPAC and Public Comments - March 13, 2002 COMMENT		
		ACTION*
B1-CPAC COMMENTS		
B1.1	Connection from Vista Del Mar to Thompson	CE(D)
B1.2	Close road (Brakey Road) to traffic and make it pedestrian and bike only	CE(D)
B1.3	Bike path along Olive (Westside)	CE(D)
B1.4	Improved bike and pedestrian path to get from Mills (the mall) to lower Main Street	CE
B1.5	Improved access to existing bike trail along Ventura River from residential areas along Olive and north of Stanley (i.e., Sycamore Village)	CE
B1.6	Bikeway extension from Cedar to Dakota.	CE(D)
B1.7	Harbor to Ondulondo/Clearpoint - pedestrian / bikeway barrancas	CE(D)
B1.8	Extend bike path from Barranca from Bristol to Park	CE(D)
B1.9	Extend bike path in traffic lane all the way through the curve (on Johnson)	N\&F
B1.10	More segregated trails	CE
B1.11	Slow down traffic along Foothill so that cars and bikes may coexist.	CE
B1.12	More police funding. Do you want a bike path along your backyard? Just a thought. We need police on all new bike paths. Policing needed for increased crime	--
B1.13	Create and facilitate cross-city bike routes for specific transportation objectives as in Santa Barbara.	CE
B1.14	Make Foothill 2 lanes with bike path adjacent to road on south side (slow Foothill traffic to 30 mph)	CE
B1.15	Policy: All upgrades to arterials shall include a bikeway	CE
B1.16	Coordinate with county and other cities/communities to hire a bike consultant with input on all road projects (someone like Wilson Hubbell)	--
B1.17	Need through traffic bike lanes at intersections - this is a problem throughout the City of Ventura.	N\&F
B1.18	Right turn and west from Harbor to Seaward needs improvement from danger of traffic turning on to freeway (similar problems in other areas in town).	N\&F
B2 - PUBLIC COMMENTS		
B2.1	Class II bike trail along Ventura Avenue	CE
B2.2	Better access to bike path from the community located north of Stanley and east of Ventura Avenue (i.e. Sycamore Village)	CE
B2.3	Need safer and easier connection between Ventura River Trail and Omer Rains path	CE
B2.4	Seaward should eliminate parking and have bike lanes instead	CE(D)
B2.5	Bikeway extension off Cedar Street (north to Dakota?)	CE(D)
B2.6	Eliminate parking on Poli in favor of bike lanes	CE(D)

| Table B-3 (cont) |
| :--- | :--- | :--- |
| GENERAL BIKEWAY PLAN |
| CPAC and Public Comments - March 13, 2002 |\quad ACTION*

Appendix F

2004 Biennial Water Supply Report

2004 Biennial Water Supply Report

I. Executive Summary

This report is submitted in compliance with the City Council adopted 1994 Comprehensive Water Resources Management Plan (CWRMP). The CWRMP consists of a compilation of water supply policy statements to provide guidance related to the City's future water supply and demand. The intent of the plan is to ensure the City's ability to provide its customers with adequate water that meets regulatory water quality standards.

A water supply monitoring requirement is included in the CWRMP. This requirement calls for an annual review of critical water supply conditions and a biennial report to the Council for certification in the Fall of even numbered years. The purpose of the Biennial Water Supply Report is to certify that the City's existing water supply and planned improvements are sufficient to satisfy our needs for at least the next ten years and provide advance warning if a supplemental water supply is needed. The ten-year planning horizon represents the time needed to develop a supplemental water supply.

This 2004 Biennial Water Supply Report finds that the City's future water supply and planned improvements are sufficient to satisfy the City's water needs beyond this 10 year planning horizon.

The report includes projections of the City's future water supply and demands. The current and projected water supplies used in the report include: (1) production from the Ventura River, (2) supply from Lake Casitas, (3) production from the Mound Groundwater Basin, (4) pumping allocations in the Oxnard Plain Groundwater Basin, (5) pumping allocations in the Santa Paula Groundwater Basin and (6) future Saticoy County Yard Well. The water demand figures used were determined from historical water consumption figures, anticipated water consumption trends and the estimated population growth for the water service area.

The report also summarizes the capital improvement projects planned for the next five years. These planned improvements increase the City's ability to utilize existing water resources. The planned projects will improve the quantity and quality of the City's existing supplies and provide the system flexibility necessary for the City to support demands during a drought period when the need arises.

In addition to a biennial water supply report, staff annually reviews the health of the City's water supplies. Potential impacts to the water supply, which include the condition of our facilities, agreements with other agencies and weather conditions, are tracked. By tracking these effects potential impacts can be identified before they occur. At this time the City's water supplies are healthy. It is concluded that with planned capital improvements there is sufficient water supply to satisfy the City's water demands for at least the next ten years. In two years when the next Biennial Water Supply Report is prepared, conditions will be reassessed and water supply and demand projections updated.

II. Current and Projected Water Supply

There are presently five water sources that provide water to the City water system:

1. Ventura River surface and subsurface water intakes and four shallow wells (Foster Park)
2. Casitas Municipal Water District (Casitas)
3. Mound Groundwater Basin
4. Oxnard Plain Groundwater Basin (Fox Canyon Aquifer)
5. Santa Paula Groundwater Basin

The City has acquired a sixth source, a well located on the Santa Clara River east of Highway 118 (Wells Road). This location is not within either the Santa Paula Groundwater Basin or the Fox Canyon Aquifer. The well is complete and has been tested for production capacity and water quality. Capacity tests indicate the production from this well will be at least 2,500 gallons per minute (gpm). Pumping and control systems will be complete by mid-year 2005 and connecting pipelines to the Saticoy Conditioning Facility will be complete near the beginning of 2006.

The City also holds a State Water Project (SWP) entitlement of 10,000 acre-feet per year (AFY). To date, the City has not received delivery of its allotment, and it is not certain if or when facilities will be constructed to transport SWP water to the City. In 1998 the City became a signatory to the SWP Monterey Amendment. The amendment would allow the City, with other contractors, to sell surplus water back to the state, however litigation has prevented the terms of the amendment from being fully acted upon.

The City manages its water resources conjunctively. Conjunctive use is the practice of first utilizing surface supplies (which are lost to the ocean if not used when they are available), before groundwater supplies (which can be stored for use when the surface supplies are not plentiful). Groundwater is used to provide for seasonal demands and as a source during drought periods. Therefore, the City will generally utilize its water supplies in the following order: Ventura River, Lake Casitas, and groundwater basins.

In addition, the City provides reclaimed water from the Ventura Wastewater Reclamation Facility to two municipal golf courses, the Ventura Marina area and private customers for landscape irrigation.

1. Ventura River

Surface water from the Ventura River is diverted through the City's Foster Park Facilities. The surface diversion, subsurface intake, and four shallow wells within the Ventura River collect water. Production from this source is a function of several factors including production capacity, local hydrology, environmental impacts, and the storage capacity of the Ventura River alluvium and upstream diversions. Currently, our surface diversion is unused due to the natural migration of the active river channel. Foster Park improvements, now in design, will replace production from our surface diversion with
additional wells. Even without production from the surface diversion, the City produced 6,722 AF from Foster Park in 2003, a year of below average rainfall.

The production from the Ventura River in 1992 was 9,874 AF, the highest annual water volume ever produced. The lowest production was 1,463 AF in the 1951 drought year. The Ventura River water source is highly variable and very dependent upon local hydrology. The CWRMP states the yearly yield is between 700 and 11,000 AF per year. For this report the average long-term water production of 6,700 AFY will be used, and is based on the Evaluation of Long Term Alternative Water Sources, James M. Montgomery, June 1993.

2. Casitas Municipal Water District (Casitas)

The western portion of the City is within the Casitas service area. Approximately 32 percent of the City's water accounts are located within the Casitas service area. Use of Casitas water is restricted to the volume of water used within its boundaries. The "safe yield" of Lake Casitas is defined to be the amount of water that can be removed from the lake each year without excessive risk that the lake will become dry. The safe yield of Lake Casitas is currently estimated to be 21,920 AFY, based on the critical historical dry period from 1944 to 1965 . Studies by Casitas' engineering department have shown that this period represents the most critical dry spell for the Lake's watershed of all the years for which historical data is available.

To maintain future operation of Lake Casitas at safe yield, Casitas established an allocation program for its customers in 1992. The City's allocation can be as high as the in-district demand for Stage 1 (wet or average year), or reduced to 7,090 AFY for Stage 2 (dry conditions) and further incrementally reduced (Stages 3 and 4) to 4,960 AFY for Stage 5 (extremely dry conditions). Stage 2 is initiated when Lake Casitas storage drops below 95,000 AF and Stage 5 is initiated when levels drop below 65,000 AF. The lower allocation remains in effect until the storage is recovered to $90,000 \mathrm{AF}$. Total lake storage is approximately 254,000 AF. Lake Casitas storage as of August 2004 was 168,397 AF.

In July 1995 the City signed an agreement with Casitas, which established the City's minimum purchase at $6,000 \mathrm{AFY}$. The terms of the agreement are subject to the allocation program described above during drought periods. For this report the projected water supply available from Casitas is anticipated to average $8,000 \mathrm{AFY}$, the projected in-district demand.

3. Mound Basin

Two wells supply water from the Mound Groundwater Basin (Victoria Well No. 2 and Mound Well No. 1). Construction of Mound Well No. 1 was completed in 2003.

In March 1996 the City completed a project that included: 1) constructing Mound Basin
monitoring wells at Camino Real Park and Marina Park; 2) developing a database from historical records, and 3) identifying potential surpluses within the basin. This work was performed in conjunction with the United Water Conservation District. The report compiled as part of that project indicated that historical data supports a basin yield of at least 8,000 AFY during drought conditions as long as pumpage is reduced during wet years to allow water levels to recover. It is anticipated that the basin will be able to sustain a higher yield (at least 10,000 AF during drought periods), provided that future wells are located so as not to adversely impact the existing Mound Basin Wells. Future annual reports will further assess the operational yield of the basin.

For this report the future water supply from the Mound Basin is assumed to be 4,200 AFY based on 75 percent of the current pumping capacity of $5,600 \mathrm{AFY}$.

4. Oxnard Plain Groundwater Basin

Wells near the Buenaventura Golf Course have drawn from the Oxnard Plain Groundwater Basin since 1961. Additional wells have been constructed over the years with the most recent being completed in 1991. Currently, three wells produce potable water for the City's system. These wells pump from the Fox Canyon aquifer of the Oxnard Plain Groundwater Basin. Average annual yield from the Golf Course Wells over the past 15 years has been about 3,200 AFY.

The Fox Canyon Groundwater Management Agency (GMA) was created by state legislation in 1982 to manage local groundwater resources in a manner to reduce overdraft of the Oxnard Plain and stop seawater intrusion. A major goal of the GMA is to regulate and reduce future extractions of groundwater from the Oxnard aquifers, in order to operate the basin at a safe yield. In August 1990, the GMA passed Ordinance No. 5 , which requires existing municipal groundwater users to reduce their extractions by five percent every five years until a 25 percent reduction is reached by the year 2010.

The City's baseline allocation was set by the GMA at 5,459 AFY, which was the average extraction from the Golf Course Wells for the period of 1985 to 1989. Beginning in 1992, baseline extractions set by the GMA were reduced by 5% to 5,186 AFY, in 1995 it was reduced to 4,913 AFY, and further in 2000 to its current allocation of 4,640 . This allocation will further be reduced as follows:

Following wet weather conditions, water levels in the City's groundwater basins rise significantly. Conjunctive use strategies and customer water conservation have allowed the City to store $33,193 \mathrm{AF}$ in the GMA bank as of the end of calendar year 2003. This storage bank makes it possible for the City to implement operational procedures that will allow the use of its groundwater supplies up to safe yield levels, and to use its
banked groundwater as an additional supply during future drought conditions. If the City were to use its banked water, it is estimated that the City could extract as much as 5,500 AFY based on 75% of the current pumping capacity of 7,300 AFY. However for this report, future supply is conservatively based on GMA restricted extraction limits listed in the preceding paragraph.

5. Santa Paula Groundwater Basin

The Saticoy Water System acquired by the City in 1968 included Saticoy Well No. 1, which draws water from the Santa Paula Basin. Due to casing failure, the well was destroyed and replaced in 1991 with a new well designated as Saticoy Well No. 2 in the same general location. Pumping capacity within the Santa Paula Basin is currently only 2,200 AFY based on 75% of the current pumping capacity of 2,900 AFY. With the addition of Saticoy Well 3 (completion anticipated 2006) to be located east of Highway 118 (Wells Road) we anticipate increasing pumping capacity in the basin to 6,400 AFY.

In March 1996, the City ended a five-year stalemate over the future use of the Santa Paula Basin. Under an agreement with the United Water Conservation District and the Santa Paula Pumpers Association (an association of ranchers and businesses), the City can pump on average 3,000 AFY from the Santa Paula Basin. The City is not limited to this allocation in any single year, but may produce seven times its average annual allocation ($21,000 \mathrm{AF}$) over any running seven-year period. In addition, the City may pump an additional 3,000 AFY in case of an emergency resulting from a long-term drought situation. Therefore, for the purposes of this report, the future annual production from the Santa Paula Basin is estimated to be 3,000 AFY.

6. Saticoy Yard Well

The County of Ventura has relocated their maintenance yard to a site within the Saticoy Community contiguous to the City's water service area. In exchange for extraterritorial water service, the County has provided the City a well to offset their water demand. The well is expected to provide not only production capacity for serving the maintenance yard, but also significant additional system capacity. The Saticoy Yard Well is anticipated to begin production in 2006, with an estimated 75 percent of design production capacity of 2,262 AFY. The water demand for the maintenance yard is estimated to be 20 AFY.

III. Water Supply Summary

The following Table 1 summarizes the historical deliveries from each of the above sources, as well as projected deliveries to the year 2014. Projected figures are based on the water supply available from each source, and do not necessarily represent amounts currently produced.

Table 1: Historic and Projected Water Source Production and Supply Availability (acre-feet)

Year	Surface Water		Ground Water				Total Water Supply (7)
	Ventura River (1)	Lake Casitas (2)	Mound Basin (3)	Oxnard Plain Basin (4)	Santa Paula Basin (5)	Saticoy Yard Well (6)	
Historic Production							
1980	7,276	7,544	0	5,198	2,129		22,147
1985	5,493	9,099	2,360	6,172	46		23,170
1990	2,859	6,175	4,365	5,749	0		19,148
1995	9,042	1,622	2,169	2,603	2,594		18,030
1996	7,926	4,456	2,789	2,768	1,599		19,538
1997	7,052	7,089	213	3,452	2,025		19,831
1998	8,069	4,328	802	4,312	1,033		18,544
1999	6,419	7,061	3,955	1,621	1,669		20,725
2000	6,779	5,836	4,579	2,674	1,698		21,566
2001	5,727	6,292	4,030	905	2006		18,960
2002	5,951	7,127	3,720	1,978	1,157		19,933
2003	6,722	4,874	5,546	2,898	316		20,356

Projected Supply							
2004	6,700	8,000	4,200	4,600	3,000	0	26,500
2009	6,700	8,000	4,200	4,400	3,000	2,262	28,562
2014	6,700	8,000	4,200	4,100	3,000	2,262	28,262

Notes:

1. Ventura River future supply is the average long-term production based on analysis of the period from 1939 to 1982 per the Evaluation of Long Term Alternative Water Sources, James M. Montgomery, June 1993.
2. Includes the City's total past Casitas purchases in addition to raw water and oil recovery users; projected supply is the City's current in-district use.
3. Mound Basin future supplies are 75 percent of well pump rated output.
4. Oxnard Plain Basin future supply is based on GMA restricted extraction limits rounded to nearest 100 AF .
5. Santa Paula Basin future supply is the pumping allocation of the Stipulated Judgement.
6. Saticoy Yard Well future supply is 75 percent of design maximum pump output capacity.
7. Includes treated and raw water; excludes reclaimed water supply.

IV. Historic and Projected Water Demand

A. Historic Water Demand

Water consumption within the City (excluding raw water/oil company use) has decreased in recent years as shown by the per capita use figures in Table 2. The annual per capita usage from 1940 to 1970 averaged about 0.31 acre-feet per person (AF/capita). In the period 1976-1989 (pre-mandatory water conservation), the annual per capita use averaged about 0.22 AF/capita. In the period 1994-2003 (post mandatory water conservation), the per capita figure dropped to an average of 0.182 AF/capita. This decrease in per capita consumption is the result of structural improvements such as low flow fixtures and low water consuming appliances in some existing and all new housing and an active water conservation program adopted by the City in 1975 and further strengthened with mandatory regulations in 1990. Mandatory regulations were lifted in 1993, however water conservation efforts remain very effective.

Table 2: Historic Water Production and Population

Year	$\begin{aligned} & \text { Total Prod. } \\ & \text { (AF) (1) } \end{aligned}$	Raw Water Use (AF) (2)	Treated Water Use (AF) (3)	Est. Pop. Served by Water System (4)	Per Capita Use (AFY) (5)	Annual Rainfall (in.) (6)
1940	4,240	0	4,240	13,264	0.320	12.54
1950	5,307	0	5,307	16,534	0.321	13.34
1960	8,832	0	8,832	29,114	0.303	12.08
1970	21,524	4,473	17,051	57,964	0.294	13.92
1980	22,147	4,766	17,381	73,774	0.236	24.78
1990	19,148	2,317	16,831	94,856	0.177	24.78 5
1991	14,660	2,077	12,583	94,913	0.133	17.01
1992	16,469	1,625	14,846	95,626	0.155	20.91
1993	17,459	2,010	15,449	96,540	0.160	28.21
1994	18,980	2,000	16,980	97,154	0.175	11.47
1995	18,030	1,602	16,428	99,668	0.165	34.52
1996	19,538	1,500	18,038	100,482	0.180	13.81
1997	19,831	1,829	18,002	101,096	0.178	16.02
1998	18,544	1,769	16,775	101,610	0.165	43.25
1999	20,725	1,067	19,657	102,224	0.192	10.56
2000	21,566	1,129	20,481	103,238	0.198	17.04
2001	18,960	889	18,071	104,153	0.173	23.22
2002	19,933	968	18,965	105,267	0.180	7.24
2003	20,356	846	19,510	106,782	0.182	20.06
Average	1940-70				0.31	
Average	1976-89	Pre-Man Conserva	datory Water tion)		0.22	
Average	1994-2003	Post-Man Water Co	datory nservation		0.179	

Notes for Table 2:

1. Total production includes all water produced by the City and purchased from the Casitas Municipal Water District, including raw water and oil recovery use.
2. Raw water use includes oil and raw water users.
3. Treated water use is total production less raw water use.
4. Population figures provided by City of Ventura Community Development Department and California Department of Finance. Estimated population served by water system for 1990-date includes areas outside of city limits served by the City.
5. Per capita use excludes raw water and oil use (treated water use \div population).
6. Annual rainfall is the average of measured precipitation for the water year (October $1^{\text {st }}$ through September $30^{\text {th }}$) for four rain gauge stations throughout the City (Stations \#66, \#122, \#167, and \#222) as provided by the Ventura County Flood Control District.

B. Population Projections

Recent historical populations (see Table 2) are from adjusted Department of Finance figures for the City's Planning Area, including the County water service area. Projected populations used in this study (see Table 3) were provided by the City Community Development Department, and reflect the figures shown in the 1989 Comprehensive Plan for the City's Planning Area, adjusted to the 1990 and 2000 census. We have also included the portion of our water service area, which covers unincorporated areas adjacent to the City. These are slightly different than the population figures used in the City's 2002 Biennial Water Supply Report, due to recent adjustments by the Department of Finance.

It is important to note that the projected population figures used in this report are not intended to represent either support for or any commitment to this level of growth. Rather they are intended to provide a safe margin in planning for long-term water improvements that might be needed given the rate of growth that could be allowed under the 1989 Comprehensive Plan. Currently the City is going through the process of revising the Comprehensive Plan.

Table 3: Estimated Population Growth for Water Service Area

Year	Projected Planning Area Population
2004	108,651
2009	113,162
2014	118,295

Note: City population estimates are based on the U.S. 2000 Census and
a growth rate of 0.9%. Additional population for the unincorporated area served by Ventura's water system, is based on 2004 count of customers outside city limits and a growth rate of 0.6%.

C. Projected Water Demand

For planning purposes, in 1990 the City used 0.22 AF of water per capita per year based on the average pre-mandatory conservation per capita use data (see Table 2). Anticipated demand reductions, through long-term conservation programs, have lowered the per capita water usage factor. Estimated demand reductions due to conservation in 1990 were anticipated to be five percent in 1995 (0.209 per capita use), 10 percent in 2000 (0.198 per capita use), and 12 percent thereafter (0.194 per capita use). The figures in Table 2 show that the reductions assumed in 1990 have been exceeded and are now around 17 percent. Based on data from the past 10 years since mandatory conservation ended, the average per-capita usage is 0.179 AFY . For the purpose of this report 0.179 AFY per capita will be used to estimate future water demands.

In addition, raw water demand for oilfield injection has declined steadily since 1970. Average raw water usage for the past 5 years was $1,000 \mathrm{AFY}$. For the purpose of this report a future raw water demand of 1000 AFY will be used.

Applying this per capita demand factor to the projected populations provides an estimate of treated water demands for the next 10 years, as shown in Table 4. As stated, the numbers in Table 4 reflect the belief that there will be few substantive changes in the near future, with planned long-term improvements.

Table 4: Projected Water Demand (Acre Feet) - (Normal year, weatherwise)

Year	Est. Water Service Area Pop. (1)	Per Capita Usage AFY (2)	Treated Water Demand (2)	Raw Water Demand (3)	Total Water Demand
2004	108,651	0.179	19,449	1,000	20,449
2009	113,162	0.179	20,256	1,000	21,256
2014	118,295	0.179	21,175	1,000	22,175

Notes:

1. Estimated planning area populations are from Table 3.
2. Treated water demand is estimated population multiplied by $0.179 \mathrm{AF} /$ capita based on the 1994-2003 average post-mandatory water conservation per capita use from Table 2.
3. Raw water demand projections include raw water and oil users.

V. Water Supply and Demand Summary

Table 5 summarizes the City's projected water demand and supply through the year 2014. Additional water supplies will not be needed until sometime after 2014 under average non-drought weather conditions.

Table 5: Summary of Projected Water Demand and Supply (Acre Feet) -(Non-Drought Conditions)

Year	Projected Planning Area Pop.(1)	Projected Water Demand(2)	Projected Water Supply(3)	Additional Water Supply Needed(4)
2004	108,651	20,449	26,500	No
2009	113,162	21,256	28,562	No
2014	118,295	22,175	28,262	No

Notes:

1. Projected planning area population is from Table 3.
2. Projected water demand is from Table 4, and includes oil and raw water use.
3. Projected water supply is from Table 1.
4. Additional water supply needed is the projected water supply less the projected water demand. Additional supply to meet water quality goals is not included.

Based on the above projection, the existing water supply and planned improvements are sufficient to satisfy the City's water needs for at least the next ten years.

VI. Planned Improvements

The City will continue to implement capital improvements and do resource planning for our water system. These improvements will increase production capacity and storage, improve our ability to move water from the diverse sources of supply to all points of use, improve water quality, reliability and safety. We anticipate an update of the Water System Master Plan during the 2004-05 fiscal year.

The availability of the facilities below are essential to meet future water production, storage and transport needs. For purposes of this report, we have assumed these projects will proceed as currently anticipated. Detailed system condition and hydraulic evaluations for both normal and drought condition operation are still to be completed. When completed these may change the projects on this list.

- Upgrade of Foster Park Production Facilities. This will include replacing the production capacity of the surface diversion with new wells. Upgrades of the facilities have been designed and are pending environmental approval. Construction should begin in 2006 and be completed by 2008.
- Saticoy Conditioning Facility Renovation. Upgrades to the facility, including the installation of an emergency generator, will provide capacity to treat production from two wells simultaneously.
- Construction of Saticoy Well No. 3. This new well is currently included with the upgrade of the Saticoy Conditioning Facility. Design is underway and completion is anticipated by 2006.
- Construction of Connecting Pipelines. Several system connections are still needed to enable efficient movement of water from sources to distant sections of the City.
- North Wells Road Reservoir. This 4 million gallons of additional storage will serve the eastern portion of the area to improve fire and domestic supply reliability.

Other projects currently included in the 5 -year Capital Improvement Plan include both projects needed to maintain our existing water system infrastructure and projects planned to improve system efficiency and reliability. They include:

- Rehabilitate and upgrade mechanical/electrical system for Golf Course Well \#3;
- Correction of distribution system dead-ends and complete system service loops;
- Replacement of aging cast iron mains;
- Continue modernization of and provide emergency backup power for the booster pump stations that deliver treated water to system storage; and
- Construct new pipeline improvements to include interties for the $210 / 330$ and 210/430 zones and backup zone connections for the Pierpont-Harbor neighborhood.

Although additional water supplies are not needed at this time, the following system efficiency improvements will make the water system capable of supporting increased demands:

- Continue to work with participating agencies on the Ventura River Watershed and Habitat Conservation Plans for Steelhead Trout.
- Continue discussions with local agencies concerning our State Water Project Entitlement.
- Continue work towards development of Santa Paula Basin Operational/Management Plan with United Water Conservation District \& Santa Paula Pumpers Association.
- Implement the recommendations in the West County Water Supply Reliability Study, which would provide an emergency connection between the Ventura and Oxnard water systems.
- Work with the Casitas Municipal Water District to formally define the City's water service in the North Ventura Avenue area.

VII. Certification

By adopting the 2004 Biennial Water Supply Report, the City Council certifies that based on the findings of this report, there is sufficient water supply available with existing local resources to satisfy the City's water needs for at least the next ten years. The next biennial certification review will take place in the Fall of 2006.
[waln:cert.supply04.doc]

Appendix G
Responses to Comments on the Draft EIR

RESPONSES TO COMMENTS ON THE DRAFT EIR

The letters that follow are the public comment letters on the Draft Environmental Impact Report (EIR) for the proposed 2005 Ventura General Plan. The Draft EIR was circulated for a public review period that began on June 1, 2005 and concluded on July 18, 2005. This appendix includes responses to comments on the Draft EIR.

The City received 32 comment letters on the Draft EIR. Commenters and the pages on which each letter appears are listed below.

Commenter	Page
1. Terry Roberts, Director, State Clearinghouse, Governor's Office of Planning and Research	3
2.Richard A. Rojas, Superintendent, Channel Coast District, California Department of Parks and Recreation	7
3. Kim Uhlich, Senior Analyst, Ventura Local Agency Formation Commission	11
4. Carol Schwartz and Demitrius Zeigler, Casden Properties, LLC	34
5. Charles W. Rogers, Owner APNs 90-143-13 and 90-143-17	44
6. Daniel Cormode	48
7. Daniel Cormode	67
8. Daniel Cormode	72
9. Charles Spraggins	79
10. Carol Schwartz and Demitrius Zeigler, Casden Properties, LLC	81
11. Jean Howard Mann, Owner and Managing Partner, Howard and Howard Ranch	85
12. Terry Donlon, Director of Government Affairs, Building Industry Association	99
13. Shull Bonsall, Jr., Rancho Cañada Larga	103
14. Reed V. Smith, Board Member, Science Chair, Ventura Audobon Society	110
15. Brian Wallace, Associate Regional Planner, Southern California Association of Governments	113
16. William M. Borgers, Vice President, Ventura Citrus Properties, Inc.	115
17. Buz Bonsall, Rancho Cañada Larga	117
18. Kriston D. Qualls, General Counsel, USA Petroleum Corporation	120
19. Buz Bonsall, Rancho Cañada Larga	124
20. Jorge B. Gutierrez, Director of Facilities, Maintenance and Operations, Ventura Unified School District	128
21. Cecilia V. Estolano, Gibson, Dunn \& Crutcher, LLP, on behalf of Mariano Ranch, LLC	139
22. David J. Rose, DTR Engineering	150
 MacCuish, LLP	155

Commenter	Page
24. Christopher Stephens, County Planning Director, County of Ventura Resource Management Agency	162
25. Bruce Smith, Manager, General Plan Section, County of Ventura Planning Division	164
26. Paul Callaway, Ventura County Watershed Protection District	167
27. Alicia Stratton, Ventura County Air Pollution Control District	171
28. Nazir Lalani, Deputy Director, County of Ventura Public Works Agency, Transportation Department	177
29. Nancy M. Williams, Region Manager, Southern California Edison	198
30. Brad Golden, Vice Chair of HOME and Ventura Resident	201
31. Oscar F. Pena, General Manager, Ventura Port District	208
32. McLoughlin Family Ranch	257

The comment letters and the City's responses follow. Responses to individual comment letters immediately follow each letter. When a letter includes more than one comment, the individual comments are lettered (1 A , for example) and specific responses are provided for each comment.
$15:-\frac{n}{8} 8$

Governor's Office of Planning and Research
 State Clearinghouse and Planning Unit

Amold
Schwarzenegger Governor

July 14, 2005

Kari Gialketsis
City of San Buenaventura
501 Poli Street
P.O. Box 99

San Buenaventura, CA. 93002
Subject: City of Ventura 2005 General Plan Draft EIR
SCH\#: 2004101014
Dear Kari Gialketsis:
The State Clearinghouse submitted the above named Draf ERR to selected state agencies for review. On the enclosed Document Details Report please note that the Clearinghouse has listed the state agencies that reviewed your document. The review period closed on July 13, 2005, and the comments from the responding agency (ies) is (are) enclosed. If this comment package is not in order, please notify the State Clearinghouse immediately. Please refer to the project's ten-digit State Clearinghouse number in future correspondence so that we may respond promptly.

Please note that Section 21104(c) of the California Public Resources Code states that:
"A responsible or other public agency shall only make substantive comments regarding those activities involved in a project which are within an area of expertise of the agency.or which are required to be carried out or approved by the agency. Those comments shall be supported by specific documentation."

These comments are forwarded for use in preparing your final environmental document. Should you need more information or clarification of the enclosed cormments, we recommend that you contact the commenting agency directly.

This letter acknowledges that you have complied with the State Clearinghouse review requirements for draft environmental documents, pursuant to the California Envirommental Quality Acc. Please contact the State Clearinghouse at (916) 445-0613 if you bave any questions regarding the environmental review process.

Sincerely,

Director, State Clearinghouse

Enclosures
cc: Resources Agency

SCH\#

2004101014
Clty of Ventura 2005-General Plan Draft EIR
San Buenaventura, City of
Typo EIR Draft EIR
Description The 2005 Ventura General Plan is an update to the 1989 Comprehensive Plan that currently sewes as the blueprint for development in the Cly of Ventura. The 2005 General Plan updates each of the 1989 Comprehenslve Plan elements, other than the Housing Element (an update of which was approved in 2004) with policies and action items that reflect the current needs and preferences of the community. The land use map will also be updated including a simplification of the number of land use categorles from over 30 to 9 land use categories.
The 2005 General Plan DEIR includes analysis of slx separate land use scenarios. These scenarios range from an intensification/reuse only option with minimal changes to the City's sphere of influence (SOI) to an option that includes three expansion areas totaling 1,449 acres currently in agricultural use for possible future development. The DEIR would also be used as a Master Environmental Assessment (MEA) for future environmental analysis in the planning area.

Lead Agency Contact

Name Kari Gialketsis

Agency City of San Buenaventura
Phone (805) 654-7726 Fax
Cify San Buenaventura • State CA Zip 93002

Project Location

County Ventura
Clity Ventura
Region
Cross Streets Clywide
Parcol No.
Township Range Section Base

Proximity to:

Highways 101, 126, 33
Alrports
Railways UPRR
Waterways Santa Clara River, Ventura River
Schools Ventura USD (All Schools)
Land Use All land use categories.
Prolect Issues AestheticNisual; Agricultural Land; Air Quality; Archaeologic-Historlc; Coastal Zone; Cumulative Effects; Drainage/Absorption; Flood Plain/Flooding; Geologic/Seismic; Growth Inducing; Landuse; Minerals; Noise; Population/Housing Balance; Public Services; Recreation/Parks; Schools/Universities: Septic System; Sewer Capacity; Soll Erosion/Compaction/Grading; Solid Waste; Toxic/Hazardous; Traffic/Circulation: Vegetation; Water Qualty; Water Supply; Wetland/Riparian; Wildlife

[^15]
Letter 1

COMMENTER: Terry Roberts, Director, State Clearinghouse, Governor's Office of Planning and Research

DATE: July 14, 2005

RESPONSE:

The commenter attaches a letter from the California Department of Parks and Recreation and acknowledges that the City has complied with State Clearinghouse review requirements for draft environmental documents. The comments from the Department of Parks and Recreation are addressed in the response to Comment Letter 2.

| RECEIVED |
| :---: | :---: | :---: |
| JUL 132005 |
| State Clearing house |$|$| clear |
| :---: |
| $7 \cdot 13 \cdot 05$ |
| e |\quad July 13, 2005

RE: City of Ventura General Plan Draft EIR - SCH \#2004101014

Dear Reader:

Thank you for the opportunity to review and comment of the Draft EIR (DEIR) for the City of Ventura's General Plan. Two state park units and a portion of the Omer Rains Bike trail are within the jurisdiction of the City. We have had a long and successful working relationship with the City and look forward opportunities to work together.

Our comments on the DEIR focus on the biological resources. There are four specific points/considerations we believe should be brought to the City's attention. They are:

1. Coastal strand/Beach: Our field data records have recorded two Wester snowy plover nests on the beach north of the Santa Clara River in Summer 2005. Western snowy plovers also use this coastal strand/beach as wintering foraging habitat. It is also an area known for nesting by the California Least Tern.
2. Special status communities/areas: The beach area north of the Santa Clara River should be considered as a sensitive habitat area because it supports both Western Snowy Plover and Galifomia Least Tem habitat.
3. Summary comparison of impacts for EIR scenarios: All development and intensification of use in the City has potential for increasing impacts on the Santa Clara River Estuary due to discharges from the City's wastewater treatment plant. Unless contemplated water recycling programs keep pace with increased growth there will be increased levels of discharge into the Santa Clara River Estuary. Other less easily quantified impacts will occur in riparian, wetlands, and open water habitats due to increased runoff tied to increased impermeable. surface area within developments. These in tum could affect special status species such as tidewater goby, steelhead, and other aquatic spp. through the potential for increased erosion and associated sediment entering waterways, increased contaminants entering waterways, and other effects associated with increased impermeable surfaces
4. Action 1.8 should include the buffering all watercourses. Action Items to protect riparian areas from the impacts of future development effective in protecting riparian areas should include the avoidance of building within the

RE：City of Ventura General Plan Draft EIR－SCH \＃2004101014
Page 2
floodplain where feasible．Where infeasible，appropriate mitigations must be enforced．

Questions or follow－up on comments made in this letter can be addressed to Barbara Fosbrink，Technical Services Chief，（805）585－1848 or bfosb＠parks．ca．ciov．

Sincerely，

Superintendent
Channel Coast District．
cc．DPLA Environmental Califomia Department of Water Resources California Department of Parks and Recreation，Natural Resources Division

Letter 2

COMMENTER: Richard A. Rojas, Superintendent, Channel Coast District, California Department of Parks and Recreation

DATE:
July 13, 2005

RESPONSE:

Response 2A

The commenter notes that Department of Parks and Recreation records indicate that two Western snowy plover nests were identified on the beach north of the Santa Clara River in summer 2005 and notes that the same area is also known for nesting by California least tern. In response to this comment, the second paragraph under Coastal Strand/Beach on page 4.4-1 of Section 4.4, Biological Resources, will be revised to read as follows:

Cobble beach habitat is also found near the Ventura River mouth and in patches intermixed with sandy beach habitat. Littleneck and bean clams may be found buried next to cobbles used by gastropods such as the black turban snail. The cobble area also contains a few striped and yellow shore crabs. The listed Western snowy plover forages in the beach habitat in the City and has been identified on the beach north of the Santa Clara River. The listed least tern also nests in sandy beach/coastal strand habitat north of the Santa Clara River mouth.

This minor clarification does not affect the conclusions of the Draft EIR. Implementation of proposed General Plan policies and actions would reduce potential impacts to the Western snowy plover and California least tern to a less than significant level.

Response 2B

The commenter states that the beach area north of the Santa Clara River should be considered a "sensitive habitat" because it supports the Western snowy plover and California least tern. General Plan Action 1.17 identifies "shoreline areas" as sensitive habitats and requires surveys and appropriate buffers and other mitigation for any projects that may affect such areas. Implementation of this action would address possible future impacts to the Western snowy plover and California least tern.

Response 2C

The commenter states that the intensification of land use within the City has the potential to indirectly affect the Santa Clara River estuary and other open water habitats because of increased discharges from the wastewater treatment plant and increased surface runoff associated with the increase in impermeable surface area. Issues relating to wastewater treatment and surface water quality are addressed in Sections 4.13, Utilities and Service Systems, and 4.8, Hydrology and Water Quality. As discussed in Section 4.13 , the City's wastewater treatment plant has adequate capacity to handle the projected increase in wastewater flow under any of the six EIR land use scenarios. As such, although an increase in overall wastewater generation would occur, wastewater
treatment would continue to meet Regional Water Quality Control Board discharge requirements and significant impacts would not occur. As discussed in Section 4.8; all future development in the City would be subject to the requirements of the Ventura County SQUIMP, which provide specific stormwater runoff treatment requirements and performance standards. The standards for new development and redevelopment exceed the standards of most existing development in the City and generally restrict post-project runoff levels to pre-project levels. Continued implementation of SQUIMP requirements on all new development and redevelopment within the City would be expected to generally improve the quality of stormwater runoff and reduce impacts to surface water quality to a less than significant level.

Response 2D

The commenter states an opinion that Action 1.8 should include the buffering of all watercourses and that building within the floodplain should be avoided. Proposed Action 1.8 provides for a minimum 50 -foot buffer for waterways that retain natural soil slopes and thus have the potential for biological value. This action is not intended to apply to existing concrete-lined channels since such channels have little or no biological resource value. However, Action 1.10 calls for the removal of concrete channel structures as funding allows and where doing so will fit the context of the area and not create unacceptable flood or erosion potential. As discussed in Section 4.8, Hydrology and Water Quality, the six EIR land use scenarios include only a limited amount of developable land within the floodplain. Any future development proposals within 100-year flood zones would be required to comply with all Federal Emergency Management Agency requirements as well as the City's Flood Plain Ordinance.

received

JUL 1 \& 2005
Community Developmint
"ANNING DIVISION*

Kari Gialketsis, Principal Planner
City of San Buenaventura Community Development Department
PO Box 99
Ventura, CA 93002-0099

RE: 2005 Ventura General Plan EIR Comments

Dear Kari:

Thank you for providing the Ventura Local Agency Formation Commission (LAFCO) with the opportunity to comment on the Draft Program EIR for the Ventura General Plan. As a responsible agency for subsequent projects that may be implemented according to the General Plan, LAFCO must be able to make findings that the CEQA determinations made by the lead agency are appropriate for proposed project(s). Having the opportunity to comment on draft environmental documents helps to ensure that the CEQA issues as they pertain to the LAFCO process are addressed prior to application to LAFCO. Please understand that the specific comments about the DEIR detailed below are those of the LAFCO staff. The DEIR has not been reviewed or discussed by the Commission.

Section 2.0 - Project Description

1. Figures $2-4,2-5,2-6,2-7$ and $2-8$ contain multiple, confusing references to areas within the North Ventura Avenue area ("North Avenue Potential Expansion Area", "Upper North Avenue District" and "North Avenue District"). These Figures and all related text references should be clarified so the reader can better distinguish between "Districts" and the "Potential Expansion Areas" in the North Ventura Avenue area.
2. Due to the relatively large scale of the "Scenario" maps (Figures 2-3 through 2-8), it would be helpful if a list or table of Assessor parcel numbers is included as part of the Project Description Chapter to distinguish the specific boundaries of each of the potential expansion areas.

Section 4.2 - Agriculture

1. Please find enclosed additional comments offered in 11×17-inch chart format in an effort to reduce the length of our narrative comments. This chart is intended to clarify and supplement the information provided in the agricultural impacts chart on Page 4.2-12 of the EIR. In particular, please note Footnote No. 3 on the chart. As currently described in the EIR, annexation of the North Avenue Potential Expansion

Kari Gialketsis, Principal Planner, City of Ventura Community Development Dept. Draft EIR Comments - 2005 General Plan
July 11, 2005
Page 2

Area is not possible based on the fact that geographic contiguity cannot be established unless the EIR is revised to include parcels to the south not already analyzed in the scope of the proposed General Plan land use scenarios.

Please also note the a portion of the 11-acre property north of the wastewater treatment plant included in Scenario 1 is subject to City SOAR according to County GIS maps.
2. Although the City of Ventura may use the State Important Farmland Maps as a threshold for significance for their initial study checklist, LAFCO must comply with the Cortese-Knox-Hertzberg Local Government Reorganization Act of 2000 definition of prime agriculture to determine agricultural impacts. The definition is as follows:
(Government Code (G.C.) Section 56064)
"...an area of land whether a single parcel or contiguous parcels, that has not been developed for a use other than an agricultural use and that meets any of the following qualifications:
(a) Land that qualifies, if irrigated, for rating as class I or II in the USDA Natural Resource Conservation Service land use capability classification, whether or not land is actually irrigated, provided that irrigation is feasible.
(b) Land that qualifies for rating 80 and 100 Storie Index Rating.
(c) Land that supports livestock used for the production of food and fiber and that has an annual carrying capacity equivalent to at least one animal unit per acre...
(d) Land planted with fruit or nut-bearing trees, vines, bushes, or crops that have a nonbearing period of less than five years and that will return during commercial bearing period on an annual basis...of not less than $\$ 400$ per acre.
(e) Land that has returned from the production of unprocessed agricultural plant products an annual gross value of not less than $\$ 400$ per acre for three of the previous five years."

For LAFCO purposes, the USDA rating and storie class of the site should be addressed in the EIR or at the time of application for a specific boundary change.
3. Not all parcels under Land Conservation Act (LCA) contract within the Olivas Potential Expansion Area are shown on Figure 4.2-3. Based on our review of County GIS maps, it appears that approximately 170 acres of land are under LCA contract in the Olivas area rather than 24 acres as indicated in the EIR (Assessor Parcels: 080-0-020-200 and 138-0-060-495). The map and accompanying text references to total acreage under LCA contract should be revised accordingly.

Kari Gialketsis, Principal Planner, City of Ventura Community Development Dept.
Draf̆́ EIR Comments - 2005 General Plan
July11, 2005
Page 3
4. For those Expansion Areas containing parcels subject to LCA contracts, the EIR should describe the consistency review process according to Government Code Section 56856.5 and acknowledge that this generally precludes the ability of LAFCO to approve the annexation of such lands to a city.
5. The first paragraph on Page 4.2-11 indicates that any change to greenbelt agreement boundaries between cities requires approval from LAFCO. This is incorrect. Greenbelt agreements are statements of local policy adopted by one or more cities and the County of Ventura. However, although LAFCO is not a party to greenbelt agreements, it has "endorsed" all such agreements as statements of local policy. As such, LAFCO has adopted a policy providing that a proposal from a city that is in conflict with any greenbelt agreement will not be approved unless exceptional circumstances exist. A greenbelt amendment must be amended by all parties involved prior to any proposal which may be in conflict with the agreement being considered by LAFCO (see enclosed Section 2.5.3 of the LAFCO Commissioner's Handbook).
6. The EIR references proposed General Plan Policy 3D ("Continue to preserve agricultural lands within the City's Planning Area") and cites proposed General Plan Action 3.12 as being one means to this end. General Plan Action 3.12 directs the City to renew and "modify" greenbelt agreements as necessary to direct development to already urbanized areas."

Page 4.2-16 of the EIR contains the following statement:
" Implementation of the above policies/actions would minimize the premature conversion of agricultural lands under any of the land use scenarios. Outside of re-designating important farmlands for continued agricultural use, additional mitigation is not available." (emphasis added)

Given the above statement acknowledging that agricultural land would not be permanently preserved within the timeframe and context of the development contemplated under the proposed General Plan, and based on the EIR conclusion that all six land use scenarios would result in the conversion of agricultural land within the sphere, and that two of the scenarios (Scenario 2 and 3) would actually require a reduction in the area covered by the Oxnard-Ventura Greenbelt, it is unclear how any of the proposed scenarios could be found to be consistent with General Plan Action 3.12, let alone how these policies could be found to serve as "mitigation measures" (see next comment).
7. Two of the mitigation measures proposed by the EIR to address impacts associated with the conversion of agricultural land (Pages 4.2-15-4.2-16) refer to implementation of General Plan Actions 3.12 and 3.15 which, respectively, directs

Kari Gialketsis, Principal Planner, City of Ventura Community Development Dept. Draft EIR Comments - 2005 General Plan July11, 2005.
Page 4
the City to renew and modify greenbelt agreements as necessary to direct development to already urbanized areas, and to adopt use permit standards for nonfarm activities in agricultural areas that protect and support farm operations (including requiring non-farm uses to provide buffers). However, the EIR acknowledges that these policies merely serve to minimize the "premature" conversion of agricultural land and, and that "outside of re-designating important farmlands for continued agricultural use (which the EIR does not propose to do), additional mitigation is not available." As such, reliance on these policies which serve as only temporary means to preserve agricultural land as "mitigation" does not seem to reflect the true intent of mitigation under CEQA. Moreover, given that the impacts regarding agricultural land conversion would remain unavoidably significant, even with this "mitigation", we believe that the references to the proposed General Plan actions as "mitigation" should be deleted altogether.
8. Please note that LAFCO is planning to prepare a Municipal Service Review (MSR) for the City of Ventura, which is required before LAFCO can undertake an update of the City's sphere of influence. As part of this process, LAFCO policy 4.1.2.3 (enclosed) provides that city spheres of influence should coincide, with or cover lesser area than, voter approved growth boundaries. LAFCO will base the update of the City's sphere of influence on the above-noted policy, unless there is sufficient justification for change. This project EIR and subsequent decisions by the City about its SOAR boundary will be used as part of the basis for the City's sphere of influence update by LAFCO. Thus, once LAFCO completes the MSR, the probable result will be that all territory located within the current sphere of influence but subject to the City's SOAR ordinance will be removed from the sphere (including all or portions of land use Scenarios 2-6, and possibly even Scenario 1, with respect to the 11-acre area that is outside of the current sphere and a portion of which is subject to the City SOAR). If LAFCO's sphere of influence update is completed prior to the passage of a SOAR vote to redesignate any of the Expansion Areas, any of the Expansion Areas that are subject to the City SOAR ordinance could also be outside the City's sphere of influence. As such, the EIR should discuss the fact that an application for a sphere amendment may need to be approved by LAFCO prior to considering these lands for annexation.
9. The first paragraph of page 4.2-18 incorrectly references the Olivas area as being part of Scenario 4.
10. The discussion on page 4.2-18 under Scenario 5 indicates that a portion of the Western Cañada Larga area could only be converted to another use upon cancellation of existing LCA contracts and approval of a sphere of influence amendment by LAFCO. Scenarios 2 and 3 would also require cancellation of existing LCA contracts. The applicable sections of the EIR should be revised to acknowledge this fact. Also, based on the City's current sphere of influence

Kari Gialketsis, Principal Planner, City of Ventura Community Development Dept. Draft EIR Comments - 2005 General Plan
July11, 2005
Page 5
boundary, Scenarios 1,2,3 and 4 would require sphere of influence amendments. Scenario 6 may potentially require a sphere amendment following the pending sphere update to be performed by LAFCO as part of the Municipal Service Review process.
11. Under Scenario 1 on page 4.2-20, the EIR states, "several agricultural properties within the proposed SOI that are currently designated for non-agricultural uses could be developed under this scenario." The EIR proceeds to reference properties in the Saticoy area that may present potential agricultural/urban compatibility conflicts, however, there is no information about any specific property in the Saticoy area and no mapped reference. For the record, we would like it noted that the subject EIR does not contain sufficient information to assess impacts associated with any annexations associated with these properties. Any future actions requiring LAFCO approval will require additional environmental review.

Section 4.14 - Land Use and Planning

12. Section 4.14 (Land Use and Planning) of the EIR contains erroneous interpretations of the Cortese-Knox-Hertzberg Act of 2000 (California Government Code Section 56000 et seq.), LAFCO policies and the Ventura County Guidelines for Orderly Development. Please refer to the "Frequently Asked Questions" link on our website at www. venturs lafco.ca. gov for additional information. For the sake of ease and clarity, we recommend that the EIR simply reference the applicable Code Sections or local policy documents in sufficient detail for interested readers to locate on their own accord rather than include inaccurate restatements of statutes and policies. As such, we recommend that all the applicable interpretations found on pages 4.14.6 and 4.14 .7 be deleted.
13. In addition to the factors contained in Government Code Section 56000 et seq., the Ventura LAFCO has adopted local polices that will also be considered as a part of any LAFCO review of the project. A discussion about consistency with these Ventura LAFCO policies and any resulting environmental impacts should be included in the EIR. All of these polices are contained in the Ventura LAFCO Commissioner's Handbook. A complete copy of the Commissioner's Handbook is available from the Ventura LAFCO and on-line at the Ventura LAFCO web site. Specific applicable LAFCO policies are enclosed and include:
a. Conformance with local plans and policies (policy 2.5.1), especially in relation to any changes that may be necessary to the City's SOAR ordinance.
b. Agriculture and open space conversion (policy 3.1 .5 in its entirety). Note that policy 3.1 .5 requires a detailed alternative site analysis of non-prime agricultural or vacant lands as well as an analysis of the impacts on

Kari Gialketsis, Principal Planner, City of Ventura Community Development Dept. Draft EIR Comments - 2005 General Plan
adjoining prime agricultural or open space lands. Also note that this policy refers to phasing annexation for very large developments that may involve time horizons over 5 years.
c. School capacity (policy 3.1.6)
d. Annexation of unincorporated island (policy 3.2.3)

Given that the subject EIR does not include an analysis of several of the above noted policies, LAFCO does not consider this EIR adequate for the purposes of any future sphere amendments or annexations unless supplemental analysis is provided.

Paragraph b, above is emphasized in response to statements in the EIR indicating that the 2005 General Plan would not change the land use designation for any of the areas under Scenarios 2 through 6 (pages 4.2-17 through 4.2-18). At the point when the City begins to implement any land use scenario that requires an amendment to the sphere of influence, please note that LAFCO discourages such unless annexation of the territory involved is anticipated within five years. Note further, however, that once territory is within the City's sphere of influence there is no requirement that it be annexed within five years or any other specific timeframe.
14. In acting on any governmental boundary reorganization proposal LAFCO must consider the factors identified in Government Code Section 56668. Each of these factors should be fully discussed in the appropriate sections of the EIR. Note that these factors include a reference to Government Code Section 56377 concerning open space conversion and that LAFCO uses the definition of open space contained in Section 65560 of the Public Resources Code.

Again, thank you for the opportunity to comment. If there are any questions regarding our comments, please feel free to contact me at 805-654-2866.

Sincerely,

Kim Uhlich
Senior Analyst

[^16]
DIVISION 2 - OPERATIONAL POLICIES

CHAPTER 5 - LOCAL PLANS AND POLICIES

SECTION 2.5.1 CONFORMANCE WITH LOCAL PLANS AND POLICIES

2.5.1.1 Consistency with General and Specific Plans: Unless exceptional circumstances are shown, LAFCO will not approve a proposal unless it is consistent with the applicable general plan and any applicable specific plan. For purposes of this policy, the applicable general plan is as follows:
i. For proposals by a city, the general plan of the city.
ii. For proposals by a district, where the affected territory lies within an adopted sphere of influence of a city, the general plan of the city.
iii. For proposals by a district, where the affected territory lies outside an adopted city sphere of influence, the Ventura County General Plan.
2.5.1.2 Consistency with ordinances requiring voter approval: For cities that have enacted ordinances that require voter approval for the extension of services or for changing general plan designations, LAFCO will not approve a proposal unless it is consistent with such ordinances and voter approval has first been granted, or unless exceptional circumstances are shown to exist.

SECTION 2.5.2 GUIDELINES FOR ORDERLY DEVELOPMENT

LAFCO encourages proposals that involve urban development or that result in urban development to include annexation to a city wherever possible. In support of this policy LAFCO has adopted Guidelines for Orderly Development, the policies of which are incorporated by reference.

SECTION 2.5.3 GREENBELTS

The County of Ventura and various cities in the County have adopted Greenbelt Agreements for the purposes of preserving agriculture and/or open space, providing separation between cities, and/or limiting the extension of urban services. The Ventura LAFCO is not a direct party to these Greenbelt Agreements, but has endorsed them as statements of local policy. As such, LAFCO will not approve a proposal from a city that is in conflict with any Greenbelt Agreement unless exceptional circumstances are shown to exist. A Greenbelt Agreement shall be amended by all parties involved prior to any proposal which may be in conflict with the Agreement is considered by LAFCO.

SECTION 3.1.5 AGRICULTURE AND OPEN SPACE PRESERVATION

3.1.5.1 Findings and criteria for prime agricultural and open space land

 conversion: LAFCO will approve a proposal for a change of organization or reorganization which is likely to result in the conversion of prime agricultural or open space land use to other uses only if the Commission finds that the proposal will lead to planned, orderly, and efficient development. For the purposes of this policy, a proposal for a change of organization or reorganization leads to planned, orderly, and efficient development only if all of the following criteria are met:i. The territory involved is contiguous to either lands developed with an urban use or lands which have received all discretionary approvals for urban development.
ii. The territory is likely to be developed within 5 years and has been prezoned for non-agricultural or open space use. In the case of very large developments, annexation should be phased wherever possible.
iii. Insufficient non-prime agricultural or vacant land exists within the existing boundaries of the agency that is planned and developable for the same general type of use.
iv. The territory involved is not subject to voter approval for the extension of services or for changing general plan land use designations. Where such voter approval is required by local ordinance, such voter approval must be obtained prior to LAFCO action on any proposal unless exceptional circumstances are shown to exist.
v. The proposal will have no significant adverse effects on the physical and economic integrity of other prime agricultural or open space lands.
3.1.5.2 Findings that insufficient non-prime agricultural or vacant land exists: The Commission will not make affirmative findings that insufficient non-prime agricultural or vacant land exists within the boundaries of the agency unless the applicable jurisdiction has prepared a detailed alternative site analysis which at a minimum includes:
i. An evaluation of all vacant, non-prime agricultural lands within the boundaries of the jurisdiction that could be developed for the same or similar uses.
ii. An evaluation of the re-use and redevelopment potential of developed areas within the boundaries of the jurisdiction for the same or similar uses.
iii. Determinations as to why vacant, non-prime agricultural lands and potential re-use and redevelopment sites are unavailable or undesirable for the same or similar uses, and why conversion of prime agricultural or open space lands are necessary for the planned, orderly, and efficient development of the jurisdiction.
3.1.5.3 Impacts on adjoining prime agricultural or open space lands: In making the determination whether conversion will adversely impact adjoining prime agricultural or open space lands, the Commission will consider the following factors:
i. The prime agricultural and open space significance of the territory and adjacent areas relative to other agricultural and open space lands in the region.
ii. The economic viability of the prime agricultural lands to be converted.
iii. The health and well being of any urban residents adjacent to the prime agricultural lands to be converted.
iv. The use of the territory and the adjacent areas.
v. Whether public facilities related to the proposal would be sized or situated so as to facilitate the conversion of prime agricultural or open space land outside of the agency's sphere of influence, or will be extended through prime agricultural or open space lands outside the agency's sphere of influence.
vi. Whether natural or man-made barriers serve to buffer prime agricultural or open space lands outside of the agency's sphere of influence from the effects of the proposal.
vii. Applicable provisions of local general plans, applicable ordinances that require voter approval prior to the extension of urban services or changes to general plan designations, Greenbelt Agreements, applicable growth-management policies, and statutory provisions designed to protect agriculture or open space.
viii. Comments and recommendations by the Ventura County Agricuitural Commissioner.

SECTION 3.1.6 SCHOOL CAPACITY

In addition to the factors and determinations required by state law, LAFCO will consider whether or not the territory involved in a proposal for a change of organization or reorganization can be served by affected school districts. LAFCO will not favor any change of organization or reorganization proposal where any affected school district certifies that there is not sufficient existing school capacity, or will not be sufficient school capacity at the time of development, to serve the territory involved.

SECTION 3.2.3 ANNEXATION OF UNINCORPORATED ISLAND AREAS BY CITIES

(Added 4/16/03)
Any approval of a proposal for a change of organization or reorganization will be conditioned to provide that proceedings will not be completed until and unless a subsequent proposal is filed with LAFCO initiating proceedings for the change of organization or reorganization of all unincorporated island areas that meet the provisions of Government Code Section 56375.3, provided all of the following criteria are applicable:
i. The approved proposal was initiated by resolution of a city that surrounds or substantially surrounds one or more unincorporated island areas that meet the requirements of Section 56375.3.
ii. The territory in the approved proposal consists of one or more areas that are each 40 acres or more in area.
iii. The territory in the approved proposal will not be used exclusively for agriculture or open space purposes after the completion of proceedings.
iv. The territory in the approved proposal is not owned by a public agency or used for public purposes.

DIVISION 4 - SPHERES OF INFLUENCE

CHAPTER 1 - GENERAL POLICIES

SECTION 4.1.1 APPLICABILITY AND WAIVER

4.1.1.1 Applicability:

(a) These policies and standards do not preempt state law. In the event of a conflict between these policies and the provisions of state law, the provisions of state law shall prevail.
(b) In the event of a conflict between these policies relating to spheres of influence and the rules and regulations, or the operational policies, adopted by the Ventura LAFCO, the provisions of the rules and regulations and the operational policies shall prevail.
4.1.1.2 Waiver: These policies and standards relating to spheres of influence shall be given great weight as a part of the Ventura LAFCO's consideration of proposals. They are general guidelines for the Commission to follow, however, they are not mandatory or binding. The Commission can and will consider each proposal upon its merits within the parameters set forth in state law. Should the Commission elect not to follow a policy, it shall, as a part of any resolution on the matter and as part of the written record, set forth the specific waiver, and the reason for it.

SECTION 4.1.2 BOUNDARIES

4.1.2.1 Compliance with state law: All boundaries shall comply with the provisions of state law.
4.1.2.2 Conformance with lines of ownership and assessment: Sphere of influence boundaries should coincide with lines of assessment or ownership. If sphere of influence boundaries do not coincide with lines of assessment or ownership they shall be described by metes and bounds legal descriptions sufficient for definitive mapping purposes using geographic information system software.
4.1.2.3 Consistent with voter approved growth boundaries: For cities that have enacted ordinances that require voter approval for the extension of services or for changing general plan designations, sphere of influence boundaries should coincide with, or cover lesser area than, voter approved growth boundaries.
2005 Ventura General Plan EIR: Comparison of Scenarios i-6 Integrating LAFCo LawlPolicies and Minor Data Corrections
Yes; refer to EIR for acreage Portion of the 11 acres north Portion of the 1 acres north
of water fitration plant
subject to City SOAR

Yes; refer to EIR for acreage

North Avenue area is not contiguous to City boundary; Sec .55741 of $\mathrm{C}-\mathrm{K}-\mathrm{H}$.
Yes; land to be developed fo urban purposes should first be annexed to City. North
Avenue area cannot be Avenue area cannot be
amexed per LAFCo policy
No
No

Yes; refer to EIR for acreage

Yes; refer to EIR for acreage

North Avenue area is not contiguous to City boudary; an-
nexation is prohibited by Sec. 56741 of $\mathrm{C}-\mathrm{K}-\mathrm{H}$.
10f padofonep aq of puef 'sal urban purposes should first be annexed to City. North
Avenue area cannot be annexed per LAFCo policy
Yes; refer to EIR for acreage
Yes; 170 acres in Olvas area
under LCA contract (EIR
indicates 24 total acres)

North Avenue area is not conNorth Avenue area
tiguous to Clty boudary; an-
nexation is prohibited by Sec. 56741 of C-K-H
jol pedilignep eq of puef sel urban purposes should first. Avenue area cannot be Avenue area cannot be
annexed per LAFCo policy
Yes; refer to EIR for acreage
Yes; 170 acres in Olivas
area under LCA contract (EIR
indicates 24 total acres) Scenario 2
Yes; refer to EIR for acreage
11 acres north of water
filtration plant would require
SOl amendment prior to SOl amendment prior to annexation of noncontiguous
teritory is prohibited by Sec.
56741 of $\mathrm{C}-\mathrm{K}-\mathrm{H}$
Yes; land to be developed for Yes; land to be develop first Avenue area cannot be Avenue area cannot be
annexed per LAFCo policy
No, according to criteria for
Scenario 1 eligibility as
Scenario 1 eligibility as
stated in EIR (5)
No, according to criteria for
Scenario 1 eligibility as stated in EIR (5)

Prime Farmland Conversion?
 Conflicts with SOAR? (1)
 (z) C К〇!

Conflicts with Guldelines for Orderly Development (3)?

Conflicis with greenbelt agreement?

Conflicts with LCA contract(s)?
N
NOTES:
(1) The EIR should indicate that LAFCo will not accept an application for a sphere amendment or an amnexation for any territory subject to the City SOAR ordinance until and uniess voter concurrance is reached.

 with properties already within the City boundaries located considerably soim of impacts.
area would need to be analyzed along with any other additional potential
 (4) This analysis for Scenario 1 inciudes analysis of "incorporation" (sic) of approximately 11 acres north of water flitration plant in the North Avenue area as reerred to in elysis if they are known to be part of Scenario 1.
identified in the EIR. Those areas that are Identified, such as the McGrath property, Thile area property, and severai Saticoy sites, should be inciuded in the impact analy

[^17]Letter 3

COMMENTER: Kim Uhlich, Senior Analyst, Ventura Local Agency Formation Commission

DATE: July 11,2005

RESPONSE:

Response 3A

The commenter notes that there are multiple confusing references to the North Avenue District, Upper North Avenue District, and North Avenue Expansion Area on Figures 2-4 through 2-8. The Upper North Avenue district is shaded gray and numbered "1." The North Avenue district is shaded gray and numbered "2." The North Avenue expansion area is shown with a hatch pattern and labeled as such. All three areas are within the current Sphere of Influence. However, the North Avenue expansion area is considered such because it is designated Agriculture in the current Comprehensive Plan land use map and therefore would need voter approval for re-designation and subsequent development.

Response 3B
The commenter requests a listing of parcel numbers for each of the potential expansion areas. This list was provided to the LAFCO staff upon their request and is attached.

Response 3C

The commenter notes that annexation of the North Avenue potential expansion area is not possible because it is not contiguous with the current City boundary. It is presumed that annexation and development of the North Avenue area would not occur (if at all) until such time as areas to the south and/or west are annexed to the City. The Draft EIR Project Description is unclear on this point. Therefore, the discussion of the City's corporate limits in Section 2.0, Project Description, will be revised as follows in the Final EIR (new text is underlined):
a. Corporate Limits. The corporate limits of the City currently encompass approximately 13,700 acres, or 21 square miles. The City stretches from the Pacific Ocean eastward to the community of Saticoy and northward up the Ventura River valley. The City is not currently seeking annexation of any lands outside the current City limits. However, the City may seek annexation of unincorporated islands as well as urbanized areas adjacent to the current City limits (such as in Saticoy and the North Ventura Avenue area) over the life of the 2005 General Plan. Any annexations would be sought only at such time as the area to be annexed is contiguous with the current (at that time) City limit.

In addition, the first full paragraph on page 2-5 will be replaced with the following in the Final EIR to clarify whether and how the City may seek adjustments to the Sphere of Influence:

The City is not seeking any adjustments to the SOI at this time. However, the 2005 General Plan includes a land use designation ("Industrial") for a small area outside the current SOI. This area encompasses approximately 10-11 acres located north of the City's water filtration plant. The City may seek inclusion of that area within the SOI over the life of the 2005 General Plan; however, any application for an adjustment to the SOI and annexation would occur (if ever) only at such time as the City's corporate boundary has been extended to be contiguous with the boundary of the area. Similarly, should any potential expansion areas be selected for inclusion in the General Plan land use map in the future, the SOI may be proposed for adjustment at that time to encompass the expansion areas. Applications for any necessary SOI adjustments would be sought at such time as development of these areas is proposed. The SOI adjustments that would be needed for each expansion area are discussed in detail in subsection 2.5. Finally, the City is interested in having the SOI moved to be coterminous with the City's corporate boundary for the hillside areas above the City pursuant to Action 1.13 of the Draft General Plan. It is the City's understanding that the Ventura LAFCO is planning to prepare a Municipal Service Review (MSR) for the City that will likely result in the removal this area (and possibly other areas, including all of the potential expansion areas) from the SOI; therefore, the City will not seek an SOI adjustment at this time. However, if the LAFCO does not take action to remove the hillside areas from the SOI, the City may apply for such an adjustment in the future.

Subsection 2.5.3.c of the EIR Project Description will be revised to read as follows in the Final EIR (new text is underlined):
c. Possible Future Changes to Sphere of Influence Boundaries. As noted in subsection 2.2, although the City is not seeking adjustment to the Sphere of Influence (SOI) at this time, implementation of the 2005 General Plan may require several adjustments to the Sphere of Influence (SOI) that would subsequently be processed and subject to approval by LAFCO. About 2,300 acres in the hillsides above the City are proposed to be removed from the SOI. This would remove these areas from consideration for future City extension of services and focus future development on non-hillside areas. In addition, approximately 10-11 acres north of the City's water filtration plant along the west of SR 33 may need to be included in the SOI at some point in the future. This area is partly in agricultural use, but it is designated for industrial development in the Ventura County General Plan and in the 1989 Comprehensive Plan.

The SOI would not need to be adjusted at this time to include any of the expansion areas considered in this EIR. However, certain expansion areas would require expansion of the SOI if they are to be considered for future development. Such SOI expansions would be sought, ifever, at such time as development of the areas is proposed. Possible future expansions of the SOI include the following:

- Westem Cañada Larga - This 110-acre area, located at the northern end of the Planning Area along the State Route (SR) 33 corridor, would need to be included in the SOI if selected for possible future development. Inclusion within the SOI could occur only at such time as the City's corporate boundary has been extended to be contiguous with the boundary of the expansion area.
- Olivas - About 55 acres of the 930-acre Olivas area (the portion of this area north of U.S. 101) are within the current SOI. However, the remaining 875 acres, which
consist of agricultural land located primarily between U.S. 101 and Harbor Boulevard, would need to be included in the SOI if this area is selected for possible future development.
- Serra - About 160 acres of the 438 -acre Serra area are currently outside the SOI. This area, which is located south of Bristol Road and along the north bank of the Santa Clara River, would need to be included in the SOI if the Serra area is selected for possible future development.

Because the Ventura LAFCO may remove all areas subject to voter approval from the SOI as a result of its Municipal Service Review, any of the expansion areas may have been removed from the SOI by the time they are considered for development. Therefore, an SOI adjustment may need to be sought for any of the expansion areas.

The second, third, and fourth paragraph under subsection 2.6 (those related to LAFCO approvals) will be replaced with the following:

The City is not seeking annexation of lands or adjustments to the SOI at this time. However, implementation of the 2005 General Plan may require future approval of adjustments to the City's SOI, as described above. Annexations and SOI adjustments would be sought as appropriate at such time as developments are proposed for the areas in question. Any adjustments to the SOI will require approval from the Ventura LAFCO.

Other references to future SOI adjustments throughout the Draft EIR will be adjusted to reflect the above. In addition, Figures 2-3 through 2-8 will be revised to eliminate the future SOI boundaries that are depicted.

Response 3D

The commenter states that the 11-acre property north of the water treatment plant is subject to SOAR according to County records. In actuality, two small pieces of the property in question are designated Agriculture in the current Comprehensive Plan and therefore subject to SOAR. However, the bulk of the property (and the entire area included within the Upper North Avenue District depicted on Figures 2-3 through 2-8) is designated Industrial and not subject to SOAR.

Response 3E

The commenter notes that the Ventura County LAFCO uses the USDA rating and storie class of the site to determine the significance of agricultural resource impacts. Any project EIR for future annexation or SOI adjustment proposals will address these factors, in accordance with LAFCO requirements.

Response 3F

The commenter notes that the Olivas area includes an additional Land Conservation Act (LCA) contract not noted in the Draft EIR. In response to this comment, Figure $4.2-3$ will be amended to reflect this additional LCA contract. In addition, Table 4.2-3 and accompanying text will be
amended to reflect the fact that EIR Scenarios 2 and 3 would potentially affect 170 acres if land under LCA contract. This change in acreage does not affect the findings or conclusions of the Draft EIR as conflicts with agricultural designations were already identified as unavoidably significant for Scenarios 2 and 3.

Response 3G

The commenter suggests that the EIR should describe the LAFCO review process required by the California Government Code and that the presence of LCA contracts within an area generally precludes LAFCO from approving annexation. In response to this comment, the following will be added to the first paragraph under "Scenario 2 - Intensification/Reuse + North Avenue + Olivas + Serra" on page 4.2-17 (under Impact AG-2):

The California Government Code (Section 56856.5) generally precludes the LAFCO from approving annexation of lands under LCA contract unless a notice of non-renewal has been filed and the annexing agency (the City) agrees that no services will actually be provided during the remaining life of the contract for land uses or activities not allowed under the contract.

This same sentence will also be added under the discussion of Scenarios 3, 4, and 5 .

Response 3H

The commenter notes that the Draft EIR incorrectly states that the LAFCO needs to approve amendments to greenbelt agreements. In response to this comment, the last sentence of the first paragraph under "Greenbelt Agreements" on page 4.2-11 will be replaced with the following:

A greenbelt agreement must be amended by all parties involved before the LAFCO will consider any proposal that may be in conflict with the agreement.

Response 31

The commenter questions how the conversion of land within the Oxnard-Ventura Greenbelt Agreement could be found to be consistent with proposed General Plan Action 3.12 relating to the preservation of farmland and greenbelt agreements and how the proposed General Plan action could serve as a "mitigation measure." The action to which the commenter refers is not a "mitigation measure." Rather, it is an action proposed in the draft General Plan and thus is part of the "proposed project." In CEQA terms, mitigation measures are additional actions above and beyond those included in the proposed project. With respect to consistency with Action 3.12 , it is the City's stated intent, throughout the 2005 General Plan, to focus first on intensification and reuse of lands within the SOI prior considering expansion of the SOI boundaries. It is expected that the focus on intensification and reuse will relieve pressure for the development of farmland at the City's periphery. Nevertheless, the City acknowledges that some planning objectives may not be met through intensification/reuse alone and, under Scenarios 2-6, would retain the flexibility to consider annexation of various expansion areas at some point in the future. Though the City's general approach to planning is expected to minimize pressure for the future conversion of farmland, the Draft EIR acknowledges that such conversion would be an unavoidably significant impact. Finally, it should be noted that City
staff are recommending adoption of a variation on Scenario 1 (the "Intensification/Reuse Only" scenario), which includes none of the expansion areas and thus would not affect any areas within existing greenbelt agreements.

Response 31

The commenter states an opinion that General Plan Actions 3.12 and 3.15 should not be referred to as "mitigation measure." As noted in Response 3I, the actions to which the commenter refers are not "mitigation measures," but rather are proposed General Plan policies that are part of the "proposed project." The discussion in the Draft EIR is merely intended to direct the reader to proposed General Plan actions that address the issue of farmland conversion. The Draft EIR acknowledges that, despite the inclusion of these actions in the draft General Plan, buildout of any of the EIR land use scenarios would result in unavoidably significant impacts relating to the conversion of important farmlands.

Response 3K

The commenter notes that the LAFCO is currently planning to prepare a Municipal Service Review that may result in the removal of all areas subject to voter approval from the SOI and states that the EIR should acknowledge this fact. Such a discussion will be added to the Final EIR. Please see Response 3C.

Response 3L

The commenter notes that the discussion of Alternative 4 incorrectly references the Olivas area. In response to this comment, the last sentence of the first paragraph on page 4.2-18 will be removed in the Final EIR.

Response 3M

The commenter notes that the statement regarding LCA contract cancellation under Scenario 5 also applies to Scenarios 2 and 3. The commenter also notes that any of the scenarios could ultimately require an expansion of the SOI. In response to this comment, the following sentence will be added to the discussion of Scenarios 2 and 3 on page 4.2-18 (under Impact AG2):

Lands under LCA contract could only be converted upon cancellation of the contracts.

The SOI issue is discussed in previous responses. A statement regarding the need to expand the SOI for Scenarios 2, 3, and 4 will be added to the applicable discussions under Impact AG-2 and a statement of the possible need for an SOI adjustment will be added to the discussion of Scenario 6. Such a statement is not necessary for Scenario 1 since, although development under that scenario may require a future SOI adjustment, such an adjustment would not involve agriculturally-designated land (please see Response 3D).

Response 3N

The commenter notes that the LAFCO will require additional environmental review for the future conversion of agricultural parcels within the SOI prior to any actions requiring LAFCO approval. Agricultural lands within the Planning Area are shown on Figure 4.2-1. The EIR is a program level document that analyzes the overall impact of growth under the 2005 General Plan. Project-specific environmental review will be conducted for individual development projects at such time as projects are proposed.

Response 30

The commenter suggests that the text describing LAFCO policies and the Cortese-Knox Hertzberg Act of 2000 be replaced with simple references to these policies in order to avoid inaccurate representations of policy intent. The commenter suggests that the EIR should include discussion of several additional policies relevant to LAFCO's review of the 2005 General Plan that are not included in the Draft EIR. In response to this comment, the discussion under Impact LU-1 will be replaced with the following in the Final EIR:

Impact LU-1 No boundary adjustments are being sought at this time and all of the General Plan scenarios emphasize intensification and reuse over expansion of the City. Annexations and Sphere of Influence adjustments could be sought at some point in the future under any of the scenarios and certain possible annexations/Sphere of Influence adjustments could potentially conflict with relevant State and LAFCO policies. However, because any conflicts would need to be resolved prior to LAFCO approval of any boundary adjustment, impacts can be reduced to a Class III, less than significant level, for all six scenarios.

The State of California possesses the exclusive power to regulate boundary changes, which means that no local government has the right to change its own boundary without State approval. The Legislature has prescribed a "uniform process" for boundary changes for both cities and special districts that is now embodied in the Cortese-KnoxHertzberg Local Government Reorganization Act of 2000 (California Government Code Section 56000 et seq.). This Act delegates the Legislature's boundary powers to local agency formation commissions (LAFCOs).

The Ventura LAFCO is responsible for reviewing and approving proposed jurisdictional boundary changes in Ventura County, including the annexation and detachment of territory to and/or from cities and most special districts, incorporations of new cities, formations of new special districts, and consolidations, mergers, and dissolutions of existing districts. In addition, LAFCOs must review and approve contractual service agreements, conduct service reviews, and determine spheres of influence for each city and district.

In addition to the Cortese-Knox-Hertzberg Act, the Ventura LAFCO has adopted local policies that it considers in its review of projects. The LAFCO also enforces the County's Guidelines for Orderly Development. A complete listing of policies that

LAFCO considers in its review of proposed boundary changes can be found in the LAFCO website (www.ventura,lafco.ca.gov).

No adjustments to the City's corporate boundaries or Sphere of Influence (SOI) are proposed at this time. However, all of the 2005 General Plan scenarios could accommodate the development of lands that are outside the current City boundaries and SOI. Specific analysis of individual proposals would be needed at the time such possible future boundary adjustments are proposed, but boundary adjustment policies are discussed below as they relate to the 2005 General Plan.

Conformance with Local Plans and Policies

Unless exceptional circumstances are shown, LAFCO will not approve a proposal unless it is consistent with the applicable general plan and any applicable specific plan. No boundary adjustments are being sought at this time. Although boundary adjustments may be sought in the future under any of the EIR scenarios, it is anticipated that such adjustments would be consistent with the 2005 General Plan, regardless of which of the EIR scenarios is adopted.

LAFCO will not approve a proposal unless it is consistent with ordinances requiring voter approval. Scenarios 2-6 all includes potential expansion areas that are subject to voter approval. No land use designated or boundary adjustment is being sought at this time for any of the expansion areas. If such adjustments are sought at some point in the future, they will be sought only after voter approval of a land use designation change for the property in question.

Guidelines for Orderly Development

LAFCO encourages proposals that involve urban development or that result in urban development to include annexation to a city wherever possible. All of the EIR scenarios emphasize intensification/reuse over expansion of the City's boundaries and no boundary adjustments are being sought at this time. Nevertheless, all of the scenarios would accommodate development in lands that are outside the current corporate boundaries and the SOI. Development of such areas could be found to be in conflict with the Guidelines for Orderly Development, particularly with respect to the North Avenue and Western Cañada Larga expansion areas, which are not contiguous with the existing City corporate boundary. However, no development would occur until such time as the property in question is annexed and, if necessary, included in the SOI. Such adjustments could be made only with LAFCO approval and, in the case of the expansion areas, voter approval under SOAR. Given that future boundary adjustments would only be made at such time as they are deemed consistent with the Guidelines for Orderly Development, any of the scenarios could be found to be consistent with the Guidelines.

Greenbelts

LAFCO will not approve a proposal for a city that is in conflict with any Greenbelt Agreement unless exceptional circumstances are shown to exist. Scenarios 1, 4, 5, and 6 do not include any lands that are subject to existing Greenbelt Agreements. However, the Olivas expansion area that is included in Scenarios 2 and 3 is within the Oxnard-

Ventura Greenbelt. As such, the Olivas area could be brought into the SOI and annexed to the City only if it is removed from the Greenbelt. Such an amendment to the Greenbelt Agreement could be made only with the consent of the City of Oxnard. Moreover, approval of a land use designation change could only be made with voter approval under the SOAR Ordinance.

Agricultural and Open Space Preservation

LAFCO will approve a proposal for a change of organization that is likely to result in the conversion of Prime agricultural land or open space land only if it finds that the proposal will lead to planned, orderly, and efficient development. For a development to be deemed planned, orderly, and efficient, all of the following criteria must be met: (1) the territory involved is contiguous with lands developed with an urban use or that have received approvals for urban development; (2) the territory is likely to be developed within 5 years and has been pre-zoned for non-agricultural use; (3) insufficient non-Prime agricultural land or vacant land exists within the existing boundaries of the agency that is planned and developable for the same general type of use; (4) the territory is not subject to voter approval for the extension of services or changing of land use designations; and (5) the proposal will have no significant adverse effects on the integrity of other Prime agricultural or open space lands.

All of the EIR scenarios emphasize intensification and reuse of existing urban lands prior to the development of agricultural lands. Nevertheless, as discussed in Section 4.2, Agricultural Resources, any of the six scenarios would potentially accommodate the conversion of some Prime agricultural lands if the City's planning objectives cannot be met through intensification and reuse. All of the areas that could potentially be converted are contiguous with existing urban uses and, in many instances, are surrounded by urban uses. Although the North Avenue, Olivas, Serra, and Poinsettia expansion areas are subject to voter approval under the SOAR Ordinance, voter approval would have to be received prior to any LAFCO action. In addition, it is anticipated that inclusion within the SOI and/or annexation would not be sought unless development were planned within five years. In the case of large developments that could potentially be accommodated under Scenarios 2, 3, 4, and 6, development and annexation may need to be phased. Any of the agricultural lands that could be converted under Scenarios 1-6 could be found to be consistent with LAFCO's agricultural and open space preservation policies, though LAFCO's determination would need to be at the time of individual proposals based upon current (at that time) circumstances and the nature of the proposals.

School Capacity

LAFCO will not favor a change of organization where any affected school district certifies that there is no sufficient existing school capacity to serve the territory involved. As discussed in Section 4.11, Public Services, many VUSD schools are at or near capacity and would be over capacity in 2025 with the growth projected under any of the EIR scenarios. Scenario 1 would only accommodate a minor SOI adjustment that would not bring any residential development, though the annexation of individual properties that may be sought in the future under Scenario 1 could generate new VUSD students. The expansion areas included in Scenarios 2, 3, 4, and 6 include sufficient acreage to
accommodate new schools that would be needed to serve the areas. However, the expansion areas included in Scenario 5 may lack sufficient land to accommodate the development of new schools. The impacts of individual developments on schools will need to be addressed on a case-by-case basis as such impacts depend upon the nature of the project and the circumstances for the VUSD at the time of the individual application.

Annexation of Unincorporated Island Areas

Any approval of a proposal for a change of organization for an area of 40 acres or more will be conditioned to provide that the proceedings will not be completed until and unless a subsequent proposal is filed with LAFCO initiating proceedings for the change of organization of all unincorporated island areas that meet the provisions of Government Code Section 56375.3. This policy means that LAFCO will not approve annexations of 40 acres or more unless the City has filed an application to annex all of the island areas in the City, which include eight separate islands in the Montalvo area totaling about 55 acres. Therefore, no additional annexations will be completed until an application for annexation of these island areas has been filed.

Mitigation Measures. No mitigation is required. Individual boundary adjustment proposals will need to be addressed by the City and the Ventura LAFCO on a case-bycase basis.

Significance After Mitigation. As the City is not seeking any boundary adjustments at this time, no inconsistencies would occur with respect to any of the six scenarios. Certain areas that may be considered for future annexation and/or inclusion within the SOI would not be eligible under current conditions; however, it is assumed that boundary adjustments would not be sought until such time as such adjustments could be found to be consistent with state and local requirements.

The summary matrix and EIR summary table will also be revised to reflect this revised discussion.

Response 3P

The commenter notes that LAFCO must consider factors identified in Government Code Section 56668 in acting on any governmental boundary reorganization and suggested that these factors should be discussed in the EIR. Please see Response 3O. As noted in previous responses, although development that could be accommodated under any of the EIR scenarios may involve the consideration of future adjustments to the City's corporate boundary and/or sphere of influence, the City is not seeking any boundary adjustments at this time. As specific boundary adjustments are proposed in the future, the City will conduct analysis of applicable Government Code provisions as required by LAFCO.

Response 3Q

The commenter has attached a matrix with LAFCO's analysis of each of the EIR scenarios. Most of the items contained in the matrix are addressed in Responses 3A through 3Q. However, several additional items are addressed below.

The commenter states that County records indicate that 95 acres included in EIR Scenario 5 are subject to the SOAR Ordinance rather than the 84 acres indicated in the Draft EIR. The commenter may have included in the 11 acres north of the City's water treatment plant in the estimate of SOAR acreage. As discussed in Response 3D, only a very small piece of the 11-acre property north of the City's water treatment plant is subject to SOAR.

With respect to the North Avenue expansion area, it is correct that this area could not currently be annexed. However, no annexation would be sought at this time even if that expansion area were included in the selected General Plan land use map. Rather, annexation may be sought in the future, but not until and unless contiguous properties to the south and/or west were incorporated either before or as a part of the same request. If annexation is sought at some point in the future to accommodate a specific development proposal, a separate environmental review of the specific proposal will be conducted.

Footnote 4 of the LAFCO's suggested corrections table suggests that the EIR should include specific analysis of several sites within the current SOI that could be considered for future annexation under EIR Scenario 1. The Draft EIR acknowledges that a number of properties outside the corporate limits may be considered for annexation and development in the future and addresses the overall citywide impacts associated with the possible future development of these areas. However, project-specific analysis is not the purpose of the General Plan EIR, nor is such analysis possible given that no specific developments have been proposed at any of the sites in question. If and when specific development applications are submitted to the City, project-specific analysis, including analysis of applicable LAFCO policies, will be conducted at that time.

Expansion Area Parcels

Western Canada Larga	Serra
035-0-210-245	130-0-070-035
035-0-210-265	131-0-050-070
063-0-030-075	131-0-050-080
063-0-060-020	131-0-050-090
063-0-060-045	131-0-050-100
	131-0-050-150
North Avenue	131-0-050-160
063-0-110-090	131-0-050-200
063-0-131-010	131-0-060-015
063-0-131-020	131-0-060-030
063-0-131-035	131-0-060-040
063-0-131-045	131-0-060-110
	131-0-060-145
Olivas	131-0-060-190
$080-0-020-040$	132-0-010-085
$080-0-020-160$	132-0-010-180
080-0-020-200	Poinsettia
080-0-020-220	083-0-040-295
080-0-020-340	083-0-040-355
138-0-050-100	083-0-040-455
138-0-050-170	083-0-040-465
138-0-060-350	083-0-040-475
138-0-060-495	085-0-010-025
138-0-060-505	085-0-010-035
138-0-060-515	085-0-010-045
138-0-060-590	085-0-010-065
138-0-060-600	085-0-010-095
	085-0-010-125
	085-0-010-220
	085-0-010-230
	085-0-021-205
	085-0-031-015
	085-0-041-015
	085-0-050-315
	085-0-050-325
	088-0-111-015
	088-0-123-255

June 14, 2005

Lisa Porras
Senior Planner
City of San Buenaventura
City Hall
501 Poi Street
Ventura, CA 93002
Re: Casden Properties LLC site at Johnson and North Bank Drives, Ventura, CA
Dear Ms. Porras:
You will soon be considering the Public Review Draft of the Ventura General Plan ("Draft General Plan") for adoption and the supporting Draft Environmental Report ("DEIR"). In the attached letter to Ms. Daluddung, Community Development Director, we have outlined our comments for your consideration in this matter.

We own an 8-acre site located at the northeast corner of Johnson and North Bank Drives. After initial meetings with City staff in early 2003, we were told that staff anticipated that the new planning designation of our site would support a dense, mixed-use development. We revised our proposal accordingly and shared this new plan with staff and with the CPAC at a hearing. Upon the City's recommendation, we withheld submission of a formal application and participated in the General Plan amendment process, waiting to submit our project once the General Plan is amended. We were quite surprised that our proposed project was not reflected in the Draft General Plan or the DEIR and that, in fact, the development potential for the entire Johnson Drive Corridor was lower than that proposed for just our project.

Please review the attached letter on the Draft General Plan and our proposed project and consider our recommendations. We are committed to supporting the goals of the City and would be happy to discuss our proposed project with you at your convenience. Thank you for your consideration.

Sincerely,

Carol Schwartz, Assistant Vice President Community Development
Casden Properties LLC

Demitrius Zeigler, Project Manager Community Development Casden Properties LLC

Cc: Howard Katz, Vice President, Community Development Ronald C. Mayhew, Vice President, Community Development

Attachments:
Letter to Ms. Susan Daluddung dated June 10;2005

June 10, 2005

Ms. Susan J. Daluddung
Community Development Director
City of San Buenaventura
City Hall - Room 133
501 Poli Street
Ventura, CA 93002

Ref.: Casden Properties LLC site at Johnson and North Bank Drives Ventura, CA

Dear Ms. Daluddung:
We have reviewed the Public Review Draft of the Ventura General Plan ("Draft General Plan") and respectfully submit these comments for your review and consideration. We believe that the Development Potential identified for the Johnson Drive Corridor should be increased, especially with respect to the residential component.

Our Property

As you are aware, in January 2003, Casden Properties LLC, through an affiliate, acquired an 8.03 acre site in Ventura located at the northeast corner of Johnson and North Bank Drives. In Spring 2003, we met with City staff for a pre-application meeting for development of this site. At the meeting, we were informed that the City had embarked on the update of the General Plan based on Smart Growth principles and were anticipating that the new designation of our site would support a dense, mixed-use development. We therefore revised our development scheme to a mixed-use project including 300 rental housing units and 22,500 square feet of commercial space, which we shared with staff. Because of the review process, we postponed the submission of a formal application for this project until the General Plan was amended.

In the intervening period, we have participated in the General Plan Update process, attending the various scoping and community meetings and shared the proposed project at a CPAC hearing. The Draft General Plan designated our site in the Johnson Drive Corridor for Commercial use. The Commercial designation "encourages a wide range of building types of anywhere from two to six stories that house a mix of functions, including commercial, entertainment, office, and housing" which supports the mixed-use concept we have proposed.

However, we are concerned that the Development Potential that was identified in the Draft General Plan for the Johnson Drive Corridor appears to understate the potential for this area. While we recognize that the City has stated that the guidelines are not limits of development, we believe that a greater level of development should be encouraged in this Corridor to better support the City's growth goals.

The Draft Environmental Impact Report that was prepared to support the Draft General Plan states that the growth was distributed among the various corridors and districts in the City " $[B]$ ased on the development potential of each growth district and corridor and direction from the community, CPAC, Planning Commission and City Council on where growth in the community should be encouraged". We believe that the Johnson Drive Corridor, and in particular, our site, is an excellent location for rental housing as a component of a mixed-use project. In this letter, we will present our rationale for increasing the residential potential of the corridor. We hope that the planners and members of the CPAC can review the allocation for housing and revise it, taking into account our 300 units before the General Plan is finalized and adopted this summer.

Johnson Drive Corridor

The Johnson Drive Corridor appears to have two large sites remaining for developmentour site and the site bounded by Johnson Drive, North Bank and the Ventura Freeway. The remainder of the corridor is developed with entertainment/retail use, commercial buildings and self storage.

While some of the existing projects might ultimately be redeveloped, we would anticipate that the Development Potential for the Corridor is much greater than the proposed 150 residential units, 50,000 square feet of retail space and 20,000 square feet of office space, and would be easily realized on these two undeveloped sites. Given its location, fronting the freeway, the other site would not be a prime location for residential development. However, our site is an excellent location for rental housing. We contend that a build-out of 300 units at this location would provide the appropriate scale of development to support the City's goals for Smart Growth.

The City of Ventura is committed to the principles of Smart Growth and has identified a number of Smart Growth concepts as part of the Draft General Plan. Increasing the intensity of residential development in the Johnson Drive Corridor serves to further support Smart Growth precepts. We will demonstrate how intensification of residential development in the Johnson Drive Corridor will support Smart Growth objectives and how a larger critical mass of residential development is needed at our site to support these Smart Growth goals and desirable development forms.

Johnson Drive Corridor as Location for Housing

Mix land uses. Smart Growth encourages a mix of land uses both vertically and horizontally. By introducing a significant component of residential units to this commercial corridor, residents can benefit from proximity to services and existing
businesses can benefit from this additional customer base. For example, the commercial center adjacent to the project site includes a TutorTime childcare facility which tends to attract new families with young children. This facility would benefit from an adjacent residential property that could provide additional client families.

Create a range of housing opportunities and choices. Because of the commercial nature of the corridor, a significant amount of rental housing would be an appropriate infill use. Rental product in this area will provide a much needed alternative to the for-sale product available further north on Johnson Drive.

Create walkable communities. By developing a substantial number of residential units at this site, we increase the opportunity for neighboring businesses and for the on-site retail and live/work units to be supported by walk-in customers. Residents will be able to walk to the movies or the video store located across the street or to the shops and services on the property. Our scheme also incorporates pedestrian access to the Linear Park which runs along the perimeter of the site.

Preserve open space, farmland, natural beauty and critical environmental areas. Our site is an infill location within the Johnson Drive Corridor. It is adjacent to the farmland of the Serra Expansion Area, being considered in the Draft EIR for future development and expansion of the City. By intensifying the development in this existing corridor, it forestalls the development of this agricultural area.

Provide a variety of transportation choices. Intensifying the residential development in the Corridor allows an increased number of residents to benefit from proximity to the South Coast Area Transit (SCAT) bus route along Johnson Drive, Ventura Intercity Service Transit Authority (VISTA) bus stops and easy access to the Freeway. By locating more potential commuters adjacent to the Freeway, we reduce the impact of these new households on local traffic patterns.

Foster distinctive, attractive communities with a strong sense of place. The Johnson Drive Corridor lacks a cohesive focus or image. The addition of a substantial, highquality housing component will support a more diversified base of commercial establishments to better serve the corridor and the neighboring communities.

Casden Properties LLC Development Concept

Mix land uses. We have proposed the development of 22,500 square feet of retail space and 300 residential units, a number of which will be live/work product. We have designed the site with retail at the western portion of the site, along North Bank Drive, with live/work space transitioning to the residential eastern portion of the site. Our site is a preferable location for residential units in the City as the mix of uses at our site and the proximity to surrounding commercial development allows for pedestrian access, reducing the traffic impact that might accompany a similar level of residential development elsewhere.

Take advantage of compact building design. The residential component of the Casden proposal is comprised of 3 -story buildings set on slightly elevated podiums. The required parking is primarily accommodated under the podium in a semi-subterranean structure. This creates a compact building form above ground, surrounding landscaped courtyards. The sprawl that comes from vehicular circulation and parking in projects with grade level automobile accommodation is avoided in this design scheme. It is important to note that podium products are very expensive to construct. We need to be able to develop a critical mass of units (approximately 300) before the substantial investment needed for this product is supported.

Create a range of housing opportunities and choices. Our project concept includes a range of housing product and target markets. Our current proposal includes both traditional rental units as well as live-work units fronting the commercial edge of our site. We also plan to provide both market rate and a significant component of affordable housing units in our project.

Foster distinctive, attractive communities with a strong sense of place. Casden Properties LLC is committed to developing beautiful projects with a high level of amenity. This proposed project will be distinctive by virtue of the podium product separating the vehicular from the pedestrian circulation and allowing for significant landscaping. By developing this site with 300 units, we are able to provide a high level of community amenities, including a large recreation center and pool area, which are anticipated to become a focal point for the residents. With lower development potential, the level of community amenities must be scaled back significantly.

Strengthen and direct development toward existing communities. As an infill site within an existing community, development should be intensified at this location. By increasing the amount of housing at the site, a critical mass of units can be developed to strengthen the sense of community here. The currently contemplated 150 units are simply too few to achieve a true sense of community in this location, which does not abut other residential areas.

Achieving critical mass on our site is necessary to develop and maintain a project that is consistent with City goals.

- Quality Product: The podium product we plan to develop creates very desirable, walkable communities, with large amounts of landscaped areas free from vehicular traffic.
- Project Amenities: Our proposed project includes a large recreation center, pool, spa, and large landscaped areas as project amenities. This level of amenity requires a critical mass of units to support their inclusion and maintenance.
- On-going, Committed Management: In order to operate and maintain this project at the appropriate level of service and security, dedicated property management is required, which can only be supported at a project of significant size.

Casden Properties LLC respectfully submits this request to increase the residential allocation in Johnson Drive Corridor to at least 300 units. We are very committed to supporting the goals of the City while developing this project and are eager to discuss our proposal further at your convenience. Attached for your perusal are a copy of the proposed site plan and a description of the project.

Sincerely,

Carol Schwartz

Assistant Vice President Community Development Casden Properties LLC

Demitrius Zeigler
Project Manager
Community Development
Casden Properties LLC

Cc: Howard Katz, Vice President
Community Development
Ronald C. Mayhew, Vice President
Community Development

Attachments:

Project Description
Site Plan

City of San Buenaventura

Project Site: Johnson and North Bank Drives
Northeast Corner of intersection
The site is accessible off Highway 101 North at the Johnson Drive exit.

Site Description:

Lot Area: 8.03 acres
Density: $\quad 300$ dwelling units / 52 du/acre Residential 22,500 SF Commercial
Parking: $\quad 510$ stalls - Residential [includes direct and tandem]
90 stalls -Commercial

Project Description:

This project is designed to include 300 dwelling units including an affordable component in a community where people can live and work.
The development is arranged to respond to the constraints and opportunities presented by its surroundings. The main entrance is off Johnson Drive. This provides great visibility from the Highway 101. The site will be lushly landscaped, feature decorative paving and planting to entice the motorist.
The proposed project is bounded by commercial sites to the north, and west. To the east is agricultural developed land; however this site borders the east end of San
Buenaventura. The adjacent site to the east is outside of San Buenaventura. The south edge of the site borders Highway 101.
The buildings are designed with three stories over semi-subterranean parking. A main drive runs through the site past a 3,500 square foot clubhouse with attendant. The residential buildings front on this main drive or perimeter view opportunities as appropriate.
The typical building has eighteen dwelling units. These apartments include one bedroom, and two bedroom configurations.

Intensification/Reuse Only (Scenario 1)

	Residential	Nonripe	sidental	Developmar	(square	
	(units)	Ratall	Office In	Industriail	Hiotal	Total
Dlstricts		10	50.00	150,000		210.000
Upper North Avenue	109			250,000		310,000
North Avenue	$\begin{array}{r}50 \\ \hline 1600\end{array}$	10,000	200,000	250,000	150,000	450.000
Downtown	$\frac{1,6001}{251}$	100,000	200,000		10,00	25,000
Pacine View Mali	300	66,000	0		150,000	216,000
Hathor	200	25,000	300,000	1,000,000		1,325,000
Arundel	50	300,000	50,000	300,000		650.000
Auto Center Metrolink	50	30,00.	50,000	25,000		75,000
Metrolink Saticoy	50	0.	50,20	25,000		25,000
Saticoy	0.					
Subtotals (Districts)	2,425	536,000	701, 3001	\$,756,000	300,000	3,286,000
Corridors				500		,
Ventura Avenue	800	40,000	100,000	50.0		55,000
Main Street	100	15,000	40,000			55,000
Thompson Boulevard	300	15,000	$\frac{40,000}{40,000}$			55,000
Loma Vista Road	25	15,000	40,000			55,000
Telegraph Road	250	15,000	40,000			55,000
Victoria Avente	$\frac{50}{160}$	50,000	20,000			70,000
Johnson Drive Wells Road	$\underline{50}$	35,000	20,000			35,000
Subtotals (Corridors)	4.725	180,000	340,000	50,000		570,0
Solrother Infill						
101/126 Agniculure	200					0
Welis/Saticoy	1,050]					30,000
Plempont	100	30,000				
Olmer Neiphbomoun Centers	100					
Second Units	250					
Underulilized	450	165,000	50,000			295,000
Vacant	450	165,000	50,000:			
Subtotals (Other infill)	2,450	185,000	50,000	0	0	245,000
Totais Intanemication/Reuse)	6,600	911,000	1,080,000	1,800,000	300,000	4,101,000
Pranned and Pending Developments						
		1.072			150,000	151,072
Ventura AvenueMVestside	238	7.086		27,000		34,086
Midtown	34	13.755				13,751
Colligge (Tefegraphi/Loma Vista)	4	2,718	8,849			11,567
Telephone Road Comidor	256		54,785			54,785
Montalvo Nictoria	296		4,300			13,550
Saticoy/East End	840.	41,640	42,614	4 18.080		102,334
Arundell		7,160	7,066	3 380,053		404,279
Subtotats PlannediPonding		81,377			150,000	789,724
Subtotals flamnedfonding	1,718		123,214	435,133		
Totats (Intensification + Expansion + Pending)	8,318	892,377	1,213,214	2,235,133	450,000	4,800,724

 Stenley R Hoftman Ausoctatos, int. Af unt and squara footage numbers are estimatos of how fiburo growh may ba distribuad basoct on
 only. The actual distribution of futura gnowh in the City may vary based on mom of development.

 Uppar North Avanua aroas will be he locus ovar time. When possible, knowledge of possibla futura piens or isnd avalisblity hatr boen used to

 passiblity of stbig Dox" rotaler in that aroa
3. Estimbtes of growth in the sovothar infil shas are bessof an the following gonerxl assumptions: fa) 101/125 Oncterd athe wifi dovelop
 erass; (c) the Piarpont aros will dovelop generally in sccordence with a conceptual proloct recantly considored by the Cify (o) Socond int 20

4. Planned and Pending Cevelopmenta bosed upon the Chts 2004 Pisinning and Ponding Devolopments ist. Butlding aroas do not indurts sall storege focifflos.
5. Expenston arsa totais are concoptual esthmas that encompaes a mix of usas and rostdorital daneitios

- Tha fotlowta potantig prozects not incluted in tha 2004 Plemnad end Pending Dovplopments has have boen maduded in the fiture

 associsted with thase profeda has boon added to tha profections of future growith to provide a "worst-case anely

Letter 4

COMMENTERS: Carol Schwartz and Demitrius Zeigler, Casden Properties, LLC

DATE:

June 14, 2005

RESPONSE:

The commenters state concerns that their project near the northeast corner of the Johnson Drive/North Bank Drive intersection was not reflected in the Draft EIR and note that the development potential for the Johnson Drive corridor identified in the Draft EIR is lower than for their project. The commenters also attach a letter describing their proposal and how it relates to various City development goals and requesting an amendment to the development "allocation" for the Johnson Drive corridor.

It is not the intent of the Draft EIR to identify or analyze the impacts of specific development proposals. As discussed in Section 1.0, Introduction, the Draft EIR is intended to meet the requirements of a Program EIR, which is prepared on a series of actions (such as a General Plan) that may be characterized as one large project. By design, a Program EIR is more conceptual in nature than a Project EIR and contains a more comprehensive discussion of impacts, alternatives, and mitigation measures. Once a Program EIR has been prepared, subsequent activities within the program (such as individual development proposals) must be evaluated to determine whether an additional CEQA document needs to be prepared.

The development totals used in the Draft EIR, as reflected in Appendix C of the Draft EIR, should not be interpreted as "allocations" of growth for individual districts, corridors, or neighborhood centers. Rather, they are estimates of the distribution of future growth within the Ventura Planning Area based on direction from the City Council, ongoing development trends in the City, and other factors. The estimates for individual districts, corridors, and neighborhood centers are not intended to serve as growth caps for those areas, but rather, were developed for analytical purposes only in order to estimate the overall effects of projected citywide growth through 2025. In no case do the estimates of projected growth for an individual district, corridor, or neighborhood center reflect the maximum growth potential for that district, corridor, or neighborhood center. Actual growth within each district, corridor, and neighborhood center may be higher or lower than projected in the Draft EIR. Individual developments will need to undergo separate environmental review on a case-by-case basis to determine their specific impacts.

In response to several comments on the Draft 2005 General Plan and Draft EIR, a table will be added to the General Plan that will show the carrying capacity of the total land area for the Plan. This table is intended to show what the total development potential is versus the realistic estimates provided in the original table (May Draft Overview, Table 2, pages 14 \& 15).

June 20, 2005

Lisa Porras, Senior Planner
City of Ventura
P.O. Box 99

Ventura, CA 93002-0099
Re: Correction to Assessor's Parcel Number referenced in 2005 General Plan EIR - Page 6-17, paragraph 6.6.1., lines 5 \& 6.

I have noticed a typographical error in the 2005 EIR of the Assessor's Parcel Number for my property located at 1456 Alelia Street in Saticoy.

My parcel is incorrectly identified as $90-043-13$. The correct APN is $90-$ 143-13.

Two additional APN's should also be referenced. The Southerly extension of Alelia Street has been abandoned by the County of Ventura and the acreage deeded back to myself and the property owner to the West - APNs 90-142-14 \& 90-143-17. Please see the enclosed platt map.

Therefor, all four APN's should be referenced in paragraph 6.6.1 as follows: APNs 90-142-11, 90-142-14, 90-143-13 and 90-143-17.

Thank you for your assistance in this matter.

Respectfully,

Charles W. Rogers
Owner APNs 90-143-13 \& 90-143-17
Enclosures:
Flat map 2005 EIR page 6-17

Like 2005 General PIan Scenarios 2-6, this alternative would generally be consistent with most regional land use plans and policies. This alternative would pose the same potential conflict with the Guidelines for Orderly Development associated with Scenario 5, but would not pose the potential conflict with Coastal Act policies pertaining to the preservation of Prime farmland that would occur under Scenarios 2 and 3 .

Population and Housing

Population and housing growth would be similar to that of General Plan Scenarios 2-6. The 2025 population is projected to exceed SCAG and Ventura County AQMP forecasts. As with the 2005 General Plan scenarios, implementation of this alternative would be expected to maintain a balance of jobs and housing in the City.

6.6 INTENSIFICATION/REUSE + MINOR MAP CLEAN-UP

6.6.1 Description

This alternative is a variation of 2005 General Plan Scenario 15, the Intensification/Reuse Only scenario. The purpose of this alternative is to address three minor map clean-up issues identified following receipt of City Council direction on the recommended 2005 General Plan land use map. The first of these involves the re-designation of approximately five acres along the south side of Rosal Lane in the unincorporated area of Saticoy (APNs 90-142-11 and 90-04313) that are designated "Industrial" on the draft General Plan lanid use map, but are designated "Residential Two Family" in the County of Ventura's Saticoy Area Plan. To achieve consistency with the Saticoy Area Plan, these lots would be redesignated "Residential Medium Density" under this alternative. The second change involves properties located on the Westside between Ramona (north), Simpson Street (south) and straddling Sheridan Way. This map change would include changing the proposed land use designation from low to high density residential to be consistent with the neighborhood and existing uses on the properties. A third change involves properties located in the Simpson Historic District located to the south of Simpson Street in generally the same area. The land use map would be changed from high to medium density, which is consistent with existing development in the Simpson Historic District and would generally allow 2 units per parcel.
Other than the three changes described above, this alternative is identical to 2005 General Plan Scenario 1. An estimated 8,300 residential units are projected to be added through 2025.

6.6.2 Impact Analysis

Other than issues pertaining to land use compatibility (aesthetics, noise, hazards), this alternative's impacts would be identical to those of Scenario 1. Re-designation of the five-acre area in Saticoy may incrementally increase the potential for compatibility conflicts with existing and future industrial uses in the area as properties to the south are designated "Industrial." However, potential conflicts relating to lighting, noise, and hazards can be addressed through appropriate design, including, if necessary, the construction of solid block walls between residential and industrial uses. In addition, it should be noted that the properties along the north side of Rosal Lane, immediately across the street, are designated "Residential Medium Density." As such, developing the site along the south side of Rosal Lane with residential uses

Letter 5

COMMENTER: Charles W. Rogers, Owner APNs 90-143-13 and 90-143-17
DATE:
June 20, 2005

RESPONSE:

The commenter notes that the assessor's parcel numbers for the site along the south side of Rosal Lane in Saticoy that would be re-designated "Residential Medium Density" under the "Intensification/Reuse + Minor Map Cleanup" alternative discussed in Section 6.0, Alternatives, are incorrectly identified. In response to this comment, the first paragraph under the "Description" of that alternative on page 6-17 will be amended to read as follows (changes are underlined):

This alternative is a variation of 2005 General Plan Scenario 5, the Intensification/Reuse Only scenario. The purpose of this alternative is to address three minor map clean-up issues identified following receipt of City Council direction on the recommended 2005 General Plan land use map. The first of these involves the re-designation of approximately five acres along the south side of Rosal Lane in the unincorporated area of Saticoy (APNs 90-142-11, 90-142-14, 90-143-13, and 90-143-17) that are designated "Industrial" on the draft General Plan land use map, but are designated "Residential Two Family" in the County of Ventura's Saticoy Area Plan. To achieve consistency with the Saticoy Area Plan, these lots would be redesignated "Residential Medium Density" under this alternative. The second change involves properties located on the Westside between Ramona (north), Simpson Street (south) and straddling Sheridan Way. This map change would include changing the proposed land use designation from low to high density residential to be consistent with the neighborhood and existing uses on the properties. A third change involves properties located in the Simpson Historic District located to the south of Simpson Street in generally the same area. The land use map would be changed from high to medium density, which is consistent with existing development in the Simpson Historic District and would generally allow 2 units per parcel.

This minor text correction does not change the EIR conclusions or result in any significant impacts not identified in the Draft EIR. The change in land use would not create any significant land use conflicts that could not be addressed through site design.

From: Daniel Commode

To: City of San Buenaventura
501 Polis St
Ventura, CA 93002
Attn: Kari Gialketsis

Subj: 2005 General Plan Draft Environmental Impact Report Review Comments

1. A review of the General Plan Draft Environmental Impact Report June 2005, Section 4.13, UTILITIES \& SERVICE SYSTEMS, was conducted and resulted in development of the following comments.
A. Page 4.13-1, of the General Plan Draft Environmental Impact Report' states "An operational evaluation prepared as part of the 1993 City Water Master Plan provides a detailed analysis of the water system and future needs.", however, the Water System Operational Evaluation \& Improvement Program Report ${ }^{2}$ findings are not discussed and has not been updated to reflect current conditions of the water system, sources of water supply or the population being served by the water system.
B. The General Plan Draft Environmental Impact Report does not address: historic or future water consumption by category; the impact of drought conditions on the yield of existing water sources; or the potential future water source requirements. Page 4.13-9 of the General Plan Draft Environmental Impact Report ${ }^{3}$ identifies the City of Ventura Historic and Projected Water Production ${ }^{4}$ and is based on the 2004 Biennial Water Supply Report ${ }^{5}$. The water system analysis contained in the 2004 Biennial Water Supply Report ${ }^{6}$ does not address: 1) historic or future water consumption by category ${ }^{7}$: 2) the impact of drought conditions on the yield of existing water sources ${ }^{8}$; or 3) the potential future water source requirements ${ }^{9}$. A graph of the annual rainfall data for Ventura Station 66 obtained from the Ventura County Watershed Protection District for the period 1892-2001 is attached for information as Figure 1. The graph shows a trend for above average rainfall began in 1991.

[^18]

Figure 1 - Total Annual Rainfall and Cumulative Deviation from Annual Average Rainfall for Ventura Station 66 for the Period of 1892-2001.
C. Page 4.13-9 of the General Plan Draft Environmental Impact Report ${ }^{10}$ identifies the City of Ventura Historic and Projected Water Production ${ }^{11}$,. The projected future treated water production requirements are computed from a constant per capita water usage of 0.179 and the expected population being served. There appears to be a discontinuity in the Years 1989-1991 between the per capita water usage data contained in the Water System Operational Evaluation \& Improvement Program Historic Water Demand Trends, Table ES-1 1^{12} and General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8 ${ }^{13}$. Chart of the annual per capita water usage contained in 1993 Water Report and 2005 DEIR are contained in Figures 2 and 3. It is recommended this discontinuity in the per capita water usage between the 1993 and 2004 Water Reports be explained in the DEIR.

[^19]

Figure 2 - Comparison of Per Capita Water Usage Data contained in the Water System Operational Evaluation \& Improvement Program Historic Water Demand, Table ES-1 1^{14} and General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8 ${ }^{15}$.

Figure 3 - Trend Lines for Annual Per Capita Water Usage Data contained in 1993 Water Report and 2005 DEIR.
D. Furthermore, a detailed trend analysis of the per capita water usage between the years 1991 and 2004 reveals a increase in 0.0028 A -F per capita per year which is not factored into future treated water requirements and is shown in Figure 4. The General Plan Draft Environmental Impact Report, Projected Water Demand, Intensification/Reuse Only, Table 4.13-15 ${ }^{16}$ appears to use 0.504 A-F per year water use per unit which equates to a 0.196 A-F per capita per year based on an occupancy of 2.57 persons per dwelling unit. A need for an additional source of water can be expected to meet treated water needs between the years 2020 and 2025 and is shown in Table 1 if the projected annual increase in per capita water usage is used to compute future requirements. The potential requirement for future water sources depends on several factors including the anticipated long-term yield of existing water sources under

[^20]varying weather conditions, potential future water demands in the system, which potential future water sources are implemented, and water quality goals ${ }^{17}$.

Figure 4 - Per Capita Water Use Trend Analysis

[^21]Table 1
Expected Treated Water Demand Based On Increasing Per Capita Water Usage

Year	Per Capita Treated Water Use	Expected Population (0.88% Growth)	Expected Population (1.14% Growth)	Treated Water Demand (0.88\% Growth)	Treated Wate Demand (1.44\% Growth)
2004	0.182	104952	104952	19101,26	19101.26
2005	0.194	105876	106148	20539.86	20592.8
2006		106807	107359		
2007		107747	108582		
2008		108695	109820		
2009		109652	111072		
2010	0.201	110617	112338	22233.98	22580.03
2011		11159	113619		
2012		112572	114914		
2013		113563	116224		
2014		114562	117549		
2015	0.209	115570	118889	24154.21	24847.89
2016		116587	120245		
2017		117613	121616		
2018		118648	123002		
2019		119692	124404		
2020	0.217	120746	125822	26201.83	27303.46
2021		121808	127257		
2022		122880	128707		
2023		123962	130175		
2024		125052	131659		
2025	0.227	126153	133160	28636.71	30227.24

Pofential Future Water Sources Reautements

The quantity of water needed by the clty from new sources depends on several factors, including the anticipated long-term yleld of existling water sources under varylng weather conolitons, potentlal future water damands in the system, which potentlal fulure water sourcas are implememted, and water quality goas. Even without limproving the quality of water provided to the customers, adeltional water is needed now and in the fulure just to meet quanilty deficts in dy years. Table ES. 10 summarizes the water quantliy needs for future demand conditions based on potential yields from extstlog sources only. As shown in the table, water quantity deficts are anticipated in all future dry years, and in average years by 2040. Dry year defficits would be approximataly 4,500 acre-feet in 1995 and approxfmately 7,000 acre-feat per year by 2010. Addifional water quantilies beyond those bidicated would be needed to improve water
quality. qually.

Figure 4 - Water System Operational Evaluation \& Improvement Program Potential Future Water Sources Requirements, Page ES-16
E. Page 4.13-9 of the General Plan Draft Environmental Impact Report ${ }^{18}$ identifies the City of Ventura Historic and Projected Water Production ${ }^{19}$, The projected future treated water production requirements are computed from a constant per capita water usage of 0.179 and the expected population being served. There appears to be a discontinuity in the Years 1989-1991 between the treated water used data contained in the Water System Operational Evaluation \& Improvement Program Historic Water Demand Trends, Table ES-1 1^{20} and General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8 ${ }^{21}$. Chart of the treated water used contained in 1993 Water Report and 2005 DEIR are contained in Figure 5. It is recommended this discontinuity in the treated water requirements between the 1993 and 2004 Water Reports be explained in the DEIR.

Figure 5 - Chart of Treated Water Used.
2. For additional information, please feel free to contact Daniel Cormode by telephone at 805-647-4063 or by e-mail at dcormode(@)sbcglobal.net.

Copy to:
City Manager
Community Development Director
Urban Planning Manager
Public Works Director
Mayor
City Council

[^22]
SUPPLEMENTARY INFORMATION

Table 4.13-15
Projected Water Demand intensification / Reuse Only (Scenario 1)

General Plan Draft Environmental Impact Report, Projected Water Demand, Intensification/Reuse Only, Table 4.13-15

Water System Operational Evaluation \& Improvement Program Historic Water Consumption Summary, Table ES -2

TABLE ES-8

POTENTIAL YIELD OF EXISTING WATER SOURCES

Existing Source	Potentiall ${ }^{\text {ang }}$-Term Yleld (acre-feet) ${ }^{1 /}$			Projected Water Quality
	Wet Year	Avg Year	Dry Year	$(\mathrm{mg} / \mathrm{T}$ TDS) $2 /$
Ventura River	11,000	6,700	700	660
Lake Casilas ${ }^{\text {/ }}$	7,090	7,050	4,960	450
Oxnard Plain Basln/	4,090	4,090	4,090	1,100
Santa Paula Basin	3,000	3,000	3,000	1,000
Mound Basin	6.000	6.000	6,000	2,100
Total	31,180	26,880	18,750	

1/ Pofantiat fong-term (yarr 2010) yield of existing acuscas per the Long-Term Sourcas Evakuation study. Some of the exlsting sourcas racpire addlional production facities to provide the potential vilulds shown. Assumes groundwater safo yields axtructed in wet, average, and diy years,

2 Projected water quatity is the avarage TDS for the past five yaars, except for the Mound Basin where quarity ise expected to condiras to deterlorate from current leveis.

3 Lake Castas yiald is the Ciy's Shage 2 armual allocation for wat and avarage yars, and Stage 5 allocation (70% of Stage 2 allocation) for diy years.
4/ Oxnard Prain Basin fongterm yeld (year 2010 and beyond) is 75% of GMA baseline allocation fyield decreases in 5% steps from basellne beginning in 1992).

Water System Operational Evaluation \& Improvement Program Potential Yield of Existing Water Sources, Table ES-8

Poiential Future Wafer Sources Reauirements

The quantity of water needed by the City from new sources depands on several factors, including the anticipated fong-term yeld of existing water sources under varying weather conditions, potential future water demands in the system, which potental future water sources are implememted, and water qually goals. Even without improving the quality of water provided to the customers, addlitional water is needed now and in the future just to meet quantity deficits In dry years. Table ES. 10 summarizes the water quantily needs for future demand conditions based on potential yields from existing sources only. As shown in the table, waler quantity deflelts are anticipated in all future dry years, and in average years by 2040. Dry year deficils would be approximately 4,500 acre-feet in 1995 and approximately 7,000 acre-feet per year by 2010. Additional water quantities beyond those indicated. would be needed to improve water quality.

Water System Operational Evaluation \& Improvement Program Potential Future Water Sources Requirements, Page ES-16

Table 2-3
Population and Housing Projections

	2004 Levels	2025 Estimates		Change from 2004-2025	
		0.88\% Annual Growth	1.14\% Annual Growth	0.88% Annual Growth	1.14\% Annual Growth
	104,952	126,153	133,160	21,201	28,208
Housing Units ${ }^{\mathrm{b}}$	40,880	49,138	51,867	8,258	10,987

* Source: California Deparment of Finance, City/County Fopulation and Housing Estimates, 1/1/2004. Note that 2004號 population and housing estimates are provided in Table 3-1 in Section 3.0. Environmental Setting.
Housing unit estimates assume that the current ratio of 2.57 persons per household remains constant through 2025.
In reality, the number of jersons per unff couid go up or dow, depending upan housing costs, the types of housing built in the City, population growth, and other factors.

General Plan Draft Environmental Impact Report, Table 4.13-15

Table 1: Historic and Projected Water Source Production and Supply Availability (acre-feot)

Year	Surface Water	Ground Water					
	Ventura River (1)	Lake Casitas (2)	Mound Basin (3)	Oxnard Wlain Wasin (4) Supply (7)	Santa Paula Basin (5)	Saticoy Yard Wen (6)	

Historic Production							
1980	7,276	7,544	0	5,198	2,129		22,147
1985	5,493	9,099	2,360	6,172	46		23,170
1990	2,859	6,175	4,365	5,749	0		18,148
1995	9,042	1,622	2,169	2,603	2,594		18,030
1996	7,926	4,456	2,789	2,768	1,599		19,538
1997	7,052	7,089	213	3,452	2,025		19,831
1998	8,069	4,328	802	4,312	1,033		18,544
1999	6,419	7,061	3,955	1,621	1,669		20,725
2000	6,779	5,836	4,579	2,674	1,688		21,566
2001	5,727	6,292	4,030	905	2006		18,960
2002	5,951	7,127	3,720	1,978	1,157		19,933
2003	6,722	4,874	5,546	2,898	316		20,356

Projected Supply							
2004	6,700	8,000	4,200	4,600	3,000	0	26,500
2009	6,700	8,000	4,200	4,400	3,000	2,262	28,562
2014	6,700	8,000	4,200	4,100	3,000	2,262	28,262

Notes:

1. Ventura River future supply is the average long-term production based on analysis of the period from 1939 to 1982 per the Evaluation of Long Term Alternative Water Sources, James M. Montgomery, June 1993.
2. Includes the City's total past Casitas purchases in addition to raw water and oll recovery users; projected supply is the City's current in-district use.
3. Mound Basin future supplles are 75 percent of well pump rated output.
4. Oxnard Plain Basin future supply is based on GMA restricted extraction limits rounded to nearest 100 AF .
5. Santa Paula Basin future supply is the pumping allocation of the Stipulated Judgement.
6. Saticoy Yard Well future supply is 75 percent of design maximum pump output capacity.
7. Includes treated and raw water; excludes reciaimed water supply.

2004 Biennial Water Supply Report

Source Data used for Analyzing Water Usage								
	1993 Water System Operational Evaluation \& Improvement Program				2005 General Plan Draft Environmental ImpactReport			
	Water Population	Treated Water Use	Per Capita Use Factor	Rainfall	Water Population	Treated Water Use	Per Capita Use Factor	Rainfall
1940					13264	4240	0.320	12.54
1949					16534	5307	0.321	13.34
1959					29114	8832	0.303	12.08
1960					57964	17051	0.294	13.92
	69020	14191	0.2056	14.0000				
1978	70265	14818	0.2109	36.5000				
1979	72338	16157	0.2234	20.3000				
1980	76153	17381	0.2282	25.0000	73774	17381	0.236	24.78
1981	80587	17499	0.2172	15.9000				
1982	82140	16424	0.2000	17.2000				
1983	84856	16022	0.1888	36.1000				
1984	86203	20120	0.2334	8.7000				
1985	88276	19123	0.2160	9.7000				
1986	89254	18587	0.2082	21.6000				
1987	91120	16932	0.2155	12.2000				
1988	92700	20629	0.2225	11.9000				
1989	94575	20153	0.2226	5.1000				
1990	98758	16837	0.1708	5.9000	94856	16831	0.177	5.53
1991	99531	12583	0.126	17.0000	94913	12583	0.135	17.01
1992		15110			95626	14846	- 0.155	20.91
1993					96540	15449	0.160	28.21
1994					97154	16980	- 0.175	11.47
1995					99668	16428	- 0.165	34.52
1996					100482	18038	0.180	13.81
1997					101096	- 18002	2 0.178	16.02
1998					101610	16775	5 0.165	43.25
1999					102224	- 19658	80.192	10.56
2000					103238	20432	2 0.198	17.04
2001					104153	3.18071	$1 \quad 0.173$	23.22
2002					105267	18965	50.180	7.24
2003					106782	219510	O 0.183	20.06

Letter 6

COMMENTER: Daniel Cormode

DATE: June 19, 2005

RESPONSE:

Response 6A

The commenter states that the Draft EIR does not provide updated information on the water system from the 1993 Water Master Plan. The current water system is described on pages 14.13-1 through 4.13-7 based on updated information provided by City Public Works Department staff. The 1993 Water Master Plan is incorporated by reference in the Final EIR.

Response 6B

The commenter states that the Draft EIR does not address historic or future water source by category, the impact of drought conditions on the yield of existing water sources, or potential future water source requirements. Detailed historic water consumption by land use category is not available. Detailed future consumption by area and by land use category is provided in Tables 4.13-15 through 4.13-20 for Scenarios 1 through 6, respectively. Potential sources of supply are shown in Table 4.13-7 and the entire discussion under Impact U-1 compares projected future water demand to available supply. The Biennial Water Supply Report included in Appendix F includes discussion of various City programs that augment City supplies under drought conditions. A detailed analysis of available water supply during various drought conditions will be undertaken as part of the City's Urban Water Management Plan, which must be updated in years ending in zero and five. Demand projections from the various scenarios were, however, compared to those of the 2000 UWMP and all were below those projections.

Response 6C

The commenter suggests that the Draft EIR estimates future water demand based on a constant per capita rate and notes that per capita water consumption has risen since 1991. The projections of future water demand contained in Section 4.13 of the Draft EIR are not based upon a per capita rate, but rather are based upon water demand factors for the various uses anticipated under the 2005 General Plan. Therefore, the fact that per capita consumption may have increased slightly does not affect the water demand projections or conclusions regarding the availability of water supply.

Future water demand was not projected based on a per capita rate, but rather was projected based on typical rates for the uses anticipated to be developed through 2025. Therefore, the current per capita rate from the Biennial Report (which includes all water demand associated all uses) cannot be compared only to the demand associated with future residential development. Instead, it should be compared to the entire projected demand associated with all uses. For comparison purposes, the increase in annual water demand for Scenario 6 is estimated at 7,611 acre-feet, while the projected population increase for that scenario is 28,208
(as shown in Table 2-3 in Section 2.0, Project Description). This equates to a per capita rate of 0.269 acre-feet per person $(7,611 / 28,208)$. Other scenarios would yield similar per capita consumption.

The projected per capita rate of 0.269 acre-feet per year is about 50% higher than the current citywide per capita rate of 0.179 acre-feet per year. Therefore, water demand associated with future development has been projected based upon a conservative estimate of per capita water consumption. The estimates of overall citywide water demand in 2025 are conservative not only because of the high per capita rate assumed, but also because the baseline citywide water demand assumed for all scenarios is the highest water use from the past five years (21,500 acrefeet per year).

From: Daniel Commode 186 Gortion Ave Ventura, CA 93004

To: City of San Buenaventura 501 Polis St Ventura, CA 93002 Attn: Kari Gialketsis

Subj: 2005 General Plan Draft Environmental Impact Report Review Comments
Ref: (a) Daniel Commode Intr re: 2005 General Plan Draft Environmental Impact Report Review Comments dated 19 June 2005

1. A review of the General Plan Draft Environmental Impact Report June 2005, Section 4.13, UTILITIES \& SERVICE SYSTEMS, was conducted and comments were contained in reference (a)/
2. Additional comments are forwarded relative to review of the subject document.
3. The subject document does not adequately address the impact of a prolonged drought and the adequacy of water resources to supply the required water under those conditions.
4. During the April 1986 through January 1991, the volume of water stored in Lake Casitas decreased by 48% from $254,800 \mathrm{~A}-\mathrm{F}$ to $129,173 \mathrm{~A}-\mathrm{F}$ and is shown in Figure 1.

California Department of Water Resources, Division of Flood Management, June 2005 Lake Casitas
Figure 1 - Lake Casitas Water Storage (A-F)
5. It is highly probable that additional droughts can be identified from the examination of rainfall data for the years 1891-2001 for Ventura Station 66 shown in Figure 2. Droughts of 8 years probably occurred during the years 1893-1905, 1918-1925 and 1944-1951 and a 5 year drought occurred during 1986-1990.

Data Source: Ventura County Watershed Protection District, 2003 , Ventura Station 66
Figure 2-Annual and Cumulative Deviation from Average Rainfall for Ventura Station 66
6. Drought conditions also impact the ability of the City to pump water from the Ventura River basin. And increase the load on the Oxnard and Mound aquifers and i9s shown in Figure 3. The DEIR does not discuss the ability of the aquifers to supply water during prolonged drought conditions.

Data Source: Developed from City fo San Buenaventura, Public WorksDepartment, Utifities Division, June 2005 Source Data

SOURCE PRODUCTION - DATA IN ACRE FEET					
APRIL 1986 - FEBRUARY 1991					
	Ventura River/	Oxnard Plain/		Mound/	
	Foster Park	Golf Course	Saticoy\#2	Victoria	TOTAL
1986	6,161.68	3,705.32	0.00	2,074.65	11,941.65
1987	5,574.86	5,111.35	0.00	2,726.21	13,412.42
1988	6,803.49	4,947.15	0.00	3,932.27	15,682.91
1989	3,858.80	6,033.46	0.00	4,100.92	13,993.18
1990	2,858.73	5,749.18	0.00	4,365.59	12,973.50
1991	193.67	745.69	0.00	533.16	1,472.52
TOTAL	25,451.23	26,292.15	0.00	17,732.80	69,476.18

Source: City fo San Buenaventura, Public Works Department, Utilities Division, Jme 2005
7. For additional information, please contact Daniel Cormode by telephone at 805-647-4063 or by email at dcormode@sbcglobal.net.

Copy to:
City Manager
Community Development Director
Urban Planning Manager
Economic Development Manager
Mayor
City Council

Letter 7

COMMENTER: Daniel Cormode

DATE:
June 23, 2005

RESPONSE:

The commenter states an opinion that the Draft EIR does not adequately address the impact of a prolonged drought and the adequacy of water resources to supply the required water under those conditions. As stated in responses to Letter 6 (the commenter's June 19, 2005 letter), the Biennial Water Supply Report included in Appendix F discusses various City programs that augment City supplies under drought conditions. The impact of drought on the ability of the water supply system, including the management of surface and groundwater storage, is addressed in the City's Urban Water Management Plan, which is updated in years ending in zero and five. It should also be noted that any future development of more than 500 dwelling units would also be subject to the requirements of Senate Bills 221 and 610, which require a Water Supply Assessment and Verification Report that must address drought conditions.

From: Daniel Cormode

186 Gorrion Ave Ventura, CA 93004

To: City of San Buenaventura
501 Poli St
Ventura, CA 93002
Attn: Kari Gialketsis
Subj: 2005 General Plan Draft Environmental Impact Report (DEIR) Review Comments
Ref: (a) Daniel Cormode e-mail of 20 May 2001

1. The subject DEIR identifies impacts to fire services, police services, traffic; circulation, storm drain systems and schools which will required additional funding. Some of those mitigation measures will require public finding as they will benefit the general population and other mitigation measures having direct impact as a result of the development require funding by developer. These magnitude of these economic impacts do not appear to be discussed in either the proposed 2005 General Plan nor the subject DEIR.
2. It is recommended discussion of the following relevant economic/fiscal elements identified in the State of California General Plan Guideline be adequately addressed in the subject DEIR and discussion should be contained therein. Those elements include discussing:
a. Fiscal Stability, including existing and potential revenue resources, costs of services and facilities and economic forecasts.
b. Budgetary Structure, including: existing outlays to departments, services and comparable revenue recoupment mechanisms and levels; and comparison of facility and services versus efficiency of providing the programs.
3. For additional information, please contact me by telephone at 805-647-4063 or by e-mail at dcormode@sbcglobal.net.

Copy to:

City Manager
Community Development Director
Urban Planning Manager
Economic Development Manager
Mayor
City Council

Subj: Economic Development Issue Paper
Date: 5/20/01
To: merrymanwce@aol.com
CC: sandmand@pacbell.net
BCC: ttanda@pacbell.net

Margaret,

At the 16 May 01 CPAC Meeting, an Economic Development Issue Paper for the City of San Buenaventura Comprehensive Plan was presented to members of the Comprehensive Plan Advisory Committee (CPAC).

The presentation stated that Economic Development Goals and policies can assist the City in achieving its overall Vision by:

- Guiding economic revitalization in key areas of the community;
- Presenting new economic options for development at key entry points to the City;
- Promoting the City's economic potential to achieve regional prominence, strengthen the economic base of the City, and stimulate other economic investments in the community;
- Seeking to minimize sales tax "leakage" to surrounding areas and increase fiscal benefits;
- Providing a healthy climate to encourage economic investments in the community;
- Emphasizing training and job opportunities for local workers;
- Providing a choice of housing opportunities commensurate with job growth;
- Maintaining a high level of public services and infrastructure for residents and businesses; and
- Actively pursue opportunities for a more balanced economic base in all focus areas.

What is missing from both the above presentation and the Vision, are identification, and potential cost if applicable, of:

- Key areas of the City requiring revitalization;
- The type of revitalization required for each key area;
- Specific economic options;
- Key entry points to the City;
- The economic potential of the City through an economic model or other measurable statistical analysis tool;
- The ability for the City to sustain itself economically, both currently and in the future; based on City infrastructure maintenance and support requirements;
- The climate needed to encourage economic investment in the City:
- Training and job opportunities for local workers;
- Types of housing opportunities available;
- Areas of current/expected job growth;
- Current/Future public services and infrastructure requirements by both residents and business; and
- opportunities for a more balanced base.

Furthermore, I feel the data contained in the presentation did not clearly relate to the following relevant economic/fiscal elements identified in the State of California General Plan Guidelines:

- Business retention and development by sector;
- Identification of the needs, limitations and alternatives to existing businesses;
- Identification of potential improvements and strategies which would encourage business retention;

- Employee Development

- Areas of employment growth, shortages and needs;
- Business Recruitment:
-. Relevant issues concerning the types, number, and success of existing and potential recruitment strategies.
- Identification of thoise businesses which would be compatible with the objectives of the general plan and consistent with the carrying capacity of the land and infrastructure.
- Fiscal Stability
- Includes existing and potential revenue resources, costs of services and facilities and economic forecasts.
- Budgetary Structure
- Existing outlays to departments, services and comparable revenue recoupment mechanisms and levels.
- Comparison of facility and services versus efficiency of providing the programs.

Recommend the above concerns be either placed on the CPAC meeting agendas for discussion or forwarded on to City Staff for action as appropriate.

R/

Daniel Cormode
805-647-4063

- Storm Drain System - potential impacts due to system deficiencies in older parts of the City, including. Ventura Avenue comidor and Downtown district (all scenarios); this impact can be mitigated through development of funding mechanisms to address system deficiencies
- Fire Protection Service - potentially significant impacts to fire protection service in the North Ventura Avenue area (Scenarios 2-6); this impact can be mitigated through development of a new fire station in the North Ventura Avenue area
- Police Protection Service - potentially significant impacts relating to the need for new facilities (all scenarios); this impact can be mitigated through expansion of facilities as necessary
- Traffic Performance Standards - potentially significant impacts to roadway intersections (Scenarios 1, 3, 4, 5, and 6); impacts can be mitigated through policies and actions directing implementation of feasible system improvements as needed

Impact HWQ-2 Development accommodited through the year 2025 under any of the land use scematios under consideration for the 2005 General Plan would increase the amount of impervious surfaces within the Planning Area, potentially increasing surface runoff in areas where existing storm drain systems are deficient. This is considered a Class 11 , significant bul mitigable, impact for all scenarios.	HWQ-2 Additional Drainage Actions. The following actions shall be added to the 2005 General Plan to address existing storm drain system deficiencies: - Develop a financing program for the replacement of failing corrugated metal storm drain pipes in the City. - Adopt assessment districts or other financing mechanisms to address storm drain system deficienties in areas where new development is anticipated and deficiencies exist \{e.g., Downtown district, Ventura Avenue corridor, and Harbor district).	Less than significant for all scenarios.

impact PS-1 Development tunder any of the 2005 General Plan tand use scenarios would increase the City's population and dersity of development, and introduce new development into high fre hazard areas. This would increase demand for fire protection services and potentially create the need for new fire protection facilities. With proposed General Plan policies, impacts for Scenarie 1 are Class im, less than significent. Impacts for Scenarios 2-6 are considered Class II. significant but mifigable.	PS-1(a) North Avenue and Western Can̆ada Larga Expansion Areas. The following action shall be added to the 2005 General Plan if any land use scenario that includes possible future development of the North Avenue expansion area or the Westem Canada Large expansion area is adopted: - Add a fire station in the North Avenus area as determined necessary by the Ventura Fire Deparment. Consider an ussessment district for the North Avenus area to fund a new station. PS-1(b) Poinsettia Expansion Area. The following action shall be added to the 2005 General Pian if amy land use scenario that includes possible future development of the Poinsetia expansion area is adopted: - Inciude a fire station site in any future specific plan for the Pomsettia axpansion area if detemined necessary by the Ventura Fire Department.	Less than significant for all scenarios.
Impact PS-2 Possible future development under Scenarios 1-6 would increase the Cify's population and density of development, thereby resulting in the need to construct new facilities in order to provide effective police protection service. impacts would be class II, significant but mitigable, for any of the six land use scenarios.	PS-2 Pollce Protection Service. The following actions shall be added to the 2005 General Plan: - Establish a new Downtown starefront to meet the needs of the growing Downtown population - Expand the Police Department headquanters as necessary to accommodate staff growth.	Less than significant for all scenarios.
Impact PS-3 Projected enrollment growth under the 2025 General Plan would exceed the capacily of existing schools within the Ventura Unified	None required, but the following are recommended: PS-3(a) School Coordination. The	Less than significant for all scenarios.
School District, thereby creating the need to construct additional facillites. However, payment of State-mandated school impact fees is presumed to provide funding for needed new school facilities. Therefore, although avatiable land for new schools may be limited (particularly for Scenarios 1 and 5), impacts to schools would be reduced to a Class III, less then significant, level for any of the six land use scenarios.	following action should be added to the 2005 General Plan: - Coordinate with the Ventura Unified School District to ensure that school facilities can be provided to serve new development. PS-3(b) Expansion Area Schools. The following action should be added to the 2005 General Plan If any fand use scenario that includes an expansion area is adopted: - Require expansion area specific plans to be prepared in coardination with the Ventura Unified School Distrid and set aside land needed for new school facilities.	

Impact TC-1 Growth accommodated under any of the Genemal Plan land use scenarios could result in deficiencies to the local circulation system based on recommonded level of service stendards. The number of locations that could have deficiencies based on the projected growth scenarios ranges from one (for Scenario 1) to four (for Scenarios 2 and 4). Feasible improvements are available to address all projected deficiencies for Scenarios $1,3,4,5$, and $6 ;$ therefore, impacts associated with those scenarios are considered Class 11 , significant but mitigable. For Scenatio 2, implementation of feasible improvements would not achieve performance standards at the Jomnson Drive:North Bank Drive intersection. The impact at inat location is considered Class 1, umavoidably significant for Scenario 2.

To ensure that impacts are addressed and that the improvements identified in this EIR (or other feasible improvements that achieve the same objectives) are identified, the following measure is required:

TC-1 Additional Circulation Action. The following action shall be added to the 2005 General Plan to ensure fhat traffic impacts of future developments are addressed and mitigeted:

- Require project proponents to analyze traffic impacts and implement mitigation as appropriate prio to development. Depending upon the nature of the impacts and improvements needed, mitigation may either consist of implementing needed physical improvements, confributing "fair share" fee toward implementation of needed improvements, or some combination thereot.

Less than significant for Scenarios 1, 3, 4,5. and 6. Unavoidably significant at Johnson Drive/North Bank Drive intersection for Scenario 2.

Letter 8

COMMENTER: Daniel Cormode
DATE: June 20, 2005

RESPONSE:

The commenter states an opinion that the Draft EIR should include economic and fiscal analysis relating to increased demand for police and fire service, and transportation and storm drain infrastructure. It is not the EIR's purpose to discuss environmental or fiscal effects. The purpose of the EIR is to identify and, when possible, mitigate potentially significant environmental effects, which generally relate to physical changes to the environment. Section 15131 of the CEQA Guidelines states that "economic or social effects of a project shall not be treated as significant effects on the environment."

Gialketsis, Kari

From: Daluddung, Susan
Sent: Monday, June 27, 2005 11:37 AM
To: 'Charies Spraggins'
Cc: Gialketsis, Kari
Subject: RE: EIR
Hello Charies:
I understand that granny flats is the vernacular way of describing a guest house and even is used to describe second units. My understanding is that you are asking about second units.... under the law it has this new name.. People often the two. Two Second units are exempt from CEQA under State statute. the second point is that both second units and "granny flats"
do not have an impact separate and apart from any other population-- so the answer is yes, the City has taken them into account with our population projections. I will forward you to our consultant if you are asking for more detailed information.
Have a great day.
Susan

Dr.Susan J. Daluddung
Community Development Director
Phone: 805-658-4723
Fax: 805-653-0763
sdaluddung@ci.ventura.ca.us
Enhancing Ventura's quality of life by
leading the way towards a better tomorrow
-----Original Message------
From: Charles Spraggins [mailto:c.spraggins@sbcglobal.net]
Sent: Sunday, June 26, 2005 5:27 PM
To: sdaluddung@ci.ventura.ca.us
Subject: EIR
Has the EIR made any provision for the impact of the Granny Flats that have been included in the general plan? Since the implementation of the program will be impacted by the city's understanding of the resources required to build the flats, has a sensitivity analysis been done concerning alternate ways to implement the plan. Granny flats can create a lot of problems in neighborhoods with limited parking. Since residents are often using their garage for storage rather than their cars, just because a house has a garage does not mean that there is adequate parking. Since this issue can create a lot of legal issues between neighbors, how ill disputes be resolved without burdening the courts?

Charles Spraggins
Ventura; CA

Letter 9

COMMENTER: Charles Spraggins

DATE: June 26, 2005

RESPONSE:

The commenter asks whether the EIR has made any provision for "granny flats" and how disputes about parking associated with these units will be resolved. The EIR analysis assumes that up to about 300 second units will be built in the City through 2025, or about 15 units per year for 20 years. Therefore, the overall citywide impact of adding second units has been accounted for in the EIR. Any analysis of the impacts of individual second units would be speculative as the nature and magnitude of impacts would depend upon where such units are built. In any event, it should be noted that State law allows for the construction of second units in certain instances regardless of whether or not the proposed 2005 General Plan is adopted.

July 7, 2005

Ms. Kari Gialketsis, Principal Planner
Community Development Department
501 Poli Street
P.O. Box 99

Ventura, CA 93002-0099.

SUBJECT: COMMENTS TO THE DRAFT EIR

Dear Ms. Gialketsis:
We have reviewed the Public Review Draft Environmental Impact Report ("DEIR") and respectfully submit the following comments regarding the development potential identified for the Johnson Drive Corridor for City decision makers' consideration. We are concerned that the Development Potential identified in the DEIR of 150 residential units, 50,000 square feet of retail space and 20,000 square feet of office space appears to considerably understate the potential for this area.

We feel that a greater level of development should be encouraged in the Johnson Drive Corridor to better support the City's smart growth goals, and other sustainable development policies, especially with respect to the residential component. We believe that future intensification and redevelopment in the Johnson Drive Corridor, combined with future new development on available infill sites, makes the stated Development Potential in the Corridor insufficient. It is quite likely that the projected thresholds for residential and non-residential development described in the DEIR would be quickly realized on the two remaining undeveloped sites in the Corridor (both located at the intersection of Johnson and North Bank Drives). We contend that significantly increasing the intensity of residential development in the Johnson Drive Corridor would support the City's Smart Growth goals and encourage desirable development forms in this very important "gateway" corridor. Intensifying the residential development potential in the Johnson Drive Corridor would:
\& Preserve open space, farmland, natural beauty and critical environmental areas. The Johnson Drive Corridor is adjacent to the farmland of the Serra Expansion Area being considered in the Draft EIR for future development and expansion of the City. By intensifying the development in this existing Corridor, it forestalls the development of nearby agricultural areas.
\& Foster distinctive, attractive communities with a strong sense of place. The Johnson Drive Corridor lacks a cohesive focus or image. The addition of a substantial, high-quality housing component would support a more diversified base of commercial establishments to better serve the corridor and the neighboring communities.
4. Mix land uses. Smart Growth encourages a mix of land uses both vertically and horizontally. By introducing a significant component of residential units to this commercial corridor, existing businesses can benefit from the stabilizing effect of this sizeable, adjacent customer base, while residents benefit from proximity to services and stores.

* Create walkable communities. By encouraging the development of a substantial number of residential units in this corridor, we increase the opportunity for local businesses to be supported by walk-in customers. Residents will be able to walk to the movies or the nearby shops and make use of the Linear Park which runs along the perimeter of the Corridor.
\& Create a range of housing opportunities and choices. Because of the generally commercial nature of the corridor, a significant amount of housing would be an appropriate infill use. For example, rental product in this area would provide a much needed alternative to the for-sale product available further north on Johnson Drive.

4. Provide a variety of transportation choices. Intensifying the residential development in the Corridor allows an increased number of residents to benefit from proximity to the South Coast Area Transit (SCAT) bus route along Johnson Drive, Ventura Intercity Service Transit Authority (VISTA) bus stops, and easy access to the Freeway. By locating more potential commuters adjacent to the 101 Freeway, the impact of these new households on local traffic patterns would be reduced.

We understand that the City intends for the projections included with the DEIR to be assumptions for analytical purposes only, and that the Districts, Corridors and Expansion Areas could accommodate more development based on market forces and other factors. We acknowledge City staff's assertion that the Development Potential described in the DEIR is not intended as a future "cap" on development; however, we are concerned that the described Development Potential would later be perceived by members of the public (or even the City Council) as a limit to growth and, thus, constrain new residential development in this corridor otherwise ripe for infill/intensification. We fear this is a real possibility since the DEIR indicates that projected City growth was distributed among the various corridors and districts in the City "based on the development potential of each growth district and corridor and direction from the community, CPAC, Planning Commission and City Council on where growth in the community should be encouraged." Even clear language qualifying the empirical assumptions, as provided in
the footnotes to "Appendix C" of the DEIR, may do little to change the perception that the Development Potential projections are not targets or limits.

Equally concerning to us is the anticipated relationship among the DEIR, Draft General Plan and forthcoming Development Code, such that the same assumptions and projections used solely for analytical purposes in the DEIR (such as residential development potential) could become policy through the creation of the formal Development Code. In other words, those projections used solely for analysis in the Draft General Plan and DEIR could seriously limit future development opportunities if adopted into ordinance with the Development Code if the zoning density designations are derived from these figures. This could have the unintended consequence of turning the otherwise "analytical projections" into local law.

As a result of the above considerations, we respectfully recommend that the residential development potential in the Johnson Drive Corridor be revised substantially upward to accommodate the appropriate scale and quality of future housing in this key infill Corridor.

Sincerely,

Carol Schwartz Assistant Vice President Community Development Casden Properties LLC

Demitrius Zeigler
Project Manager
Community Development
Casden Properties LLC
cc: Howard Katz, Vice President Community Development

Ronald C. Mayhew, Vice President
Community Development

Letter 10

COMMENTERS: Carol Schwartz and Demitrius Zeigler, Casden Properties, LLC

DATE:

July 7, 2005

RESPONSE:

The commenters re-state concerns about the amount of development assumed in the Draft EIR for the Johnson Drive corridor and request that the amount of development assumed for the Johnson Drive corridor be revised upward. These concerns are addressed in the response to Comment Letter 4. As the commenters acknowledge, the growth estimates included in the Draft EIR for all districts, corridors, and neighborhood centers are assumptions to be used for analytical purposes. These do not represent growth caps or restrictions and do not limit the ability of the City to approve individual projects that include more units or square footage than have been assumed in the EIR analysis. As such, there is no reason to adjust the growth estimates shown in the Draft EIR. The specific impacts of individual development projects will need to be addressed on a case-by-case basis.

In response to several comments on the Draft 2005 General Plan and Draft EIR, a table will be added to the General Plan that will show the carrying capacity of the total land area for the Plan. This table is intended to show what the total development potential is versus the realistic estimates provided in the original table (May Draft Overview, Table 2, pages $14 \& 15$).

Howard and Howard Ranch
 1575 Montgomery Avenue Ventura, California

Mailing Address 15000 SW Scarlett Drive Tigard, Oregon 97224 (503) 521-1551

Members:
Sunkist Growers, Inc.
Saticoy Lemon Association
Calavo Growers of California

Owners:

July 14,2005
TO: Kari Gialketsis, Principal Planner
City of San Buenaventura
Community Development Department
Cc: Lisa Porras, AICP, Senior Planner
FROM: Jean Howard Mann, Owner and Managing Partner Howard and Howard Ranch

Subject: Response to the Draft Environmental Impact Report for the 2005 Ventura General Plan
On behalf of the partners of the Howard and Howard Ranch, and also; of all the farmers in the Serra area, I would like A to take this opportunity to commend both Staff and the Consultants for a remarkable achievement in producing this EIR on the 2005 Draft Ventura General Plan. Having been an active citizen participant over the course of the past 5 years of this process, I am particularly gratified that so much attention was given to the issues of agriculture in the Ventura urban environment, and to the Serra area in particular.

We understand that Scenario 1-Intensification/Reuse is the first priority of the General Plan and that further discussion of the potential expansion areas, identified as Scenarios 2-6, will be postponed until after the adoption and ratification of both the General Plan and the EIR has occurred on August $8^{\text {th }}$. As owners of commercial agricultural land within the Serra area, we support this approach. However, we also agree with the statement in the General Plan (page 3-10) that "even the most successful effort to achieve community planning goals through infill may need to be supplemented at some point by expanding into areas outside the city limits."

The Draft EIR has included the Serra area in two of the potential growth expansion scenarios, Scenario 2 (Intensification/Reuse + North Avenue + Olivas + Serra) and Scenario 4. (Intensification/Reuse + North Avenue + Serra). We are also aware that Staff has recommended "the North Avenue and Serra expansion areas as the top priority for development if future growth to the year 2025 cannot be met through infill development alone." (Attachment D-Long-Term Potential Expansion Strategy to the General Plan). We strongly suppoit their recommendation.

This response to the Draft EIR addresses several major concerns, contradictions, and what we believe to be errors in the content of the document, particularly as they affect the discussion of the Serra area. These points are as follows:

LACK OF CONSISTENCY IN THE MAPS (EIGURES) INCLUDED IN THE DRAET EIR SHOWING THE SERRA AREA

The First Assembly of God Church site at the corner of Montgomery Avenve and Bristol Road

In November, 1999, this 25.59-acre parcel was removed from SOAR restrictions and pre-zoned to an R-1 Single Family zone with a subzone of R-1-1AC with the passage of Measure C the "First Assembly of God Land Initiative." (See Appendix F, Draft General Plan). In early 2004, the church submitted plans for the development of the site to the Community Development Department. Those plans, proposed to be built in several phases, include at least seven sports fields, a large church sanctuary, multiple other church buildings, two maintenance buildings, two concession buildings, an amphitheater, picnic areas, parking areas, and a jogging track. Although no further action has been taken by the church to proceed with this development, the plans are included in the City's Pending Project list.

Section 2.5 .5 b. (pg. 2-31) of the Draft EIR states, "Currently planned and pending projects were taken from the City's Pending Projects list. These were assumed to occur".

Despite this stated assumption, only seven maps out of a total of 36 maps showing the Serra Expansion Area correctly show the First Assembly of God Church site removed from the Serra Expansion Area. One map includes the parcel as outside the City Limit boundaries (Figure 2-9) and is correct. Two other maps show this site as continuing in agriculture, so are possibly correct, despite the plans to urbanize this land in the near future. The remaining 26 maps erroneously include this parcel in the Serra Expansion Area and contradict the Draft's stated working assumptions and methodology of assuming pending projects to occur. Figure 4.2-3 (Greenbelts, Land Conservation Act Contracts, SOAR Designated Lands, and Hillside Voter Participation Areas) is particularly inaccurate, given that the church property has not been under SOAR since 1999. (Specific details of these maps are given below.)
On several occasions since 2000, I have requested the Community Development Department to change their maps to accurately reflect this change in the Serra area. I was assured that the General Plan would reflect this change: most maps presented in both the Draft General Plan and the Draft EIR do not. We believe that no accurate future growth planning of this area can be accomplished without an accurate report of the extent to which urban uses have and are encroaching upon commercial farmland under SOAR restrictions in Serra. We respectfully request that all maps in both the Draft General Plan and the Draft EIR be corrected to accurately depict the First Assembly of God Church site.

Maps CORRECTLY showing Serra WITHOUT the First Assembly of God Church site (These maps are correct)

Figure 2-3 (page 2-17) Scenario 1 - Intensification/Reuse Only
Figure 2.4 (page 2-19) Scenario 2 - Intensification/Reuse + No. Avenue + Olivas + Serra
Figure 2.5 (page 2-21) Scenario 3 - Intensification/Reuse + No. Avenue + Olivas
Figure 2.6 (page 2-23) Scenario $4-$ Intensification/Reuse + No. Avenue + Serra
Figure 2.7 (page 2-25) Scenario 5 - Intensification/Reuse + No. Avenue + Western Canada Larga
Figure 2.8 (page 2-27) Scenario $6-$ Intensification/Reuse + No. Avenue + Poinsettia

Maps Showing $1^{\text {st }}$ Assembly of God site in agriculture despite "Assumed" Development (These maps may be correct)

Figure 4.2-1 Lands in Agricultural Use

Figure 4.2-2 Important Farmlands

All Other Maps in the Draft EIR Showing the Serra Area INCORRECTLY INCLUDE the First Assembly of God Church_site

VUSD Property (South_of Ralston where it meets the Serra Area AgriculturalLand)

This ten-acre parcel is owned by the VUSD and is therefore under no SOAR restrictions. It can be developed at any time. Curiously, it appears on only one map in either the Draft General Plan or the Draft EIR as separate from the rest of the agricultural lands in the Serra Potential Expansion Area.

Figure 4.12-5 - Pedestrian System includes this parcel as a school-owned property, nestled in a corner of the Serra Potential Expansion Area (see the lilac colored square under the letters EX.)

More curious still, this area does not even appear as a school site on the following map Figure 4.11-3--Public Schools and Libraries.

Figure 4.2-3 - Greenbelts, Land Conservation Act Contracts, SOAR Designated Lands, and Hillside Voter Participation Areas, inaccurately shows this area to be part of SOAR Designated Lands. It is not and has never been under SOAR restrictions.

Our concerns regarding this property are similar to those we have with the presentation of the $1^{\text {st }}$ Assembly of God site as being part of the Serra Potential Expansion Area. Again, we believe that accurate reporting of the land designations and uses in this area are vital to responsible future growth planning. We respectfully request that all maps in both the Draft General Plan and the Draft EIR be corrected to accurately depict the VUSD property in the Serra Area.

TRANSPORTATION AND CIRCILATION - SECTION 4.12

This section of the Draft EIR includes a number of errors and omissions, as well as some proposed "roadway improvements" that directly contradict a primary goal of the 2005 General Plan "to protect our hillsides, farmlands and open spaces". Below is a discussion of those areas of particular concern, including the widening of Montgomery and Ramelli Avenues, the extension of Kimball Road and Ralston Street, and proposed Class II bikeways, any and all of which will remove farmland from the Serra Potential Expansion Area.

Widening of Ramelli and Montgomery Avenues

Ramelli Avenue borders existing SOAR farmland on the northwest section of the Serra Potential Expansion area and Montgomery Avenue borders existing SOAR farmland on the northeast section of Serra.

Common sense might dictate that both of these roads be widened as a consequence of increased urban development in the area, specifically that of the Community Park and the First Assembly of God Church site. However, if these roads are widened it will necessitate removing farmland currently under SOAR restrictions for the purpose of building the road improvements. These two roads will take land from three of the five remaining farmers in the Serra area. Hence, any discussion of changes to Ramelli and/or Montgomery is of great concern to those of us who own farmland in Serra.

Both the Draft General Plan (Figure 4-3 Roadway Classification Plan) and a number of maps in Appendix E graphically show the City's intention to widen both of these roads, under each and every scenario presented in the EIR. Yet, the EIR does not mention these roadway improvements anywhere else in the document, either in the text or in any table in the EIR or Appendix E to the EIR.

It should be noted that unless the Serra Potential Expansion Area is selected for growth expansion, the widening of Ramelli and/or Montgomery Avenues would be in direct conflict of the stated goal to "protect and preserve farmland". In the case of these two roadway improvements, farmland would be removed from production not only for the road itself, but also for any buffer that might be required by the County Agricultural Commissioner and the City. In addition to actual farmland lost from production, the additional encroachment of urban traffic in this area will only serve to exacerbate already serious ag/urban conflict issues.

It is impossible to know whether these the maps, showing the widening of these roads, have been printed in error, or whether there have been multiple omissions in not including these roadway improvements in the various tables in the Draft EIR and Appendix E to the Draft EIR. Regardless, this needs to be clarified and corrected before the final approval and ratification of this document. We respectfully request that this be done.

Appendix EMaps Showing the Widening of Ramelliand Montgomery

Figure 4-6 (page 4-13) Roadway Classifications Scenario 1
Figure 4-8 (page 4-15)
Figure 4-10 (page 4-17)
Figure 4-12 (page 4-20)
Figure 4-14 (page 4-22)
Figure 4-16 (page 4-24)

Roadway Classifications Scenario 2
Roadway Classifications Scenario 3
Roadway Classifications Scenario 4
Roadway Classifications Scenario 5
Roadway Classifications Scenario 6

Tables for Scenarios 1-6 Which Omit the Widening of Ramelli and Montgomery

Table 4.12-4 Scenario $1 \quad$ Appendix E-Table 3-2 (page 3-8)

Table 4.12-6 Scenario 2 \quad Appendix E - Table 3-5 (pages 3-17,18)
Table 4.12-8 Scenario 3 Appendix E - Table 3-8 (pages 3-28,29)
Table 4.12-10 Scenario 4 Appendix E-Table 3-11 (pages 3-39,40)
Table 4.12-12 Scenario 5 Appendix E-Table 3-14 (pages 3-51,52)
Howard and Howard Response to the Draft EIR
July 14, 2005
Page Five

Extensions of Kimball Rd_ and Ralston_St.in Scenario 5 Intensification/Reuse + No. Avenue + Western Canada Larga)

The discussions of Scenario 2 (Intensification/Reuse + North Avenue + Olivas + Serra) and of Scenario 4 (Intensification/Reuse + North Avenue + Serra) include a Kimball Road extension from Telephone Road to North Bank Drive and a Ralston Street extension from Ramelli Avenue to Montgomery Avenue. Certainly, if either of these two scenarios is selected for future growth expansion, these two road extensions will be crucial to a well-planned development of the Serra area.

Discussion for Scenario 5 (Intensification/Reuse + North Avenue + Western Canada Larga), however also anticipates that new roadway links would include a "Kimball Road extension from Johnson Drive to Bristol Road" and a "Ralston Street extension from Ramelli Avenue to Montgomery Avenue" (Section 4.12 Scenario 5, page 4.12-63). We believe this to be an error for the following reasons:

1. A Kimball Road extension from Johnson Drive to Bristol Road would transect farmland in Serra that is supposed to remain in farmland under Scenario 5 until at least 2025.
2. The Transportation and Circulation Element of every General Plan since the early 1970's has included an extension of Kimball Road to Bristol Road, but never one from Johnson Drive to Bristol Road, so it begs the question whether this is really the intended extension.
3. A Ralston Street extension from Ramelli Avenue to Montgomery Avenue makes absolutely no sense in that it would horizontally bisect the northern portion of the Serra farmland when this area is supposed to remain in farmland under Scenario 5. It makes even less sense to extend Ralston Street, without also including the extension of Kimball Road from Telephone Road to Bristol Road.
4. These road extensions are INCLUDED in the following discussion of Scenario 5:

Draft EIR Transportation and Circulation Scenario 5 text (page 4.12-63) Draft EIR Table 4.12-12 Roadway Improvements - Scenario 5 (page 4.12-67) Appendix E Table 3-14 Roadway Improvements - Scenario 5 (page3-52) Appendix E Table 3-15 2025 ICU Summary-Scenario 5. (page 3-56)
5. These road extensions are NOT INCLUDED in the following discussion of Scenario 5: Appendix E Scenario 5 Text related to roadway improvements (pgs. 3-45, 3-50) Appendix E Figure 3-14 2025 ADT Volumes - Scenario 5 (page 3-48) Appendix E Figure 3-15 2025 ICU - Scenario 5 (page 3-49) Appendix E Figure 4-14 Roadway Classifications - Scenario 5 (page 4-22) Appendix E Figure 4-15 ADT Volumes - Scenario 5 (page 4-23)

Given the conflicting information presented in the Draft EIR and the Appendix to the Draft EIR it is difficult to know if these two road extensions are planned under Scenario 5 or not. I recently spoke with a member of

Staff, who assured me that yes, indeed, these road extensions had been planned through Serra under Scenario 5, despite the fact that Serra is not included as a Potential Expansion Area under this scenario.

Howard and Howard Response to the Draft EIR
July 14, 2005
Page Six

Therefore, in response to this EIR, we must strenuously object to the extension of these two roads in particular, in any configuration, and also to the development of any roads that will transect and/or remove farmland that potentially will remain under SOAR restrictions and/or are designated Agriculture Only until at least 2025 in this General Plan.

For five years I have argued in both oral presentations and written submissions to the CPAC, the Planning Commission, and the City Council that any road extensions or expansions through farmland that is expected to remain under SOAR restrictions should be removed or abolished from any growth development plan for Ventura. This is particularly true in the case of "roadway improvements", such as the Kimball and Ralston Road extensions discussed here and the widening of Ramelli and Montgomery discussed above.

To intentionally design urban incursion by road extensions that will subdivide what is left of already small islands of farms segregated in the Ventura urban area, while requiring those farms to remain as farms is to violate every goal, policy and action plan that calls for the protection and preservation of agricultural land. As stated above, in addition to actual farmland lost from production for these road extensions, the additional encroachment of urban traffic in this area will only serve to exacerbate already serious ag/urban conflict issues.

Either the citizens of Ventura want to preserve farmland, already completely encircled by urban development, or they don't. If they do, they must accommodate the farms they say they want to protect. If they want to realistically protect these "inner city" farms, they will have to deal with traffic congestion that might otherwise be accommodated by driving roads through what is now farmland. They will also have to learn to accept other inconveniences associated with having farms in the midst of the urban environment. If the citizens of Ventura do not wish to do these things, they must allow this farmland to be developed.

Therefore, we respectfully demand that the extensions of both Kimball Road and Ralston Street as described in Scenario 5 be deleted from the Traffic and Circulation section of the Draft EIR and also from Appendix E of the Draft EIR.

Class II Bike Lane as shown in the Serra Area

A Class II Bike Lane is defined in Section 4.2 Transportation and Circulation 4.12.1 Setting d. Bicycle/Pedestrian Travel (page 4.12-15) as a "lane on a road that is reserved for bicycles. The lane is painted with pavement lines and markings and is signed. The lane markings decrease the potential for conflicts between
motorists and bicyclists. Bike lanes are one-way, with a lane on each side of the roadway between the travel lane and the edge or paving or, if parking is permitted, between the travel lane and the parking lane. The lanes are at least four feet wide, five feet if parking is permitted."

Howard and Howard Response to the Draft EIR
July 14, 2005
Page Seven

Both Figure 4-1 (Bicycle Facilities) of the General Plan and also Figure 4-12-4 of Section 4.12 Transportation and Circulation Figure show Class II Bike Lanes where there would be potential extensions of Kimball Road and Ralston Street.

Given that Class II Bicycle Lanes can only exist where there are developed roads, it would seems reasonable to suggest that these potential bikeways should only appear in those areas, and under those circumstances, in which those roads would be extended.

Therefore, while we encourage the use of alternative transportation, especially that of bicycles, we must object to the presentation in both the Draft General Plan and the Draft EIR of these Class II Bicycle lanes along presupposed extensions of Kimball Road (from Telephone Road to Bristol Road) and/or the extension of Ralston Street from Ramelli to Montgomery. Until and unless the Serra Area is selected as a Growth Expansion Area, it is inappropriate to identify bike lanes going through the area, without the confirmation of the development of the associated roads.

Consequences of the First Assembly of God Church Site Development

As owners of one of the two SOAR-restricted agricultural properties that are adjacent to the First Assembly of God Church site in the Serra Area, we are incredibly concerned about the impact that the development of this site will have on our land, and also the other remaining farmlands in the Serra area. A Staff member assured me that the Church property had been evaluated and had been included in the EIR analysis as a "pending project".

Considering the contradictions and confusions in the Draft ERR Transportation and Circulation section, as presented above, we believe that there is some reason to be skeptical.

We are not traffic engineers, but it is difficult for us to believe that there will be no adverse or even increased traffic impact in the area considering the stated intentions of Church officials that this very intensely developed parcel will be in operation from 7 AM to 10 PM seven days a week. Despite assurances, we cannot but believe that at least Montgomery Road will need to be widened (as has been shown in many maps, although not detailed in any text or tables - See Above). We also believe that Ralston Street will need to be analyzed for expansion, even though the EIR traffic studies would indicate otherwise.

AGRICULTURE

The Draft EIR does an exemplary job of describing the impacts of development accommodated under the 2025 General Plan on existing agriculture in the Ventura Area.

Description of Serra in Section 4.2.1 Agriculture Setting (mag e4.2-7)

The description of Serra in the Draft EIR is incorrect in several respects, including crops currently in production, the proximity of residential development to existing farmland, and the absence of discussion of the First Assembly of God Church site and the UVSD parcel (discussed above) that abut farmland.

Howard and Howard Response to the Draft EIR
July 14, 2005
Page Eight
We suggest the following rewrite (Italics used for new language):
This 464-acre area is currently used for lemon and avocado orchards and for row crops. Adjacent to the farmland on the north is residential development and Telephone Road. Across Telephone Road on the north are more single-family homes and the new 100 -acre community park that is expected to open during the summer of 2005. To the east is low-density residential development, and to the west both low and medium density residential development. At the corner of Montgomery Avenue and Bristol Road is a 26-acre parcel that is no longer under SOAR restrictions and which is planned for development. Commercial uses are to the southwest along Johnson Drive. The Santa Clara River is located along the southern boundary of this area. The Department of Conservation has classified the entire Serra Area as a mix of "Prime", "Statewide Importance", and "Unique".

Buffers

For a number of years, the commercial farmers operating within the SOI of Ventura have asked the City to adopt a buffer policy that would help, in some measure, protect our land from the effects of urban encroachment. We are delighted that the 2005 General Plan includes two Actions that provide buffer policy.

Action 7.24 in the General Plan states: "Require non-agricultural development to provide buffers of 50 feet or more from agricultural operations to minimize the potential for pesticide drift." This action is also included in the Draft EIR in Section 4.7 Hazards and Hazardous Materials (page 4.7-13).

Action 3.15 in the General Plan states "Adopt use permit standards for non-farm activities in agricultural areas that protect and support farm operations, including requiring non-farm uses to provide all necessary buffers as determined by the Agricultural Commissioner's Office." This action is not specifically included in the Draft EIR. We believe that it would be appropriate to include this Action in Section 4.2 Agriculture in the Draft EIR. We respectfully request that Action 3.15 be included.

Portions of Land Not Developed in Scenarios 2-6 Allowed to Remain in Agriculture

Throughout the Draft EIR, discussions of Scenarios 2-6 submit the possibility that in such cases where there is more land than necessary to accommodate growth, that "any development could include wide areas of open space that could either allow portions of the areas to remain in agriculture or allow for large areas of civic spaces (parks) ..." (Section 4.1 Aesthetic and Community Design, page 4.1-15).

It is important to stress that any urban development that is built adjacent to commercial agricultural lands is potentially threatening to the protection and preservation of those agricultural lands. Even with buffers
required as part of the design of the new urban development, natural conflicts will arise between the urban interests and the agricultural interests. A list of such conflicts is presented in Section 4.2 Agriculture (pages 4.2-7 and 4.2-8). While it is gratifying that this EIR recognizes such conflicts, it is also somewhat troubling that it is potentially proposing that if too much land exists in a selected scenario, that the City will build what it needs, while leaving the remaining agriculture to deal with the consequences of adjacent development.

We suggest that any Long-term Potential Expansion Strategy that is selected give careful consideration to attempting to avoid creating new and potentially destructive ag/urban conflicts.

Howard and Howard Response to the Draft EIR
July 14, 2005
Page Nine

Right-to-Farm_Ordinances

Section 4.2.1 c of the Draft EIR discusses the Right-to-Farm Ordinance approved by the City in 1997. However the description of this Ordinance presented here does not include the disclaimer built into the Ordinance that it does not apply "if the agricultural activity, operation, or facility obstructs the free passage.or use, in the customary manner of .any public park, square, street, or highway." (Right-to-Farm Ordinance, Section 4162) (underlining for emphasis.)

Given today's litigious-happy society, we believe it is important for the City to consider these exceptions to the Right-to-Farm Ordinance before adopting any growth plan or policy that will require roads or parks to encroach on existing agricultural land.

CONCLUSION

We congratulate everyone involved in the preparation of this Draft Environmental Impact Report to the 2005 Ventura General Plan. It is an outstanding effort and accomplishment. The scope and detail required in the production of this document is truly impressive.

We hope that you will accept the comments and suggestions included in this response to the Draft EIR knowing that we offer them with the sole purpose of making an already remarkable document even better.

Respectfully submitted,

Jean Howard Mann
Owner and General Manager
Howard and Howard Ranch

Howard and Howard Ranch
 1575 Montgomery Avenue Ventura, California

Mailing Address 15000 SW Scarlett Drive Tigard, Oregon 97224 (503) 521-1551

Members:
Sunkist Growers, Inc.
Saticoy Lemon Association
Calavo Growers of California

Owners: Clyde Atkinson Howard B. Atkinson

Diane H. Belding Jean H. Mann

July 14, 2005

TO:	Kari Gialketsis, Pricipal Planner
City of San Buenaventura	
Community Development Department	
	501 Poli Street
	P.O. Box 99
	Ventura, CA 93002-0099

FROM: Jean Howard Mann, Owner and Managing Partner
Howard and Howard Ranch
Subject: Response to the Draft Environmental Impact Report for the 2005 Ventura General Plan
The following are additional corrections that should be made to the Draft EIR. I suspect that by now, most of these have probably been cleaned up for the Final version, but just in case, I offer them here.

Page iii Under List of Figures, after Figure 2-8, add "Scenario 6" before Intensification/Reuse + North Avenue + Olivas
Page 4.2-18 At the end of the first paragraph under "Scenario $4-$ Intensification/Reuse + North Avenue + Serra, the final sentence "In addition, about 24 acres within the Olivas area are under LCA contract" should be deleted. Olivas is not an expansion area studied under this scenario.
Figure 4.11-2 This map is labeled "Parks and Recreational Facilities". It should be renumbered to read Figure 4.11-
4. Figure 4.11-2 appears earlier in the section as a map labeled "Wildfire Risk Areas"

Page 4.12-76 The heading at the top of the page reads "Scenario 6-Intensification/Reuse + North Avenue + Olivas + Serra". This should be changed to read "Scenario 6-Intensification/Reuse + North Avenue + Poinsettia".
Page 4.12-89 A graphic box should be added around the section TC-1.
Again, many kudos for a job well done.
Respectfully submitted,

[^23]
Letter 11

COMMENTERS: Jean Howard Mann, Owner and Managing Partner, Howard and Howard Ranch

DATE:

July 14, 2005

RESPONSE:

Response 11A

The commenter states support for the City's emphasis of intensification and reuse as the top priority for future growth as well as staff's recommendation that the North Avenue and Serra areas be the top priority for development if future growth through 2025 cannot be met through infill development alone. This support is noted.

Response 11B

The commenter states that there are inconsistencies on several maps, suggesting that some maps show the First Assembly of God Church site as within the Serra expansion area and that others of show the church as outside the Serra expansion area. All of the Draft EIR maps that depict the Serra expansion area include the First Assembly of God Church site within the expansion area. However, the commenter correctly notes that re-designation of the site has received voter approval and the site is no longer subject to the SOAR Ordinance. Therefore, although the First Assembly of God Church site is outside the current City boundary, it will be removed from the Serra expansion area. The maps throughout the Draft EIR will be revised to reflect this change, which will reduce the size of the Serra expansion area to an estimated 438 acres. This change will not substantively affect any of the Draft EIR conclusions, though the total acreage of agricultural land conversion for the Intensification/Reuse Only scenario will increase by about 26 acres and the amount of land subject to SOAR under Scenarios 2 and 4 will decrease by a similar amount. These changes will be made in the Final EIR.

Response 11 C

The commenter notes that a 10-acre parcel south of Ralston Street is owned by the Ventura Unified School District (VUSD) and states an opinion that EIR figures should depict the site as a school and not subject to the SOAR Ordinance.

Figure 4.11-3 to which the commenter refers is intended to show existing school facilities, not merely VUSD-owned properties. Though owned by the VUSD, the site in question is currently used for agricultural production, not a school; therefore, no correction to Figure 4.11-3 is needed.

With respect to Figure 4.2-3, whether or not school district-owned properties are subject to local policies such as the SOAR Ordinance has been the subject of some debate. While it may be true that a public school could be developed without a SOAR vote, any other development on the property would be subject to a SOAR vote. For example, if the VUSD were to sell the property to a private developer (as has occurred with several other VUSD properties), development of

City of Ventura
the site could occur only with voter approval. Because the 10-acre site in question could be subject to SOAR under certain circumstances, no correction to Figure 4.2-3 is needed.

Response 11D

The commenter states that there are inconsistencies between figures and tables in the EIR traffic study. Specifically, the comment states that several figures suggest that Ramelli Avenue and Montgomery Avenue are to be widened, but that accompanying tables omit the widening of those same roadways. Neither Ramelli Avenue nor Montgomery Avenue would be widened to add lanes or increase the road capacity. The widening that could potentially occur would be to add on-street park and/or sidewalks. However, such widening would only be expected to occur in conjunction with the possible future development of the Serra area.

Response 11E

The commenter states that there are inconsistencies in the Draft EIR with respect to whether or not the extensions of Kimball Road and Ralston Street would be implemented in conjunction with buildout of Scenario 5, which does not include the Serra expansion area. It is not anticipated that either Kimball Road or Ralston Street would be extended through the Serra expansion area under Scenario 5. The traffic modeling for that scenario did not assume the extension of either roadway. Any references to the extension of those two roadways for Scenario 5 contained in the Draft EIR will be corrected in the Final EIR.

Response 11F

The commenter states an opinion that figures showing the future extension of the bikeways through the Serra expansion area should be amended to exclude those extensions until and unless the Serra area is planned for development. In response to this comment, Figure 4-1 in the traffic study in Appendix E and Figure 4.12-4 in Section 4.12, Transportation and Circulation, will be amended to include a note indicating that bikeways through agricultural or open lands would be constructed only in conjunction with development of the area.

Response 11G

The commenter states concerns about the impact of the First Assembly of God Church site development on remaining agricultural lands and re-states concerns about the possible future expansion of Montgomery Road and Ralston Street. Agricultural/urban conflicts are discussed generally in Section 4.2, Agricultural Resources, and it is acknowledged that conflicts between the agricultural growers in the Serra area and adjacent urban uses may persist if the Serra area remains in agricultural use. The specific impacts of the First Assembly of God Church site on adjacent agricultural lands would need to be addressed as part of a site-specific environmental review of the church's development plans. See Response 11D for a response to concerns about the possible future widening of Montgomery Avenue. No widening of Ralston Street is planned.

City of Ventura

Response 11H

The commenter suggests several clarifications with respect to the discussion of the Serra expansion area in Section 4.2, Agricultural Resources. In response to this comment, the paragraph describing the Serra area on page 4.2-7 is revised as follows (text revisions are underlined):

Serra. This 438-acre area is currently used for lemon and avocado orchards and for row crops. Adjacent to the farmland on the north are residential development and Telephone Road. Across Telephone Road to the north are more single family homes and the new 100-acre community park that is currently under construction. To the east is low density residential development, and to the west are both low and medium density residential development. At the corner of Montgomery Avenue and Bristol Road is a 26 acre parcel that is no longer subject to the SOAR Ordinance and that is planned for development. Commercial uses are to the southwest along Johnson Drive. The Santa Clara River is located along the southern boundary of this area. The Department of Conservation has classified this area as a mix of "Prime," "Statewide Importance," and "Unique" farmland.

Response 11I

The commenter requests that General Plan Action 3.15 pertaining to requiring non-farm uses to provide necessary buffers between agricultural and urban uses be included in the Final EIR. Action 3.15 is discussed in two separate places in the Draft EIR, on pages 4.2-16 and 4.2-22.

Response 11I

The commenter states concerns about what she perceives as a proposal in the Draft EIR to develop only as much of the expansion areas as needed, while leaving remaining agriculture to deal with the consequences of adjacent development. The Draft EIR is not proposing that portions of the expansion areas should be left in agricultural use, but rather merely acknowledges that, depending upon the level of development that is proposed in the expansion areas in the future (if any), all of the expansion area land may not be needed to accommodate planned development. In such an instance, remaining land not used for development could potentially remain in agriculture, but could also be used for other purposes (such as schools, parks, or other civic spaces). It is true that if only a portion of the Serra area, for example, were used for urban development, the remaining growers within the Serra area would be further isolated and would likely experience greater levels of conflict with urban uses.

Response 11K

The commenter notes that the City's Right-to-Farm Ordinance provides exceptions when agricultural activity obstructs the use of a public park, square, street, or highway. This exception is noted. As discussed under Responses 11E and 11F, no extensions of roadways or bikeways through the Serra expansion area would be expected to occur until and unless that area is planned for development.

Response 11L

The commenter notes five minor typographical errors in the Draft EIR. These will be corrected in the Final EIR.

Kari Gialketsis, Principal Planner City of San Buenaventura
501 Poli Street
Ventura, CA

DELIVERED VIA E-MAIL \& FAXCIMILE

RE: San Buenaventura City General Plan EIR

Dear Ms. Gialketsis:
On behalf of the approximately 500 companies and their representative employees who make up the Greater LA/Ventura Chapter of the Building Industry Association of Southern California, thank you for the opportunity to comment on the City of Ventura's proposed 2005General Plan and its accompanying Environmental Impact Report.

While the General Plan document is quite benign, we believe the "devil is in the details" of the almost 1000 page EIR. It is this document that will serve as the true guideline when questions or concerns arise. While we respect Ventura's efforts to seek the highest environmental standards that arise due to construction; we have concerns with some aspects of the proposed EIR. These concerns include the air quality standards, population growth, standards on public services, transportation and road construction, and utilities and services.

I. AIR OUALITY

The EIR uses numbers based on SCAG projections. The SCAG projections are lower than the city's; thus, every project becomes an unavoidable significant impact. The Air Quality thresholds (and population thresholds) should be consistent with the city's chosen alternative. The EIR should be revised once the city chooses its population limit so that development within that limit is not determined to create an unavoidable significant impact.

II. POPULATION AND HOUSING

The preferred environmental alternative, infill and intensification of reuse only without expansion areas, sets a limit of 8258 units of residential housing up until the year 2025. It is our thought that this number might be too low, not taking into account the maximum use of underdeveloped properties throughout the city.

III. PUBLIC SERVICES

It is in this section that we have the most concerns. The city has been using very high standards for parkland per 1000 residents, as well as for police and fire. The question should be asked "are these standards realistic?" Has the city ever met these standards during the previous general plan? If these arbitrary standards are carried over, then they should be evaluated against reality, and lowered where appropriate. This will avoid having every project in conformance with the plan have an unavoidable significant impact. These unattainable ratios will be the basis for new fees on development. The EIR must be made clear that new development does not pay for existing deficiencies, just the impacts of the new residents only. Parks take a significant role in this chapter.

The standard for a neighborhood park of 5 acres is arbitrary and outdated, again the same as in earlier General Plans. The BIA requests that the 5 -acre standard be removed.

Fire services are another area in which the BIA has concern. All new residential construction requires fire sprinklers. This standard should be sufficient to help mitigate the need for additional fire personnel at least that of which is to be paid for by new development.

We are also concerned with the standards put forward on public schools. Is there a demographic analysis that takes into account the aging population?

IV. TRANSPORTATION AND CIRCULATION

We would like to request an addition to the EIR that states, "All future roadway, bikeway, and pedestrian path alignments are shown for illustrative purposes only. Exact alignments will be determined during project review." Some of these alignments are carried over from the 1975 plan, and may not reflect the most current topography or development which has since taken place. The city must maintain design flexibility, and avoid the duplicative process of a general plan amendment for road location on projects which conform to land use and other elements.

V. UTILITIES AND SERVICES

In this section there is a breakdown of new residential units and other construction by neighborhood. This breakdown is used for water and wastewater analysis only. The BIA feels the breakdown should be for illustrative purposes only; otherwise, a permanent breakdown will be adopted as part of the EIR, and will pre-ordain the RGMP process, and leave little discretion for decision makers.

While the General Plan update process has been quite lengthy, the BIA thanks the City of San Buenaventura for allowing us to be part of the discussion to date. As the City of Ventura focuses on streamlining their development processes, we welcome the opportunity to continue to be a part of the collective and collaborative processes which will someday result in an easier development process for our members to navigate.

Thank you once again for the opportunity to provide comments. Please feel free to contact me at 661-257-5042 or tdonlon@bialaventura.org if you have any questions or comments. Please note that in the last few weeks we have moved offices, we are now located at 28460 Avenue Stanford, Suite 110, Santa Clarita, CA 91355.

Sincerely,

[^24][^25]
Letter 12

COMMENTER: Terra Donlon, Director of Government Affairs, Building Industry Association

DATE:
July 15, 2005

RESPONSE:

Response 12A

The commenter notes that the EIR uses numbers based on SCAG projections and suggests that the EIR should be revised once the City chooses a population limit so that future developments would not create unavoidably significant impacts. The population growth estimates included in the Draft EIR were directed by the City Council and are not purported to be a "limit". Because the projected citywide growth through 2025 based on the Council-directed growth rates exceeds the SCAG/Ventura County AQMP growth forecast for the City, any of the EIR scenarios could be found to be inconsistent with the AQMP. However, as noted in the Draft EIR and in the comment letter from the Ventura County Air Pollution Control District (Letter 27), the 2007 AQMP will include revised growth forecasts that will take into account the City's growth projections under the 2005 General Plan. As such, future developments that are consistent with the 2005 General Plan will likely be found to be consistent with the new AQMP.

Response 12B

The commenter states an opinion that the 8,258 residential units assumed to be added to the City through 2025 under Scenario 1 may be too low. This opinion is noted. The 0.88% average annual growth rate assumed for Scenario 1 represents the average annual rate of growth that has occurred in the City over the past 10 years (1994-2004) and as stated in 12A above, were directed by City Council to use as estimates.

Response 12C

The commenter disagrees with the standards for parks, fire service, and schools that are discussed in Section 4.11, Public Services. The park acreage standards presented in the Draft EIR are the currently adopted City standards, while the fire service standards are those provided by the Ventura Fire Department. Similarly, the projected number of new students associated with growth through 2025 is based on students per housing unit generation rates provided by the Ventura Unified School District. The Draft EIR differentiates between existing deficiencies based upon currently adopted standards and the demands for increased service associated with new development. New developments will be subject to existing park and school impact fees, which are intended to offset the demands associated with new developments rather than to alleviate existing deficiencies. Any new fire impact fees that the City may develop in the future would similarly be designed to have new developments offset the cost of providing facilities to serve the new development rather than to address existing deficiencies. It should be noted that existing impact fees for schools and parks, as well as any possible future impacts fees for other services (such as fire protection), can be used only for facilities and equipment, not for personnel.

Response 12D

The commenter requests that maps showing future roadway, bikeway, and pedestrian path alignments be amended to include a note indicating that the alignments shown are for illustrative purposes only and that final alignments will be determined during project review. These maps will be amended to include such a note in the Final EIR and General Plan.

Response 12E
The commenter requests that the breakdown of uses by location within the City in several tables in Section 4.13, Utilities and Service Systems, should include a note stating that the breakdown is for illustrative purposes only and that the actual amount of development within individual areas of the City may vary. The tables in Section 4.13 will be amended to include such a note in the Final EIR.

June 25, 2005

City of Ventura 2005 General Plan Update Draft E.I.R. City Council \& Planning Commission Joint Workshop\#2 Review of the Draft E.I.R.

Re: General Plan Scenario 5: Intensification/Reuse + North Avenue + Western Canada Larga

Dear Council Members \& Commissioners:
Thank you for today's opportunity to address you with my comments Concerning the City's 2005 General Plan Update Draft Environmental Impact Report. Unfortunately, speaker time does not permit me to fully comment on all of the issues raised in the analyses of General Plan Scenario 5. I will submit all of my written comments by the conclusion of the 45-day review period July 18, 2005.

Today, I submit for your consideration a letter and maps concerning watershed flood plain issues not addressed in the document's "Upper North Avenue District Housing" Alternative. This Alternative is a variation of General Plan Scenario 5 relating to the Brooks Campus expansion and the Petrochem Refinery residential reuse. The attached County G.I.S. maps illustrate those sites to be substantially within the 100 year flood plain of Canada Larga Creek.

I will limit my oral comments to 3 issues raised in the Environmental Impact Report analyses of General Plan Scenario 5, which includes the Westernmost 120 acres portion of the original 800 acre P.E.A. \#1 Canada Larga. Those issues are Density, Guidelines for Orderly Development and Farmland Conversion.

Thank you,

Shull Bonsall, Jr. Rancho Canada Larga

VENTURA COUNTY

Subject: SUMMARY OF CANADA LARGA CREEK FIELD TRIP ON JUNE 2, 2005

Dear Mr. Bonsall:
The Canada Larga watershed is located about 5 miles north of the City of Ventura and has a catchment area of about 12,311 acres (19.24 squăre miles). Current land usage of the watershed are mostly natural woodlands and grass lands with cattle grazing. Canada Larga Creek is one of the two largest tributaries of Ventura River. A preliminary hydrologic study indicates that the 100-year peak flood flow discharge at the confluence with Ventura River is about 13,386 cubic feet per second (cfs).

In January and February of 2005, two major storms struck Southern California and resulted in over-bank flooding of Canada Larga Creek (approximately 40-year return period), causing damages to properties, agriculture and infrastructures; especially at the lower reach of Canada Larga Watershed.

To better understand the issue in Canada Larga Watershed, the District engineers, Sergio Vargas, Denny Tuan and Yunsheng Su, visited the site with you on June 2, 2005. This letter summarizes the findings of that field trip:

1. Lower reach of the Canada Larga Watershed is subject to frequent flooding. It is caused not only by undersized channels and road crossings, but also by the excessive amount of debris and sediment.
2. The District has identified the needs to address the issues, and a project is proposed in our Integrated Watershed Protection Plan (20-year plan). However, the present benefit-cost ratio does not rank a higher priority than other urgently needed District facilities improvements.

Mr. Shull Bonsall
June 23, 2005
Page 2 of 2
3. You mentioned that the Brooks Institute Camp Expansion project is under planning downstream of HWY 33, and that a land development project might be planned upstream of HWY 33 in the future. Should there be funding opportunities due to future land developments, the District can provide information, mapping, and engineering expertise in a watershed-wise evaluation for solutions of flood control, water quality and habitat restoration.
4. You explained your concept for a potential detention/debris basin. However, before any conclusion is reached, watershed-wise hydrology, hydraulics, and sediment transport studies have to be conducted to evaluate the baseline (existing) and the proposed conditions.

We appreciate the opportunities to work with you. Please feel free to give me a call at 805-650-4077 if you have any questions.
'Sincerely,

Sergio vargas, P.E.
Deputy Director
SV:ys:ahK:IPR\planninglAngelaVetter-canada-larga-06-21-05 \#2.doc
cc: Denny Tun
Yunsheng Gu

Letter 13

COMMENTER: Shull Bonsall, Ir., Rancho Cañada Larga

DATE:
June 25, 2005

RESPONSE:

The commenter attaches a letter from the Ventura County Watershed Protection District, which addresses flooding issues in the Upper North Avenue district and notes that portions of the Brooks Institute campus and Petrochem refinery are within the 100-year flood zone. The commenter is correct that portions of the Upper North Avenue area is within the 100-year flood zone. This is discussed in Section 4.8, Hydrology and Water Quality. Any development within the 100 -year flood zone would be subject to FEMA requirements as well as the requirements of the City's Floodplain Ordinance. In order to clarify the flooding potential as it relates to the Upper North Avenue District Housing alternative, the discussion under "Hydrology and Water Quality" for that alternative on page 6-15 will be amended to read as follows (new text is underlined):

Residential development within the Upper North Avenue District would be within the 100 -year flood zone and would therefore be subject to the requirements of FEMA and the City's Floodplain Ordinance. Placing residential development within the Upper North Avenue district adjacent to the Ventura River would incrementally increase the potential for water quality impacts within the river. However, possible impacts could be addressed on a case-by-case basis through compliance with standard engineering practices and runoff control requirements. Overall, hydrology and water quality impacts would be somewhat greater than those associated with 2005 General Plan Scenario 5, but could be reduced to a less than significant level.

VENTURA AUDUBON SOCIETY. inc.
 P.O. Box 24198 Ventura, CA. 93002 www.VenturaAudubon.org

 SAN BUENAVENTURa

July 17,2005

Ms. Kari Gialketsis
City of San Buenaventura
Community Development Department
501 Polis St.
Ventura, CA 93001

Dear Ms. Gialketsis,
Thank you for the opportunity to comment on the Public Review Draft of the Ventura General Plan, May 24, 2005 and the associated Draft EIR. The Ventura Audubon Society has the following concerns.

The General Plan asserts that there is an intention to preserve the essential nature of our community. Specifically in Policy 1B it states that the City wishes to increase the area of open space protected from development impacts. The proposed expansion areas for development will significantly decrease the area of open space and we are opposed to this action.

Agricultural open space does have some wildlife value. In the case of row crops; egg. most of the proposed Olives expansion, the wildlife value is very low, but in the other proposed expansion areas that contain orchards there is a medium level of wildlife value. Orchards provide cover and food, from associated insects, for many bird species. Virtually all of the proposed expansions are either in SOAR designated areas or are in designated Land Conservation Act Contracts and we feel that they should remain as open space.

Action 1.8 states: "Buffer barrancas and creeks that retain natural soil slopes from development with a minimum of 50 feet of natural existing or restored vegetation." We feel that this may encourage removal of existing riparian forests (consisting of Cottonwood, Willow, White Alder and Sycamore trees) that are wider than 50 feet adjacent to watercourses. The loss of Riparian Forest is the cause of the significant decline of many bird species, egg. Yellow-billed Cuckoo and Southwestern Willow Flycatcher that are dependent of this habitat. This action should be amended to require preservation of wider existing areas of Riparian Vegetation.

Action 1.11 states: "Require that sensitive wetland and coastal areas be preserved as undeveloped open space wherever feasible." We feel this should be amended to require a level of "no net loss" of either sensitive wetlands or 'natural' coastal areas.

Policy IC states: "Improve protection for plants and animals." Within this policy, Action 1.18 states: "Prohibit dredging during fish spawning and bird migration cycles." This action is sufficiently vague to render it not useful. Does it apply to inland or coastal dredging? Western Snowy Plovers and California Least Terns nest on local beaches outside of normal bird migration times of the year and would be adversely impacted by dredging operations during that time. Which fish species are to be protected? The Ventura Port District often discharges dredge material into the ocean at the mouth of the Santa Clara River during the winter. This would not affect Tidewater Goby but may impact Steelhead Trout wishing to migrate up the river.

We are thankful that the City of Ventura has an attitude of environmental concern that is translated into day to day concems by City staff. We look forward to working with the City in the future to preserve and protect the existing wildife habitats that make Ventura a desirable place to live and work. We look forward to receiving your written responses to our comments. Please feel free to contact me at (805) 644-9344 if you have questions about our comments.

Sincerely yours,

Reed V. Smith
Board Member, Science Chair
Vontura Audubon Society

Letter 14

COMMENTER: Reed V. Smith, Board Member, Science Chair, Ventura Audobon Society

DATE: July 17, 2005

RESPONSE:

Response 14A
The commenter states opposition to the inclusion of any of the expansion areas in the 2005 General Plan, noting that agricultural open space has some wildlife value. This opposition is noted. City staff are currently recommending adoption of the "Intensification/Reuse Only" scenario, which includes none of the expansion areas.

Response 14B

The commenter suggests that buffers around riparian areas should be larger than the 50 feet identified in General Plan Action 1.8. This opinion is noted. The 50 -foot buffer is a minimum requirement for new development adjacent to riparian areas. City staff believe that this is an appropriate minimum buffer area given the urban/suburban nature of the Planning Area. The 50 -foot buffer is consistent with that adopted by many cities throughout California. If a larger buffer is needed in specific locations in order to address potentially significant impacts to a riparian corridor, then such a buffer can be required on a case-by-case basis.

Response 14C

The commenter suggests amending General Plan Action 1.11 to require no net loss of wetland and coastal areas. In response to this comment, Action 1.11 will be amended to read as follows (new text is underlined):

Require that sensitive wetland and coastal areas be preserved as undeveloped open space wherever feasible and that future developments result in no net loss of wetlands or "natural" coastal areas.

Response 14D

The commenter suggests that Action 1.18 regarding the timing of dredging should be modified to be more specific as to what type of dredging is being addressed and when dredging may occur. In response to this comment, Action 1.18 will be replaced with the following:

Action 1.18: Conduct coastal dredging in accordance with the U.S. Army Corps of Engineers and California Department of Fish and Game requirements in order to avoid impacts to sensitive fish and bird species.

ASSOCIATION Of GOVERNMENTS

Main Office
8_{28} West Seventh Street 17th Floor

Las Angeles, California

$$
90017-3435
$$

(213) $735-7 \mathrm{Kn}$
((1213) 2350425
www.scag.ra,gov

 nt Raterth, Fenvecuto
tmperlal County: victor hamill, lupreial County - bon Id ray, II Curtis

Los Angeles Country Miupr Burke, Les Anerlos

 Cardenas, Lot Angylog 5 Sima Chill Lis Kabr thighs - Margaret Clock, Rosemman * sane Datirist, Fatameunt * Make flapprna, Pallawde luth (malian, Inditwew, Rae Gatelith. borg

 thltut, Alhantha - Sigley pipe, Pawatres. tonia Reyes Ular:gu, laws Beach - Antonin vilaroighes, lis Angers Denny wasthum,
 Youselivo Urpatai - biminis zine, los Angeles Orange Country C luis kinky, Orange County
 - Pinite Chavez Anihria - Drimir Cook Huntington Brach - Gillian vetoung Lexuma

 Brach
Riverside County i ill Sone, Riverside Cavity : gliomas Buckley, take tielioge - Bonnie
 Rivende "Gey
san semmidino county gary ton. SAH.

 Att : Alan, Wapiti, phat an
Ventura Country linty Mikple, ypatun Curly * Glen Hpestm, Simp Vasty - Carl Morehoust, Gist

Orange County transportation Auphofty: tan Cures, Cutely of Orang
Riverside County lranspartation Commission: Roversinto cove. hermit
ventura County Transportation Commission: Kith mall house, Moorpirk

14 July 2005

JUL 182005
Community Devil \because, ...nt
MANNING: VISION

Ms. Kari Gialketsis
City of San Buenaventura
Community Development Department
501 Poll Street
PO Box 99
Ventura, CA 93002-0099
RE: SCAG Comments on the Draft Environmental Impact Report (DEIR) for the 2005 Ventura General Plan SCAG No. 120050363

Dear Ms. Gialketsis:

Thank you for submitting the Draft Environmental Impact Report for the 2005 Ventura General Plan to the Southern California Association of Governments (SCAG) for review and comment. SCAG's responsibility as the region's clearinghouse per Executive Order 12372 includes the implementation of California Environmental Quality Act (CEQA) §15125 [d]. This legislation requires the review of local plans, projects and programs for consistency with regional plans.

SCAG staff has evaluated your submission for consistency with the Regional Comprehensive Plan and Guide (RCPG), Regional Transportation Plan (RTP), and the Compass Growth Vision. The Draft EIR addresses SCAG's policies and forecasts appropriately and has provided sufficient explanation of how the project helps meet and support regional goals. Based on the information provided in the DEIR, we have no further comments. We would appreciate notification of the Final EIR, especially should a change in project scope occur.
A description of the proposed Project was published in the June 1-15, 2005 Intergovernmental Review Clearinghouse Report for public review and comment.

If you have any questions, please contact me at (213) 236-1851. Thank you.
Sincerely,

Brian Wallace
Associate Regional Planner Intergovernmental Review

Letter 15

COMMENTER: Brian Wallace, Associate Regional Planner, Southern California Association of Governments

DATE: July 14, 2005

RESPONSE:

The commenter states that the Draft EIR appropriately addresses SCAG's policies and forecasts. No response is necessary.

Ventura Citrus Properties, lace

 Vantanx, 0443002
Kari Gialketsis

Principal Planner
Planning Department
501 Polis St.

Suite \# 205

Ventura, CA 93002-0099
RE: Draft Environmental Impact Report \#SCH2004101014 City of Ventura General Plan Amendment Update 2005

Dear Ms Gialketsis:
As an interested property owner, we have reviewed the Draft Environmental Impact Report (DEIR) and General Plan Update. Overall, we are quite impressed with the new direction the City is taking.

In reviewing the Land Use Section of both the DEIR and General Plan Update, we agree with the City's proposed land use designation for high density residential on our property.

We would like to make the following comment regarding the DEIR:

- Transportation and Circulation Element - Many of the Exhibits show specific alignments for proposed bikeways and streets. We believe that it would be appropriate to note within the DEIR that these alignments are for illustrative purposes only. We feel that the City should retain the flexibility to adjust these alignments and locations as projects are developed.

We hope that the City incorporates our comment in the Final Environmental Impact Report.

Sincerely,
cell.
William M. Burgers

Vice President

Ce Rick Cole - City Manager

Susan Daluddung - Community Development Director
Lisa Porras - City Planner
Rincon Environmental

Letter 16
COMMENTER: William M. Borgers, Vice President, Ventura Citrus Properties, Inc.
DATE:
Not dated

RESPONSE:

The commenter suggests that maps depicting road and bikeway alignments be amended to clarify that the locations shown are for illustrative purposes and that final alignments will be determined during project review. These maps will be amended to include such a note in the Final EIR.

June 27, 2005
Memo of Buy Bonsall's 3-minute public comments at the June 25, 2005 City Council/Planning Commission Workshop \#2

Re: City of Ventura 2005 General Plan Update Draft E.I.R.

- Achieving the Vision

Canada Larga was the only one of what ultimately became 12 P.E.A.s to be specifically called out for in the March 2000 Vision document. Had the original 800 acre P.E. Λ. \#1. Canada Large, been studied in this Draft F.I.R., there would be plenty of excess acreage for Open Space. Parkland and School land use which were found lacking in Scenario 5:
Intensification/Rcuse - North Avenue I Western Canada Larga. All or part of that acreage is still available for those purposes.

- Density

Assigning 1700 housing units to the roughly 80 usable acres of the 120 Acre Western Canada Large Expansion Area is a totally unrealistic density for this semi-rural area, making for unrealistic impacts. I would not want 1700 units on the entire original 800 Acre P.F.A. much less on the reduced acreage. A 3 -digit number would be more appropriate for the land in cither case.

- Guidelines for Orderly Development

In the potential Class 1. Unavoidably Significant Impacts of "Guidelines for Orderly Development. Inconsistency," my conversations with Evert Mallais and Kim Which of L.A.F.C.). lead me to believe this is an error, They say Scenario 2 and 3 would have the same impacts if looked at the same way as Scenario 5 or there would be no inconsistency with all three Scenarios 2. 3 \& 5 . They will make their comments.

- Farmland Conversion

1 refer you to Table 4.2-1 m Page 4.2-2. The 120 Acre Wester Canada Fipansion Area has no Prime Farmland, Statewide Importance Farmland or Unique Farmland 0 acres total. This is also true for the original 800 acre P.F.A. All but 15 unusable riverbed and flood plain acres of the Canada Larga Expansion Area. 120 acres or 800 acres, does nut require a City S.O.A.R. vote to be utilized. I would direct you to the Ventura County Office of Agricultural Commissioncr"s letter in the Appendix A commenting on the Revised Notice of Preparation quote: "In reviewing the alternative P.L.A.s under consideration we have the following observations:... Alternative \#3 appears to be most in keeping with all the stated policies and goals of both the City and the County of Ventura. This Scenario requires minimum expansion of Sphere of Influence. Limited removal of Prime Agricultural soils and Lands protected under S.O.A.R. and provides direction for growth to 2025 ."

In the revised N()P. the referenced Alternative $\# 3$ is now Scenario 5 : Intensification/Rcuse + North Avenue I Western Canada Large in this F.I.R. document. Canada Larga has no farmland Conversion by itself.

Thank you.

Letter 17

COMMENTER: Buz Bonsall, Rancho Cañada Larga

DATE:
June 27, 2005

RESPONSE:

Response 17A

The commenter notes that the 800-acre Cañada Larga area includes sufficient acreage to accommodate open space, parks, and schools. It is correct that the 800 acres included in the original Cañada Larga area considered by the CPAC, Planning Commission, and City Council would likely include sufficient acreage to meet school and park demands associated with development of the area.

Response 17B

The commenter states an opinion that the 1,700 residential units assumed for the Western Cañada Larga expansion area included in EIR Scenario 5 is unrealistic. The density assumed in the Draft EIR was directed by the City Council. City staff agree that the density assumed is not realistic; therefore, an alternative that reduces the density for the Western Cañada Larga and North Avenue expansion areas as compared to Scenario 5 was included in Section 6.0, Alternatives. That alternative, known as the "Upper North Avenue District Housing" alternative would replace some of the development assumed for the Western Cañada Larga expansion area with additional development in the Upper North Avenue district.

Response 17C

The commenter suggests that the conclusion regarding an inconsistency of the Western Cañada Larga area with respect to the Guidelines for Orderly development is an error. In its comment letter on the Draft EIR (Letter 3), the Ventura LAFCO suggested that inclusion of the Western Cañada Larga within the City's sphere of influence at this time would be inconsistent with the Guidelines for Orderly Development since that area is not contiguous with the current City limit. The LAFCO also suggests that development of the North Avenue expansion area may be inconsistent with the Guidelines for Orderly Development since it is not contiguous with the City boundary and, therefore, may not be annexed at this time. The LAFCO notes that annexation of the Olivas area (which is included in Scenarios 2 and 3) would not conflict with the Guidelines for Orderly Development. It should also be noted that, in response to the LAFCO letter, portions of the EIR Project Description and Section 4.14 were re-written to clarify how and when boundary adjustments may occur in the future and how the General Plan relates to future boundary adjustments. Because no boundary adjustments are being sought by the City at this time and it is presumed that future boundary adjustments would be sought only at such time as they could be found to be consistent with applicable State and LAFCO policies, the impact with respect to consistency with LAFCO policy has been changed to Class III, less than significant, for all scenarios.

Response 17D

The commenter notes that the Western Cañada Larga expansion area does not include any important farmlands and that the Agricultural Commissioner's Office has stated an opinion that Scenario 5 appears to be most in keeping with the policies of the City and County (note that the current Scenario 5 was called Scenario 3 in the Notice of Preparation). As discussed in Section 4.2, Agricultural Resources, it is correct that the Western Cañada Larga expansion area does not include any farmland designated as Prime, Statewide Importance, or Unique.

July 18, 2005

GAM Qutanaventuin

Ms. Kari Gialketsis, Principal Planner

Jul l 182005
City of San Buenaventura
Community Development Department
COMMUNTY DEVELOPS:
501 Polis Street
Ventura, CA 93002-0099

Subject: City of Ventura

2005 General Plan Draft Environmental Report

Dear Ms. Gilaketsis:
We appreciate the opportunity to provide you with our comments on the City's Draft Environmental Impact Report (DEIR) for the City's proposed 2005 General Plan. The DEIR is well written and comprehensive.

We have focused our comments on the DEIR's analysis of the future development potential of the Upper North Avenue District (UNAD). The comments are offered in the spirit of ensuring that there is adequate flexibility in the General Plan's land use designation of "Industry" to allow a mixed-use project to be considered for the expansion of the Brooks Campus and adjacent area and to be found consistent with the City's 2005 General Plan. We arc seeking to protect the potential that we believe exists for the City to realize numerous land use and economic objectives in the UNAD should it be annexed in the near future.

A conceptual plan, known as the Village at Crooked Palm, has been under development and would result in expansion of the Brooks Institute, the creation of an urban village, and the remediation and reuse of the former USA Petrochem site. With respect to this potential project in the UNAD, the City's Economic Development Strategy document (adopted on April 25, 2005) describes its potential to "...transform the upper North Avenue area from an industrial ghost town to a dynamic economic engine...." and proceeds to state that:

Setting the groundwork for project entitlement will be the City's primary focus for the next few years. Critical to the effort is site remediation, resolving outstanding land use issues that allow consistency with the General Plan update, and future annexation to the City (page 5).

To this end, the following comments reflect a desire to ensure that the groundwork is clearly established within the 2005 General Plan. We want to ensure that the opportunity is not lost to facilitate the City's future ability to consider an urban village concept within the UNAD and find it consistent with its newly adopted General Plan and the City's Economic Development Strategy.

Ms. Kari Gialketsis, Principal Planner
July 18, 2005
Page 2-

"Industry" Land-Use Designation

The proposed General Plan designates the land use for the UNAD as "Industry." With respect to the land use designations within the proposed Gencral Plan, page 2-13 of the DEIR states that: "For industrial parcels. industrial only projects would be allowed, but it is assumed that residential uses would be limited to work/live or live/work residences". This stated assumption is limiting and too restrictive to facilitate a future finding of General Plan consistency with the Economic Development Strategy for the Brooks campus and urban village land use concept currently under development. Residential use would not be limited to work/live units as there is also the extraordinary opportunity to create neighborhoods that would provide a variety of housing types to support Brooks' campus and the associated office, retail, cultural, and recreational uses.

Given these opportunities and land area available within the UNAD, a housing density consistent with the General Plan's "Neighborhood-Medium" providing for 9-20 dwelling units per acre, would be appropriate and should be considered for the UNAD.

The DEIR's assumptions regarding the limits of an Industry land use designation also runs counter to important planning objectives stated in the proposed 2005 General Plan and to the adopted goals of the Economic Dcvelopment Strategy. For example, the proposed 2005 General Plan states:

Induswial sites that are fast converting to light industry, high tech manufacturing and assembly could become factory villages with green space, multiple types of housing, small scale retail to serve workers and spin-off businesses. (page 3-5)

The proposed General Plan also states in its description of corridors and districts:
One of the primary objectives for infill in Ventura is to produce mixed-use development that places everyday requirements in close proximity to dwellings. (page 3-7)

We therefore specifically request that the DEIR either broaden its assumptions of what land uses would be allowed in lands designated as Industry or that the land use designation for the UNAD be revised to Commerce or Residential (or a combination of all three) such that a mixed-use, urban village project could be processed and found to be consistent with the 2005 General Plan.

The document should also clarify how the existing Brooks Campus is a use consistent with the proposed land use designation of Industry or if the proposed plan will result in an existing use being inconsistent with the newly adopted General Plan.

Ms. Kari Gialketsis, Principal Planner
July 18, 2005
Page 3 -

Alternatives Analysis

We note that a project concept similar to what is described above is included within the Alternatives Analysis (section 6.5 Upper North Avenue District Housing) as an
alternative to Scenario 5 which is noted as having insufficient acreage to accommodate a mix of housing types or to accommodate parks, schools, or other public facilities. The DEIR analysis considers a mix of office, retail, student/rental housing and 750 other residences being developed on within the UNAD. The analysis also assumes that this level of development would reduce, commensurately, that which would otherwise be developed within the Western Cañada Larga and North Avenue sites. Beyond merely offsetting the intensity of development that might occur in these expansion areas, the DEIR description and analysis (beginning on page 6-13) should also clearly identify the other advantages resulting from developing the UNAD:

- Expanding Brooks' campus and creating jobs and new related growth opportunities in a mix-use urban environment consistent with the city's Economic Development Strategy.
- A brownfield site would be eliminated and reused.
\because Development of the UNAD would meet the City's goal of utilizing existing urban infill sites before developing expansion areas.
- The development of the UNAD would be consistent with the County's Guidelines for Orderly Development by developing a site that is currently within the City's Sphere of Influence and contiguous with the City's boundary.

Thank you for your consideration of the foregoing comments. The UNAD is currently within the City's Sphere of Influence and will likely be considered for annexation in the near future. Given that the 2005 General Plan is intended to guide the City's land use decisions until 2025, it should provide the City's future decision-makers with the flexibility to consider exemplary projects and land uses on underutilized parcels that could potentially satisfy many of the City's economic, job creation; housing and community planning objectives.

Very truly yours,

Kristen D. Quills General Counsel
cc: Susan Daluddung, Community Development Director Rob Rossi, Hollywood West LLC

Letter 18

COMMENTER: Kriston D. Qualls, General Counsel, USA Petroleum Corporation

DATE: July 18, 2005

RESPONSE:

Response 18A
The commenter notes that the 2005 General Plan includes various statements suggesting that mixed use development is encouraged within light industrial areas, but that the Draft EIR suggests that residential uses within Industrial-designated areas would be limited to work/live or live/work residences. It is true that various types of residences could be found to be compatible with light industrial development and that one of the 2005 General Plan objectives is to produce mixed use development where everyday requirements are in close proximity to residences. In response to this comment, the last sentence of the first paragraph of EIR page 213 will be amended to read as follows (new text is underlined):

> For Industrial-designated parcels, industrial only projects would be allowed. Residential uses could include work/live or live/work residences, or traditional housing as part of mixed use development so long as residences are not subject to significant compatibility conflicts relating to such issues as aesthetics, noise, or health and safety that cannot be addressed through site planning.

Response 18B

The commenter suggests that the analysis of the "Upper North Avenue District Housing" alternative should be amended to acknowledge various environmental benefits of that alternative, including implementation of the City's economic development strategy, elimination of a brownfield site, emphasizing intensification/reuse, and consistency with the Guidelines for Orderly Development. The Draft EIR already implicitly acknowledges that development of the Upper North Avenue district would be consistent with City goals and objectives as well as the Guidelines for Orderly Development. In response to this comment, the discussion under "Hazards and Hazardous Materials" for the Upper North Avenue District Housing alternative will be amended to read as follows (new text is underlined):

Hazard impacts would be similar to those of 2005 General Plan Scenario 5. This alternative could potentially increase safety conflicts relating to the placement of residential development in proximity to oil production in the Upper North Avenue area. On the other hand, redevelopment of the Petrochem refinery site would eliminate an existing brownfield. Compliance with 2005 General Plan policies and standard safety requirements on new development would reduce impacts relating to hazardous materials to a less than significant level.

Rancho Cañada Lahga

RECEIVED

JUL 182005

July 18, 2005
Kari Gialketsis, Principal Planner
City of San Bucnaventua Community Development Department PO Box 99
Ventrua, CA 93002-0099
RE: 2005 Ventura Gencral Plan EIR Comments

Dear Kari:

CITY OF VENTURA DR AFT ENVIROMENTAL IMPACT REPORT JUNE 2005
Comments and Corrections by Buz Bonsall, owner of the 120 acre Western Cañada Larga Potential Expansion Area.

Pg. S-1 $2^{\text {nd }}$ q "...Three Five "Expansion Areas" "
Fig. 2-1a \& Fig. 2-1b "Planning Area" Boundaries inconsistent on maps at City Water Facility in Caffada Larga area.

Pg. 4.1-18 Photo 13 caption "... Portions of the hillside area fronting the frecway could petentially begraded has already been removed and graded for SR33 Freeway and could be regraded_and developed if this expansion area is selected."

Pg. 4.1-18 Photo 14: This photo depicts M2- Industrial zoned industrial land on the Westside of SR33 and does not represent the grazing land on the Eastside of SR33.

Pg. 4.2-1 Legend "Row Crops" incorrectly depicted on Western most portion (West of bike path) of Western Cañada Larga Expansion Area

Pg. 4.4-24 Photo 3: Depicts a Caltrans SR33 Freeway 15+ acres hillside removal and grading project (T.ate 1969) with natural plant recovery.

Pg. 4.4-25 Scenario 5 paragraph, final sentence "the Western Cañada Larga area is the teast most disturbed of the expansion areas ($15+$ acres of hillside removal and massive

Rancho Cañada Larga

Pg. 4.5-17 "Scenario 5" paragraph..." A portion of the mission aqueduct is located within outside io the south of Western Cañada Larga expansion area."

Pg. 4.11-51 Top of page final sentence "..... with that scenario." It should be noted that the owners of the Western Cañada Larga Expansion Area have over 6000 acres adjacent to the Arca for potential parkland. There is no shortfall of acres.

Pg. 6-20 Public Services: It should be noted there is a Ventura County Fire Department Station building on North Ventura Avenue next to the City's Water Treatment facility.

General Comment: As noted by the D.E.I.R. authors at Pg. 4.1-19 Scenario 5, 1700 housing units assigned to the reduced acreage (120 acres) of the original 800 acre Potential Expansion Area of Cañada Larga is "unrcalistic", hence the unrealistic impacts in D.E.I.R. data (such as sewer plant capacity etc.) throughout the report.

Thank you for the opportunity to comment. If there are any questions regarding my comments ${ }^{\text {p }}$ please feel free to contact mo at 805-565-0629.

Sincerely,

Bla

Buz Bonsall
Rancho Cafiada I.arga

Letter 19

COMMENTER: Buz Bonsall, Rancho Cañada Larga

DATE: July 18,2005

RESPONSE:

Response 19A
The commenter notes a typographical error in the Summary. This will be corrected in the Final EIR.

Response 19B

The commenter notes an inconsistency in the depiction of the Planning Area shown in Figures 2-1a and 2-1b. The Planning Area boundary shown in Figure 2-1a will be corrected in the Final EIR.

Response 19C

The commenter suggests a clarification of the caption accompanying Photo 13 in Section 4.1 of the EIR to note that the area shown was previously graded as part of the SR 33 construction. The caption will be amended as suggested by the commenter in the Final EIR.

Response 19D

The commenter correctly notes that the area shown on Photo 14 in Section 4.1 is designated Industrial. The caption accompanying that photo will be revised in the Final EIR to read as follows:

Agricultural land adjacent to the Western Cañada Larga expansion area looking south from SR 33. This area is within the Upper North Avenue District and is currently designated Industrial.

Response 19E
The commenter notes that the area west of the bike path within the Western Cañada Larga expansion area is not in row crop production, as shown on Figure 4.2-1. Figure 4.2-1 will be corrected in the Final EIR to show that area as "Grazing/Livestock" land.

Response 19F

The commenter notes that the area shown in Photo 3 in Section 4.4, Biological Resources, was previously graded as part of the SR 33 construction. This comment is noted, though no change to the photo caption is necessary.

Response 19G

The commenter states an opinion that the Western Cañada Larga area is the most disturbed among the expansion areas. Even though much of the area in question has been disturbed historically by past grading activity, the open lands of the Western Cañada Larga area maintains higher biological resource value than the irrigated agricultural lands associated with the other expansion areas. Therefore, from a biological resource perspective, it would be considered the least disturbed.

Response 19H

The commenter notes that Photo 3 on Figure 4.4-4 does not depict native bunch grass or oak woodland. The commenter also notes that the reference to the Santa Clara River on the fifth line of page $4.4-26$ should be to the Ventura River. The reference to the Santa Clara River will be corrected in the Final EIR. Although Photo 3 does not depict the habitats mentioned by the commenter, the statement to which the commenter refers merely notes that the Western Cañada Larga has the potential for such habitats. Site specific surveys of the area would be needed to determine whether such habitats actually are present. Such surveys would appropriately be conducted in conjunction with the environmental review of any specific development project for the area.

Response 19I

The commenter requests a clarification of the location of the Mission Aqueduct, as discussed on page 4.5-17. The Mission Aqueduct is known to be in the North Avenue area, but actual location of the Mission Aqueduct is not known with certainty. In response to this comment, the sentence noted by the commenter will be revised to read as follows (new text is underlined):

A portion of the Mission Aqueduct is located in the vicinity of the Western Cañada Larga expansion area.

Response 191

The commenter notes that acreage is available for parks within Rancho Cañada Larga. This comment is noted, though the areas mentioned by the commenter are not within the Western Cañada Larga expansion area discussed in the Draft EIR.

Response 19K

The commenter notes that there is a County Fire Department station next to the City's water treatment facility. This comment is noted, though the City would need to provide fire protection service in the event that properties within the North Avenue area are annexed and developed.

Response 19L

The commenter states an opinion that the development total assumed for the Western Cañada Larga expansion area are unrealistic. Please see Response 17B.

VENTUEA UNIFIEI SCFIOOI DISTFIGT

July 18, 2005

Lisa Y. Porras, Senior Planner
Community Development Department
City of San Buenaventura

RECEIVED

P.O. Box 99

Ventura, CA 93002

JUL it \& wio
PLANHRNGG DIV.

Dear Ms. Porras:
Thank you for the opportunity to review and provide input to the Draft Environmental Impact Report for Ventura's General Plan. The following are our comments pertaining to the K-12 Educational School Facilities.

1) Attached is a sample copy of the District's letter to the City dated September 18, 2003 concerning the Draft Comprehensive Plan Update and Draft Issue and Alternative Report. It seems these comments were not addressed on the Draft EIR Report. Also attached is a letter to the Planning Commission concerning public school classroom capacity and proposed residential development dated October 10, 2003.
2) Figure 4.11-3 shows the locations of school facilities and administration facilities within the planning areas operated by Ventura Unified School District (VUSD). There have been some changes. The District no longer owns the Arcade District office site. It was sold last year. The Santa Clara District office site is currently in escrow and the Transportation Department only occupies this site. The administration staff that once occupied the Arcade and Santa Clara office sites has been relocated to the newly remodeled Education Service Center, (formerly Kinko's Corporate Office). Education Service Center is located at 255 West Stanley Avenue. Please make these changes to Figure 4.11-3.
3) The Draft Environmental Impact Report did not take into consideration the relationship between commercial and industrial development projects and school facility needs. Economic opportunities as a result of the development of commercial and industrial space attract new households to the community.

Commercial and industrial development along with residential development has an impact on school enrollment. New jobs require a larger labor force while in turn, causes new housing to be built to increase the housing supply. The families in these new houses will have their children enrolled in the local school district. This enrollment growth, a joint result of the commercial, industrial and residential development impacts the facility capacities of our District. In conclusion, this type of new development will cause a need for school facilities in Ventura Unified School District. Please note besides residential development, new commercial and industrial development projects are also subject to school impact fees.

City of San Buenaventura
July 18, 2005
Page 2 of 4
4) On page 4.11-37, it states, "One alternative to developing new schools would be to expand existing schools". Existing District facilities will be pressed beyond capacity solely with the projected student enrollment from new residential development. Our facilities have minimal space remaining to accommodate projected enroliments from new development.

Both classrooms and support space are needed to house additional students. As classrooms are added to schools, overcrowding becomes greater in the multi-purpose facility, library, administration office and other support areas. Without additional core space, the current standards of support space will suffer. As result of the implementation of class size reduction in grades Kindergarten through third grades several years ago, it maximized the space at several elementary school sites. Also, parking facilities at our sites will be impacted. Schools such as Balboa Middle, Loma Vista Elementary, Mound Elementary and E.P. Foster Elementary already have inadequate parking facilities that, in turn, impact adjacent neighborhoods.

Ventura Unified School District considers a school overcrowded when it operates at 90 percent of capacity. Using this standard, 18 of the District's schools are overcrowded. Students are being transferred to less crowded schools and are unable to attend a school in their neighborhood. The enrollment projection indicated in the Draft EIR will continue to grow and exceed available school space. One of the goals in the Districts master plan is to construct a new middle school in the east end of the City in the Wells Road area. This will help accommodate students generated from the housing development that has occurred in the east end in the last 6 years.

The remaining student capacity at this district's elementary, middle and high school is of the greatest short-term concern, while the new schools will be required to meet long-term student population progression. In addition many of the existing schools are in older neighborhoods. In these areas, minimal vacant land is available for expansion.
5) In relation to Impact PS-3, page 5.17, we disagree with the statement "less than significant for all scenarios." We consider the impact to school facilities as unavoidably significant for all scenarios. The implementation of the project will result in a potentially significant impact. We request that a School Facility Availability Ordinance a Memorandum of Understanding be adopted by the City Council as a proposed residential development should be approved only in confirmation with this ordinance. This involves the City encouraging the school district and developer to engage in early discussions about the nature and scope of the proposed projects, possible fiscal impact and mitigation measures. It is my understanding a similar measure was adopted by the City Council and spearheaded by the past Councilman, Mr. Steve Bennett that was Resolution NO. 97-98
6) In addition to SB 50 as mitigation measure and the above noted resolution. We recommend that the following objectives and policies be included to address education issues and impacts to public schools within the project scenarios.

Objective: Accommodate the growth of all educational faclities.

- Policy: Provide an adequate level of infrastructure and services to accommodate campus growth at all educational levels.
- Policy: Work with the school district to locate school sites where infrastructure already exists to minimize costs to the school district in new school construction.
- Policy: Include school district staff in the review and input of annexation proposals to guide campus site selection and desirable design elements.
- Policy: Streamline the permitting process for educational facilities as practicable

Objective: Emphasize smart growth principles through all steps of the land development process.

- Policy: Ensure well-planned infill development Citywide, allow for increased density in selected areas along established transportation corridors.

The policies listed above will significantly lessen impacts directly related to the Project. We request that individual development proposals will comply with proposed City standards and practices regarding review of the adequacy of educational facilities. These proposed standards and practices include:

- Use the CEQA review process to evaluate impacts of future development on local schools.
- Ensure the payment of SB 50 school impact fees by project proponents as necessary.

We do concur to some degree with the mitigation measures listed on page $\mathrm{S}-17$ and $\mathrm{S}-18$ but need additional enforcement by the City to implement the above noted recommended objectives and polices.
7) The Draft $E I R$ indicates the overall acreage needed to accommodate new school facilities has ranges for each potential expansion scenario. This range does not match the Assumed Expansion Area Acres by Use on Table 2-8, page 2-35. For example, Scenario 2, page 4.11-38 indicates a range from about 38 to 103 acres, but when you compare this to Table 2-8, it shows 110 acres for a school scenario. Pease make the necessary corrections
8) No land use designation is indicated on the expansion area maps to accommodate future school sites.

City of San Buenaventura
July 18, 2005
Page 4 of 4
9) On page 4.11.40 Significance after Mitigation states: "Continue collection of State-mandated school impact fees would fund the construction of new school facilities that would be required to accommodate projected increases in school enrollment and would reduce school impacts to a less than significant level for any of the six scenarios." However, the cost of school facility needed by the district to accommodate students related to new development projects is greater than the fees which may be levied against respective type of new development projects. This statement is supported by Development Impact Fee Justification Study dated July 3.2003. As you are aware, construction cost to buill public outlay projects continue to increase dramacily in the state of California.
10) We request that the consultant provide a detail methodology how they determined the projected 2025 student enrollment and school acres needed listed on Tables 4.11-14 and 4.11-15. Please confirm that the California Department of Education's usage standard was used to determine the square footage needed per student generated from development.

In conclusion, the City should consider suitable school capacity when they approve development. It is the overall benefits to the City that adequate and school facilities are established with helps contribute to the quality of education in the community.

We would like to meet with the consultants and City Staff to discuss our comments. Please call me to schedule this meeting at 289-7981, extension 1010. Thank you.

JBG:tm
cc: Dr. Trudy Arriaga, Superintendent Joseph Richards, Jr., Assistant Superintendent Business Services

October 10, 2003

City of San Buenaventura
Planning Commission
P.O. Box 99

501 Poli Street
Ventura, CA 93002
Dear Commissioners:
This letter is concerning the K-12 Educational School Facility issues related to the Draft Comprehensive Plan Update and Draft Issues \& Alternatives Report. For your information, I have been a member of the Comprehensive Plan Advisory Committee for the past two years. During my tenure, I have tried to provide vital input into the development of the plan as well as its impact on public school facilities.

I would like you to consider the comments I addressed to the City of Ventura Planning Department concerning the Draft Plan (see attached).

Further, I have attached a copy of Resolution No. 97-98: "A Resolution of the City Council Amending the Land Use Land Plan Element of the Comprehensive Plan Regarding Public School Classroom Capacity and Proposed Residential Development". I recommend that this resolution be incorporated into the Comprehensive Plan.

If you have any questions, please do not hesitate to call me at 289-7981, extension 1010. I appreciate your time and consideration in this matter.

Sincerely,

Jorge Gutierrez
Director of Facilities, Maintenance and Operations

JG:tm
Attachments
Cc: Joseph Richards, Jr., Assistant Superintendent Business Services

September 18, 2003

City of San Buenaventura
City Planning Department
Attn: Lisa Porras, Associate Planner
P.O. Box 99

Ventura, CA 93002

Dear Ms. Porras:

Thank you for the opportunity to review and provide input on the draft Comprehensive Plan Update and Draft Issues and Alternatives Report. Below are our comments pertaining to the K-12 Educational School Facilities.

PUBLIC SERVICES

On page 11, under Public Services, a statement was made that; ". . public schools overcrowding has been alleviated with the recent opening of Foothill Technology High School ..." This statement is incorrect. The Foothill Technology High School helped relieve the student overcrowding at the high school level, but did not alleviate the total problem.

It was indicated that District middle schools have sufficient space. Again, this is not an accurate statement. Based on the Districts' 2002-03 Classroom Usage Report, Anacapa Middle School is at 99% student capacity; and Balboa Middle School, located in the east end of the city, is at 91% student capacity.

Last year, Balboa middle school's enrollment was 1454. The District prefers student enrollment at the middle school level to be around 1200. This school contains the largest student population among the four middle schools in the District. Also, of the 55 classrooms on site, 12 are portable, which means 22% of the class space is relocatable. The student population continues to grow every year as a result of housing developments that have occurred in the past 10 years in the east end of the city. Although portables have been placed at Anacapa and Balboa middle schools, the core facilities, such as cafeterias, have not been expanded.

The elementary schools in the west side of the city, which include E.P. Faster and Sheridan Way, are at 100\% capacity. There are 22 classrooms at E.P. Foster Elementary School of which 13 are portable classrooms. This means 59% of the classroom space at E.P. Foster is relocateable; Sheridan Way Elementary School's ielucateables make up 38% of classroom space.

The Public Services section relating to public schools do not portray a true picture of overcrowding conditions facing Ventura Unified School District. We recommend the data previously provided to the consultant working on the Comprehensive Plan should be expanded to include the above-noted information at the elementary, middle and high schools level.

PUBLIC SERVICES ISSUES

We request that the Public Services issues on Page 12 concerning schools be expanded to add the following pertinent issues:

1. Crowding problem will still arise as more relocateables are added to existing school sites;
2. Need to replace and upgrade aging portable classrooms;
3. Need to expand support spaces such as libraries, restrooms, cafeterias and multi-purpose rooms in same proportion to classrooms to alleviate school overcrowding;
4. Constraints - Opportunity to expand existing campuses is limited by the physical size of the school sites and by the capacities of existing permanent facilities; and
5. Explore the feasibility of the City adopting a School Facility Availability Ordinance.

In respect to the School Facility Availability Ordinance, this type of ordinance may have been adopted by the City Council, several years ago, which was spearheaded by past Councilmen, Steve Bennett. As a proposal, residential development should be approved only in confirmation with the School Facility Availability Ordinance. This involves the City encouraging the school district and developers to engage in early discussions about the nature and scope of proposed projects and possible fiscal impact and mitigation measures.

HOUSING DEMAND - Section 3.1.1

The Population and Housing section does not reflect the school age population ($5-17$ years) in the City of Ventura. We request a figure be prepared which show the school age population from 1970 to 2025 . This figure requested will show the magnitude of growth at different periods of time during the duration of the General Plan. Also, will rising birth rates result in increased enrollment from older homes?

SCHOOLS - Section 3.1.2

We would like to meet with the consultants to detemine their methodology in determining land needed for new schools. Our projections used by the State Department of Education are different than what is proposed for land needed at each school grade level. The projected school needs should comply with the State Services Land Standards for the number of students per classroom and laboratory, recommended size of parcel for a given number of students, and the number of pupils per acre. Services level standards measure the physical attributes of educational facilities and their ability to provide a given level of educational benefit.

COMMERCIAL AND INDUSTRIAL SITES - Section 3.2.4

We would like to know if the consultant took into consideration the relationship between commercial and industrial development and schools impact. For example, in a case of a business moving to a new facility from an existing building in the city, it is assumed that on average, the older facility will be occupied by a new business enterprise with the same number of employees as the business that moved out. It is the growing capacity of the community to accommodate employment that result in residential growth and increased school demand.

City of San Buenaventura
September 17, 2003
Page 3 of 3

SCHOOLS - Section 5.7

We disagree with the statement "the acreage estimate could be reduced in various ways, including more intensive use of existing schools, reducing the acreage requirement of new schools". The schools in our district are at or near capacity. With the District's implementation of class size reduction at K-3 grade level, additional relocateable classrooms were placed at elementary school sites, and at the same fime, support space such as libraries and cafeterias were not expanded. With the additional classroom space added in the past ten years, there exists a lack of available open space to address future growth without impacting playground and support space.

The recommendation to reduce the acreage requirements of new schools will impact the District's ability to meet the Department of Education State Services Standards. By not meeting these standards, the District will not provide a quality level of educational environmental benefits to support curriculum and the learning process. Also, it will perpetuate overcrowding conditions for students and staff at impacted school sites.

At the top of page 93 , it states "... no land within the existing City/SOl is specifically designed for new schools" ... except for the 10 -acre elementary school PEA \#2 (North Avenue). We feel there is sufficient property within PEA \#2, \#7, \#8 and \#9 to designate as new school sites. We recommend that the 100 -acres required for new schools be address in the General Plan. Also, this plan fails to address the financial measures to pay for the new schools as a result of population growth.

We would like to meet with the consultants and City staff to discuss the possible 20-acre site Pacific View Mall (North Site) and the 35-acre area south of DeAnza Middle School.

Should you have any questions, please do not hesitate to call me at 289-7981, extension 1010.

Cc: Dr. Trudy Arriaga, Superintendent
Joseph Richards, Jr., Assistant Superintendent Business Services

Letter 20

COMMENTER: Jorge B. Gutierrez, Director of Facilities, Maintenance and Operations, Ventura Unified School District

DATE:
 July 18, 2005

RESPONSE:

Response 20A
The commenter references letters submitted to the City in 2003 and suggests that the Draft EIR does not address comments included in those letters. The Draft EIR incorporates relevant information contained in the referenced letters. In addition, consultant staff contacted the VUSD several times during the preparation of the Draft EIR in the first half of 2005 and received current enrollment and other data from the VUSD during that time period as well.

Response 20B
The commenter notes two changes to the locations of VUSD facilities that should be reflected on EIR Figure 4.11-3. Figure 4.11-3 will be amended in the Final EIR to reflect the new location of the VUSD Education Service Center on Stanley Avenue.

Response 20C

The commenter states an opinion that the Draft EIR does not take into account the relationship between commercial/industrial development and school enrollment. As suggested by the commenter, the generation of new jobs in the community is expected to contribute to population growth. However, the population and housing growth estimates discussed in the Draft EIR include all new housing and population growth anticipated for the Ventura Planning Area, including people who relocate to the area to fill new jobs. As discussed under Impact PH-4 in Section 4.15, Population and Housing, the City is projected to maintain a balance of jobs and housing through 2025 under any of the six land use scenarios studied in the Draft EIR. Therefore, the effect of job growth on school enrollment has been accounted for in the Draft EIR. As the commenter notes, non-residential developments would continue to be required to pay State-mandated school impact fees.

Response 20D

The commenter notes that a number of VUSD schools are already at or near capacity, that existing facilities have minimal space to accommodate projected enrollment increases, and that minimal vacant land is available in many existing neighborhoods. The commenter also notes that the VUSD is planning to construct a new middle school in the Wells Road area.

The comments with respect to school enrollment and capacity, and available land for new schools are consistent with the discussion under Impact PS-4 in Section 4.11, Public Services. Table 4.11-4 shows that projected 2025 enrollment exceeds the capacity of VUSD schools at the elementary, middle, and high school levels, while the discussion under "Scenario 1 -

Intensification/Reuse Only" acknowledges that there is "limited land that could be used for the development of new school facilities." In response to this comment, the following sentence will be added at to the last paragraph on page 4.11-11:

> One of the goals in the VUSD master plan is the construction of a new middle school in the Wells Road area.

Response 20E

The commenter states disagreement with the conclusion that impacts to schools would not be significant under CEQA and requests that the City adopt a "school availability ordinance" or memorandum of understanding in which residential development would only be approved following developer discussions with the VUSD and development of appropriate mitigation measures. The opinion with respect to the significance of school impacts is noted. As acknowledged in the Draft EIR, projected school enrollment exceeds the capacity of VUSD schools and, under some EIR scenarios, limited land is available for the development of new schools. However, as noted in the Draft EIR, pursuant to Section 65995(h) of the California Government Code (Senate Bill 50, chaptered August 27, 1998), the payment of statutory fees "...is deemed to be full and complete mitigation of the impacts of any legislative or adjudicative act, or both, involving, but not limited to, the planning, use, or development of real property, or any change in governmental organization or reorganization." As the State legislature has made this determination, the City has no authority to make a determination that payment of Statemandated fees would not mitigate impacts.

The Draft EIR includes two recommended actions that would at least in part address the request for coordination between developers, the City, and the VUSD. These are listed below.

PS-3(a) School Coordination. The following action should be added to the 2005 General Plan:

- Work with the Ventura Unified School District to ensure that school facilities can be provided to serve new development.

PS-3(b) Expansion Area Schools. The following action should be added to the 2005 General Plan if any land use scenario that includes an expansion area is adopted:

- Require expansion area specific plans or community plans to be prepared in coordination with the Ventura Unified School District and set aside land needed for new school facilities.

Response 20F
The commenter suggests several additional policies/actions for inclusion in the 2005 General Plan. The actions listed in Section 4.11 of the DEIR and under Response 20E partially address these suggestions. The City will continue to cooperate with the VUSD to identify new school sites in areas where residential growth is anticipated to occur. Chapter 3 of the 2005 General Plan addresses "smart growth," which is one of the
primary emphases of the General Plan. The City will be required by law to continue to use the CEQA process to evaluate the impacts of local development on schools and collect State-mandated school impact fees on behalf of the VUSD.

Response 20G

The commenter notes that the acreage assumed for schools within expansion areas does not match the acreage needed to meet the demands of individual EIR land use scenarios. These acreages are not intended to match. The commenter notes that the school acreage assumed for the expansion areas under Scenario 2, for example, is 110 acres, while the projected overall demand for acreage ranges from about 38-103 acres. This suggests that the expansion areas included in Scenario 2 provide more than enough acreage to meet overall demand associated with buildout of that scenario. Thus, inclusion of the expansion areas could help accommodate students generated by intensification and reuse development.

Response 20H

The commenter notes that the expansion areas do not include land use designations to accommodate schools. As noted in Section 2.0, Project Description, the City is not proposing to re-designate any of the expansion areas at this time. The Draft EIR considers these areas as possible future expansion areas. It is anticipated that any future development proposal for any of the expansion areas would involve a Specific Plan that would include provisions for schools.

Response 201

The commenter notes that the costs of school construction are greater than that provided by State-mandated fees. As discussed in Section 4.11. and in Response 20E, State law dictates that payment of the State-mandated fees constitutes full and complete mitigation under CEQA.

Response 201

The commenter requests an explanation of the methodology used to project school enrollment and school acreage requirements. This methodology is described in Section 4.11, Public Services. To estimate growth in student enrollment, the projected number of new housing units was multiplied by the students-per-household rates provided by the VUSD. To estimate the acreage of new schools needed, the following methodology was used:

- The current school capacity totals were subtracted from the projected number of new students (these totals are shown in the second column of Table 4.11-15)
- These totals were divided by the projected number of students per school (shown in the third column of Table 4.11-15) to determine the number of new schools needed (shown in the fourth column of Table 4.11-15)
- The number of schools needed were multiplied by the number of acres per school, from the California Department of Education recommended school size, to determine the amount of school acreage needed (shown in column 5 of Table 4.11-5)

GIBSON,DUNN \& CRUTCHER LLP
 LAWYERS

AREGYETERED LIMTTED LABILITY FARTNERSKIP INCLUDING PROFESSIONAL CORPORATIONS

333 Sonch Grand Averane Los Angeles, California 90071-3197
(213) 229-7000
www.glosonduna, com
CEstolana@gibsonduan.com
Yuly 15, 2005

Dizect Dial
(213) 229-7753

Climat No.

Eax No.

Kani Gialketsis
Principal Planner
City of San Buenaventura
Community Development Department
501 Poli Street
P.O. Box 99
Ventura, CA, 93002-0099

Re: Comments on Cly of Ventura 2005
Gemeral Plan Draft Enwirommental Impact Report
Dear Ms. Gialketsis:
I am submitting these comments regarding the Draft Environmental lmpact Report ("DEIR") for the City of Vontura 2005 General Plan ("General Plan") on behalf of my client, Mariano Rancho, LLC. Mariano Rancho owns approximately 215 acres of vacant property within the City of Ventura ("City"), located north of Poli Streat/Foothill Road and zoned R-17. As a longetanding member of the Ventura community, Mariano Rancho shares the City's interest in supporting responsible and sustainable planning for the future of the community.

To that end, we have reviewed the General Plan, the DEIR for the General Plan and the City of San Buemaventura 2000-2006 Howsing Element ("Housing Element") to ensure that the documents are accurate and consistent. Our comments touch on apparent inconsistencies between the Housing Element and the General Plan, difficulties in tracking housing unit allocations and corresponding traffic impaots for particular axces across the three documents, characterization of the habitat conditions on the Mariano Rancho property and the Venture hillside areas generally, and the need to clarify the status of linear parks delineatod in the Goneral Plan.

GIBSON, DUNN \& CRUTCHERILP

Kari Gialketsis

July 15, 2005
Page 2

I. Apparent Inconsistency Between the General Plan Projected Housing Growth Distribution and the Housing Element

A general plan must be integrated and internally consistent among and writhin each element. Government Code $\S 65300.5$. The housing element is one of seven mandated elements in the general plan. Gov, Code § 65302. Although it must be updated every five years, rather than the longer time frame permitted for updating general plans, the housing element must still be consistent with the overall general plan. Gov. Code $\S 65888$

In Ventura's case, the City adopted the most recent Housing Element in April 2004, while the mult-year General Plan updating process was underway. The Housing Element contains certain assumptions about devolopment potential which should be carried through to the General Plan. In particular, in its analysis of availability of sites for housing, the Housing Element states that 2,050 housing units can be developed on Vacant lots in Ventura, of which 486 units may be developed on vacant sites zoned R-1-7.1 Appendix D of the Housing Blement provides a complete inventory of vacant sites, including parcel number, zoning and acreage. Mariano Ranoho's property ($740010015 \mathrm{R}-1-7$) is listed as 215.40 acres with "constraint " acreage of 71.97. Assuming this very conservative constraint estimate is accurate (which camot be confinmed without the benefit of a project-specific analysis for the site), by applying the maximum density of 6 units per acre and the 70% of lot maximum density assumption used in the Housing Element, the unit potential derived for tho Mariano Rancho property in the Housing Element is:

71.97 acres $\times 6$ DU/acre $\times 70 \%=302$ dweling mits.

Turning to the General Plan DERR, Table 2-5 summarizer Projected Housing Growth Distribution for the 20 -year planning period of the General Plan under all scensxios by growth area. The Geareral Plan proposes to focus most of the now growth into the specified Growth Districts/Corridors; these areas account for 3,950 units in all aconatios. The Mariano Ranoho property is not located within one of these nine Growth Districts/Corridors. The DEIR projects another 2,650 units to be built within the proposed smaller Sphere of Influence and existing areas designated for urban uses, of which 700 units are projected to bo built on vacant and underutilized parcels outside the Growth Distriots/Corridors. (DEIR p. 2-32.) Appendix C to the DEIR breaks these 700 infill units down furthsr into 250 units projected to be developed on underutilized sites and 450 units projected to be built on vacant property. Note 3 to the tables in Appendix C explains that these tables assume that "all vacant land outside the distriots and corridors will be developed in accordance with the proposed land use dexignations."

Taken together, it is difficult to reconcile the assumptions in the Housing Element with those in the General Plan. Specifically, how do the 486 units assumed for just the R-1-7 zoned areas in the Housing Element compare to the 450 units projected for all non-Growth Distric/Conridor vacant propenty in the General Plan EIR? Using the Housing Element methodology and assuming the property is developed in accordance with its zoning, the Mariano Rancho's 302 units alone would account for 67% of all the units projected to be built

[^26]
GIBSON,DUNN \& CRUTCHERLIP

Kari Gialketsis

Juiy 15, 2005
Page 3
on vacant properties designated for urban uses outside the Growth Districts/Corridors and within the city limits. Additional clarification of how the Housing Element assumptions relate to the General Plan's Projected Housing Growth is necossary to confirm that the General Plam is internally consistent as required by state law.

II. The Circulation Element Update Traffe Study Does Not Track the Housing Element Assumptions

The need for clarification extends to the issue of how Appendix E to the DEIR, the Comprehensive Plan Circulation Element Update Traffic Study ("Traffic Study"), accounts for the trips that would be generated by the growth assumed in both the Housing Element and the land use element of the General Plan. Attached to this comment letter is a communication from Paul W. Willinson, of the traffic engineering firm Linscott Law \& Greenspan, noting the difficulties he had confirming that the permitted development assumed in the Housing Eleanent was carried over to the development potential tabulation input to the General Plan and the Traffic Study. Mr. Wilkinson's analysis is hereby incorporated into this comment letter by reference.

In particular, we request that the Gexeral Plan and Traffic Study be amended to include a Traffic Analysis Zone ("TAZ") Exhibit and a trip table (development summary and trip forecast) that presents a development and trip making forecast for overy TAZ that is consistent with all elements of the Qeneral Plan. Such TAZ and trip table exhibits would enable planners, property owners and conmunity members to more clearly assess the traffic impacts of the growth assumptions and provide a basis for comparing site specific analyses to the Geaeral Plar's overall growth and circulation goals, polioies and actions.

1I. Charactertzation of the Habitat on the Marlano Rancho Property and Hillside Areas Overstate Potential Impacts

Figure 4.4-1 on page 4.4-3 of the DEIR maps the habitat types found within the planaing area of the General PJan. The map depicts a substantial portion of the Mariano Rancho property and nearly all of the hillside property as containing coastal sage scrub hebitat. A note on Figure 4.4-1 states that the vegetation cover types were derived from Landsat Thematic Mapper satellite imagery. We understand that at the analytical level of a General Plan detailed site charactexizations are impractical and inappropriate. However, more detailed studies of the area indicate that Figure 4.4-1 vastly overstates the extent of coastal sage scrub in the Mariano Rancho and hillside areas. As a result, we would expect that as part of a site-specific analysis, some of the potential impacts identified, such as BIO-2 potential adverse affects on sensitive hsbitats, BIO-3 potential affeots on special-status plants and animals and BIO-4 potential affects on ecological counectivity through wildlife comidors, would not be found or would bo avoided.

GIBSON,DUNN \& CRUTCHERLLP

Kari Gislletsis
July 15, 2005
Page 4

IV. Status of Desiganted Linear Parks Should be Clarified

Figure 4.11-42 Parks and Recreational Facilities on page 4.11-15 of the DEIR, depicta a linear park network that moludes a linear park running through the Mariano Rancho property and portions of the hillside areas. The Final ERR should clarify that these linear parks do not currently exist, have not been offered for dodication to the City and that the City has not presently offered to purchase the land for these parks.

In addition, the text at page 4,11-20 acknowledges that the "[r]esources available for constructing the linear park and trail system are acquired through conditions placed on developers who plan to build in areas within the linear park network." This approach to building the linear park therefore appears to presume the development of the hillside property in order to obtain the exactions necessary to dedicate and construct the linear park through the hillside portion of the City. This appears to be at odds with the General Plan's overall goal of focusing future development on non-hillsids areas. ${ }^{3}$ Therefore, the DEIR and the General Plan ahould be revised to either remove the linear park network designations from the hillside areas or include a statement that the linear parkland in this area may be acquired through purchase of the property or the permitting of limited development in the area to obtain the parkland trrough dedications.

Finally, the linear park system proposed for the billside area in Figure 4.11-4 does not appear to have been delineated with consideration of the natural topography of the area. We suggest that toxt be added to the General Plan and DEIR stating that the final alignment of the Mariano Rancho and hillside linear parks may be revised to account for topography, habitat and other considerations.

We appreciate the opportunity to comment on the General Plan DEIR and look forward to reviewing the final document in the coming weeks.

CVB/cve

Attachment
cc: Mr. Alan L. Dobbins
10679958_1.DOC

[^27]
LIMCOT GRREMSFAN
 ※ngilscra

July 15,2005

Ms. Cecilia V. Estolano
GBSON, DUNN \& CRUTCHER, LLP
333 South Graud Avenue
Los Angeles, CA 90071-3197
LLG Reference: 2-05-2685-1
$\begin{array}{ll}\text { Subject: } & \begin{array}{l}\text { Review of General Plan and Related City Documents } \\ \text { Mariano Rapcho Property } \\ \\ \\ \text { Ventura, California }\end{array}\end{array}$
Dear Ms. Estolano:
At your request, we've reviewed several documents prepared by the City of Ventura as part of its General Plan update process. Those documents include the following:

- City of San Buenaventura, Ventura General Plam Public Review Draft, May 24, 2005:
- City of Ventura, 2005 General Plan: Draft Environmental Impact Report, SCH \#2004101014, June 2005;
- City of San Buenaventura, Comprehensive Plan Circulation Element Update Traffic Study, May 2005, Appendix E;
- Adopted, Ctty of Ston Buenaventura, 2000-2006 Howsing Element, April 2004:

These documents were reviewed with the intent of tracking the "placeholder" within each for the Mariano Rancho property, which lies generally northeast of Downtown, north of Poli Street and Foothill Road, and south of the "Hillsides" open space area illustrated in the Draft General Plan Diagram (follows page 16 of the Public Review Draft of the General Plarn). The intent of that tracking was to confirm that the permitted development on the property as outlined in the City's Adopted 2000-2006 Housing Element was carried over to the development potential tabulation input to the General Plan Public Review Draft, which in turn was specifically input to the Circulation Element Update Trafic Study.

Such a process would normally ensure that a future housing development proposal on a specific site, when consistent with the Housing Elemenr assumptions for that site, would also be consistent with the City's circulation planning for the site area. This consistency would be most conveniently indicated when the trip table for the Traffic Analysis Zome (CAZ) of the Circulation Element Update traffic studies indicates a unit count, attributable to that specific site, whioh exactly (or very nearly equals) the

Enginean s Plomars Triffis Tramparation Parking

Linsoatchent Grsenspan Engluews tbee Carperaco Drive Guthe 122 Carte Mese, CA Dewz
 74.6410is 5 wwhlargineerxcen

Pasedon:
Costr Mesa
Sen Diams
Cos Vagas
 Jack M. Arvorapan, PE
 Pouw. Willonson PE John R Kanding PI onutid 6 Bhenderipe John A fiomman PE Cion M. Laob-Nayer, PE

Ms. Cecilia V. Estolano
July 15, 2005
Page 2
unit count permitted by the Housing Element (and by extension the General Plan Land Use component, since the Housing Element and General Plan are supposed to be consistent).

Unfortunately, as the following discussion will reveal, we are not able to make that finding of intermal consistency berween the Housing Eloment "placeholder" for the site, and the traffic analyses that support the Circulation Element Update. It may be possible that they are, but we doubt it. Having been unable to reconstruct that consistency from document to document, we recommend that the question be posed to the City as part of the public review process, ensuring that that which is called for on the Mariano Rancho property within the Housing Element is indesd represented in the circulation planning and impact studies conduoted by the City.

Adopted City of Son Buenavanura 2000. 2006 Howsing Element (April 2004)

Chart 4-1 of this report (page 4-2, whioh is also Page 124 in the eleotronic version) identifies the residential development potential on vacant sites in the City. The Mariano Rancho falls within the R-1-7 zoning designation, where the maximum density is 6 units per acre. The chart indicates that there are 56 parcels within this category, with vacant acreage totaling 111.7 acres, and with a development potential (at 70% of maximum density) of 486 dwelling units. (As an aside, the math here may be in error. $111.7 \times 6 \times 70 \%=469$ dwelling units).

Looking to Appendix D of this report, all of the assessor's parcel numbers that resulted in the Chart 4-1 summary are indicated, sorted to either underutilized or vacant sites (the later includes the Mariano Rancho). Looking to the "vecant sites" summary, the zoning designation, parcel acreage, and "constraint" acreage (presuraably useable acreage) are indicated. As we understand it, the Mariano Rancho is APN 740010015 R-1-7, for which the total site acreage is 215.40, and the "constraint" acreage is 71.97. Taking the later, and the methodology underlying Chart 4-1, the unit potential of the Mariano Rancho would be as follows:
71.97 AC $\times 6 \mathrm{DU} / \mathrm{AC} \times 70 \%=302$ dwelling uniss.

Using our terminology, this constitutes the future development "placeholder" we would expect to be carried to the other documents discussed below.

Civof Son Buenaventura Ventwa General Plan, Public.Beview Draft Mey 24, 2005 Continuing our focus on the Mariano Rancho as a future residential development site, with as many as 302 dwelling units per the adopted Housing Element, Table 2 (pages 14 and 15) of the General Plan Public Review Draft presents the development potential for both residential and non-residential categories throughout the City. The Drafi indicates, "Table 2 provides estimates of the amount of development that could reasonably be expected to occur in the city, sphere of influence, and potemtial expansion ereas based on the densities and intensities allowed under each plaming designation". These estimates

Ms. Cecilia V, Estolano
July 15, 2005
Page 3
are sorted to "districts" and "corridors" (both of which are Identified in the Draft General Plan Diagram following page 16 of the Drafi), as well as "sphere of influence (SOI) / other infill" and "planned and pending developments" which, in our reading are not located on any figure of the Draft. In reviewing Table 2, it appears that Mariano Rancho is not represented among any of the described sub areas or projects. Thus while a development total of 302 units is the inferred unit potential of the site in the Adopted Housing Element, those units appear not to be included in any of the land use scenarios consldered in the Draff, or its companion EIR Draft.

It is worth noting that among all four categories and their sub areas, Table 2 indicates an added development potential of $8,318 \mathrm{DU}$ in the City, and this total appears to presume no development on the Mariano Rancho.

City of San Buenaventura Comprehansive Plan Circulation Element Update Traffic Studu May 2005, Appendix E

From this document, it is evident that the Mariano Rancho is located within Sub Area 17 of the traffic analysis (Figure 3-1, Page 3-5). It will be noted that the report presents six figures using this base, one for each of six land use scenarios studied by the consultant. While the ADT pie chart varies among those six figures, Sub Area 17 includes the Mariano Rancho and the much larger surrounding area that inoludes the "Hillsides" area plus those intervening undeveloped sites between the "Hillsides" on the north and Poli Street and Foothill Road on the south.

Table 3-1 (page 3-4) of this report identifies the growth by land use type for the 17 sub areas of the study. A total of 435 dwelling units are identified for Sub Area 17 in Table 3-1. While this table refers specifically to Scenario 1 (of six) analyzed in the study, the 435 added unit ("total growth") total in Sub Area 17 is the same for all six scenarios. While 435 is clearly greater than the 302 unit development potential for Mariano Rancho inferred from the Adopted Housing Element, there is no way to tell from the studies we have if Marlano Rancho is inoluded at any specific DU count.

Further, it is worth noting from Table 3-1 that the total growth potential for housing valts among all 17 sub-areas of the traffic study is 8,539 dwelling units. For other scenarios, this total amount varies between 11,241 and 11,255 units, but the added unit count in Sub Area 17 remains constant at 435 mits. Referting back to the discussion on Table 2 of the General Plan Public Review Draft, the development potential throughout the study area was estimated at 8,318 units. All six scenarios of the traffic study presume a greater unit total (meaning the traffic forecasts and findings are conservative., a good thing, but again we cannot isolate the specific development "placeholder" for Mariano Rancho.

Ms, Cecilia V. Estolano
July 15,2005
Page 4

Concluston

Given all of the above, we conclude that:

1. The Adopted Housting Element intended a total development of 302 residential units on Rancho Mariano.
2. The General Plan Public Review Draft identified a development potential of 8,318 residential units throughout the General Plan study area. Mariano Rancho does not appear to be part of that summary at any total, includilng the 302 units inferred by the Adopted Fiousing Element.
3. Marlano Rancho is inoluded within Sub Area 17 of The Comprehensive Plan Circulation Element Update Traffic Stuchy. That sub area is much larger than the footprint of Mariano Rancho. The projected housing growth in Sub Area 17 is 435 units regardless of the scenario evaluated, While 435 exceeds the 302 unit development total per the Housing Element, it still is not clear if the traffic study recognized / established a 302 unit "placeholder" for Mariano Rancho in circulation planning for the City.
4. In our experience, the ability to rack, or "toap", the development totals of a specific development proposal against prior land plaming and circulation studies prepared at the city-wide level is an indispensable tool in reviewing and processing those eventual development applications. The documents we have do no allow us to conolude a consistency between the Adopted Housing Element, the General Plon Public Review Draft, and The Comprehensive Plan Circulation Element Update Traffic Study for the Mariano Rancho property.
5. While we've come to this conclusion as we tried to create this "map". for Mariano Rancho, we are concemed that virtually any future development proposal in the City could have the same difficulty, oreating unecessary trauma for the declsion maker, staff, community and applicant. We recommend that such a mapping correlation process be framed now, as part of this General Plan review procest, to avoid those unnecessary difficulties in the future. Such a framework may require refinement to these studies, or from a circulation perspective, might be relatively easily solved through a straight forward reconciliation process that presents a specific Traffic Analysis Zone (TAZ) exhibit and identifies a trip table (development summary and trip forecast), that for every TAZ, presents a development and trip making forecast that is deemed consistent with the selected Scenario of the General Plan adoption.

Ms. Cecilia V. Estolano
July 15, 2005
Page 5

We have welcomed the opportunity to provide this investigation. Please call us if you have any questions.

Sincerely,
Linscott; Law \& Greenspan, Engineers

Letter 21

COMMENTER: Cecilia V. Estolano, Gibson, Dunn \& Crutcher, LLP, on behalf of Mariano Ranch, LLC

DATE:
 July 15, 2005

RESPONSE:

Response 21A
The commenter states concerns about what are perceived as inconsistencies between the housing growth projections contained in the Housing Element and the 2005 General Plan EIR. The Housing Element and the 2005 General Plan EIR use different methodologies to project possible growth because they have different purposes. The purpose of the analysis in the Housing Element was to demonstrate the ability to meet the City's housing needs; therefore, the numbers provided in the Housing Element illustrate the maximum development potential based upon the current zoning. The Draft EIR, on the other hand, is attempting to provide a "realistic" estimate of how much growth will actually occur through 2025 rather than illustrate the maximum amount of development that could occur theoretically. The growth factors upon which the Draft EIR analysis is based represent historic growth rates over the past 10 years (0.88% annually) and the past 20 years (1.14% annually). Theoretically, any of the land use scenarios considered in the Draft EIR could accommodate substantially more growth if all of the designations shown on the land use map(s) were built out to their maximum. However, it is unlikely that such growth would actually occur within the 20-year timeframe of the 2005 General Plan.

It is important to note that the EIR is an informational document, not a policy document, and that the growth numbers presented in the Draft EIR are assumptions developed for analytical purposes only. City and consultant staff attempted to distribute the future growth through the City in a manner consistent with the General Plan land use designations, Council direction, and current growth patterns in the City. However, the actual amount of growth that may occur in any given area may be higher or lower than that presented in the Draft EIR and a deviation from the number of projected units for any specific area would not represent an inconsistency with the General Plan.

Finally, it is also important to note that the proposed land use designation for the Mariano Ranch property about which the commenter is concerned (Low Density Residential) affords the same development potential as the current 1989 Comprehensive Plan designation (a maximum of 8 units per acre). Therefore, the development potential of the property has not changed.

Response 21B

The commenter attaches an analysis from a traffic engineering firm and requests that the traffic study include a traffic forecast for every traffic analysis zone that is consistent with all elements of the General Plan. A table such as that described by the commenter would not be useful and would more likely be the source of substantial confusion. As discussed under Response 21A, the maximum development potential estimates shown in the Housing Element and the
projections of growth over the next 20 years contained in the Draft EIR are not the same, nor are they intended to be as the two documents are intended to serve different purposes. It should again be noted that the development potential of the Mariano Ranch property about which the commenter is concerned would not change under the 2005 General Plan.

Response 21C

The commenter states an opinion that the biological resource analysis in the Draft EIR overstates the extent of coastal sage scrub in the Mariano Ranch area and individuates that biological resource impacts can likely be avoided if that area were to develop. The Draft EIR is intended to provide a conservative estimate of possible future impacts. It is correct that sitespecific analysis of individual properties may reveal that biological resource impacts may be lower than suggested in this program level document. In any event, the City concurs with the opinion that biological resource impacts can be avoided or mitigated, as evidenced by the fact that the Draft EIR concludes that proposed General Plan policies would reduce biological resource impacts to a less than significant level.

Response 21D

The commenter notes that the Final EIR should clarify that linear parks shown in the hillside areas do not currently exist and, if they are to be developed, would need to be acquired through property acquisition or permitting of limited development to obtain parkland through dedications. The commenter also suggests that text be added to the figure depicting linear parks be amended to include text indicating that the alignments shown are conceptual and subject to change based upon site-specific conditions. The commenter is correct that linear parks in these areas would need to acquired or obtained through dedications. A note will be added to the EIR and General Plan maps indicating that the linear park locations are conceptual.

Ms. Lisa Y, Porras
City of gan Buenaventura
Community Development Department
501 Polis street
P.O. Box 99

WhtincilinCA. $93002-099$
Subject: General Flan Update
"Dear Ms. Porxas,
My firm's review of the City draft EIR evaluating the effects on the environment of the new City General Plan is summarized as follows:

1. It does not appear to evaluate current and future potential rederalopmont. within the City and its ultimate effect on traffic, air quality, noise, etc
2. It elects an already underutilized use of City lands, both within the City limits and sphere of Influence boundaries, leading to Scenario No. 1, but doesn't take into account natural population increases less deaths in addition to minor proposed housing increases. Use of antiquated sCAG guidelines fails to account for natural increases nor for redevelopment of such aras as the Harbor, MidTown and Ventura Avenue North to Canada Laxga.
3. The most appropriate population scenario should assume a rate of housing at 1.14% rather than 0.88%.
4. It would be a burden on staff and costly to choose a population level that will be regularly exceeded, thus causing need for General plan amendments, most of which would require complex and convoluted eleation campaigns. Using the SCAG population numbers is not being current and automatically causes almost every project to exceed City population and require a General plan Amendment.
5. General plan Amendments in Ventura are expensive and problematic.
6. As to one of our projects, Westwood Communities" Parkland, we assume that its location is considered infill in the new General Plan despite the need to annex it to the City.
7. At s-11, Biological Resources, Impact BIO-I: A specific standard of 50° feet of setback from barranca appears inconsistent with a Form Bused Code approach in the Now General Piman. puffers from barranca should be adriptable depending on (1) whether the barranca ecige is where scenic retail or housing may be located, (2) the layout of contiguous parallel pedestrian and bike paths, etc. As an example, the buffer for Parklands is planned at 40 feet on each aide of Brown Barranca. Where a barranca runs through a project aram and not along one side, the mount of the buffer becomes doubled, impacting not only the adaptation of the barranca into the plan but keeping quite bit of land out of use.
8. At s-10, Public Sarvians, Impact PS-3: We bring to your attention that a new school is not planned for the Parkiands.
9. At 4.11-18, City Park Facilities: Please recognize that the manhunt of acreage and size of public parks needs greater flexibility upon adoption of a Form mused Code approach to residential development. Our understanding of Now Urbanism Parks calls for multiple parks of kneller acreage; dispersed through a proposed repiciential project. An example of this is our Parkland project, which has a proliferation of smaller than 5 sore parks, including tot lots, informal pitch and hit parks, atc.
10. In the auctions on Circulation and connecting streets, we strongly urge that not all connecting street be required to be straight alignments between existing termini and entry into secondary and primary public streets. As an example, because of the strong desires of the residents wast of Parkland, the eagt-west connector to Wells Road is designed to connect, but not in a straight run. This alignment was urged by the neighbors to the project as a means of keeping future tripe from fanning through their home streets. Thus, we are urging that you provide street standards which allow for a convoluted, but nevertheless actual connection without having to leave an existing of proposed residential neighborhood.

Respectfully submitted,

Chuck Cohen
Weston Benshoof Rochefort Rubaloava \& MacCuish

COMMENTER: David J. Rose, DTR Engineering

DATE: July 18,2005

RESPONSE:

Response 22A

The commenter states an opinion that the Draft EIR does not appear to evaluate the effects of current and future redevelopment. The Draft EIR evaluates the impacts of potential citywide growth through 2025, including intensification/reuse (including redevelopment of properties) and, in some instances, expansion of the City. As noted in Section 2.0, Project Description, approximately 8,300 housing units are assumed to be added to the City through intensification and reuse over the next 20 years and each of the analysis subsections in Section 4.0, Environmental Impact Analysis, evaluates the impacts associated with such intensification/reuse development. Traffic, air quality, and noise issues are discussed in detail in Sections 4.12, 4.3, and 4.10 , respectively. Traffic impacts are further discussed in the full traffic study included in Appendix E.

Response 22B

The commenter states an opinion that the use of SCAG guidelines fails to account for natural population increases or the redevelopment of various areas. It is not clear to which SCAG guidelines the commenter is referring. The Draft EIR analysis discusses SCAG policies in Sections 4.14 and 4.15. However, as discussed in the Draft EIR, the population projections used in the Draft EIR exceed SCAG forecasts for the City; therefore, the City is not relying on SCAG's guidelines with respect to projected population growth through 2025. With respect to redevelopment, each of the Draft EIR land use scenarios anticipates the development of approximately 8,300 housing units in the City through intensification and reuse, including a substantial number of units in the Harbor, Midtown, and Ventura Avenue areas. Finally, both of the growth rates used in the Draft EIR (0.88% annually and 1.14% annually) are higher than the natural growth rate for the area, which is generally estimated at about 0.6% annually.

Response 22C

The commenter states an opinion that the 1.14% annual average growth rate is more appropriate than the 0.88% growth rate. These numbers were directed by City Council to be used as reasonable growth estimates over the next 20 years.

Response 22D

The commenter states an opinion that using SCAG population projections that are not current causes almost every project to exceed the City's population projections and therefore require a General Plan amendment.

The Draft EIR does not rely on SCAG forecasts. It merely acknowledges that the population projections used in the Draft EIR exceed SCAG growth forecasts for the City. Individual projects would not require a General Plan amendment merely because the City's population projections exceeds SCAG's forecast. The more likely scenario is that SCAG will update its forecasts to reflect the City's current growth projections following adoption of the 2005 General Plan. Similarly, it is anticipated that the Ventura County APCD will update its growth forecasts for Ventura in the 2007 AQMP that is currently in preparation.

Response 22E

The commenter notes that General Plan amendments are expensive and problematic. This comment is noted; however, as discussed above, exceedance of SCAG population forecasts would not necessitate a General Plan amendment for individual projects.

Response 22F
The commenter assumes that the Westwood Communities Parklands' project is considered infill even though the site requires annexation. The site is within the current Sphere of Influence and designated for urban use; therefore, its development would be included in the Intensification/Reuse Only scenario.

Response 22G

The commenter notes that the 50 -foot buffer from riparian areas can affect large amounts of land and suggests that requiring such a buffer is inconsistent with a Form Based Code approach. This concern is noted. It is not clear why such a requirement would be inconsistent with a Form Based Code approach. Buffers can be adaptable depending upon circumstances, but the 50 -foot buffer has been determined to provide the minimum distance needed to effectively protect riparian habitat and associated wildlife movement corridors. This minimum distance is consistent with that adopted by a number of communities in the southern California region.

Response 22H

The commenter notes that the Parklands project does not include a new school. This comment is noted. The developer will be required to pay State-mandated school impact fees.

Response 22I
The commenter notes that the size and acreage of parks needs greater flexibility under a Form Based Code approach. City staff agree with this statement generally and will continue to seek various means of meeting park and recreational demands associated with new development on a case-by-case basis. In addition, language has been added to the General Plan under Policy 6A as follows:

> Update standards for citywide public parks and open space to include an expanded menu of shared park types, and identify locations and potential funding sources for acquiring new facilities in existing neighborhoods.

Response 22I

The commenter suggests that not all connecting streets should be required to provide straight alignments between existing termini and entries into public streets. Specific alignments of new road extensions will continue to be reviewed on a case-by-case basis. The alignments shown in the Draft EIR and traffic study are conceptual only and will need to be adjusted to reflect on the ground conditions as part of individual project review.

July 18,2005
（805）230－2301 ceuthon wbeoun＝el．com

じゃいい SAN BUENAVENTUFi，

JUL 182005

Ms．Kari Gialketsis，Principal Planner
＂－AnAIINITY OEVFI RM．

Cily of Ventura
501 Poli Strect
Ventura，CA 93001
Rc：Cily of Ventura Draft Environmental Impact Report，SCH \＃ 2004101014

To Whom It May Concem：

I am responding to the extraordinary above captioned Draft EIR． 1 am certain that you have already been told that it works better than weights in the gym．While totally impressed，it doesn＇t mean that I don＇t have some concerns and comments．

Initially，I offer a concern about Scenario 1 and the population limited therein and related to an outdated SCAG maximum number for the City． During the course of the CPAC update，al least three population alternatives werc announced，including a recommendation of the Planning Commission to peg the now number based on a ratio of 1.14% per year rather than 0.88% ．Scenario 1 is very restrictive，and one could assume that the annual birth rate produces a greater number of new Ventura residents，at least by a factor of $1+\%$ ，than the number which die or leave the community for other reasons．It essentially omits or doesn＇t provide for at least some new residents attracted to this beautiful，now vibrant city．

I was unable to find a population allowance for redevelopment， particularly along major strects in mid－town，The Avenue and the Harbor．

While the Gencral Plan is silent on population，the EIR is likely to be relicd on by persons generally opposed to new projects，and it will be used as a supportable statistical basis to declare a new project as not being consistent with the General Plan as it rclates to population，and ils concomitant effects on traffic， air quality，ctc．，regardless of the absence of a formal cap in its text．

Community Development Department
City of Ventura
July 18, 2005
Page 2
The foregoing analysis of the population base loads me to the more important, costly and time consuming concern that, while there is an implicit flexibility of dealing with added population, the current text could require worthwhile and well located applications to go through an amendment to the General Plan duc to its reliance on the known unrealistic SCAG projection, which is already less than actual.

It is my understanding that the new General Plan is a precursor to the City adopting a Form Base Code approach to all new development. The initial application is taking shape in Downtown and was recently informally applicd to the School District's Hails property under contract to The Olsen Company. Should my premise be correct, the EIR should be similarly oriented, and not include hard edge archaic current zoning standards. In that regard, it should be a prospectively designed Gencral Plan.

To illustrate the foregoing, please consider:

Public Services:

Park Area: Ventura is a mature City with existing park and recreation areas, which have been added to over the years as needed. One outstanding feature of the City is its beaches, which provide a recreation amenity non-coastal cities would die for. Yet, it appears that the EIR is calling for the same green park acreage as is required in non-coastal cities. A review of Tables 4.11-8, 4.11-9 and 4.11-10 find sufficient park acreage aggregating from the three catcgories examined in those Tables. On the larger scale, Ventura is addressing active sports parks. In a Form Base Code setting, minimum 5 acre parks are arbitrary and likely questionable or unnecessary. More apropos would be an EIR statement to the effect that new projects require new ideas, dimensions and types of common recreation, specially in light of more attached housing, smaller lots and less private on-site recrcation area. Thus, in my opinion, rigid park requirements are out of touch with the new planning paradigm.

Firc Facilities: The standards discussed in the EIR relate to a different, carlicr time when fire fighters wore primarily engaged in fire protection and fire fighting rather than as now, with a change of emphasis to scrving as paramedics. There will always be a necessary role for fire personnel to kecp our

Community Devclopment Department
City of Ventura
July 18, 2005
Page 3
citics safe and to do prevention. But old standards do not take into full consideration the requirements of the State Uniform Building Code, improved construction materials, e.g. roofing, and methods, e.g. interior sprinklers, wall construction treatment, elc. Thus, the issue is whether the EIR should comment generally rather than specifically on such lacilities and crew numbers.

Biological Rcsources at page S-11: The specificity of the buffcr area in Action 1.8 related to rivers, crecks and barrancas is too binding. Each of such natural settings need be protected, and protection provided from potential overflows to nearby development. But to specify an arbitrary set back of 50 fcet is to, in my opinion, miss the point of the Form Base Code, which enables a recognition of greater integration, not based on arbitrary dimensions or distances, of such natural features with now projects to enhance the aesthctic, recreation and socialization character of such new projects. Thus, non intrusive bike and walking paths-not subject to effects of spillover-as well as dctention/retcntion areas used for passive recreation could be forced away from the top of banks where the full experience of being close to water courses is best enjoyed. Similarly, the matter of proximity of restaurants or even residences to such water courses should be left to topographic and site design and sale and thoughtful construction mothods, all of which would go through rigorous review to reach a more spontancous, natural and random product. Such creativity should be rewarded and not preempted by language in the FEIR or the Gencral Plan.

Public Schools: PS-3 is a positive example of dealing with a generic matter of placement of new schools as need arises.

Noise:

Impact $\mathrm{N}-1$: By specifying a sound wall in the EIR pursuant to Action 7.28, other values such as vicws of the Santa Clara River could be unintendedly obscurcd and subordinated. Such a sound issue could be addressed on a specific project look and not clutter the EIR and Gencral Plan.

Utilities and Service Systems:

Impact U-2(b): It is observed that the reference to sanitation capacity in this subsection specifies Ojai Valley Sanitary District capacity. It is found that the language in this subsection hands jurisdiction or devclopment veto

Community Development Department
City of Ventura
July 18,2005
Page 4
power to that special district to the detriment of the City maintaining final authority and options. If it is necessary to specily the subject District, you might consider adding language, to wit: "only when the Ojai Valley Sanitary District has adequate capacity for projected wastewater flows or there is other mitigation approved by the City Engineer."

Population and Housing:

Impact PH-2: The linding of Significance after Mitigation in the third column of Table S-1 would not be required but for the tie-in of all Scenarios 1-6 to the SCAG population projection.

Transportation and Circulation:

Policy 3E and Action 3.17 are other positive examples of, in this case, dcaling with road alignments and dimensions in a Form Bascd Code mode, wherein there is flexibility to provide for connectivily of existing to new roadways in a manner which enhances walkability and direct access without overburdening existing neighbors, e.g. design for Parklands' street system, particularly connecting the cxisting neighborhood street on the west boundary to Wells Road, but not necessarily in a straight alignment.

Congratulations on a heroic cffort and documented study.
Very truly yours,

Charles W. Cohen
WESTON BENSHOOF
ROCHEFORT RUBALCAVA \& MacCUISH
LLP

CWC/cc

Letter 23

COMMENTER: Charles W. Cohen, Weston, Benshoof, Rochefort, Rubalcava \& MacCuish, LLP

DATE:
July 18, 2005

RESPONSE:

Response 23A
The commenter states an opinion that the 0.88% population growth rate considered in the Draft EIR is overly restrictive. The commenter also states concerns about reliance on SCAG population projections and what he believes is the lack of a "population allowance" for the Midtown, Ventura Avenue, and Harbor areas. Finally, the commenter states an opinion that the EIR should not include "hard edge archaic zoning standards."

The opinion with respect to the appropriate population growth rate for the City is noted. As noted in the Draft EIR, the 0.88% average annual growth rate assumed for Scenario 1 represents the average over the past 10 years, while 1.14% growth rate assumed for Scenarios 2-6 represents the average over the past 20 years. It is important to note that the growth rates assumed in the Draft EIR are not intended to be growth caps. Rather, they are estimates used for analytical purposes that are intended to provide a realistic picture of likely conditions in 2025.

As part of the overall anticipated growth, the Draft EIR relies on certain assumptions about where future growth might occur and assigns growth to areas throughout the City, including the Midtown, Ventura Avenue, and Harbor areas. However, as with the overall population growth assumptions in the Draft EIR, the assumed amount of growth for individual areas within the City are not meant to be growth caps for those areas. Any of the districts, corridors, or neighborhood centers could theoretically accommodate substantially more growth than assumed in the Draft EIR based on the land use designations. However, it is not realistic to assume that all areas of the City would build out to the maximum theoretical degree over the next 20 years.

In response to several comments on the Draft 2005 General Plan and Draft EIR, the table in the 2005 General Plan will be revised to eliminate the detailed estimates of future growth by geographic location. The Final 2005 General Plan will include a table that summarizes growth projections by general category (districts/ corridors, neighborhood centers, other) in order to eliminate confusion about whether the growth projections for individual areas used for the EIR analysis constitute growth caps for those areas.

The Draft EIR does not rely on SCAG forecasts. It merely acknowledges that the population projections used in the Draft EIR exceed SCAG growth forecasts for the City. Individual projects would not require a General Plan amendment merely because the City's population projections exceeds SCAG's forecast. The more likely scenario is that SCAG will update its forecasts to reflect the City's current growth projections following adoption of the 2005 General

City of Ventura

Plan. Similarly, it is anticipated that the Ventura County APCD will update its growth forecasts for Ventura in the 2007 AQMP that is currently in preparation.

It is correct that the City intends to adopt a Form Based Code subsequent to approval of the 2005 General Plan. However, it is not clear which zoning standards to which the commenter is referring. The Draft EIR analysis does not rely on current zoning standards.

Response 23B

The commenter states concerns about the use of current City park standards in the Draft EIR and suggests that the EIR is "calling for the same green park acreage as is required in noncoastal cities." The commenter also states an opinion that the use of rigid park requirements is not appropriate. The opinion regarding park standards is noted. The Draft EIR uses current City park acreage standards to estimate future demand for parks. However, it is true that acreage is only one component of park demand. In addition, as noted in the Draft EIR, the estimate of existing park acreage does not include beaches, schools, or regional park and open space facilities located outside the Planning Area. All of these facilities offset the "shortfall" of parks identified in the Draft EIR and will continue to do so in the future. The City will continue to seek creative ways of meeting the park and recreational needs of the community, which likely will involve some variation from the adopted standards in some instances. In addition, language has been added to the General Plan under Policy 6A as follows:

Update standards for citywide public parks and open space to include an expanded menu of shared park types, and identify locations and potential funding sources for acquiring new facilities in existing neighborhoods.

As noted in the Draft EIR, the continued collection of park fees and use of these funds to develop new parks and recreational facilities would reduce park-related impacts to a less than significant level.

Response 23C

The commenter states an opinion that the standards for fire protection service discussed in the Draft EIR are inappropriate given the current emphasis on paramedics. The commenter also suggests that the EIR should comment on fire service more generally, rather than providing information about specific personnel and facility needs. These opinions are noted. The information regarding current fire service needs was obtained directly from the Ventura Fire Department as part of the Draft EIR preparation. Therefore, it is presumed that the needs identified in the Draft EIR reflect the current Department needs.

Response 23D

The commenter states an opinion that the 50 -foot riparian area setback specified in the Draft EIR is unnecessarily binding, noting that in certain circumstances a less restrictive setback may be adequate. This opinion is noted. The City will retain flexibility in how the setback requirement is to be applied. However, the recommended 50 -foot buffer provides the minimum determined to be needed to maintain the biological integrity of "natural" riparian areas.

Response 23E

The commenter states agreement with the manner in which school impacts is addressed in the Draft EIR. No response is necessary.

Response 23F

The commenter states an opinion that the need for sound walls would be more appropriately addressed as part of a specific project than as part of the General Plan. This opinion is noted. The action mentioned by the commenter is intended to address existing noise issues for current residences located adjacent to area freeways. Project-specific analysis of future development proposals would not address this existing condition.

Response 23G

The commenter suggests a revision to Mitigation Measure U-2(b) to provide additional flexibility for the City. In response to this comment, Measure U-2(b) is revised to read as follows (new text is underlined):

U-2(b) Ojai Valley Sanitary District Capacity. The following action shall be added to the 2005 General Plan if Scenario 5 or any other scenario that includes both the North Avenue and Western Cañada Larga expansion areas is selected:

- Allow development within the North Avenue expansion area or Western Cañada Larga expansion only when the Ojai Valley Sanitary District has adequate treatment capacity for projected wastewater flows or other mitigation is approved by the City Engineer.

Response 23H
The commenter notes that the unavoidably significant impact relating to population projections is due to the comparison to SCAG growth forecasts. This is correct. However, it should be noted that the unavoidably significant impact does not prevent the City from approving the 2005 General Plan, nor does it mean that future individual projects would be inconsistent with the General Plan. The City merely needs to acknowledge the discrepancy between the forecasts and adopt a Statement of Overriding Considerations setting forth the reasons the project's benefits outweigh the impact. It is anticipate that SCAG will update its population forecasts for the City in response to new projections provided by the City following approval of the General Plan Update.

Response 231

The commenter states agreement with the approach taken in General Plan Policy 3E and Action 3.17. No response is necessary.

RESOURCE MANAGEMENT AGENCY' county of ventura

Kari Gialketsis, Principal Planner Community Development Department
 City of San Buenaventura
501 Poll Street, P.O. Box 99
VI: ...
Ventura, CA 93002-0099

JUL 182005
iMMUNITY DEVI ORA:-

SUBJECT: Draft EIR for Comp: Plan Update
Thank you for the opportunity to review and comment on the above subject document. Attached are the comments that we have received resulting from an intra-county review of the projects.

Any responses to these comments should be sent directly to the commenter, with a copy to Carl Morehouse, Ventura County Planning Division, L\#1740, 800 S. Victoria Avenue, Ventura, CA 93009.

If you have any questions regarding any of the comments, please contact the appropriate respondent. Overall questions may be directed to Carl Morehouse at (805) 654-2476.

Sincerely,

Attachment
County RMA Reference Number 04-086-2

Letter 24

COMMENTER: Christopher Stephens, County Planning Director, County of Ventura Resource Management Agency

DATE: July 18, 2005

RESPONSE:

The commenter notes that comments from individual departments at the County of Ventura are attached to his letter. Responses to individual department comments are included in the responses to Letters 25-28.

County of Ventura Planning Division MEMORANDUM

DATE: July 18, 2005
FROM: Bruce Smith, Manager General Plan Section
sUBJECT: Draft Environmental Impact Report for Update of Comprehensive Plan (City of San Buenaventura)

The Ventura County Planning Division has reviewed the Draft Environmental Impact Report (DEIR) for the Update of the City of San Buenaventura Comprehensive Plan. While the EIR itself appears to adequately address the impacts of the Comprehensive Plan Update, we offer the following comments relative to conflicts with the County General Plan with respect to Saticoy and the North Ventura Avenue Area:

Conflict with Saticoy Aras Plan

The City's proposed Comprehensive Plan Indicates that the residential neighborhood between Nardo Street and Rosal Lane is designated as "Medium Density Residential (9 12 dwelling units per acre"). The area south of Rosal Lane is designated as "Industrial" by the Comprehensive Plan.
The Ventura County Saticoy Area Plan designates the Rosal Lane area as "2-Family Residential ${ }^{\text {a }}$ which is consistent with the City's Plan, but the County's residential designation extends further south 225 feet into the area designated by the City as "Industrial". This conflict between the City and County plans creates an 8.5 -acre "noman's land" which is not developable because the City is unable to extend water service for a residential land use which is inconsistent with the Comprehensive Plan and the County cannot approve industrial development on land zoned and planned for residential development. The area cannot be annexed to the City as it is not currently contiguous to the existing City limits. The County plan designation has been in place since at least 1967. Land use in this "no man's land" area is largely vacant, but includes two or three residential units south of Rosal Lane at Alelia Avenue, and one small commercial property fronting on Los Angeles Avenue. We presume that the City does not intend a conflict and that the Comprehensive Plan map may reflect a mapping error. We ask that the City evaluate this conflict with the County's plan and determine whether or not a boundary adjustment is appropriate at this time.

Carl Morehouse Memorandum
DEIR for City of Ventura Comprehensive Plan Update
July 18, 2005
Page 2

Conflict with North Ventura Avenue Area Plan

In 1982 and 1984 the City and County jointly adopted an area plan for the North Ventura Avenue area. Pollies of the joint plan required that future City and County amendments should be processed and approved by both jurisdictions to avoid conficts between City and County plans for the area. Although there were minor differences between the City and County plans for the North Ventura Avenue area in formating and terminology even when first adopted, the City plan has evolved over time and now evidences significant land use conflicts with the County Area Plan. The princlpal differences appear to be that the former "Floodplain" area is now largely designated as "Agriculture"; a portion of the former "Floodplain" area (the unincorporated portion of the City's wastewater treatment plant site) has been designated as "Industrial" and large areas formerly designated as "Oil Extraction Industrial" have been re-designated as "Industrial", "Agricultural" or "Open Space". While we have no particular concems with most of the land use amendments the City has approved over time, we are concemed that the two plans are no longer in sync, resulting in confusion and unnecessary compllcations for applicants for discretionary applications. We suggest that the City direct tis staff to work with the County to identify and eliminate where feasible conflicts between the City and County plan either by amendment of the County Plan, the Clity Plan or both, as appropriate.

We also suggest that the proposed "Industrial" designation of the unincorporated portion of the City treatment plant may be inappropriate because of the potential flood hazard. We suggest a designation of "Public and Institutional" would better serve as a land use designation for this site.

Thank you for the opportunity to review the Draft EIR and Comprehensive Plan Update.

Letter 25

COMMENTER: Bruce Smith, Manager, General Plan Section, County of Ventura Planning Division

DATE:
July 18, 2005

RESPONSE:

Response 25A

The commenter notes a discrepancy between the General Plan land use map and the County's Saticoy Area Plan for properties along the south side of Rosal Lane. This discrepancy is addressed as part of the "Intensification/Reuse + Minor Map Clean-Up" alternative studied in Section 6.0, Alternatives. City staff are recommending revision of the General Plan land use map to provide a "Residential Medium Density" designation for the properties in question. It should also be noted that one of the property owners submitted a comment letter (Letter 5) correcting the APNs listed in the Draft EIR. Those numbers will be corrected in the Final EIR.

Response 25B

The commenter suggests that City and County staff work together to resolve discrepancies between the City and County plans for the North Ventura Avenue area. The commenter also suggests that the "Industrial" designation for the unincorporated portion of the City's treatment plant may be inappropriate because of the potential flood hazard in the area. City staff will continue to work with County staff regarding the planning of the North Ventura Avenue area. With respect to the water treatment plant site, it is presumed that the commenter is referring to the area immediately north of the treatment plant. That area is already designated "Industrial" in the current Comprehensive Plan. Therefore, the "Industrial" designation represents no change. Any development within the 100-year flood zone would need to comply with FEMA requirements as well as the requirements of the City's Floodplain Ordinance.

DATE: July 14,2005
TO: CARLMOREHOUSE
FROM: PAULCALLAWAY

SUBJECT: Comments to the DEIR for the Ventura's General Plan Update RMA 04-086-2

We have reviewed the DEIR and have the following comments on our areas of concem PERMIT SECTION:

In section 4.8 the DEIR discusses ways to mitigate the increase in peak runoff due to the increase in impervious area from the proposed future development scenarios. In revicwing the proposed mitigation measures to make the effect less than significant we found that these measures are acceptable but we think that developments and redevelopments in the areas adjacent to our jurisdictional channels should be coaditioned, as an additional possible mitigation measure, to dedicated right of way to meet the future needs of the Watershed Protection District (District), and to build and dedicate to the District improvements that will address the deficient facilities along and in those channels. These right of way needs will depend on the type of channel the city would like to see in these areas such as a soft environmentally friendly channel which would require a larger right of way compared to the District's preferred channel which is a vertical walled concrete channel with access road.

ENVIRONMENTAL SERVICES SECTION:

The Environmental Services Section of the District has reviewed the DEIR dated June 2005, and has the following comments.

The lands and land use changes that are evaluated in the DEIR, including project alternatlves, may include impacts on engineered drainages, debrls or detention basins. rivers or streams, and adjacent 100-year floodplains that are owned by the District or subject to the District's jurisdictlon.

The proposed plan and the policles therein, present an opportunity for the District to work cooperatively with the City of Ventura to set aside undeveloped floodplains for the purpose of providing "soft" solutions to flood control and to maintain rivers and streams
in their natural state. These public trust resources are amenties that improve the quality of life in the Clity of Ventura and its Sphere of Influence.

Section 4.8 of the DEIR identifies flooding and flood miligation measures for developable areas within the 100 -year fioodplain under each land use scensio. In addition, several Actions (Actions 1.10, 1.14, 5.2) described in this section Indicate that the clity will pursue removal concrete and renovation of flood control facilites for the purpose of creating "soft" flood control faclities (e.g., natural stream, wetlands, etc.) and greenbetts.

In most cases, natural channels generally require a much wider floodplain than engineered structures. However we note that the proposed plan does not present any land use goals, pollcies or actions that would limit development in the floodplains or encourage dedication of floodplain for such purposes. Further, policies that limit the use of variances that would allow development in the 100-year floodplain should also be considered and included in the adopted plan.

The DEIR also dascribes miftgation measures for development in 100-year foodplains in the various land use scenarios. These include structural or bullding solutions that olevate finish floors, and/or Letters of Floodplain Map Revision from FEMA. In light of the plan goals for soft solutions to fiood control, these mitigation measures are incongruous. If the City intends to restore and maintain natural streams for flood control purposes over the life of the plan, land use policies which promote this approach to flood control and dedication of floodplain right-of-way must be adopted, applied, and enforced.

Establishing and strengthening protective policies for floodplains in thls plan update is valuable. As history illustrates, over time, continued encroachment into the floodplain by urban development in cities and in unincorporated areas results in substantial flooding problems, which then require traditional flood control improvernents. Moreover, the pressure for additional tax-payer funded flood control projects in natural rivers and streams will increase.
KiWOEIvionnventa! Serviceatalir Rivimwicly of Ventura Comp PIan DERRDOC
If you have any questions on this matter please feel free to call me at 805-654-201 I
Very Truly Yours,

Paul Callaway, P.E.
Manager, Permit Section
Planning and Regulatory Division

Letter 26

COMMENTER: Paul Callaway, Ventura County Watershed Protection District
DATE: July 14, 2005

RESPONSE:

Response 26A
The commenter suggests that the EIR should include an additional mitigation measure requiring the dedication of right-of-way for future Watershed Protection District needs for developments adjacent to jurisdictional channels. In response to this comment, Mitigation Measures HWQ-2 will be amended to read as follows (new text is added):

HWQ-2 Additional Drainage Actions. The following actions shall be added to the 2005 General Plan to address existing storm drain system deficiencies:

- Develop a financing program for the replacement of failing corrugated metal storm drain pipes in the City.
- Adopt assessment districts or other financing mechanisms to address storm drain system deficiencies in areas where new development is anticipated and deficiencies exist (e.g., Downtown district, Ventura Avenue corridor, and Harbor district).

The following actions are recommended to minimize the impact of future development on the local storm drain system and implement City goals regarding sustainable infrastructure:

- As feasible, require new developments to incorporate stormwater treatment practices that allow percolation to the underlying aquifer and minimize offsite surface runoff. Such methods may include, but are not limited to, (1) the use of pervious paving material within parking lots and other paved areas to facilitate rainwater percolation; and (2) construction of retention/detention basins to limit runoff to predevelopment levels and to encourage infiltration into the groundwater basin.
- Where deemed appropriate, require new developments adjacent to Ventura County Watershed Protection District channels to dedicate necessary right-of-way to meet future District needs.

Response 26B

The commenter reiterates the need for dedicated right-of-way adjacent to District drainage channels and suggests that the General Plan should strengthen land use policies to direct development away from floodplains rather than providing for structural solutions to flooding issues. Please see Response 26A. Also, the proposed 2005 General Plan is primarily intended to direct development away from drainages and focus on intensification and reuse within the
already urbanized areas of the City and contains many policies and statements that enforce this intent. In the event that any structural solutions are considered, the City will discuss them with the Watershed Protection District.

VENTURA COUNTY AIR POLLUTION CONTROL DISTRICT Memorandum

TO:
Carl Morehouse, Planning
DATE: July 13.2005
FROM: Alicia Stration $\nless<$
SUBJECT: Request for Review of Draft Environmental Impact Report for the Update of 1989 Comprehensive Plan, City of Ventura (Reference No. 04-086-2)

The proposed project involves the update of the 1989 Comprehensive Plan, which serves as the blucprint for the development of the City. Each of the Comprehensive Plan elements other than the Housing Element (an update of which was approved earlier this year) will be updated with goals, policies, and objectives that reflect the current needs and preferences of the community. The land use map will also be updated.

The City intends to emphasize infill development and reuse of developed lands within he current Sphere of Influence over the life of the Comprehensive Plan Update (through 2025), and has identificd a number of growth districts and corridors where infill/reuse is to be focused. However, as part of the Comprehensive Plan update, the-City is also considering inclusion of certain areas outside the current Sphere of Influence for future development.

We wish to submit the following comments on the draft environmental impact report;

1. Table 4,3-1 on Page 4.3-2 should be revised to reflect that the federal one-hour ozone standard has been revoked, effective Jume 15, 2005 (see attached). The corresponding paragraph discussing the table should be revised accordingly (Pages 4.3-2 and 4.3-3).
2. The discussion on Current Ambient Air Quality on Page 4.3-5 should be revised to include data from the APCD air quality monitoring station at Emma Wood near Ventura. Data from this monitoring station is representative of air quality in the coastal areas of Ventura; data from the El Rio monitoring station is more representative of the inland portions of Venlura, The Emma Wood station only monitors ozone levels.
3. The discussion of the 1994 Air Quality Management Plan (AQMP) in Section 4.3.1 Setting (d) on Page 4.3-5 should include this statement following the last sentence of the fifth paragraph: "To that end, the APCD is currently developing a new AQMP, which will be completed in 2007. The 2007 AQMP will contain
strategies for attainment of the new eight-hour federal ozone standard by 2010. It will also incorporate updated projections of population, dwelling units and motor vehicle emissions."
4. The second paragraph on Page 4.3-14 should be revised to state that: "The Ventura County AQMP provides recommendations for reducing emissions from transportation-related sources by reducing vehicle use or improving traffic flow. These techniques are referred to as Tansportation Control Measures (TCMs)."
5. The Mitigation Measures discussion on Page 4.3-20 should be expanded to include this additional measure: "Require other air pollutant mitigation measures found feasible at the time of project approval."

If you have any questions, please call me at 645-1426 or email me at alicia@ucaped.ors.

Air \& Radiatlon Home
Where You Live
Easie information indoor Air

Tranapportation/Fuols
Nonroad Equipment
Acid Rain
Ozone Depletion
Climate Chango
Vislbilly
Toxic Air Pollutanta
Radiation
Grants \& Furnding
Fublications
What You Can Do
Tools \& Technical info AIRNow Emiestions Trading Alr Data \& Maps Grean Vehielos TTN - Technology Transfor Network

Air \& Radiation

EPA Heme > Al \& Radiation > Netional Amblent Alr Quality Stendards (NAAOS)

National Ambient Air Quality Standards (NAAQS)

The Clean Air Act, which was last amended in 1990, requires EPA to set Natlonal Amblent Air Quality Standards for pollutants considered harmful to public bealth and the environment, The Clean Alr Act established two types of national air quality standards. Primary standards sef limits to protect public health, including the health of "sensitive" poputations such as asthmatics, children, and the elderly. Secondary standards set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Qually Standards for six principal pollutants, which are called "criteria" pollutants. They are listed below. Units of measure for the standards are parts per million (ppm) by volume, milligrams per cubic meter of air ($\left(\mathrm{mg} / \mathrm{m}^{3}\right.$), and micrograms per cubic meter of air ($\mu \mathrm{g} / \mathrm{m}^{3}$).

National Ambient Air Quality Standards

Pollutant	Primary Stds.	Averaging Times	Sacondary
Carbon Monoxide	$\begin{aligned} & 9 \mathrm{ppm}(10 \\ & \left.\mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	8 -hour ${ }^{1}$	Nono
	$\begin{aligned} & 35 \mathrm{ppm} \\ & \left(40 \mathrm{mg} / \mathrm{m}^{3}\right) \end{aligned}$	1-hour1	None
Lead	$1.5 \mu \mathrm{~g} / \mathrm{m}^{3}$	Quarterly Average	Same as Primary
Nitrogen Dioxide	$\left(\begin{array}{l} 0.053 \mathrm{ppm} \\ \left(100 \mu \mathrm{~g} / \mathrm{m}^{3}\right) \end{array}\right.$	Annual (Arithmetic Mean)	Same as Primary
Particulate Matter $\left(\mathrm{PM}_{10}\right)$	$50 \mu \mathrm{~g} / \mathrm{m}^{3}$	Annual ${ }^{2}$ (Arith. Mean)	Same as Primary
	$150 \mathrm{ug} / \mathrm{m}^{3}$	24-hour.	
Particulate Matter $\left(\mathrm{PM}_{2.5}\right)$	$15.0 \mu \mathrm{~g} / \mathrm{m}^{3}$	Annual ${ }^{3}$ (Arith. Mean)	Same as Primary
	$65 \mathrm{ug} / \mathrm{m}^{3}$	24-hour	
Ozone	0.08 ppm	6-hour ${ }^{5}$	Same as Primary
Sulfur Oxides	0.03 ppm	Annual (Arith. Mean)	$\underline{-}$
	0.14 ppm	24-hour ${ }^{1}$	-
		3 -hour ${ }^{1}$	$\begin{aligned} & 0.5 \mathrm{ppm} \\ & \left(1300 \mathrm{ug} / \mathrm{m}^{3}\right) \end{aligned}$

${ }^{1}$ Not to be exceeded more than once per year.
${ }^{2}$ To attain this standard, the 3-year average of the weighted annual mean PM_{10} concentration at each monitor within an area must not exceed $50 \mathrm{ug}_{\mathrm{m}} \mathrm{m}^{3}$.
${ }^{3}$ To attein this standard, the 3 -year average of the weighted annual meen PM_{25} concentrations

EPA National Ambient Air Quality Standards（NAAQS）

from single or muliple community－oriented monitors must not exceed $15.0 \mathrm{ug} / \mathrm{m}^{3}$
${ }^{4}$ To attain this standard，the 3－year average of the $98 t h$ percentle of 24－hour concentrations at each population－oriented monitorwithin an area must not exceed $65 \mathrm{ug} / \mathrm{m}^{3}$ ．

5 To allain this standard，the 3 －year average of the fourth－highest daily maximum B－hour average ozone concentrations measured at each monitor within an area over each year musi not exceed 0.08 ppm ．

Letter 27

COMMENTER: Alicia Stratton, Ventura County Air Pollution Control District

DATE:
July 13, 2005

RESPONSE:

Response 27A

The commenter suggests revising Table 4.3-1 to reflect the fact that the federal one-hour ozone standard was revoked on June 15,2005. That table and the corresponding text will be revised accordingly in the Final EIR. This minor text change will not affect any EIR findings or conclusions.

Response 27B
The commenter suggests that the discussion of ambient air quality on page $4.3-5$ should be revised to include data for the Emma Wood monitoring station. In response to this comment, the following table will be added to EIR Section 4.3-3 and the accompanying text will be revised accordingly. Subsequent tables will be renumbered.

Table 4.3-3
Ambient Air Quality Data for the Emma Wood Monitoring Station

Pollutant	Air Pollution Data		
	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$
Ozone, ppm - maximum hourly concentration (ppm)	0.078	0.094	0.093
Number of days of state exceedances $(>0.09$ ppm)	0	3	1
Number of days of federal exceedances (>0.12 ppm)	0	0	0
Ozone, ppm - maximum 8-hour concentration (ppm)	0.069	0.078	0.082
Number of days of federal exceedances (>0.08 ppm)	0	0	1

Source: ARB, Air Quality Data Statistics; available at http://www. arb.ca.gov/agd/agdpage. htm.

Response 27C

The commenter suggests the addition of a sentence about the 2007 AQMP. In response to this comment, the following will be added to the end of the first paragraph under subsection d (Air Quality Management Plan):

To that end, the $A P C D$ is currently developing a new AQMP, which will be completed in 2007. The 2007 AQMP will contain strategies for attainment of the new eight-hour
federal ozone standard by 2010. It will also incorporate updated projections of population, dwelling units, and motor vehicle emissions.

This minor text changes does not affect the EIR findings or conclusions.
Response 27D
The commenter suggests a clarification with respect to AQMP programs to reduce vehicle use and improve traffic flow. In response to this comment, the first two sentences of the first full paragraph of page 4.3-14 will be replaced with the following:

The Ventura County AQMP provides recommendations for reducing emissions from transportation-related sources by reducing vehicle use or improving traffic flow. These techniques are referred to as Transportation Control Measures (TCMs).

This minor text change does not affect the EIR findings or conclusions.

Response 27E

The commenter suggests an additional mitigation measure. In response to this comment, the first bullet point of Measure AQ-2 will be revised to read as follows (new text is underlined):

- Require air quality analysis of individual development projects in accordance with the most current version of the Ventura County Air Pollution Control District Air Quality Assessment Guidelines and, when significant impacts are identified, require implementation of air pollutant mitigation measures determined to be feasible at the time of project approval.

TO:

Resource Management Agency, Planning Division Attention: Carl Morehouse

FROM: Nazir Lalani, Deputy Director NL

SUBJECT: Review of Document 04-086-2, Draft EIR
Update of the 1988 Comprehensive Plan for the City of Ventura
Project involves updating the 1988 plan through the year 2025 with the current goals, policies and objectives that reflect the current needs and preferences of the community. The plan will also consider inclusion of certain areas outside the current Sphere of Influence for development. Project Applicant/ Lead Agency. City of San Buenaventura

The Public Work Agency - Transportation Department has reviewed the revised the Draft Environmental Impact Report (DEIR) to update the City of Ventura Comprehensive Plan, which serves as a blue print for development in the City. Our comments are the same as in our memo dated November 1, 2004 and are as follows:

The EIR should address the following comments:

1. Road improvements associated with all six scenarios along the major transportation corridors should match those shown in Appendix 8.3 of the County's General Plan Update DEIR. A copy of Appendix 8.3 is attached. The major corridors include Victoria Avenue, Olivas Park Drive, Harbor Blvd, Ventura Avenue, Foothill Road, Telegraph Road, Hwy 118 and Hwy 232. This would include bicycle and pedestrian facilities.
2. On Page S-1, the DEIR makes reference to North Avenue, Olivas Park, Serra, Western Canada Larga and Poinsettia areas. A map should be provided to indicate the limits of these areas.
3. Page 4.12-10 "Presently, two trains in both AM and PM operate the entire length of the route between Ventura and Union Station." There are three Mctrolink trains that operate currently along this stretch. The EIR should make this correction.
4. As noted in our memo on the Notice of Preparation of the DEIR, dated January 20, 2005, in accordance with the Ventura LAFCO Commissioner's Handbook, section 3.2.1, cities shall annex entire roadway sections adjacent to territory proposed to be annexed and shall include complete intersections. The EIR should require conditions for annexing county roadway section adjacent to the development, when the proposed expansion areas are developed.
5. As noted in our memo on the Notice of Preparation of the DERR, dated January 20, 2005 the updated 2025 comprehensive plan should address annexing of unincorporated islands in the County such as Montalvo, and developed areas immediately adjacent to the City limits such as Saticoy and existing development on North Ventura Avenue.
6. One of the altematives being considered by the Comprehensive Plan Update includes annexation and development of the Canada Larga area. As demonstrated by the 2005 winter storms, this area is prone to major damage by flooding. The EIR should address this issue.
7. Ventura Avenue south of Shell Road is subject to severe flooding during winter storms. Annexation of this area by the City should address the need to provide an adequate storm drain system.
8. All of the scenarios are associated with major intersection and road segment improvements that will be needed to mitigate the traffic growth generated by the land use changes. The ERR should address how these improvements are to be funded.
9. The cumulative impacts of the development of this project when considered with the cumulative impact of all other approved (or anticipated) development projects in the County will be potentially significant. To address the cumulative adverse impacts of traffic on the County Regional Road Network, the appropriate Traffic Impact Mitigation fees should be paid to the County when development occurs. With payment of the Traffic Impact Mitigation Fees, the Level of Service and safety of the existing roads would remain consistent with the County's General Plan.

Our review of this project is limited to the impacts this project may have on the County's Regional Road Network.

Please call me at 654-2080 if you have questions.
Attachment: Appendix 8.3
8.3 Summary of Traffic Madel Results

Bral Fingl Subsequent Enfiromental hroact Report for Focused Genenal Plan Updato

			Exatios			$\begin{aligned} & 2 \mathrm{zan} \\ & \text { Fortassi } \end{aligned}$		Exising 68			mprowements to meat LOS stindard			Hwy 101 8－lamws through extims			Smata Rosia and Macrpark Romis 2. vanem			\qquad		
Romed Nrwe	moad Limite			F E E		5 各 或	$\begin{aligned} & \text { g } \\ & \text { 袁 } \\ & \text { N } \end{aligned}$		2020 ADT	$\begin{aligned} & 08 \\ & \frac{1}{3} \\ & \text { in } \\ & 0 \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \\ & 5 \\ & 5 \\ & 8 \\ & 8 \end{aligned}$			$\begin{aligned} & \text { B } \\ & \frac{1}{5} \\ & \frac{1}{6} \\ & \text { i } \end{aligned}$	点 合	$\begin{aligned} & \text { 橾 } \\ & \text { 呙 } \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{2}{5} \\ & \frac{1}{6} \\ & 0 \\ & \hline \end{aligned}$	－ 8 8	$\begin{aligned} & \text { y } \\ & \text { 唇 } \end{aligned}$	$\begin{aligned} & \text { 卷 } \\ & \frac{1}{6} \\ & \text { 8 } \end{aligned}$	名 気	器
Stang Roule 23 Hath	thoorpark Cily firrits bo Berctadala Avente			6，400	E E	14，200	E						E		14，000	E	2		E	2	12，400	E
Stato Rocte 23 North		11	2	8，700	D	13，300	E	2	13，300	E	2	13，400	E	2	13，600	E	2	13，600	E	2	13，409	E
Stade Poute 33	$\begin{gathered} \text { USi } 1016 \\ \text { Staidoy } \\ \text { Avenuzs } \end{gathered}$	＊＊	4	nim	n／a	50，200	0	4	50，200	c	4	50.200	c	4	50.200	c	4	50，200	C	4	50，200	C
State Route 83	Stantimy Ayenua io Shell foad	6iny	4	no	nts	50，200	c	4	50.200	c	4	50.200	c	4	50，200	C	4	50200	c	4	50，200	c
State Route 33	Stall Road to Cenada Largapooad	Nay	4	nia	Na	50，200	c	4	50，200	c	4	50，200	c	4	50，200	c	4	50，200	c	4	50，200	C
Stato Rowne 33	Comada Laria Roand Lo Casitas Visa Road （bins of ofal Fiegnay	843	4	n／a	na	50，200	c	4	50.200	c	4	50，200	c									
State Frouta 33	End of Cat Freemay to Creek Roed	11	2	25，500	F	27，000	f	4	27，000	F	4	27，000	B	4	27000	8	4	27，000	B	4	27，000	8
Stala Roxte 33	Creak Raad lo Sarth Ara Bounprad	［	2	22，500	F	24，000	F	4	24，000	F	4	24，509	B	4	24，000	B	4	24，000	B	4	24，000	B
Saite Roule 33	Sartana Bocloverd to State Routa 150 West	11	2	22，500	F	24，000	F	2	24，000	F	2	24，000	E	2	24，000	E	2	24，000	E	2	24，000	E

			Existirg			${ }^{20820}$		Extuing ©P			mapfovernunts to mett LOs ctander			Many 101 Eianes tbrough clllas			Santm Rose and Hoorpank Roade 2． lanes					
Ruad Etaxat	Road Unals	Road Claceliciction		$\begin{aligned} & \text { E } \\ & \text { 部 } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \frac{1}{5} \\ & 0 \\ & 0 \end{aligned}$	b 8． 를		Exict OP No．of Lansa	K 登		$\begin{aligned} & \frac{1}{5} \\ & \frac{3}{5} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 5 \\ & \text { Ki } \\ & \text { N్ } \end{aligned}$		$\begin{aligned} & \frac{6}{2} \\ & \frac{1}{5} \\ & \text { it } \end{aligned}$	\＆ 8 8	$\begin{aligned} & 0 \\ & 9 \\ & 0 \\ & 0 \\ & 0 \\ & \text { a } \end{aligned}$	$\begin{aligned} & \stackrel{2}{\$} \\ & \frac{0}{3} \\ & \frac{5}{0} \\ & \text { i } \end{aligned}$	与 쳋		8 5 8 8 8 8		器
Stata Routio 116	Mempark cay limits fo Los Angelas Co．Une	finy	6	$118,000$	D	$140,400$	F	g	$140,400$	F	6	141,400	F	6	$141,000$	F	6	$143,000$	F	6	$141,100$	F
Slate Roulo 126	Veringit ety mints to Sanda Pauta chy Prits	any	4	50，000	c	62，400	c	4	62，100	C	4	62，150	C	4	61，000	c	4	62，200	c	4	62，100	c
Stata Rocke 126	$\begin{aligned} & \text { Santa Faina } \\ & \text { cty Hmits to } \\ & \text { OVd } \\ & \text { Telagraph } \\ & \text { Roed } \end{aligned}$	1	4	32，000	C	40，800	D	4	40，800	D	4	40，300	0	4	60，300	D	4	40，300	0	4	40，500	D
State Rocte 128	Old Tefograph Road to Finure enty fwitg	1	4	32，000	c	40，800	D	41	40，800	0	4	40，300	D	4	40，300	0	4	40，300	D	4	40，500	0
Statererto 123	Filmere dy linthe to Los Angeles Colinty line	1	4	20，800	8	33，000	c	4	33，000	c	4	33，000	c	4	33，000	c	4	33，000	c	4	34，000	c
Stata Rexte 150		III	2	2，500	c	3，600	0	2	8，500	D	2	3，500	D	2	3.500	D	2	3，500	0	2	3.500	0
State Roura 150	Burnhan Foad is SR 33 West	1	2	8.200	c	10，000	c	2	90，000	c	2	10，000	c	2	10，000	c	2	10，000	C	2	10．000	6
Stata Route 450	Ojal oly Sunto to Santa Paula divy Fraba	m	2	5，600	0	7.000	E	2	7，000	E	2	7，000	C	2	7，000	0	2	7，000	c	2	7，000	c

$\frac{6}{8}$ 8 各	
30,600	c
7.300	C
30,000	c
1,000	A
20,200	E
5.000	c
18,509	A
18,500	A
10,500	A
Appendisas	

Drai Firal Subequent Erwhonmantal Impact Report tar Focusad Ganeral Plan Updato

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} \& 80\％ \(0 \times 2\) \& 4 \& 0 \& 0 \& \(\square\) \& 0 \& 0 \& 6a \\
\hline \& 1080202 \& \begin{tabular}{l}
8 \\
8 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \text { 옹 } \\
\& 0 \\
\& 8
\end{aligned}
\] \& 8 \& \(\sum_{6}^{6}\) \& 8
8
8 \& 岩 \& \begin{tabular}{l}
8 \\
\hline 8 \\
8
\end{tabular} \\
\hline \& \& \(N\) \& ＋ \& \(\checkmark\) \& \(N\) \& N \& \(\pm\) \& \(\pm\) \\
\hline \multirow[t]{3}{*}{} \& 8078006 \& 4 \& 0 \& 0 \& \(\bullet\) \& 0 \& － \& 0 \\
\hline \& 108020\％ \& 8 \& \[
\begin{aligned}
\& 8 \\
\& 8 \\
\& \hline
\end{aligned}
\] \& \[
\frac{8}{8}
\] \& \＄

0
0 \& \& 冎 \& 8
8

\hline \& seurn 10×0 \& N \& \square \& \square \& N \& N \& － \& \checkmark

\hline \multirow[b]{3}{*}{} \& \＄070\％0\％ \& 4 \& 0 \& 0 \& 0 \& D \& 0 \& m

\hline \& 1000006 \& 宫 \& \& \[
\frac{8}{\stackrel{8}{5}}

\] \& \％ \& 尽 \& | 8 |
| :--- |
| 8 | \& 呂

\hline \& sturelio ${ }^{\circ} \mathrm{ON}$ \& N \& \checkmark \& － \& N \& N \& \checkmark \& \checkmark

\hline \multirow[t]{3}{*}{} \& 80\％060 \& $<$ \& \pm \& 0 \& ® \& \multirow[t]{2}{*}{} \& © \& \pm

\hline \& \multicolumn{2}{|l|}{LOV 020z} \& 8
8

N \& \[
$$
\begin{aligned}
& \text { 8. } \\
& \text { è }
\end{aligned}
$$

\] \& 旡 \& \& | 8 |
| :--- |
| 8 | \& \[

$$
\begin{aligned}
& 8 \\
& \text { 8 } \\
& \text { N }
\end{aligned}
$$
\]

\hline \& \multicolumn{2}{|l|}{Fe40730 0 N N} \& ＊ \& V \& N \& N \& T \& V

\hline \multirow{3}{*}{$$
\begin{aligned}
& 6 \\
& \frac{6}{6} \\
& \frac{6}{6} \\
& \frac{6}{6}
\end{aligned}
$$} \& 807 －dotenc \& 4 \& 0 \& 0 \& 0 \& 0 \& ＠ \& \amalg

\hline \& \multicolumn{2}{|l|}{109020\％} \& $$
\begin{aligned}
& 8 \\
& 8 \\
& 8
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 8 \\
& \hline 8 \\
& \hline 8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \text { 尔 }
\end{aligned}
$$
\] \& 闞 \& 8 \& 8

\hline \& \multicolumn{2}{|l|}{} \& \pm \& \pm \& N \& N \& \pm \& N

\hline \multirow[b]{2}{*}{} \& \multicolumn{2}{|l|}{sol000＜} \& \＃ \& u \& 0 \& － \& 0 \& ∞

\hline \& 10voraz \& 宽 \& | 8 |
| :--- |
| 8 |
| 8 |
| 8 | \& \[

$$
\begin{aligned}
& 8 \\
& \frac{8}{3}
\end{aligned}
$$
\] \& \％ \& 会 \& 8

N
¢ \& 8
喣

\hline \multirow{3}{*}{$$
\begin{gathered}
\text { 总 } \\
\frac{3}{5} \\
\mathbf{5}
\end{gathered}
$$} \& 907 14x\％ \& ＜ \& 0 \& \pm \& 0 \& \％ \& 0 \& \pm

\hline \& \multicolumn{2}{|l|}{Lov Hownt} \& 突 \& \& 8
N \& 嵒 \& 8 \& 骂

\hline \& \multicolumn{2}{|l|}{caurijo on Meang＊} \& N \& N \& N \& N \& N \& $*$

\hline \& \multicolumn{2}{|l|}{nopmouraep peoy} \& \cdots \& \& $\overline{=}$ \& $=$ \& － \& －

\hline \& 量 \& $$
\begin{aligned}
& \frac{C}{8} 8 \\
& \frac{8}{6} \\
& \frac{8}{6}
\end{aligned}
$$ \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \&

\hline
\end{tabular}

Sren Fhal Subaequerl Envifonmental tmpact Beporl for Focused Cenoral Pten Updato

COMMENTER: Nazir Lalani, Deputy Director, County of Ventura Public Works Agency, Transportation Department

DATE:
 June 23, 2005

RESPONSE:

Response 28A
Road improvements associated with all six scenarios along the major transportation corridors such as Victoria Avenue, Olivas Park Drive, Harbor Boulevard, Ventura Avenue, Foothill Road, Telegraph Road and Highways 118 and 23 match those shown in Appendix 8.3 of the County's General Plan update DEIR as stated by the commenter. Following adoption of the 2005 General Plan (and the Circulation Element), the City will discuss the changes in land use and circulation resulting from the General Plan Update with the County. The discussion will compare inconsistencies in roadway classifications in the City's Circulation Element with those in the County's General Plan to some of the minor roadways. Since the traffic analysis carried out for the General Plan Update uses the most recent long-range traffic data for circulation planning purposes, it can thereby provide a technical basis for evaluating those differences. An agreement can then be reached as to where future changes to the County's General Plan may be appropriate to establish consistency.

Response 28B

The commenter requests clarification with respect to the locations of the potential expansion areas considered in the Draft EIR. These areas are depicted on Figure 2-4 through 2-8 of Section 2.0, Project Description.

Response 28C

The commenter notes that three Metrolink trains operate between Ventura and Union Station in Los Angeles rather than the two trains noted in the Draft EIR. This will be corrected in the Final EIR. This minor text change will not affect the EIR findings or conclusions.

Response 28D

The commenter states an opinion that the EIR should include conditions for annexing County roadway sections adjacent to expansion areas at such time as those areas are developed. The scenario being recommended by City staff is the "Intensification/Reuse Only" scenario with some minor map clean-up. Because no expansion areas are being recommended at this time, the condition suggested by the commenter is not applicable. If and when any of the expansion areas are considered for annexation, appropriate conditions regarding annexation of adjacent roadways will be made part of the annexation.

Response 28E

The commenter suggests that the City should consider annexation of unincorporated islands such as Montalvo and developed areas adjacent to the City limits, such as in Saticoy and the North Avenue area. Annexation of these areas is one City's goals for the 2005 General Plan. Portions of several of the districts and corridors that are to be the focus of future development are within the Saticoy and North Avenue areas.

Response 28F
The commenter notes that portions of the Western Cañada Larga area are subject to flooding. Flooding issues are addressed in Section 4.8, Hydrology and Water Quality. Portions of that expansion area are within the 100-year flood zone. As noted in Response 27D, City staff are not recommending inclusion of the Western Cañada Larga area as a potential expansion area on the 2005 General Plan land use map.

Response 28G
The commenter notes that Ventura Avenue south of Shell Road is subject to severe flooding. The area to which the commenter refers is within the North Avenue District, which the City anticipates annexing and making one of the focal points for future industrial development. Flooding issues along that stretch of Ventura Avenue will be addressed as that area redevelops.

Response 28H

The commenter states an opinion that the EIR should address how future roadway improvements are to be funded. Subsequent to adoption of the 2005 General Plan, the City will undertake a revision to its traffic impact fee program. As part of that revision, the cost of planned improvements and development impact fees will be determined.

Response 28I

The commenter states that potentially significant cumulative impacts to the County road network can be mitigated by requiring developers to pay the County's Traffic Impact Mitigation Fees. The City will continue to require developers to pay the County's Traffic Impact Mitigation Fees, in accordance with the City's agreement with the County.

RECEIVED

JUL 192005

July 18, 2005

Ms. Kari Gialketsis, Principal Planner
City of Buenaventura
Community Development Department
501 Poi Street
Ventura, CA 93002

RE: CITY OF VENTURA GENERAL PLAN DEAR

Dear Ms. Glalketsis:

Thank you for the opportunity to review and provide input to the Draft Environmental Impact Report (DEIR) for the proposed update to the General Plan of the City of Ventura. We appreciate the opportunity to review the plan and the associated environmental report because it provides us the opportunity to better coordinate our planning and development of the electrical facilities needed to provide services to the existing and future residents and businesses in the city.

Although the proposed General Plan document and its DEIR did not have any specific discussions about electrical facilities, whether existing or planned, we believe that future development projects deemed consistent with the proposed document may have impacts on SCE facilities and thus may require detailed environmental evaluation. For example, the General Plan proposes the widening of many roads and arterials. Such activities may require the construction or relocation of SCE facilities, and those SCE actions may themselves have environmental consequences cognizable under the California Environmental Quality Act (CEQA). If those environmental consequences are properly identified and adequately addressed in the development documents and CEQA approval process, SCE may not be required to pursue the mandatory CEQA review through
the California Public Utilities Commission (CPUC) and its General Order 131 -D process (the CPUC being the CEQA "lead agency" for SCE projects unless one of the exemptions in G.O. 131-D applies).

We are hopeful that the City will continue to require the evaluation of site-specific environmental impacts of subsequent non-exempt development proposals in compliance with CEQA, including mandatory noticing and public review requirements. This will allow SCE and other affected stakeholders the opportunity to work with the City to address relevant environmental issues and recommend viable mitigation measures.

If any of the subsequent development proposals implementing the General Plan affect SCE facilities, it is essential that their environmental impacts are adequately addressed. This is particularly true for projects that do not fit into any GO 131-D exemptions and would otherwise require CEQA review by the CPUC: a process that could delay project implementation.

We look forward to working with you as you update your General Plan, and on its implementation upon adoption. SCE does have the capacity to continue to serve the existing and future developments in the.city, and we are committed to working with the City, project proponents and developers to facilitate the design and subsequent construction of relevant facilities to serve all proposed projects. If you have any questions or seek clarifications, please contact me at 805 654-7226. Thank you.

Sincerely Yours

Letter 29

COMMENTER: Nancy M. Williams, Region Manager, Southern California Edison

DATE: July 18, 2005

RESPONSE:

The commenter notes that SCE has the capacity to continue to serve existing and future developments in Ventura, but notes that certain projects that may be accommodated under the 2005 General Plan (road widenings, for example) may require the construction or relocation of SCE facilities. As the commenter notes, the City will undertake project-specific environmental reviews for individual projects accommodated under the 2005 General Plan. Any impacts to SCE facilities, including potential secondary effects associated with the relocation of facilities, will be addressed as part of future project-specific environmental documents.

Kari Gialketsis, Principal Planner
City of San Buenaventura
Community Development Department
501 Poli Street
P.O. Box 99

Ventura, CA 93001-0099
DELIVERED VIA E-MAIL AND FAX

RE: City of San Buenaventura 2005 General Plan Draft EIR

Dear Ms. Gialketsis:
On behalf of HOME (Housing Opportunities Made Easier) thank you for the opportunity to comment on the City of Ventura's proposed 2005 General Plan and its accompanying Draft Environmental Impact Report, dated June 2005. HOME is a volunteer-based alliance of non-profit organizations, area business leaders, elected officials and concerned citizens who have as a common goal, working together to create a more receptive environment for the development of high-quality workforce housing in Ventura County. HOME's mission is to facilitate community engagement and support for proactive solutions to create a greater diversity in housing choices.

HOME supports smart growth strategies, which include mixed-use, higher density, and pedestrian/transit oriented development by concentrating growth, when possible, on infill sites and by the revitalization of older, underutilized, or deteriorating properties and areas of the community located near transit, or within walking/biking distance of jobs and services. We applaud Ventura's leadership in this area, and encourage you to continue your efforts to streamline the development process for these types of properties. We do, however, have several concems regarding the assumptions, and the implementation feasibility of the 2005 General Plan. HOME offers the following comments for your consideration:
A) The Project Objectives section of the DERR lists the Ventura Vision Goals, which have been translated into the required General Plan Elements. While we appreciate this creative approach to integrating the community's prionties (as expressed in the "Ventura Vision" document) into the City's General Plan Update, we are concerned that the General Plan does not contain enough specificity, in some areas, to successfully implement the Vision. We understand that, following the Ventura Vision, the 2005 General Plan is "the second in a series of three connected documents that will guide future conservation and change in the City" (DEIR 1-2). However, until the City completes the third step in this process, the form-based Development Code, which will provide the regulatory structure for implementation of the 2005 General Plan, it may prove difficult to successfully, and efficiently implement some of the General Plan Policies.

We encourage the City to create greater clarity in how development proposals will be reviewed and regulated, until stage three (new form-based Development Code) is adopted. Numerous Gencral Plan Action items, including 3.11, 3.17, and 3.18, indicate the City's intent to re-write its zoning ordinances and development codes to better facilitate its intensification/reuse strategy. HOME encourages the City to expedite this process, and to make clear and decisive policy decisions as to how it will respond to proposed development projects, which are submitted during the period prior to the adoption of the new codes. Without the adoption of the form-based Development code, it would appear that it will be all but impossible to process a new proposed development.

Infill Development is already inherently risky, and can often be more costly and difficult to complete, due to existing site issues, constraints, and perceived conflicts with existing uses. In order to: "Utilize infill development to accommodate the targeted number and type of housing units described in the Housing Element" (Action 3.11), it is incumbent upon the City to work diligently to remove regulatory obstacles and barriers to realization of this goal.
B) Alternatives: While we recognize that, for the reasons mentioned in the DEIR, the "No Project" Alternative is not realistic, we disagree with the assertion that since "this alternative assumes that no further development occurs in the City..." then "environmental conditions do not change" (DEIR S4). HOME recognizes that while this statement may be "technically accurate" bascd on the definitions and guidelines for environmental review under CEQA, it is "functionally inaccurate", in that development does not, in and of itself, dictate population growth; nor will the lack of it allow the City to avoid the environmental impacts created by a failure to plan for realistic projections of future population growth. HOME strongly advocates the reform of this type of "one-sided" view of the environmental review process, as implemented under CEQA. In order to facilitate the production of workforce housing, while also protecting our natural and existing built environment, we must begin to clearly and objectively assess both the positives and negatives of our land use decisions, including the negative impacts which may be caused from a failure to adequately plan for the future housing needs of our workforce, and all of Ventura's residents.
C) Population Growth Projections: The Intensification/Reuse Only Scenario assumes an annual population growth rate of 0.88%, while all of the other Scenarios are based on a projected rate of 1.14%. While the 0.88% annual rate reflects Ventura's actual growth rate for the past 10 years (1994-2004), we believe that this growth rate was uncharacteristically low for that timeframe, duc in part to the 1990 s recession, which hit the construction industry hard. We believe that the 1.14% growth rate, which is much closer to the Countywide rate of 1.2%, and reflects the City of Ventura's most recent (2000-2005) actual growth rate of 1.0%, is a more realistic projection of growth that will actually occur, and for which the City should plan. It appears as though the 0.88% growth rate was selected largely duc to concerns regarding the potential to exceed SCAG and/or AQMP growth projections, even though these limitations are discounted elsewhere in the DEIR as being outdated. This "two-sided" argument, both for and against adherence to these growth projcctions, could likely be used by "no growth" advocates to challenge future development approvals.
D) Our Well Planned Community: In order to satisfy State requirements, every General Plan must include policies for the seven required "elements", including the Land Use Element, which "establishes the general distribution and intensity of land uses, including housing, commerce, industry, open space, education and public facilities." (2005 GP page 11)

The proposed 2005 General Plan includes a number of "over-arching goals for the City of Ventura", including: "Our Well Planned and Designed Community", which has been incorporated into the Land Use, Housing, and Community Design Elements. Table 2-1 of the DERR (page 2-11), gives the following "Examples of Topics Covered" under these General Plan Elements: "Development patterns, neighborhoods, visual character, urban design, demographics, housing needs, affordability, constraints on production." And yet, the 2005 General Plan offers this description of the General Plan Chapter, called "Our Well Planned Community ... Our goal is to protect our hillsides, farmlands, and open spaces; enhance Ventura's historic and cultural resources; respect our diverse neighborhoods; reinvest in older areas of our community; and make great places by insisting on the highest standards of quality in architecture, landscaping and urban design."

While the items expressed in this section may certainly be valid goals for the City to pursue, HOME questions the appropriateness of including them in the "Land Use Elemenl" of the Gencral Plan. It secms to us, that many of these prionties are more appropriately expressed elsewhere in the Plan,
(i.e. the Conservation, Open Space, and/or Culture Elements). The Land Use Element should focus on such things as development pattems and urban design, not conservation issues. While the 2005 General Plan clearly defines infill as a priority, and refers to planning tools such as form-based codes that the City intends to adopt in the future, we are concerned that the City currently lacks the reguiatory structure that will allow it to implement its planning goals, and land use policies. Chapter 3 of the 2005 General Plan effectively describes the City's vision, but provides limited details as to how, or when, it will adopt and/or revise the existing codes and programs (like the RGMP-Action 3.18) in order for this vision to be realized. It is not enough for the City to simply "insist on the highest standards of quality in archifecture, landscaping and urban design", it is incumbent upon the City to provide the development community with the proper tools and regulatory structure, to facilitate quality development.

One further concern regarding the Land Usc Element is in the area of open space, education, and public facilities. The DEIR points to several limitations to the City's ability to adequately plan for and meet its needs in these areas, via the Intensification/Reuse Only Scenario. The DEIR identifies several "potentially significant impacts" relating to the need for new facilities that cannot be adequatcly mitigated with an infill only strategy. While HOME fully supports infill development, whenever and wherever possible, we also recognize the inherent limitations of this approach in mecting some of the more land-intensive needs of the community's growth. We encourage the City to refrain from limiting its ability to include additional land in its planning inventory, which could allow it to meet the need for additional public facilities, parks, and open space.
E) Housing Affordability: As previously stated, HOME's mission revolves around "workforce" housing", which may include, but is not limited to "affordable housing" per the legal definitions: However, we are very concerned about issues that impact housing affordability, including the costs associated with the development and construction of new housing units. As such, there arc numerous references in the DEIR, which identify City infrastructure deficiencies that will need to be upgraded, repaired, and/or replaced in order to accommodate the intensity of development that is called for in Scenario 1. We encourage the City to aggressively pursue an action plan, and funding sources, to correct existing infrastructure deficiencies, which would not place the entire burden of financing these community-wide needs on the backs of builders and new home buyers.
F) Process: Section 1.5 of the DEIR clearly defines the CEQA Environmental Revicw Proccss, which requires that the City's decision making bodies have an opportunity to review and consider the FINAL EIR, including all public comments and responses, prior to making a decision on Final EIR Certification of the proposed project (the 2005 General Plan). HOME questions the City's ability to meet this CEQA requirement, given the proposed timeframes for closing the public comment period on July $18^{\text {th }}$, while scheduling Public Hearings with the Planning Commission and City Council on July $19^{\text {th }}$ and August $8^{\text {th }}$, respectively. How can the City possibly consider and respond to all public input within such a compressed timeframe?
G) Conflicting Priorities: We are concerned that some of the stated Policies, Actions and Priorities expressed in the 2005 General Plan may be intemally inconsistent or lacking sufficiont specificity for the GP to be a useful tool in guiding future growth and development. Some of these inconsistencies are addressed above, as in the focus on Intensification/Reuse to meet the projected growth, in spite of clearly identified physical and regulatory constraints in many of the areas targeted for infill development. Another, more subtle example of this issue is Action 1.20, which calls for the City to "Adopt development code provisions to protect mature frees..." without defining "mature trees" or how they will be "protected". Furthermore, Section 4.5 of the DEIR discussed the prevalence of Cultural and Historic Resources in several of the areas that have been identified for intensification/rcusc, without fully acknowledging the extent to which the City's Historic

Preservation Regulations, which are much broader and less clearly defined than State or Federal Historic Preservation Policies, may limit development in these locations.
H) Parks: The City of Ventura is a mature city with existing park and recreation areas that have come on line as needed. We are fortunate enough to have an incredible park that inland cities would die for in our beaches. Yet, the EIR is recommending that we apply the same park acreage as required in non-coastal citics. When the Form Base Code guidclines come on line, it would seem that minimum 5 acre parks would be too rigid and unnecessary. Park space should be designed and formatted with the same flexibility that Form Based Code itself offers. Changing housing stock and the impending change of lifestyle that will accompany it, will lead to creative design and uses of parkland that should not be restricted by outdated and less fluid guidelines.

1) Biological Resources: The specificity of the buffer area in Action 1.8 related to rivers, creeks and barrancas is too binding. While we acknowledge the need to protect these precious environs, an arbitrary set back of 50 feet could severely limit the creativeness and integration that the Form Based Code encourages. Strictly applied, this buffer area could squash entire infill developments. We encourage arbitrary requirements like this to be removed from the EIR and left to the already strenuous and rigorous review that all projects must be subjected.

Thank you for the opportunity to submit our comments. HOME is truly excited about the principles of Form Based Code that the City of Ventura has embraced, and we are pleased to see the City's leadership in promoting a new way to grow our incredible city.

HOME sincerely looks forward to the adoption of the new General Plan and EIR.

Brad Golden
Vice Chair of HOME and Ventura resident

Letter 30
COMMENTER: Brad Golden, Vice Chair of HOME and Ventura resident

DATE: July 26,2005

RESPONSE:

Response 30A
The commenter urges the City to expedite the preparation of a new development code, noting that processing of new developments may be difficult until the new code is adopted. The City will be initiating preparation of the new development code upon adoption of the 2005 General Plan. However, in the interim period between adoption of the General Plan and the new development code, the City will continue to process applications based on the current code requirements and the guidance provided in the 2005 General Plan.

Response 30B

The commenter states disagreement with the approach to the analysis of the "no project" alternative, which is based on the assumption that no physical changes to the environment would occur. The commenter is correct that a moratorium on development would not necessarily stop population growth in the City and that failure to provide new housing may lead to a variety of undesirable conditions (overcrowded housing, higher housing prices, etc.). The Draft EIR acknowledges these facts as well as the fact that the "no project" alternative is not feasible.

Response 30C

The commenter states opinions that the 1.14% annual growth rate is more realistic than the 0.88% growth rate and that it appears as though the 0.88% annual growth was selected due to concerns about SCAG and AQMP growth projections. The opinion regarding the appropriate growth rate is noted. Both growth rates discussed in the Draft EIR were selected by the City Council and represent historic growth rates in the City (the 1.14% rate is the 20-year growth rate while the 0.88% growth rate is the 10 -year growth rate). SCAG and AQMP population forecasts were not used to develop either rate and, in fact, both growth rates exceed the SCAG and AQMP forecasts. The Draft EIR acknowledges this exceedance. However, it is anticipated that, following adoption of the 2005 General Plan, both SCAG and the Ventura County APCD will update their population forecasts for the City to reflect the new General Plan.

Response 30D

The commenter states opinions about the format and content of the 2005 General Plan and notes that the Draft EIR points out several limitations associated with the "Intensification/ Reuse Only" scenario. The commenter also encourages the City not to limit its ability to include additional land in its planning inventory. The comments about the 2005 General Plan are not relevant to the adequacy of the Draft EIR, but will be considered by the City Council as they review the final General Plan. It is true that the Draft EIR points out certain limitations for
the "Intensification/Reuse" scenario, particularly relating to land available for new schools and parks. However, the Draft EIR does not identify such limitations as "significant" impacts. Although City staff are not recommending inclusion of any of the expansion areas at this time, several of the expansion areas could provide acreage for parks and schools and the City may consider future General Plan amendments to allow development of one or more of these areas in the future if such an amendment would meet planning objectives that cannot be met through intensification or reuse. It should be noted, however, that conversion of any of the expansion areas except for portions of the Western Cañada Larga area would be allowed only following voter approval under the SOAR Ordinance.

Response 30E
The commenter encourages the City to pursue action plans for addressing infrastructure deficiencies that will not place the entire burden of financing community-wide needs on builders and new home buyers. The City will develop such action plans to address needed improvements to roads, storm drains, and water and sewer lines. Builders will be responsible for financing improvements needed to serve their developments, but not to correct existing deficiencies.

Response 30F
The commenter questions how the Final EIR can be completed within a compressed timeframe. Responses to comments on the Draft EIR were completed and provided to agency commenters 10 days prior to the City Council's August 8 hearing (at which the Council may certify the Final EIR), thus complying with CEQA's requirement that public agency commenters receive responses at least 10 days prior to certification.

Response 30G

The commenter states an opinion that the General Plan may include conflicting priorities, specifically by calling for the preservation of mature trees and historic resources in areas where intensification and reuse are expected to occur. Every General Plan (and every community) has certain priorities that can be in conflict. The two examples cited by the commenter reflect the City's desire to preserve its resources. The exact manner in which these actions are to be implemented will be detailed in the new development code. New developments that are consistent with general policy goals while potentially conflicting with others will need to be addressed on a case-by-case basis to determine whether and how such conflicts can be reconciled and which priorities take precedence.

Response 30H

The commenter states an opinion that park standards need to be flexible. This opinion is noted. The Draft EIR discusses the City's general standards in order to provide an overall analysis of citywide impacts associated with projected growth; however, the City will continue to seek creative and flexible ways of meeting the community's needs with respect to parks and recreation. In addition, language has been added to the General Plan under Policy 6A as follows:

Update standards for citywide public parks and open space to include an expanded menu of shared park types, and identify locations and potential funding sources for acquiring new facilities in existing neighborhoods.

Response 301

The commenter states an opinion that the 50 -foot buffer from riparian areas in Action 1.8 is overly restrictive. This opinion is noted. The 50 -foot buffer has been determined to provide the minimum distance needed to effectively protect riparian habitat and associated wildlife movement corridors. This minimum distance is consistent with that adopted by a number of communities in the southern California region. It should be noted that this requirement only applies to waterways that retain natural soil slopes.

JUL 152005

Carolyn Briggs, Chair and

Dear Chair Briggs and Members of the Planning Commission:
These preliminary comments on the draft 2005 Ventura General Plan (May 2005) ("DGP") and draft Environmental Impact Report ("DEIR") are made on"behalf of the Ventura Port District ("District"). In 1999, the City Council and the Board of Port Commissioners entered into a Memorandum of Understanding ("MOU") for the preparation of a Master Plan for the Harbor Area. The MOU is attached as Exhibit A. It was contemplated that the Master Plan would be adopted as a Specific Plan and constitute the land use plan and zoning for the Harbor Area. The draft Master Plan and Master Environmental Impact Report ("MEIR") have been complete for over two years. "The District has, however, refrained from circulating the documents for public review in an effort to reach agreement with the City on how to address an existing deficiency in fire service response times in and around the Harbor Area. The DGP and DEIR raise a number of issues of concern with respect to the draft Master Plan/Specific Plan, some of which are outlined below.

1. Harbor Master Plan.

The DGP (p. 3-8) establishes the "Harbor District" and describes it as an area with visitor serving uses and marine facilities to be regulated by a Harbor master plan. The DGP land use map designates The Harbor as "Draft Harbor Master Plan." This should be "Specific Plan." Because the draft Harbor Master Plan has been incorporated by reference into the DGP, it should become the overriding policy document for land use, water use, and future development of the Harbor upon adoption of the DGP, whether the Master Plan has itself been adopted or not or as a Specific Plan. The policy language in the DGP should be expanded and clarified to make it clear, without question, that the Harbor Master Plan/Specific Plan is the overriding policy document for the Harbor. A copy of a booklet describing the master plan is enclosed. This booklet was distributed at the joint City Counci/Board of Port Commissioners meeting in April 2005.

July 15, 2005
Page Two.

2. Local Coastal:Programe

The draft Master PPlan/Specific Plan are based on the City's certified Local Coastal Program ("LCP"). Apparently, the DGP is intended to supencede the Land Use Plan ("LUP") of the LCP. If this were to occur, there would be serious procedural and substantive issues, some of which are outlined below.
a. The DGP may not be specific enough to satisfy the Coastal Act or the Califormia Coastal Commission ("CCC") and the CCC would want to review the LUP together with the Local lmplementation: Plan [zoning]. Tor example, the Land Use Plan does not show "visitor serving uses" or public access ways. The District could be caught between the City and the CCC. Until a development coxie is adopted and approved by the: CCC, there would be a lack of certainty regarding what may or may not be built in the Harbor.
b. Processing aLUP amendment is very time consuming. A whole new LUP could take years to get in place.
c. The certified LUP is repealed or superceded while the CCC reviews a new one, this would leave the City withour the ability to process any projects in the coastal zonc during the interim. Applicants would need to seek approvals from the CCC, which is time consuming and difficut without certifed LUP. Further, it is unlikely a new LCP or LUP mith residential units would be cextided by the CCC.
d. The Harbor would need to separately seek CCC approval of the Master Plan/Specific Plan. This would otherwise be unnecessary beczuse the draft Master Plan is consistent with the existing LUP
e. The Sondernann/Ring project, which is critical to the economic witality of the Harbor, may be greatly delayed.
f. Because the DGP does not appear to be inconsistent with the certified LUP, it would be wise to leave the LUP in place and overlay applicable DGP policies and "actions." This would avoid seeking CCC approval at all.
E. If there is an inconsistency between the DCP and the LUP, a specific amendment to the LUP could be sought concurrently with the LCP mendment required to support the Sondermann/Ring project.
h. The certified LUP could be attached as an appendix to the DGP for easy reference. The maps could be revised to specify LUP in the coastal zone.
i. Specific plan areas could be shown as "Specific Plan." The Marbor area should be titled "Harbor Specific Plan," not draft Master Plan.

July 15,2005
Page Three.
j. These changes to the DGP are not complex and would avoid what could become a procedural nightmare and engender costly litigation from developers unable to process their projects in the coastal zone.

3. Tire Service:

The DEIR suggests that a new fire station and nine firefighters are needed to accommodate anticipated growth in the Harbor. The DGP and DEIR also state that a new fire station is needed to address current deficiencies. Thus, the 9 firetighters needed for the new station are also necessitated by an existing condition. Based on a desired ratio of 0.98 per 1,000 residents (the City now operates at $0: 69$ firefighters per 1,000 population), development of Parcels 15 and 18, hotel expansion, and the marine learning center; do not, themselves come close to justifying a new station or 9 firefighters. These developments should, like any other new development, provide a fair share toward the capital costs of a new station. Neither the Dof nor the DEIR justify requiring the Harbor to filly fund development :and the oparation and maintenance of a fire station. While the DGP calls for resolving extended response times by adding a fire station at the "pierpon//Harbor area," it only calls for stadying the feasibility of funding services from fees, traxes or assessments "as new subdivisioms designed on the New Utbanism concept wre established:" Action 7.13, which is intended to eddress fine response mistakenly refers to police services In audditon, neither the BGP nor the DERR actually address the need for frefighting capabilities for non-residential use. The only concept of fair share related to the ratio of firefighters to population is set forth in the DEIR. The discussion of plans for a fixe station in the Harbor are more detuiled than called for by the DGP (See DEIR, p. 4.11-28.) It is not certain that impact fees would be sufficient to pay for fire facilities and equipment. mapact fees camot be used to cure existing deficiencies or for operational costs. (See, DERR, p. 4.11-31.) Assessments require voler approval.

4. Process.

Cooperation and input from the District in the preparation on the DGP policies was not requested. DEIR p. 1-2 describes 11 City Council meetings from Feb. - Aug. 2004:taking input from the CPAC and Planning Commission. Nowhere in the DGP and DEIR is there a discussion of the District's input into the process. As discussed below, the DGP:policies and actions could conflict with contractual rights of District lessees.

5. Respomsible Agemey.

The District should be designated as a "responsible agency" under the CEQA definition. The District is a public agency that would carry out policies of the DGP and LCP as it pertains to the Harbor.

July 15, 2005
Page Four.

6. Assumed Net Increase in Development at Buildout.

The level of furure development assumed within the Harbor is nat clearly called out in the DEIR, but can be determined from tables estimating water und sewer impacts. Based on these tables, the proposed DGP assumes a net increase with the Harbor of 300 dwelling units at 216,000 square feet of non-residential building area. Of this non-resiafential area, 150,000 square feet are ideninind as horel use, leaving: 66,000 square feet for expansion of other noniresidential uses within the Harbor. This is insufficient to provide for development of the Marine Learning Center (approximately 77,000 square feet) and commercial uses within Parcels 15 and 18.

7. Protecting amd Restaring Comstal Resources.

DGP Action 113 would require the District to determine and carry out appropriate methods for protecting and restoring coastal nesources, including supplying sand at beaches (from dredging operations). This could be costly ind mreasonable for the District to carry out this action on its own. It is uncertain whether dredging spoils would be suitable for such beach restoration.

8. Preservation ofemitive. Wethan and Castal Aveas.

DGP Action 1111 would require sensitive wetland and coastal areas to be preserved as undeveloped open space wherever feasible. This could affect the District's ability to develop vacant Parcels 8,15 and 18 depending on how "sensitive wetland and coastal areas" aze defined. The CCC has wery specific and rigorous testrictions on development in and adjacent to envirommentaly sensitive habitat areas (see Califomia Coastal Act Section 30240). Although it does not appear that "sensitive wetland and coastal areas" affect any of the areas planned for development within the Harbor, it is necessary to make sure that such definitions will not apply.

लeasures.

DGP Action 1.14 requires compliane with directives from regulatory authorities to update and enforce stomwater quality and watershed protection measures. This could be costly, extensive, and unreasonable for the District to carry out such regulatory directives since watersheds extend miles inland from the:Harbor. The Harbor is the "end user" and should be responsible for actions within the Harbor, and not for stormwater protection in the entire watershed.

10. Prohibition on Dredging

DGP Action 1.18 would prohibit dredging during fish spawning and bird migration

July 15, 2005
Page Five.

11. Promote Channel Islands Tours amd Develop an Aquarium.

DGP Action 2.17 would establish a partnership between the City, District, and National Park Service to promote Channel Islands tours and develop an Aquarium. This is helpful, but not a definitive commitment, nor are details are provided.

DGP Action 2.18 would prioritize uses in the Harbor Master Plan area as follows: (1) commercial visitor-serving, (2) recreation, boating, fishing, (3) commerciml fishing, and (4) public service facilities. This prioritization of uses conflicts with the range of uses in the:Harbor Master Plan. Tor example, residential use is excluded from the prioritized list of uses, even though the CCC has taken specific action to permit such uses within the mobile home park and on Parcels 15 and 18. Commercial fishing is the number two priority in the Master Plan and is a critical use required to sustain the District's eligibility for federal dredging funds.

13. Public View mad Solat Access Preecovation.

DGP Action 3.3 would require preservation of public view sheds and solar access. This policy could affect the District's ability to develop vacant Parcels 15 mad 18 depending on how "public view sheds and solar access" areas are defined.

14. Public Access.

DGP Actions 3.4, 4.20.6.5, and 6.6 would require (and :encourage) public pedestrian and bicycle access to and along the coast on all shoreline development. The policies woild:affect the design of now development on vacant Parcels 8,15 and 18, and may impact the Yaeht Club due w lack of shoreline access on the Yacht Club parcel. Claxification is needed to determine if the public access system set forth m the Master Plams fulfitls these actions.

15. Form-Besed Development Code.

DGP Action 3:17 would affect building and site design on:Harbor parcels to emphasize pedestrian orientation, integration of land uses, treatment of streetscapes as community living space, and environmentally sensitive building design and operation. While form-based codes have a number of benefits, it is questionable whether the CCC would accept such a code as the sole basis for a Local Implementation Plan.

16. Minimize Truck Traffe on Residential Neightorihoods.

DGP Action 4.9 would identify, designate, and enforce truck routes to minimize the impact of truck traffic on residential neighborhoods. This policy could adversely impact the movernent of goods and cargo in and out of the District depending on how it is implemented. Action 4.9 should be clarified to specify the location of truck routes.

July 15, 2005
Page Six.

17. Alternative Transportation Modes and Transit.

DGP Actions $4.15,4.16,4.17,4.18,4.27,4.31,4.32$, and 4.34 encourage alternative modes of transportation and transit systems to reduce vehicle trips and congention. This could affect circulation and access to the Harbor depending on how these policies are implemented.

18. Expanded Recreational Opporturities.

DGP Actions 6.15 and 6.16 call for mew recreational programs that would occur in the Harbor, such as surfing, sailing, kayaking, bird watching, and additional boating and swimming access. Care must be taken in how these expanded recreational uses are conducted, for example, allowing swimming in boat navigation channels could be hazardous.

19. Cultural, Historical, and Archoeological Resources.

DGP Actions $9.2,9.3,9.12,9.13,9.14,9.15,9.16,9.17,9.18$ and 9.19 would affect activities, operations, redevelopment, design and restrictions on District parcels. District input on these policies would be appreciated.

Thank you for considering these comments. The District respectfully requests that the hearings on the DGP and DEIR be continued for three months to provide an opportunity for the District and the City to resolve these and other issues.

Oscar F. Pefia General Manager
cc: Rick Cole
Susan J, Daludduag
James E. Neuerburg

MEMORANDUM OF UNDERSTANDING AND LEAD AGENCY AGREEMENT
 City Council Approved. $5 / 4 / 99$

Agreement No. $99-88$

This Agreement is made by and between the City of San Buenaventura ("City") and the Ventura Port District ("District") in consideration of the following facts.
A. The District desires to update its master plan for the Ventura Harbor in accordance with requirements set forth in the 1998 Local Coastal Program ("LCP") amendment.
B. The City and the District desire to work together to initiate a joint process for developing a specific plan for the Harbor area.
C. It is contemplated that the master plan would be the land use plan for the specific plan and the specific plan would constitute the zoning for the Harbor area. These regulations are hereinafter referred to collectively as the "Specific Plan".
D. Amendments to the LCP may be desirable to realize the objectives of the Specific Plan.
E. It is contemplated that a master enviroumental impact report ("MEIR") will be prepared for the project.
F. The parties desire to (1) designate a Lead Agency for the MEIR; (2) specify general procedures for actions relating to A through E, above; (3) allocate costs for preparing and processing the MEIR and the Specific Plan; and (4) specify the currently contemplated time frame for processing the MEIR and Specific Plan.
G. All parties desire to process the foregoing planning documents in an efficient and timely manner that maximizes public input and stakeholder involvement. To that end, it is hereby agreed as follows:

1. This Agreement shall become effective between the City and the District upon approval by the City Council and the District Board.
2. The District will act as Lead Agency for the MEIR and the City shall be a Responsible Agency as defined by the California Environmental Quality Act.
3. The District and the City will jointly select consultants necessary for processing the MEIR and the Specific Plan.
4. Public workshops will be held to solicit input from all stakeholders and the public, including, but not limited to, lessees, franchisees, businesses in the Harbor area, potential developers, surrounding residents and environmental and special interest groups such as fishing, boating and surfing organizations.
5. During the public review period, the City Planning Commission may convene hearings on the draft master plan and MEIR, as it deems appropriate, to provide comments to the District.
6. Prior to adoption of the master plan and certification of the final MEIR, the District will fully consider and evaluate all City recommendations, and cxplain in writing the reason(s) any such recommendation is rejected.
7. The parties contemplate that the Specific Plan will be adopted by the City Council after adoption of the master plan and certification of the MEIR by the District.
8. The cost of preparing and processing the Specific Plan the MEIR and LCP amendments; if any, (excluding administrative overhead expense) will be shared equally by the District and the City, up to a budgeted $\$ 100,000$ for each agency.
9. District and City will separately, and jointly, as the case may be, apply for grants to defray the costs of the Specific Plan and MEIR (herein the "Project Costs"). In addition, it is contemplated that Harbor tenants and developers whose development proposals are to be considered or included as part of the Specific Plan and MEIR may contribute to funding of the Project Costs. Upon receipt of such grant funds, and/or tenant and developer contributions, such grant funds and contributions, together with any District and City funds required to be contributed as grant matching funds, shall be applied first to Project Costs. Thereafter, District and City funds shall be applied to Project Costs only when the grant funds, and/or tenant and developer contributions are exhausted. Excess funds, if any, remaining after completion of the Specific Plan and MEIR shall be returned to District and City in amounts proportional to their contributions to Project Costs which are contemplated to be equal. District and City will also establish a procedure, pursuant to Government Code section 65456 and Public Resources Code section 21157 (c), whereby tenants and developers whe haven't contributed their fair
share of the Project Costs prior to commencement of work on the Specific Plan and MEIR will be charged a fee in an amount equal to their proportionate share of the Project Costs, at the time of application for a pemit, or other entitlement for a development project considered or included in the Specific PIan and MEIR. All revenues received from such fees shall be used to reimburse District and City for their Project Costs in amounts proportional to their contributions to the Project Costs.
10. The District will contract with the consultant(s) and forward a copy of approved bills to the City's Director of Management Services. The City will pay the District one-half of the approved bills within 30 days of City's receipt of the approved bill.
11. In the event litigation is filed challenging the MEIR and/or the Specific Plan, the District and the City will cooperate in the defense of the action and equally share their expenses of the defense.
12. In the event LCP amendments are proposed, such amendments will be processed with the California Coastal Commission following adoption of the Specific Plan by the City.
13. The currently contemplated time line for processing the Specific Plan and possible LCP amendments, if desirable, is attached as Exhibit A.

14. Notices shall be provided as follows:

Oscar Peña, General Manager
Ventura Port District 1603 Anchors Way Drive
Ventura, California 93001-4229
Timothy J. Gosney
General Counsel for Ventura Port District
Lagerlof, Senecal, Bradley, Gosney \& Kruse, LLP
301 North Lake Avenue, $10^{\text {th }}$ Floor
Pasadena, California 91101-4108
Community Development Director
City of San Buenaventura
501 Poli Street
Post Office Box 99
Ventura, Califormia 93002-0099
Robert G. Boehm, City Attomey
City of San Buenaventura
501 Poli Street
Post Office Box 99
Ventura, California 93002-0099
David Kleitsch
Economic Development Manager
City of San Buenaventura
501 Poli Street, Room 213
Post Office Box 99
Ventura, California 93002-0099

IN WITNESS WHEREOF, each party hereto has caused this Agreement to be executed by an authorized official as of the date last set forth below and agrees to abide by its terms from this date forward.

DATED: \qquad CITY OF SAN BUENAVENTURA

By $\frac{\text { Donar } \mathscr{L} \text { andurz }}{\text { Donna Landeros, City manager }}$

VENTURA PORT DISTRICT

Approved as to form:

CITY OF SAN BUENA VENTURA

VENTURA PORT DISTRICT

By: $\frac{\text { Tuenothectacery }}{\text { Timothy J. drones, General Counsel }}$

$$
\begin{array}{r}
\text { PurpOS } \\
\text {. Define a } \\
\text { consistel } \\
\text {. } \text { Create a } \\
\text { planning } \\
\text { Harbor. } \\
\text {. Facilitat } \\
\text { a Master }
\end{array}
$$

$$
\begin{gathered}
\text { VENTURA HARBOR } \\
\text { MASTER PLAN } \\
\text { Ventura Port District } \\
\text { City of San Buenaventura } \\
\text { Sors } \\
\text { April } 4,2005
\end{gathered}
$$

Northeast Harbor $\begin{aligned} & \text { Local Coastal Plan and } \\ & \text { Comprehensive Plan Requirements }\end{aligned}$

- Harbor Commercial
- Harbor-Related Mixed

Harbor-Related Mixed
Use
Mobile Home Park
Central Harbor - Harbor Commercial

Southwest Harbor
Sarbor Commercial
South Peninsula
. Harbor Commercial
Land Use Plan
. Al existing uses are considered to be
permitted uses, may remain, and expand.
. Future land uses are options for future development.
Master EIR to facilitate future development
review for new permitted uses and expansion
of existing uses.

Coastal-Related Services
and Facilities Pedestrian and Bicycle Access
$=$ Improve crossings of boat storage (Parcel 20), boat launch
(Parcel 12).
$=$ Connection through Parcels $15,16,18$.
$=$
Improve crossing of fish off-loading area (striping and
signage).
. Improve connections to beach.
Waterfront Promenade
Beachfront Boardwalk
Spinnaker Drive Crossings
.\quad Signage.
.\quad New crossing at Parcel $3 A$ to the existing parking.
 Expand Harbor Village
16, 18
Park and waterfront trail on Parcels 15,
Sport fishing and charters (Parcel 5)
Expanded facilities for Island Packers

Define a common vision for the Harbor,
consistent with the City's "Seize the Future."
Create a consolidated reference document for
planning and development within Ventura
Harbor.
Facilitate future development review through
a Master EIR.

Opportunities
Commercial fishing
fleet.
Regionally central
location.
Marine Learning Center
and Channel Islands
National Park
Headquarters.

$$
\begin{aligned}
& \text { Land Use Plan: } \\
& \text { Southwest Harbor } \\
& \text { Wharf (Parcels 3A and 3B). } \\
& \text { wildlife ponds, Santa } \\
& \text { Clara River mouth, } \\
& \text { McGrath State Beach. } \\
& \text { Expand Harbor } \\
& \text { village and improve } \\
& \text { connections to the } \\
& \text { beach. }
\end{aligned}
$$

$$
\begin{aligned}
& = \\
& = \\
& E= \\
& E=
\end{aligned}
$$

Letter 31
COMMENTER: Oscar F. Peña, General Manager, Ventura Port District
DATE: July 15, 2005

RESPONSE:

Response 31A
The commenter states that the draft General Plan should be revised to clarify that the Harbor Master Plan/Specific Plan is the overriding policy document for Ventura Harbor. The text of the 2005 General Plan will be revised to clarify that the City and Port District are working together to cooperatively complete the Master Plan/Specific Plan for the Harbor area. Once the Harbor Specific Plan is adopted, it will become the overriding policy document for Ventura Harbor.

Response 31B
The commenter is concerned that the Draft General Plan is intended to supercede the current Land Use Plan and Local Coastal Program (LCP). The Port District's Draft Master Plan/Specific Plan is based on the City's current certified LCP. While the Port District's concerns are valid, it is not the intent of the 2005 General Plan to supercede the existing LCP. City staff has engaged in several discussions with the Port District to address this issue. In fact the Planning Commission Resolution recommending approval of the Draft 2005 General Plan (July 26,2005) was specifically written to ensure that this is not the case. The intent is that the existing LCP would remain in full force and effect until the Coastal Commission adopts the new LCP. Thus, all areas of the City within the Coastal zone boundary and subject to the LCP would remain under the same regulations until either an LCP amendment (including the Draft Harbor Master Plan/Specific Plan) is adopted or the new LCP is adopted. In addition, there is specific language in the Draft 2005 General Plan that indicates that the City intends to work with the Port District to complete the Draft Harbor Master Plan and Specific Plan. Therefore, the concerns stated in the Port District's comment letter regarding requiring processing of Land. Use Plan amendments would not require any different processing than currently is the case under the existing LCP/LUP.

The draft 2005 General Plan also contemplates the development that is considered in the Draft Harbor Master Plan and is not intended to preclude any current development proposals such as the Sonderman/Ring project.

City staff is not proposing to attach the existing LUP as it is not recommended that it will be superceded with adoption of the 2005 General Plan. The "Commerce" and "Mobile Home Park" designations shown on the proposed General Plan diagram are consistent with the current land use designations in the Harbor area and thus will not create any inconsistencies.

Response 31C

The commenter notes that a new fire station is needed in the Harbor area, but states that developments within the Harbor do not in themselves justify a new fire station or nine firefighters. The commenter also notes a typographical error in Action 7.13 of the General Paln. The typographical error will be corrected. As discussed in Section 4.11, Public Services, the Fire Department already has plans to construct a new fire station in the Harbor area in response to an existing service deficiency. If the City adopts a fire impact fee program, new development in the City, including development within the Harbor, would be subject to such fees. Though not an environmental impact of the 2005 General Plan, the VFD has identified the need for approximately 30 new firefighters to offset current staff deficiencies in addition to the new firefighters needed for the new Harbor station. As with all firefighting staff, funding for new personnel to staff a new station would come from the City's general fund unless other negotiated means can be determined.

Response 31D

The commenter states that the input from the Harbor was not requested for the draft 2005 General Plan. The draft plan has been circulated for public review since May 2005 in order to solicit comments prior to preparation and approval of a final plan. The City will incorporate relevant concerns from the Harbor into the final 2005 General Plan.

Response 31E

The commenter notes that the Port District should be designated as a "responsible agency." The Port District will be listed as a responsible agency in Section 1.0, Introduction.

Response 31F
The commenter states the level of development assumed for the Harbor does not account for all planned Harbor development. The Marine Learning Center and other developments in the Harbor have been accounted for in the EIR traffic and related noise analysis. The estimates of water demand and wastewater generation do not specifically include all of the facilities included in the Harbor Master Plan; however, on a per capita basis, the estimate of future water demand amounts to about 0.269 acre-feet per person per year, which is about 50% higher than the current per capita demand of about 0.179 acre-feet per year. Thus, the estimates of water demand and wastewater generation are conservative and more than account for additional non-residential development that may occur in the Harbor. The Draft EIR analysis is not intended to provide a "full buildout" estimate for the City, but rather to provide a reasonable estimate of growth that may occur over the next 20 years. Nevertheless, the table depicting possible Harbor development in the 2005 General Plan will be revised to reflect buildout estimates included in the Draft Harbor Master Plan.

Response 31G

The commenter expresses concerns about 2005 General Plan policies pertaining to protection of coastal resources and sensitive wetland and coastal areas, and enforcement of stormwater quality measures (items 7-9 of the Port District letter). None of these policies/actions are
expected to affect operations at the Harbor or restrict the Harbor's plans for development under its Master Plan.

Response 31 H

The commenter expresses concerns about Action 1.18, which relates to dredging. In response to this and another comment, that action will be revised to read as follows:

Action 1.18: Conduct coastal dredging in accordance with the U.S. Army Corps of Engineers and California Department of Fish and Game requirements in order to avoid impacts to sensitive fish and bird species.

Response 31I

The commenter expresses concerns about a number of 2005 General Plan actions and how they might affect the Harbor (items 11-19 in the Port District letter). While these comments do not pertain to the adequacy of the DEIR, the Port District's concerns are being addressed through discussions with City staff and as determined appropriate, will be incorporated into the final 2005 General Plan.

Letter 32

COMMENTER: McLoughlin Family Ranch

DATE: July 15, 2005

RESPONSE:

Response 32A
The commenter states an opinion that the 1.14% annual population growth rate assumed for Scenarios 2-6 is more realistic than the 0.88% growth rate assumed for Scenario 1. This opinion is noted. The growth rates used in the Draft EIR were directed by the City Council. These assumptions were used for analytical purposes. The actual growth rate in the City varies from year to year and is dependent upon a variety of factors.

Response 32B
The commenter states an opinion that, given the complications associated with intensification and reuse, the City should allow the opportunity to consider development of the expansion areas. The commenter also notes that the Draft EIR identifies limitations on available land under the Intensification/Reuse Only scenario.

Although City staff are recommending adoption of the land use map included in Scenario 1 (Intensification/Reuse Only), the City will continue to have the option of allowing development of one or more of the expansion areas. Any land use designation change for the expansion areas that are subject to the SOAR Ordinance, whether sought as part of the 2005 General Plan or as a future General Plan amendment application, would be subject to voter approval.

It is correct that the Draft EIR identifies limitations on available land for the development of schools and parks under the Intensification/Reuse Only scenario. Impacts relating to schools and parks are not significant under CEQA. However, as noted in the Draft EIR, the relative lack of available land may limit the ability to develop new large park facilities or schools.

Response 32C

The commenter points out several potential benefits associated with development of the Olivas expansion area. Some of the benefits noted by the commenter, including potential circulation improvements and restoration of the Arundell Barranca, are discussed in the Draft EIR. In addition, in Section 4.15, the Draft EIR notes that the Intensification/Reuse Only scenario may restrict the types of housing available as compared to Scenarios 2,3,4, and 6, emphasizing multi-family housing over single family housing.

Response 32D

The commenter notes that although development of the Olivas area may conflict with the California Coastal Act policy relating to Prime farmland conversion, it could implement other Coastal Act policies relating to coastal access and recreation and enhancement of water quality.

This is correct. As discussed in Section 4.14 of the Draft EIR, possible future development within the Olivas expansion area could be found to be consistent with several Coastal Act policies.

Response 32E

The commenter notes that earlier documents included the Olivas expansion area in a "staff recommended" or "City Council preferred" scenario and requests that the City Council include the Olivas area within its proposed Sphere of Influence (SOI) boundary. It is true that the City Council identified three expansion areas, including the Olivas area, in its "preferred scenario" in July/August 2004. However, because the City's desire to focus on intensification/reuse, staff are now recommended adoption of the Intensification/Reuse Only scenario. It should be noted that the City will not be seeking SOI boundary adjustments at this time. The Ventura LAFCO will, however, be performing an analysis of the SOI boundary within the next year that will likely result in adjustments that exclude areas not planned for development within the next five years (including areas subject to SOAR) from the SOI.

REEETED

JUL 182005
Community Devolopment
IANNING Division

July 15,2005

Kari Gialketsis, Principal Plamer
City of San Buenaventura
Community Development Department
501 Poli Street P.O. Box 99
Ventura, CA 93001-0099

Sent by Email kgialketsis@civentura.ca.us and Fax \#(805) 653-0763

Re: City of San Buenaventura 2005 General Plan Draft EIR

Dcar Ms. Gialkctsis:

On behalf of the members of the McLoughlin Family, who own approximately 300 acres of land located along Olivas Park Drive, in the City of Venturs ("MoLoughlin Ranch"), thank you for the opportunity to comment on the City of Ventiura's proposed 2005 General Plan and its accompanying Draft Environmental lmpact Report, dated June 2005.

The McLoughlin Ranch property is located within the 930 acre Olivas Potential Expansion Area ("Olivas PEA"), as described in the City's General Plan Update and accompanying documents. There are six additional families/entities that own parcels of various sizes within the Olivas PEA. While the McLoughlin Family has been in communication with the other Olivas PEA property owners, who have expressed a desire and willingness to work cooperatively on any potential future plaming efforts for the Olivas PEA, it should be noted that the comments expressed in this letter are those of the McLoughlin Family, and we are not intending to speak for, or represent the vicws of the other Olivas PEA property owners.

It is our understanding that the new Draf General Plan sets forth an unambiguous emphasis regarding the City's desire to focus on accommodating future growth with infill, intensification, and re-use of sitcs within the currently urbanized areas of the City, prior to considering any potential expansion of the City. And yet, there is strong indication of a number of potentially significant benefits to the City, and its General Plan Goals, that could only be accommodated through future development in one or more of the Potential Expansion Areas ("PEAs'):
"...the community has indicated that before the city expands any further, the first priority to achieving planning goals should be in the vacant and underatilized areas of the City. Yet even the most successful efforts to achieve community planning goals through infill may need to be supplemented at some point by expanding into areas outside the city limits. Such expansion may not only be necessary to fulfill development objectives; it may also be needed to provide open space, parklands and natural areas to be preserved and restored... These areas (PEAS) were identified because they embody opportunities for achieving a variety of community vision objectives that may not be feasible within existing city limits." (VGP-Attachment D-Long Term Potential Expansion Strategy)

We also understand that the City will, at a yet undefined future date, be considering and making a decision regarding a Long-Term Potential Expansion Strategy, which will include: a) Guidelines for Timing and Consideration of PEAs; b) Framework for Development of Expansion Areas; and c) Criteria and Process for Site Selection. We know that any future development of the PEAs will require the preparation and approval of a Specific Plan, including the necessary environmental review, and will ultimately require a SOAR vote, and approval of the development concept by Ventura's electorate. We are not seeking to address the details of those future deliberations and policy decisions at this time.

While we are aware that the City has chosen to position its Draft 2005 General Plan as an Intensification/Reuse Only strategy (Scenario 1), and that the decision regarding which, if any, of the potential expansion strategies (Scenarios 2-6) will be selected for future planning has been segregated from the approval and adoption process for the 2005 General Plan Update, there are a number of issues/comments that we would like to address in response to the DEIR analysis, which is being used as a basis for this decision. Please consider the following:

1) Growth Rate: The Intensification/Reuse Only Scenario assumes a citywide annual population growth rate for the planning time frame of the 2005 VGP (2005-2025) to be 0.88%, while all of the Scemarios that include PEAs are based on a projected annual growth rate of 1.14%. While the 0.88% annual rate reflects Ventura's actual growth rate for the past 10 years (1994-2004), we believe that this growth rate was restricted by a number of factors including: the national, regional and local economic recession of the 1990s; the loss of several major employers from the area (including Kinko's relocation of corporate offices from Ventura to Texas); and the limited supply of new housing units that were produced in Ventura during that time frame due to restrictions imposed by the City's Residential Growth Management Program (RGMP).

We believe that the 1.14% growth rate is a more realistic and prudent projection for the City to use in its planning efforts, because this represents the longer range historic view of Ventura's actual growth (1984-2004), and is also much closer to the Countywide growth rates, and the City's actual growth during the recent past from 2000 to 2005.
2) City's Ablity to Accommodste Projected Growth wifh Infill Only: Scenario 1 proposes to meet all of the City's anticipated growth, as projected using the 0.88% growth rate through 2025 (which assumes 8,300 new residential dwelling units and nearly 4.9 million new square feet of commercial, office, and industrial space), through the intensification and reuse of land within currently urbanized areas. While we appreciate and support the community's desire to accommodate as much of its anticipated growth as possible, through infill development, we question the feasibility of actually being able to accommodate this much growth within areas defined in Scenario 1. The DEIR identifies the primary areas where this growth is expected to occur, including defined Planning Districts and Coridors, many of which are located in the Downown, Westside, and Midtown communities.

However, infill development can be much more complicated and costly, and faces many challenges that do not affect "Greenfield" development. Meeting the City's growth needs through Scenario 1 will require significant private investment, cooperation with existing neighbors, and less restrictive zoning and land use regulations than those that currently exist in Ventura. Until the City has completed an update of its zoning ordinance, and adopts the proposed form-based codes, it may be virtually impossible to legally approve enough projects at the levels of density that would be required in order to meet the proposed level of development. It is our understanding that the City plans to begin rewriting its zoning and development codes after the General Plan Update is approved, and that the process of developing the form based codes could take as long as two additional years to complete.

Given the inherent limitations of infill development, combined with probable conflicts between 2005 General Plan Policies and the existing regulatory framework, we believe that it would be prudent for the City to keep its options open by allowing for the opportunity to consider future development of the PEAs. It should also be noted that due to the requirements for Specific Plans and SOAR votes, any future development in the PEAs would require a multi-year planning effort. If the City waits until it discovers that its infill strategy has not been successful in yielding the needed level of development, it may be too late to meet growth projections within the planning period (2005-2025) through development in one or more of the PEAs.

Furthermore, the DEIR clearly indicates that there is a shortage of available land in Scenaric 1 to meet the increased demand for Public Services that would be generated under even this lower growth rate scenario. Of particular concem is the lack of available infill sites large enough to provide additional fire, police, schools, and recreational facilities. The DEIR further states that "...limited available land for now schools may necessitate condemnation of properly for new school sites and/or more inteusive use of existing facilities." (Impact PS-3), and "Large sites to accommodate citywide park facilities are also lacking under this scenario" (Impact PS-6). Future development in one or more of the PEAs will alleviate these issues, especially the Olivas PEA, which offers adequate land to mitigate any impacts of Olivas development and additionally to offset the unmet needs from Scenario 1 .
3) Comstraints oa Inteasification/Reuse Only Strategy: In addition to the acreage, social, and regulatory limitations of Scenario 1 , as described above, there are numerous specific and significant potential constraints associated with this strategy which are identified throughout the DEIR, and particularly in Section 4. The Intensification/Reuse Scenario assumes that a large percentage of the City's future growth will be met within the Planning Districts and Corridors, as identified in the Drafl General Plan Update, and that a significant amount of this growth would occur in the older urbanized areas of the City, including Downtown, Midtown and the Westside. However, these older areas of town present a myriad of development challenges, which could very likely limit the potential growth in those areas, and/or negatively impact the financial viability of infill development. Some of these areas of concern, as identified in Section 4, include: Cultural and Historic Resources; Geologic Hazards; Hazardous Materials; Hydrology and Water Quality; Public Services; and Utilities.

Section 4 details numerous deficiencies in existing water, sewer and storm water facilities, especially in the older parts of town, that will require extensive re-investment and upgrades to infrastructure. This could affect the cost, timing, and/or ultimate viability of infill development in some areas. Also, the downtown and Westside areas are ripe with identified and potential unidentified cultural and historic/prehistoric resources. Development in these areas may well conflict with other General Plan and Ventura Vision priorities regarding historic and cultural preservation. The Westside and portions of the Downtown communities also contain identified hazardous material issues. Any of these factors could severely limit the true development potential under Scenario 1.
4) Benefits of Olivas Expanaion Area: While there are certainly some potential challenges associated with future development in the Olivas PEA, the DEIR also identifies numerous potential benefits to the City, which could be obtained through the future planning of a high quality, mixed-use, new urbanist village at this location. In addition to the benefits listed above, Olivas offers opportunities to improve, enhance, and/or mitigate numerous issues of community wide importance, and to fulfill several General Plan and Vision Goals/Priorities, including:
a. Completion of critical multi-modal circulation linkages that will enhance and improve circulation between existing neighborhoods, and promote alternative modes of transportation, by: I) connecting the Olivas/Ventura Harbor area to midtown through the extension of Mills Road, II) enhancing the Amundell Barranca Bike and Pedestrian Pathway to create a safer and more appealing alternate circulation corridor, III) possible creation of a multi-modal transit center along the railroad line on Olivas PEA. (GP Policies 4A, 4B, and 4C)
b. Enhancing the economic viability of both the Ventura Harbor and the Pacific View Mall, by improving access and visibility, and creating better connectivity between these two vital commencial/tourist attractions, thus generating higher sales tax revenue to the City, (Impact TC-2)
c. Development in the Olivas PEA could allow for the restoration of the Arrundell Barranca into a more natural state (Vision Goal), and the creation of a beautiful parkland and bio-filtration area surrounding the Barranca, which would help to alleviate the siltation problems that are negatively affecting the waterways of the Ventura Keys and the Harbor. This would belp meet several environmental, Coastal Commission, Vision, and General Plan priorities by using BMPs to improve storm water quality, enhancing the viability of commercial fishing and recreational boating in the Harbor, and creating attractive recreational opportunities for all residents. (Impact HWQ-2 and HWQ-3, GP Action 5.2, and Action 1.10, among others)
d. Scenario 1 will produce mostly multi-family housing, do to the limited amount of land available, and the desire to intensify development in currently urbanized areas. Future development in Olivas will allow for a greater diversity of housing choices. (DEIR page 4.15-10)
5) Coastal Commission Priorities: While it is noted that the preservation of Prime Agricultural land in the Coastal Zone is a priority of the

California Coastal Commission, the DEIK also discusses several other priorities/policies of the California Coastal Act (CCA) that could be served by a development in the Olivas PEA which adheres to policies of the Act, with the potential benefits outweighing any loss associated with the conversion of agricultural land. These are located in Section 4.14 of the DEIR and include: Article 2-Public Access (connecting Harbor to other areas of town and enhanced bike/ped trails); Article 3-Recreation (opportunities for coastal-related recreational activities/facilities, and visitor-serving commercial uses); Article 4- Marine Environment (enhance water quality and protection of commercial fishing \& recreational boating); Article 6 -Land Resources (allows for conversion of prime farmland when would allow for concentration of development in close proximity to existing developed areas with adequate services); and Article 6-Development.

Finally, we would like to note that in the initial Notice of Preparation for this DEIR, which was issued in September 2004, the Olivas PEA was included in the Staff Recommended Scenario; and in the Revised NOP that the City issued in December 2004, Olivas was included in the City Council Preferred Scenario; but it has now been removed from a priority position in the DEIR. Given the numerous potential benefits from future development in the Olivas PEA, and the ability to realize numerous City Vision and General Plan Goals, we respectfully request that the City Council include the Olivas PEA in its proposed Sphere of Influence boundaries, in its application to LAFCO.

Thank you for your time and consideration of our comments.
Sincerely,
McLoughlin Family
James P. McLoughlin Jr.
Thomas V. McLoughlin
Robert \& Marie Thomas
Stanley H. Chambers

Letter 32

COMMENTER: McLoughlin Family Ranch

DATE:
July 15, 2005

RESPONSE:

Response 32A

The commenter states an opinion that the 1.14\% annual population growth rate assumed for Scenarios 2-6 is more realistic than the 0.88% growth rate assumed for Scenario 1. This opinion is noted. The growth rates used in the Draft EIR were directed by the City Council. These assumptions were used for analytical purposes. The actual growth rate in the City varies from year to year and is dependent upon a variety of factors.

Response 32B

The commenter states an opinion that, given the complications associated with intensification and reuse, the City should allow the opportunity to consider development of the expansion areas. The commenter also notes that the Draft EIR identifies limitations on available land under the Intensification/Reuse Only scenario.

Although City staff are recommending adoption of the land use map included in Scenario 1 (Intensification/Reuse Only), the City will continue to have the option of allowing development of one or more of the expansion areas. Any land use designation change for the expansion areas that are subject to the SOAR Ordinance, whether sought as part of the 2005 General Plan or as a future General Plan amendment application, would be subject to voter approval.

It is correct that the Draft EIR identifies limitations on available land for the development of schools and parks under the Intensification/Reuse Only scenario. Impacts relating to schools and parks are not significant under CEQA. However, as noted in the Draft EIR, the relative lack of available land may limit the ability to develop new large park facilities or schools.

Response 32C

The commenter points out several potential benefits associated with development of the Olivas expansion area. Some of the benefits noted by the commenter, including potential circulation improvements and restoration of the Arundell Barranca, are discussed in the Draft EIR. In addition, in Section 4.15, the Draft EIR notes that the Intensification/Reuse Only scenario may restrict the types of housing available as compared to Scenarios 2,3,4, and 6; emphasizing multi-family housing over single family housing.

Response 32D

The commenter notes that although development of the Olivas area may conflict with the California Coastal Act policy relating to Prime farmland conversion, it could implement other

Coastal Act policies relating to coastal access and recreation and enhancement of water quality. This is correct. As discussed in Section 4.14 of the Draft EIR, possible future development within the Olivas expansion area could be found to be consistent with several Coastal Act policies.

Response 32E
The commenter notes that earlier documents included the Olivas expansion area in a "staff recommended" or "City Council preferred" scenario and requests that the City Council include the Olivas area within its proposed Sphere of Influence (SOI) boundary. It is true that the City Council identified three expansion areas, including the Olivas area, in its "preferred scenario" in July/ August 2004. However, because the City's desire to focus on intensification/reuse, staff are now recommended adoption of the Intensification/Reuse Only scenario. It should be noted that the City will not be seeking SOI boundary adjustments at this time. The Ventura LAFCO will, however, be performing an analysis of the SOI boundary within the next year that will likely result in adjustments that exclude areas not planned for development within the next five years (including areas subject to SOAR) from the SOI.

Appendix H

Mitigation Monitoring and Reporting Program

MITIGATION MONITORING AND REPORTING PROGRAM

CEQA requires that a reporting or monitoring program be adopted for the conditions of project approval that are necessary to mitigate or avoid significant effects on the environment (Public Resources Code 21081.6). The mitigation monitoring and reporting program is designed to ensure compliance with adopted mitigation measures during project implementation. For each mitigation measure recommended in the Environmental Impact Report, specifications are made herein that identify the action required and the monitoring that must occur. In addition, a responsible agency is identified for verifying compliance with individual conditions of approval contained in the Mitigation Monitoring and Reporting Program (MMRP).

The following table is a checklist to be used to verify compliance with the mitigation measures included in the Final EIR for the "Intensification/Reuse Only" scenario.

Mitigation Measure/Condition of Approval	Action Required	When Monitoring to Occur	Monitoring Frequency	Responsible Agency or Party
AIR QUALITY				
AQ-2 Additional Air Quality Actions. The following actions should be added to the 2005 General Plan to address air quality impacts of future development on a case-by-case basis: - Require air quality analysis of individual development projects in accordance with the most current version of the Ventura County Air Pollution Control District Air Quality Assessment Guidelines and, when significant impacts are identified, require implementation of air pollutant mitigation measures determined to be feasible at the time of project approval. - In accordance with Ordinance 9337, continue to require payment of fees to fund regional transportation demand management (TDM) programs for all projects generating emissions in excess of Ventura County APCD thresholds.	Verification that actions are included in the final 2005 General Plan; review of individual projects over the life of the 2005 General Plan	Verification of inclusion of recommended actions prior to publication of the final 2005 General Plan; review and assessment of fees prior to issuance of building permits for individual development projects	Once prior to final 2005 General Plan publication; review of individual projects as needed over the life of the 2005 General Plan	Planning Department
AQ-3 Construction Mitigation. The following action should be added to the 2005 General Plan to address air quality impacts of future construction projects on a case-by-case basis: - Require individual construction contractors to implement the construction mitigation measures included in the most recent version of the Ventura County APCD's Ventura County Air Quality Assessment Guidelines and, when	Verification that the action is included in the final 2005 General Plan; verification that construction plans for individual projects include provisions that are consistent with APCD guidelines	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; review and approval of construction plans prior to issuance of grading permits for individual development projects	Once prior to final 2005 General Plan publication; review of individual projects as needed over the life of the 2005 General Plan	Planning Department

Mitigation Measure/Condition of Approval	Action Required	When Monitoring to Occur	Monitoring Frequency	Responsible Agency or Party
significant impacts are identified, require implementation of air pollutant mitigation measures determined to be feasible at the time of project approval.				
HYDROLOGY AND WATER QUALITY				
HWQ-2 Additional Drainage Actions. The following actions shall be added to the 2005 General Plan to address existing storm drain system deficiencies: - Develop a financing program for the replacement of failing corrugated metal storm drain pipes in the City. - Adopt assessment districts or other financing mechanisms to address storm drain system deficiencies in areas where new development is anticipated and deficiencies exist (e.g., Downtown district, Ventura Avenue corridor, and Harbor district). The following actions are recommended to minimize the impact of future development on the local storm drain system and implement City goals regarding sustainable infrastructure: - As feasible, require new developments to incorporate stormwater treatment practices that allow percolation to the underlying aquifer and minimize offsite surface runoff. Such methods may include, but are not limited to, (1) the use of pervious paving material within	Verification that actions are included in the final 2005 General Plan; inclusion of infrastructure plans in future development plans (e.g., specific plans, redevelopment plans) for areas where deficiencies exist	Verification of inclusion of recommended actions prior to publication of the final 2005 General Plan; verification that appropriate infrastructure plans are in place prior to approval of development plans for affected areas	Once prior to final 2005 General Plan publication; verification of infrastructure plans as needed over the life of the 2005 General Plan	Planning Department, Public Works Department, Planning Commission, City Council

Mitigation Measure/Condition of Approval	Action Required	When Monitoring to Occur	Monitoring Frequency	Responsible Agency or Party
parking lots and other paved areas to facilitate rainwater percolation; and (2) construction of retention/detention basins to limit runoff to pre-development levels and to encourage infiltration into the groundwater basin. - Where deemed appropriate, condition new developments adjacent to Ventura County Watershed Protection District channels to dedicate necessary right-of-way to meet future District needs.				
NOISE				
N-1 Rubberized Asphalt. The following action shail be added to the 2005 General Plan to reduce general traffic noise: - As feasible, use rubberized asphalt or other sound reducing material for paving and re-paving of City streets.	Verification that the action is included in the final 2005 General Plan; verification that rubberized asphalt is used when feasible, particularly on roads where noise levels approach or exceed City standards	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; prior to re-paving of individual roads over the life of the 2005 General Plan	Once prior to final 2005 General Plan publication; re-paving as needed over the life of the 2005 General Plan	Planning Department; Public Works Department
N-3 Noise Ordinance Update. The following action shall be added to the 2005 General Plan: - Update the Noise Ordinance in conjunction with the new development code to provide noise standards for residential projects and residential components of mixed use projects within commercial and industrial zones.	Verification that the action is included in the final 2005 General Plan; verification that the new development code includes noise standards for residential projects within commercial and industrial zones	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; verification of inclusion of noise standards prior to approval of new development code	Once prior to final 2005 General Plan publication; once prior to approval of development code	Planning Department, Planning Commission, City Council
PUBLIC SERVICES				
PS-2 Police Protection Service. The following actions shall be added to the 2005 General Plan:	Verification that the action is included in the final 2005 General Plan; annual	Verification of inclusion of the recommended action prior to publication of the	Once prior to final 2005 General Plan publication; monitoring annually over	Planning Department; Police Department

Mitigation Measure/Condition of Approval	Action Required	When Monitoring to Occur	Monitoring Frequency	Responsible Agency or Party
- Establish a new Downtown storefront to meet the needs of the growing Downtown population - Expand the Police Department headquarters as necessary to accommodate staff growth.	monitoring of Police Department facility needs and development of new facilities as needed	final 2005 General Plan; monitoring of Police Department facilities annually over the life of the 2005 General Plan	the life of the 2005 General Plan	
PS-3(a) School Coordination. The following action should be added to the 2005 General Plan: - Work with the Ventura Unified School District to ensure that school facilities can be provided to serve new development.	Verification that the action is included in the final 2005 General Plan; verification of coordination with School District in conjunction with review of individual developments	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; coordination prior to approval of individual development projects	Once prior to final 2005 General Plan publication; coordination as needed over the life of the 2005 General Plan	Planning Department, Planning Commission, City Council
PS-5 Solid Waste Disposal Facilities. The following actions shall be added to the 2005 General Plan: - Coordinate with the Ventura Regional Sanitation District and the County to expand the capacity of existing landfills, site new landfills, or develop alternative means of disposing of solid waste that will provide sufficient capacity for waste generated in the City. - Develop incentives for new residences and businesses to incorporate recycling and waste diversion practices using guidelines provided by the Environmental Services Office.	Verification that the action is included in the final 2005 General Plan; verification of inclusion of appropriate incentives in new development code	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; verification of inclusion of incentives prior to adoption of new development code	Once prior to final 2005 General Plan publication; once prior to adoption of new development code	Planning Department, Planning Commission, City Council
TRANSPORTATION AND CIRCULATION				
TC-1 Additional Circulation Actions. The following actions shall be added to the 2005 General Plan to ensure that traffic impacts of future developments	Verification that the actions are included in the final 2005 General Plan; verification of traffic	Verification of inclusion of the recommended actions prior to publication of the final 2005 General Plan;	Once prior to final 2005 General Plan publication; analysis and development of mitigation as needed	Planning Department; Public Works Department, Planning Commission, City Council

Mitigation Measure/Condition of Approval	Action Required	When Monitoring to Occur	Monitoring Frequency	Responsible Agency or Party
are addressed and mitigated: - Require project proponents to analyze traffic impacts and implement mitigation as appropriate prior to development. Depending upon the nature of the impacts and improvements needed, mitigation may either consist of implementing needed physical improvements, contributing "fair share" fee toward implementation of needed improvements, or some combination thereof. - Update the traffic mitigation fee program to fund necessary citywide circulation and mobility system improvements needed in conjunction with new development.	mitigation fee program update; analysis of impacts of individual development projects and inclusion of appropriate mitigation	verification of traffic mitigation fee program update in conjunction with annual General Plan review; analysis and development of mitigation prior to approval of individual development projects	over the life of the 2005 General Plan	
UTILITIES AND SERVICE SYSTEMS				
U-1 Water System Analysis. The following action shall be added to the 2005 General Plan: - Require project proponents to conduct evaluations of the existing water distribution system, pump station, and storage requirements for the proposed development in order to determine if there are any system deficiencies or needed improvements for the proposed development.	Verification that the action is included in the final 2005 General Plan; analysis of impacts of individual development projects and inclusion of appropriate mitigation	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; analysis and development of mitigation prior to approval of individual development projects	Once prior to final 2005 General Plan publication; analysis and development of mitigation as needed over the life of the 2005 General Plan	Planning Department, Public Works Department, Planning Commission, City Council
U-2(a) Sewer System Analyses. The following action should be added to the 2005 General Plan: - Require project proponents to	Verification that the action is included in the final 2005 General Plan; analysis of impacts of individual development projects and	Verification of inclusion of the recommended action prior to publication of the final 2005 General Plan; analysis and development	Once prior to final 2005 General Plan publication; analysis and development of mitigation as needed over the life of the 2005	Planning Department, Public Works Department, Planning Commission, City Council

Mitigation Measure/Condition of Approval	Action Required	When Monitoring to Occur	Monitoring Frequency	Responsible Agency or Party
conduct sewer collection system analysis to determine if downstream facilities are adequate to handle the proposed development.	inclusion of appropriate mitigation	of mitigation prior to approval of individual development projects	General Plan	

VENTURA RIVER (VR-1) LEVEE REHABILITATION PROJECT

Environmental Review \| Scoping | CEQA Compliance

QUICK LINKS

VR-1 Scoping Presentation Slides (English)
VR-1 Scoping Presentation Slides (Spanish)
VR-1 Notice of Preparation Mailer (English)
VR-1 Notice of Preparation Mailer (Spanish)
VR-1 Detailed Notice of Preparation (English)
VR-1 Detailed Notice of Preparation (Spanish)

Contact VCPWA - WP

The Ventura County Public Works Agency - Watershed Protection (VCPWA - WP) is soliciting input from reviewing agencies and the public regarding the scope and content of the EIR. In accordance with CEQA, Watershed Protection requests that agencies review the Project Description provided in this NOP and provide comments on environmental issues related to the statutory responsibilities of the agency. The EIR will be used by Watershed Protection when considering approval of the proposed project and by other Responsible and Trustee Agencies to support their discretionary actions related to the proposed project. Watershed Protection is also seeking the views of residents, property owners, and the public regarding issues that should be addressed in the EIR.

The proposed project would involve structural improvements to the existing VR-1 levee, which would achieve compliance with the Federal Emergency Management Agency (FEMA) levee certification requirements and United States Army Corps of Engineers (Corps) levee permit requirements, address structural deficiencies, and extend the levee's capital service life. In 2008, FEMA determined that the VR-1 levee did not fully comply with all the federal levee certification regulatory requirements. Additionally, the Corps rated the levee as "minimally acceptable," meaning that the levee has multiple deficiencies. These deficiencies put the levee at risk of failing from a one percent annual chance (also known as the 100-year) flood event. The proposed project would improve flood protection to residents and businesses in the City of San Buenaventura (commonly known as Ventura) located within the one percent annual chance flood zone (a.k.a. FEMA flood zone) by achieving a one percent annual chance flood capacity with 3 feet of freeboard (i.e., the height of the levee above the flood water).

VR-1 SCOPING PRESENTATION (ENGLISH)

- ENVIRONMENTAL REVIEW

Pursuant to State CEQA Guidelines Section 15081, Watershed Protection has determined that the proposed Project may have a significant effect on the environment. Watershed Protection has not prepared an Initial Study and will instead begin work directly on the EIR, as allowed under State CEQA Guidelines Sections 15063(a).

+ SCOPING PROCESS AND SCOPING PERIOD
+ PUBLIC COMMENTS
+ INQUIRIES

CONTACT
Address:
800 South Victoria Avenue
Ventura, CA 93009-1600
Hours of Operation:
8:00a.m. - 5:00p.m.
Phone Number:
805.654.2018
aims to delver efficient, responsive and
ims to deliver efficient, responsive and cost effective regional services essential to
the health, safety, natural resources
protection, and economic vitality of Ventura
County and its residents.

Removal Action Workplan
 Property South of Parcel A Former Ventura Manufactured Gas Plant

1555 North Olive Street, Ventura California
Submitted to:
Department of Toxic Substances Control
9211 Oakdale Avenue
Chatsworth, California 91311-6505
Prepared for:
Southern California Gas Company

Prepared by:

16361 Scientific Way
Irvine, California 92618

August 2020
Revised November 2020
Revised December 2020

Removal Action Workplan
 Property South of Parcel A Former Ventura Manufactured Gas Plant

1555 North Olive Street, Ventura California

Submitted to:

Department of Toxic Substances Control

9211 Oakdale Avenue
Chatsworth, California 91311-6505

Prepared for:

Southern California Gas Company

Prepared by:

16361 Scientific Way Irvine, California 92618

August 2020
Revised November 2020
Revised December 2020

TABLE OF CONTENTS

PAGE
ACRONYMS AND ABBREVIATIONS iv
1.0 INTRODUCTION 1
1.1 Purpose of the RAW 1
2.0 BACKGROUND INFORMATION 3
2.1 Site Description. 3
2.2 Historical MGP Operation 3
2.3 Previous Investigations and Removal Actions at the Former Ventura MGP 4
2.3.1 Previous Investigations and Removal Actions in Northern Portion of the Site 4
2.3.2 Previous Investigations and Removal Actions in southern Portion of the Site 6
2.4 Geologic Setting 7
2.5 Local Hydrology 8
3.0 NATURE, SOURCE, AND EXTENT OF SOIL AND SOIL VAPOR IMPACTS 9
3.1 Soil Impact 9
3.2 Soil Vapor Impact 9
4.0 HUMAN HEALTH RISK ASSESSMENT 11
5.0 REMOVAL ACTION GOALS AND OBJECTIVES 14
5.1 RAOs for Shallow Soil 14
5.2 RAOs for Vapor Intrusion 15
5.3 Potential Applicable, Relevant, and Appropriate Requirements (ARARs) 15
6.0 PUBLIC PARTICIPATION AND CEQA. 17
7.0 FEASIBILITY STUDY, IDENTIFICATION AND ANALYSIS OF REMOVAL ACTION ALTERNATIVES 18
7.1 Remedial Technology Screening 18
7.2 Alternative 1 for Soil and Soil Vapor: No Further Action for Soil 18
7.2.1 Effectiveness 19
7.2.2 Implementability 19
7.2.3 Cost 19
7.2.4 Conclusion on Alternative 1 19
7.3 Alternative 2 for Soil and Soil Vapor: Land Use Covenant 19
7.3.1 Effectiveness 20
7.3.2 Implementability 20
7.3.3 Cost 20
7.3.4 Conclusion on Alternative 2 20
7.4 Alternative 3 for Soil: Soil Excavation and Offsite Treatment/Disposal 20
7.4.1 Effectiveness 20
7.4.2 Implementability 20
7.4.3 Cost 21
7.4.4 Conclusion on Alternative 3 21
7.5 Alternative 4 for Soil Vapor: Soil Vapor Mitigation at New Compressor Building. 21
7.5.1 Effectiveness 22
7.5.2 Implementability 22
7.5.3 Cost 22
7.5.4 Conclusion on Alternative 4 22
7.6 Summary and Recommendation 23
8.0 REMOVAL ACTION PLAN 25
8.1 Proposed Removal Activities. 25
8.1.1 Area and Volume of Shallow Soil Removal 25
8.1.2 Mitigation Measures for vapor intrusion 27
9.0 SHALLOW SOIL REMOVAL ACTION IMPLEMENTATION 28
9.1 Permitting/Notifications 28
9.2 Preparatory Activities 28
9.2.1 Kick-Off Meeting 28
9.2.2 Health and Safety Plan 28
9.2.3 Surface Geophysical Surveying 29
9.2.4 Additional Investigation. 29
9.3 Mobilization 29
9.3.1 Preparation of Work Areas 29
9.3.2 VCAPCD Rules Implementation 30
9.3.3 Temporary Fencing and Barricade Installation. 30
9.3.4 Soil Stockpile Area Construction. 30
9.4 Soil Excavation 31
9.4.1 Confirmation Sampling and analysis 31
9.4.2 Backfill Placement and Compaction. 31
9.4.3 Site Restoration 32
9.5 Transportation and Offsite Disposal 32
9.5.1 Waste Streams. 32
9.5.2 Loading and Sealing of Trucks 33
9.5.3 Documentation and Records Retention 33
9.5.4 Traffic Control 34
9.5.5 Treatment and Disposal Facilities 34
9.5.6 Transportation Routes 35
9.6 Mitigation Measures 35
9.6.1 Noise Control 35
9.6.2 Stormwater Management 36
9.6.3 Dust and Odor Control 37
9.6.4 Air Monitoring 37
9.7 Demobilization and Decontamination 38
9.7.1 Equipment and Tool Decontamination 39
9.7.2 Pre-Final Inspection 39
10.0 POST REMEDIATION ACTIVITIES 40
10.1 Shallow Soil Post-Remediation 40
10.2 Vapor Intrusion Mitigation Measure 40
10.3 Remedial Action Completion Report (RACR) 41
10.4 Land Use Covenant (LUC) 41
11.0 PROJECT SCHEDULE 42
12.0 REFERENCES 43
Tables
Table 1 Summary of Soil Analytical Results for TPH and VOCs
Table 2 Summary of Soil Analytical Results for PAH and Metals
Table 3 Summary of Soil Gas Analytical Data
Table 4 Summary of Chemicals of Potential Concern
Table 5 Soil Health Based Goals
Table 6 Soil Vapor Health Based Goals
Table 7 Locations Where Soil Vapor Concentrations Exceed Health Based Goals
Table 8 Summary of Technology Type and Process Options Screening for Soil
Table 9 Summary of Technology Type and Process Options Screening for Soil Vapor
Table 10 Preliminary Cost Estimates
Table 11 30-Year Operation and Maintenance Costs

Figures

Figure 1 Site Location Map
Figure 2 Site Plan
Figure 3 Architectural Rendering of the New Compressor Station
Figure 4 Soil Sampling Results
Figure 5 Soil Vapor Sampling Results
Figure 6 Excavation Plan and Confirmation Sampling Locations
Figure $7 \quad$ Transportation Route Map

Attachments

Attachment A DTSC Approval Letter for Removal Action Workplan (Tetra Tech, May 2009)
Attachment B Parcel Map
Attachment C Applicable, Relevant, and Appropriate Requirements (ARARs)
Attachment D Sampling and Analysis Plan
Attachment E Quality Assurance/Quality Control Plan
Attachment F Response to Comments

ACRONYMS AND ABBREVIATIONS	
API	American Petroleum Institute
ARARs	Applicable, Relevant, and Appropriate Requirements
B(a)P	Benzo(a)pyrene
bgs	below ground surface
BTEX	Benzene, toluene, ethylbenzene, and xylenes
CCR	Code of Regulations
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
COPCs	Chemicals of potential concern
CPAHs	Carcinogenic PAHs
DCE	Dichloroethene
DOT	Department of Transportation
DTSC	California Department of Toxic Substances Control
EAs	Exposure areas
Eco	Eco \& Associates, Inc.
EHD	Environmental Health Division
EMI	Electromagnetic instrument
EPA	U.S. Environmental Protection Agency
GPR	Ground-penetrating radar
HASP	Health and Safety Plan
HBGs	Health Based Goals
HHRA	Human health risk assessment
ISCOX	In situ chemical oxidation
LDR	Land Disposal Restriction
LNPAL	Light non-aqueous phase liquid
LUC	Land Use Covenant
NOREAS	NOREAS, Inc.
mg/kg	Milligrams per kilogram
MGP	Manufactured Gas Plant
MTBE	Methyl tertiary butyl ether
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NOE	Notice of Exemption
N.O.S.	Not Otherwise Specified
PAHs	Polycyclic aromatic hydrocarbons
RACR	Removal Action Completion Report
RAOs	Remedial action objectives
RAW	Removal Action Workplan
SoCalGas	Southern California Gas Company

SRI Supplemental Remedial Investigation
SRIR Supplemental Remedial Investigation Report
TBA
TBC
TCE
TPH
TPH-g
TPH-d
TPH-hh
USCS
UST
VC
VCAPCD
VMP
VOCs
Water Board
$\mu \mathrm{g} / \mathrm{L}$
Tertiary butyl alcohol
To be considered
Trichloroethene
Total Petroleum Hydrocarbons
TPH in the gasoline range
TPH in the diesel range
TPH with heavy hydrocarbons
Unified Soil Classification System
Underground Storage Tank
Vinyl Chloride
Ventura County Air Pollution Control District
Vapor monitoring probes
Volatile organic compounds
California Regional Water Quality Control Board Micrograms per liter

1.0 INTRODUCTION

On behalf of the Southern California Gas Company (SoCalGas), NOREAS, Inc. (NOREAS) has prepared this Removal Action Workplan (RAW) to describe proposed remedial activities at the southern portion of the Site located at 1555 N. Olive Street in Ventura, California (Site). Figure 1 depicts the Site location and Figure 2 shows the Site plan. The northern portion of the Site (Parcel A) was a part of the former Ventura Manufactured Gas Plant (MGP) that was divided into seven parcels (A through G) (Figure 2) based on modern ownership. Parcel A is the only one of the seven parcels that is still owned by SoCalGas. Parcels A, B, and C have been characterized and remediated as described in more detail in Section 2.0.

The Site is currently used as a compressor station and is scheduled for sitewide modernization. The modernization plan will include construction of a new compressor building, a new office building, a new warehouse, and a new Motor Control Center Room (Figures 2 and 3). The current existing office building and warehouse in the southern portion of the Site are scheduled for demolition. This RAW is primarily focused on the southern portion of the Site, where remediation has not occurred.

A RAW was prepared by Tetra Tech (2009) for the remediation of Parcel A. The RAW was approved by the DTSC and the approval letter is attached as Attachment A. The RAW was implemented in 2011. Details regarding the Site description, previous activities, and the nature and extent of contamination are provided in the RAW. The remedial excavation activities, including post-remediation sampling, are documented in the Soil Removal Action Completion Report (RACR) (Tetra Tech, 2011). As part of Parcel A remediation, impacted soil was excavated and transported offsite for treatment and disposal. However, potentially impacted soil was left in place in four inaccessible areas (Figure 2). Those inaccessible areas will be subject to evaluation, and potential remediation, if they become accessible at a later date. Otherwise, a Land Use Covenant (LUC) will be used to restrict for Parcel A.

In February and March 2020, NOREAS performed a Supplemental Remedial Investigation (SRI) at the southern portion of the Site. The results of investigation were submitted to the Department of Toxic Substance Control (DTSC) in a SRI Report (SRIR), dated May 2020 (NOREAS, 2020a). The investigation revealed presence of limited soil impact at the southern portion of the Site that may require remediation. In addition, concentrations of some volatile organic compounds (VOCs) in soil vapor samples exceeded screening levels. These VOCs were mainly attributed to residual groundwater impact, primarily originating from upgradient sources.

1.1 Purpose of the RAW

The overall purpose of the RAW is to identify and evaluate the most effective remedial alternatives for addressing environmental impacts at the southern portion of the Site. This RAW also summarizes the results of a human health risk assessment (HHRA) (NOREAS, 2020b) for determining the need for remediation and establishing cleanup levels, as necessary, for soil and
soil vapor at the southern portion of the Site. In addition, this RAW presents the methodologies for implementation of the selected remedial actions in the southern portion of the Site.

Specifically, this RAW presents a detailed approach for removing impacted soils at the southern portion of Site, including polycyclic aromatic hydrocarbons (PAHs), arsenic and lead. The basis for the approach described in this RAW is the information presented in the SRIR (NOREAS, 2020a) and HHRA (NOREAS, 2020b).

2.0 BACKGROUND INFORMATION

2.1 Site Description

The Site is located at 1555 N . Olive Street and covers an area of approximately 8.5 acres. The southern portion of the parcel, which is the subject of this RAW, is approximately 4.3 acres. Other pertinent Site information is listed below.

- Envirostor ID number: 56490101
- USEPA Facility Registry Number: 110033615791
- Assessor Parcel Number: 068-0-142-030 (Parcel map is included as Attachment B)
- Ownership: SoCalGas
- Owner Contact: Leticia Hernandez

Environmental Programs Manager
Environmental Services
Southern California Gas Company
8101 S. Rosemead Boulevard
Pico Rivera, CA 90660
Office: 562-806-4216
As mentioned previously, the northern portion of the Site (Parcel A) was a part of the former Ventura MGP. Parcel A is currently occupied by a natural gas compressor building, gas metering equipment, aboveground gas piping and associated features. The southern portion of the Site is currently in use as a storage and maintenance yard and is occupied by two small buildings used as an office and a warehouse (Figure 2). The southern portion of the Site was formerly used to service fleet vehicles.

To the north, south, and west of the Site are primarily industrial and commercial facilities. The Ventura River and vacant hillsides lie further west of the property. Residential/commercial properties and the E.P. Foster Elementary School are located to the east of the Site. The former Ventura MGP is in Township 3 North, Range 23 West, Section 33 of the San Bernardino baseline and meridian.

As mentioned previously, SoCalGas is developing plans for a compressor station modernization project that will include a new compressor building, a new office building, a new warehouse, and a new Motor Control Center Room (Figure 2). An architectural rendering of these buildings is shown in Figure 3. The existing office building, and warehouse at the southern portion of the Site are scheduled for demolition prior to soil remediation.

2.2 Historical MGP Operation

The Ventura MGP operated between 1905 and 1919. The MGP used crude oil in the gas production process. Most of the MGP operations occurred on Parcel A and on a small portion of Parcel B. The MGP was taken out of service in 1920 and much of the equipment and structures were removed.

Since 1923, Parcel A has been used as a natural gas compressor station. During the 1940s, various buildings and structures were added and during the 1950s and 1960s the compressor station was renovated and upgraded. In the late 1980s SoCalGas modernized and upgraded the compressor station as part of an overall transmission system upgrade.

2.3 Previous Investigations and Removal Actions at the Former Ventura MGP

Various investigation and removal actions were conducted in the northern and southern portions of the Site. The actions in the northern part of the Site were mainly related to the MGP operations. The actions in the southern part of the Site were associated with fleet vehicles services. The previous actions are discussed in the following sections.

2.3.1 Previous Investigations and Removal Actions in Northern Portion of the Site

Between October 2003 and November 2004, SoCalGas conducted a comprehensive soil, soil vapor, and groundwater investigation of the former MGP Parcels (A through G) (Tetra Tech, 2006). Based on a review of the results of the investigation, Tetra Tech concluded that there were two sources of contamination beneath the MGP Parcels, as follows:

1) A shallow impacted soil (approximately from $0-10$ feet below ground surface [bgs]) under Parcels A, B, C, and G resulting from combined past MGP operations and former oil refinery operations; and,
2) A deep impacted soil (approximately between >10 feet bgs and groundwater) under Parcels B, C, and G resulting solely from former oil refinery and petroleum bulk storage tank farm operations.

Parcels A, B, and C were remediated between October 2009 and April 2011. Parcel A was excavated to depths ranging from 5 to 12 feet bgs, and in the southwestern portion to as much as 32 feet bgs. Parcel B was excavated to depths ranging from 10 to 19 feet bgs. Parcel C was excavated to depths ranging from 5 to 16 feet bgs. An estimated 83,075 cubic yards of impacted soil was removed from all three parcels and transported to the Soil Safe of California facility in Adelanto, California, for treatment by thermal desorption. An estimated 6,067 cubic yards of California-hazardous waste (soil contaminated with lead) was also removed from Parcel A and transported to the Clean Harbors Class 1 Landfill in Buttonwillow, California for disposal.

Parcels D and E were not impacted by past MGP operations and therefore did not require any remediation. Parcel G could not be remediated without seriously disrupting business operations at C.D. Lyon and T\&T, and therefore was not remediated. Parcel F was found to be non-impacted during the remedial investigation

The final Removal Action Completion Reports for Parcels A, B, and C were approved by DTSC on October 17, 2012, October 26, 2012, and June 24, 2014, respectively.

As part of groundwater investigations at and around the former MGP, 28 groundwater monitoring wells had been installed at Parcels A through C and G, including two monitoring wells (DMW-2 and MW-3) on the southern portion of the Site (Figure 2). As discussed in the following Section
2.3, eight groundwater monitoring wells (UST MW-1 through UST MW-8) were also installed in the southern portion of the Site during an Underground Storage Tank (UST)-related groundwater investigation.

Based on the information collected during the groundwater investigations, groundwater beneath the Site occurs in fine- to coarse-grained sand, gravel, cobbles, and boulders. Groundwater is unconfined and has a flow direction generally to the east and southeast. The depth to groundwater has reportedly ranged from approximately 34 to 46 feet bgs.

The analytical testing program for groundwater sampling at the former Ventura MGP included volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B, polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8310, total petroleum hydrocarbons (TPH) in the gasoline range (TPH-g) and the diesel range (TPH-d) by EPA Method 8015 Modified, and four water quality indicator field parameters (i.e., specific conductivity, pH , temperature, and turbidity). Chemicals detected during the groundwater monitoring program at the former Ventura MGP included:

- Benzene, toluene, ethylbenzene, and xylenes (BTEX);
- Naphthalene, benzo(a)pyrene [B(a)P], and other PAHs;
- TPH-d and TPH-g;
- Methyl-tert-butyl ether (MTBE);
- Common motor fuel indicator chemicals, such as trimethylbenzene isomers, butylbenzene isomers, isopropylbenzene, and isopropyltoluene; and
- Trichloroethene (TCE) and several degradation daughter products (e.g., cis-1,2dichloroethene [DCE], trans-1,2-DCE, and vinyl chloride [VC]).

Tetra Tech (2015) stated that some of the above contaminants (i.e., MTBE, TCE, DCE, VC) are not related to MGP operations, and some (i.e., BTEX, TPH, and naphthalene) may be related to multiple sources, including MGP operations.

Tetra Tech (2015) reported that water quality improved in all wells located at the former Ventura MGP and downgradient of Parcels A, B, and C , where extensive soil remediation occurred. Naphthalene, $\mathrm{B}(\mathrm{a}) \mathrm{P}$, and benzene plumes decreased markedly in concentration and size over the period of 2004 through 2015, resulting in greater than 90 to 95 percent mass removal and 80 to 90 percent reduction in plume size. TPH-d concentrations (and to a lesser extent TPH-g concentrations) decreased but remained in the groundwater under Parcel C, because there is residual TPH-impacted soil existing in deep soil beneath the remedial excavation floor under Parcel C, not attributable to MGP operations (i.e., not associated with B(a)P-impacted soil). The deeper TPH-impacted soil was believed to have resulted from historical releases from the former bulk storage tank farm.

Accordingly, Tetra Tech (2015) proposed closure of the groundwater case, based on the following information:

- Soil remediation in Parcels A, B \& C had been completed and sources removed to the
extent possible ${ }^{1}$
- The results of groundwater sampling and analysis showed significant reduction of MGP residuals in groundwater
- There are non-MGP related analytes (e.g., MTBE, TCE, DCE, VC) from unrelated, upgradient offsite sources

In a letter dated March 18, 2016, DTSC concurred with groundwater closure request. In the letter, DTSC stated that "All of the accessible manufactured gas plant (MGP) related contaminants have been removed from the Site and the remaining groundwater contaminants are from petroleum fuel releases unrelated to former MGP operations. "

Following submittal of a closure request, the wells at the former MGP parcels (including wells DMW-2 and MW-3 at the Site) were destroyed in 2017 following issuance of written closure by the DTSC (DTSC Letters, dated March 18, 2016 and May 17, 2017).

Summaries of the previous site investigations, the nature and extent of soil impact delineated during investigations, and remedial action at Parcel A of the former MGP were presented in RACR (Tetra Tech, 2011). A review of the RACR showed that impacted soil likely extended past the southern boundary of Parcel A and onto the Site. The RACR also showed the locations of a former seepage pit that reportedly existed just south of the southwestern corner of Parcel A and an area of former USTs just south of the southeastern portion of Parcel A (Figure 2).

2.3.2 Previous Investigations and Removal Actions in southern Portion of the Site

Potions of the southern portion of the Site were investigated and remediated in 2004 through 2007. The southern portion was further investigated in 2020 in advance of the modernization project. These investigations are discussed in the following sections.

2.3.2.1 Past Investigations (2004 through 2013)

Review of a report by Eco \& Associates, Inc. (Eco) revealed that two USTs and associated piping/dispenser existed in the western portion of the southern portion of the Site near the seepage pit (Eco, 2007). These included a 6,000-gallon gasoline UST and a 500 -gallon diesel UST (Figure 2). The two USTs and associated piping/dispenser were removed from the southern portion of the Site in December 2004 (Eco, 2007). The soil beneath the dispenser was found to have been impacted with gasoline. Accordingly, approximately 55 tons of gasoline-impacted soil were excavated from beneath the dispenser and transported offsite for disposal. The USTs, however, were found to be in good condition with no evidence of release (Eco, 2013a).

Due to the presence of impacted soil encountered under the dispenser, a groundwater investigation was performed, which resulted in the installation of eight monitoring wells (UST MW-1 through UST MW-8, Figure 2). Two additional wells (DMW-2 and MW-3) were previously installed in

[^28]the southern portion of the Site as part of the MGP investigations (Figure 2). Groundwater was found to contain mainly TPH-g, TPH-d, MTBE, and tertiary butyl alcohol (TBA). Subsequently, a groundwater remediation program was undertaken, using in situ chemical oxidation (ISCOX), under the oversight of the County of Ventura, Resource Management Agency, Environmental Health Division (EHD) (Eco, 2013a).

The UST cleanup project at the southern portion of the Site was granted closure by the County of Ventura in August 2013 (County of Ventura, Environmental Health Division, 2013). The final closure report (Eco 2013a) showed that concentrations of TPH-g (1,100 $\mu \mathrm{g} / \mathrm{L}$ maximum), TPH-d ($2,490 \mu \mathrm{~g} / \mathrm{L}$ maximum), MTBE ($773 \mu \mathrm{~g} / \mathrm{L}$ maximum), and TBA ($2,200 \mu \mathrm{~g} / \mathrm{L}$ maximum) remaining in groundwater. Subsequently, all eight of the wells were destroyed (Eco 2013b).

A geotechnical investigation was conducted at the Site in 2019 in which 7 borings (VCU 3 through VCU 9) were drilled by Wood Environmental \& Infrastructure, Inc. (Wood, 2019) (Figure 2). The boring logs noted petroleum odors in four of the borings (VCU 3, VCU 4, VCU 6, VCU 7).

2.3.2.2 SUPPLEMENTAL REMEDIAL InVESTIGATION (2020)

As part of SRI, the southern portion of the Site was investigated by NOREAS in February and March 2020. This work was performed in accordance with the Revised Work Plan (NOREAS, 2020c), following its approval by the California Department of Toxic Substances Control (DTSC). The results of the investigation were presented in the SRIR (NOREAS, 2020a) and submitted to the DTSC. In addition, the results of the SRI were used to conduct the HHRA (NOREAS, 2020b) and submitted to the DTSC.

As mentioned previously, SoCalGas is planning for modernization of the Site that will initially include construction of new buildings and other structures in the southern portion of the Site (Figures 2 and 3). The 2020 SRI was performed to assess potential environmental impacts that need to be addresses before the modernization project is initiated.

During the investigation, 18 soil borings were installed at the southern portion of the Site (Figure 4). Soil samples were collected at 2 feet bgs, 5 feet bgs, and at 5 -foot intervals thereafter to depths ranging from 15 to 35 feet bgs. Upon completion of drilling and soil sampling, vapor monitoring probes (VMPs) were installed at depths of 5 feet, 15 feet, and 25 feet in several borings. Soil samples were analyzed for VOCs using EPA Method 8260B, TPH-g, TPH-d, and TPH heavy hydrocarbons (TPH-hh) using EPA Method 8015, PAHs using EPA Method 8310, and metals using EPA Method 6010B/7000. The soil vapor samples were analyzed for VOCs by EPA Method TO-15 and TPH-g by EPA Method TO-3. The results of the 2020 investigations are discussed in Section 3.0

2.4 Geologic Setting

Based on the previous investigations at the former Ventura MGP, the general sequence of lithologic units is fill material underlain by alluvium. The alluvial deposits consist of unconsolidated mixtures of sand, silt, and clay, with locally abundant pebble- to boulder-sized rocks. Based on previous investigations, alluvial materials are approximately 110 feet thick in the
vicinity the former MGP [Dames \& Moore, 1989]. In many of the Parcel A well borings and in the borings south of Parcel A, one to two-foot thick, discontinuous silt and clay lenses were observed in the alluvium at depths ranging between 15 feet bgs and 42 feet bgs.

Fill material within the Site appears to vary from as shallow as approximately one foot to as much as approximately 32 feet bgs. The fill consisted of gravels, sand, silty sand, and silt.

2.5 Local Hydrology

As noted previously, groundwater investigations at the former MGP included the installation of 28 groundwater monitoring wells at Parcels A through C and G, including two monitoring wells (DMW-2 and MW-3) in the southern portion of the Site (Figure 2). Also, eight groundwater wells (UST MW-1 through UST MW-8) were installed at the southern portion of the Site during the UST-related groundwater investigation.

Based on the information collected during the groundwater investigations, groundwater beneath the Site occurs in fine- to coarse-grained sand, gravel, cobbles, and boulders. Groundwater is unconfined and has a flow direction generally to the east and southeast, depending on the Ventura River water level. The Ventura River is located approximately 1,100 feet west of the Site. As noted in Groundwater Evaluation (Tetra Tech, 2015), the gradual change in groundwater flow direction across the former MGP may be attributed to the change in distance from the Ventura River. Separate-phase hydrocarbon fluids (i.e., light non-aqueous phase liquid [LNAPL]) were not observed in wells at the Site. However, LNAPL sheens had been reported in some wells located on Parcels B, C, and G of the former MGP.

3.0 NATURE, SOURCE, AND EXTENT OF SOIL AND SOIL VAPOR IMPACTS

As mentioned in Section 2.3.2, the SRI was performed in 2020 to assess potential environmental impacts that need to be addressed before the redevelopment project in the southern portion of the Site is initiated. The results of VOCs and TPH for the soil samples collected in 2020 are summarized in Table 1. The results of PAHs and metals for the soil samples are summarized in Table 2. In Table 2, benzo(a)pyrene Equivalent [B(a)P Equivalent] concentrations were calculated for carcinogenic PAHs (CPAH), in accordance with California Cancer Potency Factors (Cal/EPA, 1994). The results of the soil vapor samples are summarized in Table 3. The nature, source, and extent of soil and soil vapor impacts are discussed in the following sections. These results are also used as the basis for conducting a HHRA, as presented in Section 4.0. The results of the HHRA are used to determine the cleanup levels for the southern portion of the Site.

3.1 Soil Impact

Some of the soil samples contained mainly petroleum and MGP-related constituents, as summarized in Tables 1 and 2 and shown on Figure 4. Significant TPH-d concentrations were noted in the soil at a depth of 5 feet bgs at the location of I11-S1. Please note that I11-S1 represents the results of the conformation samples collected during the remediation of Parcel A (Tetra Tech, 2011). However, significant TPH-d concentrations were mainly detected in 30-foot and 35 -foot samples in the western part of the southern portion of the Site. The presence of TPH at depths of 30 and 35 feet (near the water table) in a few soil borings correlates with impacted groundwater from upgradient sources in Parcels B and C (see discussion in Section 2.2).

VOC concentrations in soil samples (Table 1) were generally less than laboratory reporting limits. When detected above reporting limits, VOC concentrations were commonly low (J-flagged) and all were well below their respective commercial/industrial screening levels.

The only significant constituents detected in shallow soil (0 to 5 feet bgs) were TPH, PAHs, arsenic, and total lead in I15-S3, I11-S1 I7-S1, B1, B2, and/or B15 (Table 2). Please note that I15S3, I11-S1 and I7-S1 represent the results of the confirmation samples collected during the remediation of Parcel A (Tetra Tech, 2011). Borings B1, B2, and/or B15 are closest to Parcel A and indicate that MGP-impacted soil likely extended beyond the southern limits of Parcel A. This is also consistent with the reported observations in the southern excavation sidewalls during remediation of Parcel A (I15-S3, I11-S1 I7-S1). Therefore, this shallow impacted soil should be addressed before the initiation of the planned modernization of the southern portion of the Site. The cleanup levels for these compounds are developed as part of the HHRA (Section 4.0).

3.2 Soil Vapor Impact

The results of the soil vapor samples are summarized in Table 3 and Figure 5. Mainly, the following compounds were detected in Soil Vapor samples: benzene, chloroform, 1,4dichlorobenzene, cis-1,2-dichloroethene, ethylbenzene, methyl-tert-butyl ether, naphthalene, tetrachloroethene, trichloroethene, vinyl chloride, xylenes, and TPH-g (Table 3 and Figure 5).

Most of the constituents detected in soil vapor were not detected in soil samples. Therefore, it is reasonable to conclude that the soil vapor results most likely reflect the existing residual groundwater impacts from upgradient sources. As noted in Section 2.3.1, Tetra Tech (2015) determined that several of the groundwater contaminants (i.e., MTBE, TCE, DCE, VC) are not related to MGP operations, and some (i.e., BTEX, TPH, and naphthalene) may be related to multiple sources, including but not limited to MGP operations. It should be noted that TPH-g, TPH-d, MTBE were also apparently associated with the former UST at the southern portion of the Site (Section 2.3). As mentioned above, the residual groundwater impact is believed to be mainly originating from upgradient sources in Parcels B and C, where deep impacted soil is present, resulting from former oil refinery and petroleum bulk storage tank farm operations (see discussion in Section 2.3).

4.0 HUMAN HEALTH RISK ASSESSMENT

As discussed in Section 2.3.2.2, the results of the SRI (NOREAS, 2020a) were used to conduct the HHRA (NOREAS, 2020b). Human health impacts were estimated for various exposure zones at the southern portion of the Site (i.e., south of Parcel A).

Chemicals of potential concern (COPCs) were selected by the following criteria: they are detected in sufficient concentration, above background concentrations, and are of sufficient toxicity to warrant further evaluation. Table 4 includes a list of COPCs for the Site. The background levels of CPAHs in southern California ranged from $0.0054 \mathrm{mg} / \mathrm{kg}$ to $4.0520 \mathrm{mg} / \mathrm{kg}^{2}$. As such, only CPAHs at B15s (2 feet bgs) exceed the background range. However, a remedial action target level of $0.9 \mathrm{mg} / \mathrm{kg}^{3}$ in $\mathrm{B}(\mathrm{a}) \mathrm{P}$ equivalent was set to reduce the concentrations of CPAHs in soils at the southern portion of the Site to levels that are equivalent to background concentrations. Likewise, arsenic was screened against southern California regional concentrations. Similarly, a target level of $12 \mathrm{mg} / \mathrm{kg}$ was set to reduce the concentrations of arsenic in soils to levels that are equivalent to background concentrations. To assess lead, concentrations were compared to the DTSC residential screening level. Accordingly, a target level of $80 \mathrm{mg} / \mathrm{kg}$ was set for removal action.

Potential health impacts were assessed for the potential future use of the southern portion of the Site, which was assumed to be industrial. A construction scenario was also considered, to assess potential health impacts that workers could incur while working at the southern portion of the Site during the planned construction activities. In addition, a residential scenario was evaluated to represent health impacts under the maximum beneficial use of the southern portion of the Site. Health impacts were assessed at four exposure areas (EAs) that are descriptive of where the future buildings (i.e., new compressor building, new office building, new warehouse, and new Motor Control Center Room shown on Figures 2 and 3) are proposed, utilizing representative data for soil and soil vapor. The detection of COPCs indicate that contamination is limited to the western part of the southern portion of the Site, immediately south of Parcel A. This location is where the new Compressor Building is proposed to be built.

In addition to the calculation of health risks and hazards, the HHRA utilized the exposure assumptions to calculate Health Based Goals (HBGs) that can be used to assess potential health impacts on a point by point basis throughout the southern portion of the Site. The HBGs provide media specific concentrations that are protective of human health and can be used to decide the areas of the Site that require remediation and/or mitigation. Tables 5 and 6 present the HBGs for soil and soil vapor at the Site. Table 7 presents a summary of the locations where soil vapor concentrations exceed the HBGs. In addition to the above-mentioned EAs (i.e., new compressor building, new office building, new warehouse, and new Motor Control Center Room), the HBGs

[^29]were used to assess potential health impacts at $\mathrm{B} 7, \mathrm{~B} 14$, and B 16 , as these locations were not evaluated as part of an EA. COPC concentrations were below HBGs at the locations of B7, B14, and B16.

Potential health impacts resulting from direct exposure to soil were consistently below the carcinogenic risk level of 1×10^{-6}. This is a result of the exclusion of CPAHs and arsenic from evaluation in the HHRA, which are assumed to be removed to background concentrations. The EA with the highest risks and hazards associated with direct soil contact was the Compressor Building location, with risks ranging from 3.4×10^{-7} to 1.6×10^{-7}, and hazards of 2 (residential scenario), 0.8 (industrial scenario), and 1.6 (construction scenario). These hazards are mostly attributed to the concentrations of TPH detected at the Compressor Building location. In the HHRA, HBGs of 1,700 $\mathrm{mg} / \mathrm{kg}, 250 \mathrm{mg} / \mathrm{kg}$, and $2,700 \mathrm{mg} / \mathrm{kg}$ are established for TPH-g, TPH-d, and TPH-hh (NOREAS, 2020b). These HBGs are also presented in Table 5.

Under the assessment of indoor air, the health risks were 8.5×10^{-5} under the residential scenario and 1.4×10^{-5} under the industrial scenario at the new Compressor Building. The largest contributor to risk was naphthalene, which was assumed to volatilize to indoor air spaces. Other contributors greater than 1×10^{-6} were vinyl chloride (3.5×10^{-5} residential and 2×10^{-6} industrial), and ethylbenzene (2.1×10^{-6} industrial and 9.5×10^{-6} residential). For noncarcinogens, the total hazard exceeded unit, or 1 , under each of the evaluated scenarios (5 residential and 1.2 for the industrial scenario) at the new Compressor Building location. The primary contributor was the maximum detected concentration of TPH gasoline/light hydrocarbon, resulting in a residential hazard of 3, and an industrial hazard of 0.7. At the Warehouse, the residential indoor air risk was 1.6×10^{-6} with naphthalene contributing a risk of 1.1×10^{-6}. Under the industrial scenario, indoor air risks were less than 1×10^{-6}. The indoor air assessment is uncertain, as the building design and use may not be conducive to indoor air accumulation (see Sections 8.1.2 and 10.2). Also, the occupancy of the building may differ from the assumed depiction in the HHRA.

HHRA may not account for every exposure scenario possible. However, by using healthprotective assumptions, most, if not all potential exposures can be accounted for. For example, the HHRA evaluated health impacts resulting from VOCs in outdoor air under residential, industrial, and construction activities. The results from these evaluations at the impacted areas such as the new Compressor Building with residential risk of 4.8×10^{-8} and hazard of less than 1 , can be used to infer potential health impacts to the visitors of the southern portion of the Site, which will be less than the residential risk of outdoor air $\left(4.8 \times 10^{-8}\right.$ and a hazard less than 1$)$.

The result of this HHRA is used to support the remedial actions at the southern portion of the Site to achieve protection of human health. The primary contaminants at the southern portion of the Site soil are CPAHs. The removal of CPAHs to background levels will ensure that health risks associated with the southern portion of the Site CPAHs do not pose a greater risk than that posed by ambient concentrations. Also, lead and arsenic were detected at concentrations above their screening levels (i.e., $12 \mathrm{mg} / \mathrm{kg}$ for arsenic and $80 \mathrm{mg} / \mathrm{kg}$ for lead) at only two locations. The background level for arsenic of $12 \mathrm{mg} / \mathrm{kg}$ was exceeded only twice: $29.5 \mathrm{mg} / \mathrm{kg}$ at B15S (2 feet-
bgs), and $13.3 \mathrm{mg} / \mathrm{kg}$ at B2 (2-feet bgs). For lead, the DTSC $80 \mathrm{mg} / \mathrm{kg}$ screening level is only exceeded at B1 (2 feet bgs), at a concentration of $560 \mathrm{mg} / \mathrm{kg}$. All other concentrations are below the residential lead screening level.

Based on the results of the HHRA, the shallow impacted soil in the area of B1, B2, and B15s will be removed to clean up the shallow soil to unrestricted (residential) levels. This will require demolition of the existing office and warehouse buildings. Following the removal of the impacted soil, confirmation samples will be collected and analyzed for PAHs, VOCs, TPH, and metals.

As discussed in the HHRA (NOREAS, 2020b), soil vapor samples concentrations exceeded the residential HBGs screening levels for the following compounds: TPH-g, benzene, 1,4dichlorobenzene, ethylbenzene, MTBE, naphthalene, and vinyl chloride in the area of the proposed new Compressor Building. The residential HBG for naphthalene of $83 \mu \mathrm{~g} / \mathrm{m}^{3}$ was marginally exceeded at the Warehouse area, where B8-14 had a concentration of $85.7 \mu \mathrm{~g} / \mathrm{m}^{3}$, and B8-25 had a concentration of $89.6 \mu \mathrm{~g} / \mathrm{m}^{3}$. The presence of these compounds in soil vapor is consistent with previous assessment data that indicate that VOCs in deep soil are likely related to residual groundwater impact, mainly originating from upgradient sources in Parcels B and C. Therefore, remediation of groundwater or soil vapor from upgradient sources is not feasible. As such, soil vapor mitigation measures should be considered, as discussed in the following sections of this RAW.

5.0 REMOVAL ACTION GOALS AND OBJECTIVES

The remedial action objectives (RAOs) are developed to restore the southern portion of the Site to conditions that would entail minimum usage restrictions. The following are the RAOs for the southern portion of the Site:

- Protect human receptors (onsite hypothetical residents, commercial workers, and intrusive workers) from exposure to COPCs in shallow soil (0 to 15 feet) at concentrations presenting unacceptable risk; and
- Protect human receptors (onsite commercial workers) from intrusion of COPCs into indoor air of the proposed onsite buildings.

The RAOs have been formulated based on reasonably anticipated future uses at the southern portion of the Site for industrial/commercial purposes. It should be noted that following attainment of these RAOs, LUCs will be needed because of the potential vapor intrusion.

The RAOs for shallow soil and vapor intrusion are discussed separately in the following sections.

5.1 RAOs for Shallow Soil

The RAOs for the shallow soil (top 15 feet) at the southern portion of the Site are to minimize potential future exposure of humans (onsite hypothetical residents, commercial workers, visitors, and intrusive workers) to the COPCs through inhalation, dermal absorption and/or ingestion, and thereby eliminate future land use restrictions with respect to shallow soil. As such, the shallow soil where PAHs, lead, arsenic, and TPHs exceeded residential levels are targeted for removal (Figure 6). However, presence of elevated TPH concentrations in deeper soils (e.g., B1, B3, B5, and B6 at 30 feet or 35 feet bgs) exceed either residential or industrial HBG screening levels. As such, a LUC will be required for the Site, as discussed in Section 10.4. Specifically, the remedial action goal for the shallow soil is to remediate to the point that minimizes the need for any future land use restrictions. The goal for the shallow soil, following remediation, will be to be able to support that residual levels of TPHs are below residential HBGs, PAHs and arsenic are within background, lead below the cleanup level of $80 \mathrm{mg} / \mathrm{kg}$, and that the cumulative cancer risks and noncancer hazards posed by all residual chemicals in shallow soil are considered safe and acceptable for future unrestricted residential land use ${ }^{4}$. If onsite physical constraints limit the ability to achieve these overall objectives, then the post-remediation completion report will clearly document the areas where impacted material remains in shallow soil and will identify the types of institutional controls that may be necessary to ensure long-term protection.

Based on the HHRA (Section 4.0), initial remediation targets of $0.9 \mathrm{mg} / \mathrm{kg}$ of CPAHs in B(a)P equivalent concentrations and $12 \mathrm{mg} / \mathrm{kg}$ of arsenic were identified to restore the southern portion

[^30]of the Site to the background conditions. In addition, a lead cleanup level of $80 \mathrm{mg} / \mathrm{kg}$ was established for remediation of lead-impacted soil in the B1 area to residential level. The HBGs for TPH-g, TPH-d, and TPH-hh are $1,700 \mathrm{mg} / \mathrm{kg}, 250 \mathrm{mg} / \mathrm{kg}$, and $2,700 \mathrm{mg} / \mathrm{kg}$, respectively. However, Environmental Screening Levels (ESLs) have also been issued by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB, 2019) for TPH-g, TPH-d, and TPH-hh at $430 \mathrm{mg} / \mathrm{kg}, 260 \mathrm{mg} / \mathrm{kg}$, and $12,000 \mathrm{mg} / \mathrm{kg}$, respectively, based on a residential scenario. Therefore, at the request of the DTSC, the above ESLs have been selected as initial removal target levels for TPH-g, TPH-d, and TPH-hh in this RAW for consistency with other DTSC projects.

As such, the soils with $B(a) P$ equivalent concentrations in excess of $0.9 \mathrm{mg} / \mathrm{kg}$, and $/$ or with arsenic in excess of $12 \mathrm{mg} / \mathrm{kg}$, lead in excess of $80 \mathrm{mg} / \mathrm{kg}$, TPHs exceeding ESLs will be remediated from the areas delineated in Figure 6 so that no future land use restrictions with respect to shallow soil would be required at the southern portion of the Site.

5.2 RAOs for Vapor Intrusion

As discussed in Section 4.0, soil vapor samples concentrations exceeded the residential HBGs for the following compounds: TPH-g, benzene, 1,4-dichlorobenzene, ethylbenzene, MTBE, naphthalene, and vinyl chloride in the area of the proposed Compressor Building (NOREAS, 2020b). The residential HBG for naphthalene of $83 \mu \mathrm{~g} / \mathrm{m}^{3}$ was marginally exceeded at the Warehouse area, where B8-14 had a concentration of $85.7 \mu \mathrm{~g} / \mathrm{m}^{3}$, and B8-25 had a concentration of $89.6 \mu \mathrm{~g} / \mathrm{m}^{3}$. The industrial soil vapor HBGs were exceeded for ethylbenzene, naphthalene, and vinyl chloride, all located at the Compressor Building. No industrial soil gas HBGs were exceeded outside of the Compression Building location. Therefore, the RAOs for vapor intrusion pathway include designing mitigation measures to protect human receptors (onsite workers) from intrusion of COPCs into indoor air of the planned Compressor Building at the southern portion of the Site.

5.3 Potential Applicable, Relevant, and Appropriate Requirements (ARARs)

This section provides a summary of the ARARs identified, with additional detail provided in Attachment C. ARARs include standards, requirements, criteria, or limitations under federal, or more stringent State environmental law (CERCLA Section 121 (d)(2)(A)). To be adopted as an ARAR at a site, it must be determined that the requirement is either "applicable" to conditions at the Site or, if not applicable, that it is both "relevant" and "appropriate" based on Site conditions. A requirement is applicable if compliance with it is legally required. A requirement is relevant and appropriate if it is determined, based on discretion, that the requirement is well suited to addressing Site conditions. In addition, State requirements are ARARs only if they are identified by the State in a timely manner.

Other factors to be considered (TBC) are non-promulgated criteria, advisories, guidance, and proposed standards issued by federal or state governments. TBCs are not enforceable, and a response action is not required to attain TBCs. However, TBCs may be appropriate in shaping or guiding the development or implementation of a response action in certain circumstances, for example, where ARARs do not provide sufficient direction.

There are four basic criteria that define ARARs (USEPA 1988). ARARs are (1) substantive rather than administrative, (2) applicable or relevant and appropriate, (3) promulgated, and (4) categorized as one of the following.

- Chemical-specific ARARs that address specific hazardous substances and are typically health- or risk-based numerical values that cleanups must achieve.
- Location-specific ARARs that must be achieved because of the specific location of the release and the related response action (e.g., requirements that address the conduct of activities in sensitive areas such as floodplains, wetlands, and locations where endangered species or significant cultural resources are present). Location-specific ARARs often focus on protecting resources in a specific area.
- Action-specific ARARs that are typically technology- or activity-based requirements or limitations on actions conducted to respond to the release of specific hazardous substances. Action-specific ARARs generally prescribe how a selected alternative must be implemented rather than what alternative may be selected.

The results of the ARARs analysis, including state ARARs, are summarized in the Tables 1 through 6 in Attachment C.

6.0 PUBLIC PARTICIPATION AND CEQA

During the previous remedial action, the Site related documents such the previous RAW, RACR, fact sheets, and California Environmental Quality Act initial study (CEQA) Notice of Exemption (NOE) have been placed at the information repositories (Ventura County Library - Avenue Library) and DTSC - Chatsworth Office for public review.

SoCalGas' Public Affairs team has developed and executed a multi-pronged community outreach strategy for recent assessment work that included:

- Bilingual (English/Spanish) Pre-Construction Notification Letter and Construction Advisory to residents via mail and neighborhood canvassing.
- Bilingual pre-construction notification letter and in-person visit to nearby Boys \& Girls Club of Greater Ventura and local elementary school.
- Informed City of Ventura and childcare facilities.
- To Date: 0 inquiries and 0 complaints

As part of the proposed additional remediation, SoCalGas will collaborate with DTSC, including distribution of Project Information Fact Sheet, pre-construction notifications and neighborhood canvasing consistent with previous outreach effort on an as needed basis.

As previously discussed in this RAW, SoCalGas plans to modernize the compressor station at the Site following the completion of the soil remediation. The location of the new proposed compressor building is where the current warehouse and administrative buildings are located. The scope of the soil remediation will entail demolishing the existing warehouse and administrative buildings to gain access to the contaminated soil. The soil remediation will then take place. Once it is backfilled with clean fill, the modernization construction will begin. Modernization of the compressor station will require a permit to construct from the Ventura County Air Pollution Control District (VCAPCD) and other ministerial permits from the City of Ventura; no additional discretionary permits are anticipated.

A CEQA NOE was issued for remediation of the northern portion of the Site (Parcel A) in August, 2009. The additional proposed soil remediation work on the southern portion of the Site is substantially similar to the previous soil remediation work conducted at Parcel A. As such, DTSC has already issued a CEQA NOE for the proposed removal project. .

7.0 FEASIBILITY STUDY, IDENTIFICATION AND ANALYSIS OF REMOVAL ACTION ALTERNATIVES

This section presents the screening and evaluation process for identifying appropriate remedial alternatives for the southern portion of the Site. Remedial alternatives screened and evaluated in this RAW are directed at soil and soil vapor. As discussed in SRIR (NOREAS, 2020a), groundwater closure for the Site was issued by DTSC in a letter, dated March 18, 2016. In the letter, DTSC stated that "All of the accessible manufactured gas plant (MGP) related contaminants have been removed from the Site and the remaining groundwater contaminants are from petroleum fuel releases unrelated to former MGP operations." Therefore, alternatives for groundwater is not addressed in this RAW. A range of remedial technologies are identified and screened for soil and soil vapor in this section to select technologies that are expected to be effective, implementable, and cost-effective, as discussed in the following sections.

7.1 Remedial Technology Screening

To identify the most appropriate potential technologies, a variety of remedial options were initially screened. A summary of the screening process is included in Tables 8 and 9 for soil and soil vapor, respectively. The purpose of this screening was to identify and eliminate from further consideration remedial technologies that, because of Site-specific conditions or costs, are not the most feasible and/or practicable. Based on the screening (Tables 4 and 5), the remedial action technologies determined to be the most practical for the southern portion of the Site are as follows:

- Alternative 1 for Soil and Soil Vapor: No Further Action (as required for consideration by the National Oil and Hazardous Substances Pollution Contingency Plan [NCP]).
- Alternative 2 for soil and soil vapor: Land Use Covenant (LUC).
- Alternative 3 for soil: Excavation of impacted soil and offsite treatment/disposal.
- Alternative 4 for soil vapor: Soil vapor mitigation for the proposed Compressor Building.

The following subsections describe each of the above identified alternatives and include evaluations of effectiveness, implementability, and cost. The evaluation of effectiveness includes consideration of overall protection of human health and the environment and both the long-term and short-term effectiveness of each alternative. Evaluation of implementability of each alternative includes consideration of the technical and administrative feasibility. The cost evaluation of each alternative is based upon estimates for capital costs and, if applicable, long-term monitoring costs.

7.2 Alternative 1 for Soil and Soil Vapor: No Further Action for Soil

Under the no further action alternative, no additional soil or soil vapor remediation or mitigation are proposed for the southern portion of the Site. The no further action alternative would, therefore, assume site closure under existing conditions, requiring no additional remediation or monitoring.

7.2.1 Effectiveness

The no further action alternative would be effective only if the current use of the Site is continued ${ }^{5}$, land use remains unchanged, and the impacted soil is not disturbed ${ }^{6}$. Additionally, this alternative requires no remediation or monitoring, which would likely make closure of the southern portion of the Site difficult. Because of these issues, the long-term effectiveness of the no further action alternative is low.

7.2.2 Implementability

The no further action alternative is easy to implement as no additional remedial activities would be conducted.

7.2.3 Cost

There is no significant cost associated with this alternative.

7.2.4 Conclusion on Alternative 1

Alternative 1 is not selected for the southern portion of the Site.

7.3 Alternative 2 for Soil and Soil Vapor: Land Use Covenant

Alternative 2 does not involve removal or remediation of impacted soil or soil vapor. Therefore, institutional controls by way of an LUC would be necessary. LUC would include land-use restrictions to limit exposure of Site users to impacted soil or soil vapor.

Alternative 2 is expected to provide for permanent, long-term Site restrictions to prevent disturbance of the impacted soil at the southern portion of the Site and construction of new buildings to ensure the protection of human health and the environment. Alternative 2 assumes that Site closure can be obtained under existing conditions, requiring no additional remediation or monitoring in the future. However, receiving unrestricted Site closure under current Site conditions would likely be unachievable.

It should be noted that even with the implementation of soil excavation and soil vapor mitigation measures as part of Alternatives 3 and 4, residual soil and soil vapor concentrations are expected to remain in soil at the southern portion of the Site. Therefore, LUC would be required in conjunction with implementation of Alternatives 3 and 4 to prevent the use of the southern portion of the Site for potential future residential uses. In addition, in case other buildings are planned at the southern portion of the Site, the LUC will require the SoCalGas to evaluate proposed location for potential risks associated with vapor intrusion and take adequate precautions for protection of human health and safety of the planned building occupants (if any).

[^31]
7.3.1 Effectiveness

The LUC alternative would be effective only if impacted soil is not disturbed. LUC will provide a relative assurance that the impacted soil is not disturbed. As such, the long-term effectiveness of the LUCs only alternative is relatively high. In addition, LUC in conjunction of soil vapor mitigation measures (Alternative 4) ensures that future buildings at the Site will be evaluated for vapor intrusion and mitigation measure will be put in place, if needed.

7.3.2 Implementability

An LUC is moderately easy to implement and enforce. LUC implementation may consist of annual Site inspections and reporting.

7.3.3 Cost

The following assumptions were made to develop a cost estimate for Alternative 2:

- The cost estimate assumes 30 years of annual site inspection and reporting (30 annual LUC inspection reports).

The total costs for Alternative 2 are estimated at approximately $\$ 126,424$ (Table 10). The details of the estimated costs associated with annual LUC inspections and five-year reviews are summarized in Table 11.

7.3.4 Conclusion on Alternative 2

Alternative 2 is not selected for the shallow soil at the southern portion of the Site. However, an LUC is selected in conjunction with implementation of Alternative 4 (mitigation measure for vapor intrusion).

7.4 Alternative 3 for Soil: Soil Excavation and Offsite Treatment/Disposal

Alternative 3 relies on the excavation and removal of shallow soil impacted by PAHs, arsenic, and/or lead in the area shown on Figure 6. The excavated soil will be profiled and transported to offsite facilities for treatment and recycling or disposal.

7.4.1 Effectiveness

The excavation alternative for shallow soil is considered an effective alternative that is protective of both human health and the environment by reducing the volume of impacted soil at the southern portion of the Site. Excavation for soil would likely bring about unrestricted closure with respect to shallow soil (0 to 15 feet) at the southern portion of the Site.

7.4.2 IMPLEMENTABILITY

Under current conditions at the southern portion of the Site, the excavation alternative for soil is feasible as the impacted soil is primarily located in an area with open access, after demolishing the existing office building and warehouse. Alternative 3 uses standard equipment and labor skills and is readily implementable. The primary limitation to this alternative is short-term exposure
during the excavation, which will be minimized with engineered controls and protective equipment, as discussed in Section 9.0.

7.4.3 CosT

The following assumptions were made to develop a cost estimate for Alternative 3:

- Soil excavations will be limited in horizontal extent to areas shown in Figure 6. The average depth of excavation is expected to be approximately 3.5 feet bgs, with some areas up to 7 feet bgs. However, the ultimate extent and depth of excavations will be determined based on field observation and the results of the confirmation sampling. Accordingly, the total volume of impacted soil requiring remediation is estimated to be approximately 1,700 cubic yards (2,500 tons).
- All excavated soil will be removed from the southern portion of the Site (Figure 6) and replaced with clean fill.
- The excavated soil will be transported to appropriate offsite facilities for treatment and recycling or disposal (see Section 9.5 for details).

The total costs for Alternative 3 are estimated at approximately $\$ 664,424$ (Table 10). These costs include the excavation and removal of approximately 1,700 cubic yards (approximately 2,500 tons) of impacted soil, and a final closure report for the southern portion of the Site.

As mentioned in Section 7.3, LUC would be required in conjunction with implementation of Alternative 3 to prevent the use of the southern portion of the Site for potential future residential uses. Therefore, the estimated costs for preparation and implementation of LUC, annual inspections and five-year reviews are included for Alternative 3. The details of the estimated costs associated with annual LUC inspections and five-year reviews are summarized in Table 11.

7.4.4 CONCLUSION ON ALTERNATIVE 3

Alternative 3 is selected for implementation at the southern portion of the Site.

7.5 Alternative 4 for Soil Vapor: Soil Vapor Mitigation at New Compressor Building

As discussed in Section 4.0, under the assessment of indoor air, the health risk was calculated at 1.4×10^{-5} under the industrial scenario at the new Compressor Building. Alternative 4 is selected to mitigate this risk. This alternative relies on mitigation of potential vapor intrusion via the designed operation of the Compressor Building (see Section 8.1.2 for further details).

It should be noted that soil vapor mitigation measures may also be required for other potential future buildings at the Site that have not been discussed in this document, depending on the locations of such potential buildings.

7.5.1 Effectiveness

As discussed in Sections 4.0 and 8.1.2, the new Compressor Building is designed as a large utilitytype building (162.5 feet long, 60 feet wide and 41.8 feet high). It will be equipped with an approximately 153 -foot long roof-ridge ventilator to allow indoor air to be evacuated into the atmosphere. The Building will also be equipped with a minimum of three (3) wall-mounted air supply fans, to supply air into the building. Accordingly, the building will be ventilated at a minimum rate of 6 air changes per hour during normal operation, per the requirements in API RP 500^{7}. Therefore, the planned operation of the building is considered an effective alternative that is protective of both human health and the environment by removing any potential vapor intrusion.

7.5.2 IMPLEMENTABILITY

Alternative 4 is readily implementable due to the built-in design of the building.

7.5.3 Cost

The following assumptions were made to develop a cost estimate for Alternative 4:

- Ventilation of the Compressor Building is part of the design, construction, and operation of the building. Therefore, no cost is included for the design, construction, or operation of the ventilation system.
- The cost in Table 10 includes one round of indoor air sampling and analysis for VOCs and TPH-g, after the construction and within one month of the operation of the building. The cost also include preparation of a workplan to be reviewed and approved by DTSC.

The total costs for Alternative 4 are estimated at approximately $\$ 42,000$ (Table 10).
As mentioned in Section 7.3, LUC would be required in conjunction with implementation of Alternative 4 to prevent the use of the southern portion of the Site for potential future residential uses. However, the estimated costs for preparation and implementation of LUC, annual inspections and five-year reviews are included for Alternative 3. Therefore, these costs are not repeated as part of the Alternative 4 estimated costs. As mentioned above, the details of the estimated costs associated with annual LUC inspections and five-year reviews are summarized in Table 11.

7.5.4 Conclusion on Alternative 4

Alternative 4 is selected for implementation at the new proposed Compressor Building to be built in the southern portion of the Site.

[^32]
7.6 Summary and Recommendation

This section compares the alternatives evaluated above and specifies the basis for recommendation of the recommended alternatives. The following alternatives for soil were evaluated for the Site:

- Alternative 1 for Soil and Soil Vapor: No Further Action (as required NCP).
- Alternative 2 for soil and soil vapor: LUC.
- Alternative 3 for soil: Excavation of impacted soil and offsite treatment/disposal.
- Alternative 4 for soil vapor: Soil vapor mitigation for the proposed Compressor Building.

Based on the evaluations of the above alternatives, Alternatives 3 and 4 are proposed for the Site, for the following reasons.
Alternative 1 is rated low for long-term effectiveness and permanence because no measures or controls are associated with this alternative to minimize risk. Alternatives 2,3 , and 4 are considered effective to minimize risk. However, Alternative 2 will require restricted land use with respect to shallow or deep impacted soil. Under Alternative 3,the shallow impacted soil will be removed and transported offsite for treatment, recycling, and/or disposal. As such, Alternative 3 allows for the future land use with minimal restrictions related to shallow soil. However, a LUC will be required because impacted deep soil will still remain in place. In addition, if impacted shallow soil has to remain in place in an area due to physical constraints, LUC will also cover that area. Alternative 4 allows for effective mitigation of potential indoor air issues. However, a LUC will be required to prevent the use of the Site for residential purposes. In addition, following the construction of the compressor building, and the completion of the indoor air sampling, a report will be prepared based on the review of the operation manual for the building, and the results of the indoor air sampling. The report will include an evaluation of building operation and whether an Operation and Maintenance (O\&M) plan should be required. The report will be submitted to DTSC for review and comment. Then a decision will be made in concurrence with DTSC regarding the necessity for an O\&M for the Compressor Building.

Alternatives $1,2,3$, and 4 are readily implementable. Alternative 1 is the easiest to implement. Alternatives 2 is easier than Alternatives 3 and 4 to implement because activities are largely administrative.

Alternative 1 has no estimated cost. Alternative 2 is less expensive than Alternative 3, with estimated costs of $\$ 126,424$ versus $\$ 664,424$, respectively (Table 10). The cost for Alternative 4 is estimated at $\$ 42,000$ for one round of indoor air sampling. The estimated costs for preparation and implementation of LUC, annual inspections and five-year reviews are included for Alternative 3. Therefore, these costs are not repeated as part of the Alternative 4 estimated costs. As mentioned above, the details of the estimated costs associated with annual LUC inspections and five-year
reviews are summarized in Table 11. A cost for ventilation of the Compressor Building is not included based on the understanding that ventilation of the Compressor Building is part of the normal operation of the Buildings. Therefore, no cost is included for the design, construction, or operation of the ventilation system. However, a review of the operation and maintenance of the ventilation system will be included in each of the annual site inspection reports.

Implementation of the soil removal portion of Alternative 3 is discussed in detail in Section 8.0.

8.0 REMOVAL ACTION PLAN

This section presents the plan for the removal actions proposed for the southern portion of the Site. The RAOs developed for the southern portion of the Site are discussed in Section 5.0. The RAOs for the shallow soil (top 15 feet) at the southern portion of the Site is to eliminate potential future exposure of humans (hypothetical future residents, onsite workers, intrusive construction workers, and visitors) to the COPCs in shallow soil through inhalation, dermal absorption and/or ingestion, and thereby eliminate future land use restrictions. For vapor intrusion pathway, the RAOs include designing mitigation measures to protect human receptors (onsite workers) from potential intrusion of COPCs into indoor air of the planned Compressor Building at the southern portion of the Site.

The proposed remedial plans to address shallow impacted soil and vapor intrusion are discussed below.

8.1 Proposed Removal Activities

Proposed removal activities in the southern portion of the Site include removal of the impacted shallow soil and mitigation measures for vapor intrusion into the proposed new Compressor Building. These plans are discussed in the following sections.

8.1.1 Area and Volume of Shallow Soil Removal

Areas and volumes of impacted soil were estimated based on data obtained during the SRI (NOREAS, 2020a) and the results of the confirmation samples collected during the remediation of Parcel A, as presented in RACR (Tetra Tech, 2009). Consistent with the results of the HHRA (Section 4.0), the initial excavation targets for CPAHs, expressed in $\mathrm{B}(\mathrm{a}) \mathrm{P}$ equivalent concentrations, arsenic, and lead are established at $0.9 \mathrm{mg} / \mathrm{kg}, 12 \mathrm{mg} / \mathrm{kg}$, and $80 \mathrm{mg} / \mathrm{kg}$, respectively. In addition, areas with TPHs exceeding residential HBGs are slated for excavation. The initial areas targeted for soil removal are depicted in Figure 6. The average depth of the removal is estimated at 3.5 bgs. However, some areas are expected to be excavated to 5 feet or deeper. The actual depth will be determined during the removal action based on field observation and the results of confirmation sampling. Based on the extent of impact shown in Figure 6, the total volume of impacted soil requiring remediation is estimated to be approximately 1,700 cubic yards (2,500 tons).

As shown on Figure 6, the area targeted for soil removal is located adjacent and south of the area of excavation in Parcel A, mainly along the western boundary of the southern portion of the Site. This will require demolition of the existing office and warehouse buildings. A post-remediation health risk assessment for the southern portion of the Site will be conducted (as discussed in Section 10.0) to ensure that the overall health risks associated with shallow soil to future hypothetical residents at the southern portion of the Site will be within the acceptable risk range.

Details of the removal of the shallow soil are presented in Section 9.0.

8.1.2 Mitigation Measures for vapor intrusion

As discussed in Section 4.0, soil vapor sample concentrations exceeded the residential HBGs screening levels for the following compounds: TPH-g, benzene, 1,4-dichlorobenzene, ethylbenzene, MTBE, naphthalene, and vinyl chloride in the area of the proposed Compressor Building. As noted in the SRIR (NOREAS, 2020a) several of these compounds (i.e., MTBE, 1,4dichlorobenzene, VC) are not related to MGP operations, and some (i.e., benzene, TPH, and naphthalene) may be related to multiple sources, including but not limited to MGP operations. It should be noted that TPH-g, TPH-d, and MTBE were also associated with the former UST at the southern portion of the Site. As such, a good portion of these compounds, if not all, are most likely related to residual groundwater impact, mainly originating from upgradient offsite sources such as Parcels B and C. Consequently, potential remediation of groundwater or soil vapor at the Site will not be practical because of presence of offsite sources. Therefore, it is prudent to consider mitigation measures for the planned future Compressor Building at the southern portion of the Site.

Based on the current design, the proposed new Compressor Building will be 162.5 feet long, 60 feet wide, and 41.8 feet high. The Compressor Building will house four large gas compressors. The building floor slab will be built five (5) feet above the grade. The foundation for each gas compressor is 30.5 feet long, 18 feet wide and 12.5 feet thick. In addition, concrete lined gratecovered trenches (pipe galleries) will surround the compressor foundations. The trenches will be covered with steel grates and house gas lines to and from the compressors. The proposed Compressor Building will be equipped with an approximately 153 -foot long roof-ridge ventilator to allow indoor air to be evacuated into the atmosphere. The Building will also be equipped with at least three (3) wall mounted air supply fans, installed approximately 9 feet above the floor of the building to supply air into the building. Accordingly, the building will be ventilated at a minimum rate of 6 air changes per hour during normal operation, per the requirements in API RP 500^{8}.

The design of the proposed new Compressor building (12-foot thick foundation for Compressor Engines and trenches throughout the building for gas pipes) will make a potential design and installation of a vapor barrier very difficult, if not impossible. Therefore, ventilation of the building is considered as the most practical mitigation method. However, the design and operation of this building, which requires the building to be ventilated at a minimum rate of 6 air changes per hour during normal operation, will negate the need for any additional measures.

[^33]
9.0 SHALLOW SOIL REMOVAL ACTION IMPLEMENTATION

This section presents detailed procedures for implementation of the removal action, related to the impacted shallow soil at the southern portion of the Site. As discussed in Section 8.1.1, soil impacted with CPAHs, arsenic and lead will be excavated from the area of the southern portion of the Site shown in Figure 6. The excavated soil will be transported offsite for treatment and/or disposal. The depth of the removal is estimated at 3.5 bgs . However, the actual depth will be determined during the removal action based on field observation and the results of the confirmation sampling. Based on the depth and extent shown in Figure 6, the total volume of impacted soil requiring removal is estimated to be approximately 1,700 cubic yards (2,500 tons).

9.1 Permitting/Notifications

The necessary permits for soil removal activities, transportation, and air quality will be obtained prior to Site mobilization. Copies of the permits will be kept onsite during working hours and will be made available for inspection. The anticipated permits to be secured and rules to be adhered to during soil removal may include, but are not limited to the following:

- Excavation and grading permit.
- Cal-OSHA permits.
- Waste transportation route permit and encroachment permit (if necessary).
- VCAPCD applicable permits.

Other permits are not anticipated. However, the procedures proposed for removal activities will comply with federal, State, and local rules and regulations, regardless of whether permits will be required.

9.2 Preparatory Activities

Preparatory activities and meetings will follow SoCalGas guidelines and procedures, as described in the following sections.

9.2.1 Kick-Off Meeting

At least 2 weeks prior to the start of field activities, a kickoff meeting will be held between SoCalGas, oversight engineer, remedial contractor, and any pertinent subcontractors. The purpose of this meeting will be to develop a mutual understanding of the remedial activities.

9.2.2 Health and Safety Plan

The Health and Safety Plan (HASP) prepared for the southern portion of the Site and submitted as a stand-alone document. The HASP has been prepared by NOREAS in accordance with California Code of Regulations (CCR) Title 8. The HASP includes hazard evaluation, key personnel, training requirements and certifications, personal protective equipment requirements, and site control measures at a minimum. The HASP will be implemented during all field activities related to this Removal Plan.

9.2.3 SURFACE GEOPHYSICAL SURVEYING

Prior to any excavation activities, the Site will be marked and Underground Service Alert (Dig Alert) of Southern California will be notified to identify potential underground service lines within and near the area of excavation. In addition, a surface geophysical survey will be conducted over the proposed excavation area using ground-penetrating radar (GPR) and/or an electromagnetic instrument (EMI) or equivalent technologies. Standard utility marking colors (paints, stakes, or flags) will be used to mark the identified utilities within the vicinity of the excavation areas. If utilities are identified, the intent will be to excavate around them and provide structural support as needed. Excavation around the piping will be performed in such a manner to avoid any damage to the existing piping. Hand excavation (to uncover utilities) may be required in some cases when the excavation is within 5 feet of the utility.

9.2.4 ADDITIONAL INVESTIGATION

To further define the excavation limits and procedures, additional investigation will be performed. The additional investigation will include collecting shallow soil samples (2 to 5 feet) in the vicinity of B1, B2, and B15 to further define the extent of soil impacted with lead, arsenic, and PAHs. Due to presence of large cobbles and boulders, which makes drilling and soil sampling very difficult, samples will be collected from small potholes, using a small backhoe. Select samples will be submitted to an analytical laboratory and analyzed for PAHs by US EPA Method 8310, TPH-g, TPH-d, and TPH-h using EPA Method 8015, and lead and arsenic by EPA Method 6010B.

As mentioned above, the additional investigation is primarily meant to more accurately define the area of excavation prior to the start of the excavation. The results should also help to segregate the excavated soil for profiling purposes. Some of the results that represent the soil that ultimately will remain in place will be used in post-remediation risk assessment. The most important point to be emphasized is that all the soil that exceed the cleanup levels will be removed based on field observations and/or confirmation sampling. If impacted soil has to remain in place in an area due to physical constraints, samples will be collected from that area and analyzed to document the remaining impacted soil.

9.3 Mobilization

Mobilization activities will include movement of equipment and materials to the Site, and orientation and training of field personnel. Additionally, project-specific personnel and all permit required notifications (e.g. Haul Route Permit), will be notified regarding the planned schedule for mobilization and soil excavation activities.

9.3.1 Preparation of Work Areas

Upon receipt of the approved records and authorizations, field personnel, temporary facilities, and required construction materials will be mobilized to the Site. The temporary facilities will include, but are not limited to, restrooms, security fencing (if needed), runoff controls, small equipment, and material storage area, as needed.

The majority of equipment and materials will be mobilized to the Site on an as-needed basis to minimize storage requirements and to prevent the spread of contamination by the project equipment. Dedicated laydown areas, to be established in the field during mobilization, will be used for short-term storage of equipment and materials.

9.3.2 VCAPCD RuLES IMPLEMENTATION

As discussed in Section 9.6.4, during all field activities, VCAPCD Rules related to opacity, fugitive dust control, nuisance, and emission of volatile organic compounds (if any) will be implemented. Accordingly, real-time air/dust monitoring along the eastern, western, and southern property boundary will be conducted to ensure protection of adjacent offsite receptors during soil excavation. Additional information regarding air monitoring is provided in Section 9.6.4

9.3.3 Temporary Fencing and Barricade Installation

The Site is already fenced at the perimeters and secured. In addition, per the request of onsite SoCalGas personnel (if any), the designated construction area may need to be fenced off and secured to provide additional protection and safety for onsite personnel and equipment, and to prevent unauthorized access. The existing perimeter fences and construction area fences (if any) will be covered with a visual barrier (tarpaulins), as needed. During nonworking hours, the fencing will be fully closed and locked. During all removal activities, Site access will be restricted to authorized personnel only.

9.3.4 Soil Stockpile Area Construction

Efforts will be made to direct-loaded excavated soil will to trucks for offsite treatment and disposal. As discussed in the following sections, the soil impacted with PAHs, arsenic, and/or lead may have to be disposed at different disposal facilities. Therefore, based on the results of the additional investigations (Section 9.2.4), the soil in certain areas may have to be excavated and loaded separately for transportation and disposal purpose. If needed, the excavated soil may be stockpiled temporarily within the construction area for profiling purposes, in accordance with the requirements of VCAPCD. A plastic membrane will be placed on at the bottom and top of the soil if any temporary stockpile must be located outside the area scheduled for excavation. Soil excavated from areas impacted with PAHs, arsenic, and lead will be stockpiled separately, as needed.

The temporary stockpile height may not be greater than the top of perimeter Site fence at any time and stockpiled soils will be disposed of off-site by the end of each day. In cases that this is not possible, the temporary stockpile will be covered with plastic that is weighed down to avoid being displaced from covering the stockpile.

9.4 Soil Excavation

The impacted soils will be generally excavated in an open excavation, using an excavator or backhoe. The excavation is anticipated to be shallow (approximately 3.5 feet) and sidewall failure is not expected. Nevertheless, daily inspections will be performed by a competent person to assess the stability of sidewalls and excavated areas. Excavations will be conducted in accordance with CCR Title 8, Section 1539 through 1543, and 29 Code of Federal Regulations (CFR), Parts 1910 and 1926. Excavation activities will be under the supervision of a field engineer or geologist experienced in the safe practices associated with excavation, handling, and transportation of hazardous materials.

9.4.1 CONFIRMATION SAMPLING AND ANALYSIS

Confirmation soil samples will be collected from the floor and sidewalls of the excavations, in accordance with the Sampling and Analysis Plan (Attachment D). Excavation floor confirmation samples will be collected at a spacing of 30 feet. Sidewall samples will be collected at 30 -foot intervals, in the midpoint (vertically) of the sidewall. Preliminary locations of the confirmation samples are shown on Figure 6. If the soil excavation extends beyond four feet bgs, additional sidewall samples will be collected from deeper intervals (e.g., every two feet) to ensure the excavation boundary is properly defined vertically.

The confirmation samples will be analyzed for VOCs using EPA Method 8260B, TPH-g, TPH-d, and TPH-h using EPA Method 8015, PAHs using EPA Method 8310, and Metals using EPA Method 6010B/7000.

If confirmation samples indicate concentrations above the target remediation goal in the base of the excavation, a 1 -foot lift will be excavated below the base in the location containing the exceedance, and an additional confirmation sample will be collected. If confirmation samples results are below the remediation goals, excavations at those locations will cease and the excavation will be backfilled.

A Quality Assurance/Quality Control (QA/QC) plan has been prepared for confirmation sampling and analysis and is included as Attachment E. The Plan describes the protocol and specifications for sample collection, processing, detection limits, holding times, and documentation (i.e., chain of custody).

9.4.2 BaCkFill Placement and Compaction

The excavation area will be backfilled using clean fill material to three (3) inches below the surrounding grade. Imported clean fill material will be sampled and approved according to the DTSC and SoCalGas requirements.

Imported fill material ${ }^{9}$ will be obtained from a SoCalGas approved source that has been determined to contain no hazardous chemicals above screening level concentrations. The fill will be non-expansive and inorganic. Imported fill will have sufficient binder to prevent caving during placement and compaction. The fill material will be classified as SP (poorly graded sand or poorly graded sand with gravel), SW (well graded sand or well graded sand with gravel), or SM (silty sand or silty sand with gravel) in accordance with the Unified Soil Classification System (ASTM 1998). The fill material will be placed in the excavation in no thicker than 8 -inch loose lifts, water added, or the soil dried back, until the moisture content is within 2% of optimum and then compacted in lifts. The fill material will be compacted to a minimum relative compaction of 90 percent with respect to the maximum dry density as determined in accordance with the ASTM D 1557 testing method. A minimum of one in-place density test will be performed for each 2,500 square feet per lift of fill placed.

For those areas ready for receiving new fill, the exposed subgrade will be scarified to a depth of 4-inches, moisture-conditioned to approximately 2 percent above optimum, and compacted in accordance with the recommendations for fill presented in this subsection. The finished compacted subgrade will be firm and non-yielding under the weight of compaction equipment.

9.4.3 Site Restoration

Following completion of placement and compaction of the fill material, the remaining area of the excavation will be backfilled with a minimum of three inches of $3 / 4$ " gravel that will serve as an erosion control measure.

9.5 Transportation and Offsite Disposal

The waste generated during the remedial actions (see Section 9.5.1) will be transported to appropriate offsite facilities for treatment and/or disposal. These facilities are discussed in Section 9.5.5.

9.5.1 Waste Streams

Waste streams generated during the remedial action will likely include:

- PAH impacted soil
- Arsenic impacted soil
- Lead impacted soil
- Uncontaminated debris such as daily trash

[^34]- Personal protective equipment, used sampling equipment, and liners
- Decontamination water

Prior to offsite transport, treatment, recycling or disposal, the wastes will be profiled in accordance with Title 22, Division 4.5 of the California Code of Regulations and/or the requirements of the offsite facilities.

9.5.2 Loading and Sealing of Trucks

Trucks will be used for the offsite transportation of impacted soil and debris. Trucks will be backed in toward the excavation area from N. Olive Street and will remain on clean areas at all times in order to minimize the need to decontaminate the truck tires. Excavated soil will be direct-loaded in to trucks where practical to avoid double handling. Loading of trucks will be performed in accordance with the requirements of VCAPCD. Alternatively, the excavated soil may temporarily be stockpiled before loading onto trucks, as discussed in Section 9.4. Stockpiling activities will be performed in accordance with the requirements of VCAPCD. Great care will be exercised to prevent spillage of soil during loading, and to prevent the dispersion of dust. If decontamination becomes necessary, it will be conducted in accordance with the Health and Safety Plan for the Site. Trucks will be equipped with covers to prevent release of potential dust and emissions during staging and transport.

9.5.3 DOCUMENTATION AND RECORDS RETENTION

Prior to offsite disposal of any waste, manifests will be provided and reviewed by a SoCalGas representative for accuracy. Only SoCalGas designated personnel have the authority to sign disposal documents including the profile, waste manifest, Land Disposal Restriction (LDR), and certain other documents as required by the disposal facility.

Every load of waste material will be manifested with either a nonhazardous or hazardous waste manifest, as appropriate, prior to leaving the Site. At a minimum, the manifest form will include the following information:

- Generator information including name, address, contact, phone number.
- Transporter information including name, address, contact, phone number.
- Designated facility information including name, address, phone number.
- Site name including street/mailing address.
- DOT proper shipping name (e.g., hazardous waste solid, Not Otherwise Specified (N.O.S.), 9, UN 3077, PG III [D008]).
- Type and number of containers.
- Quantity of waste (volumetric estimate).
- Waste codes.
- Profile number.
- 24-hour emergency phone number.

The SoCalGas representative and the transporter must sign the manifest prior to the load of waste leaving the Site. If waste is hazardous, an LDR certification also will be required to accompany the manifest during transportation to the disposal facility. A copy of the "generator's initial copy" signed by the generator and transporter will be sent to the State of California Department of Toxic Substance Control (DTSC) within 30 days of waste pickup.

If any signed hazardous waste manifest from the designated facility is not received within 35 days, the generator must contact the transporter or the designated facility to determine the status of the waste. If the signed hazardous waste manifest has not been received within 45 days, the generator must submit an "Exception Report" to DTSC, as required under 22 CCR 66262.42.

9.5.4 Traffic Control

Traffic controls will be used for the safe and efficient implementation of the remedial action, while minimizing impacts to normal traffic. Traffic controls will be required during waste transportation activities. Traffic controls may include, but will not be limited to, the following:

- Loading and hauling of impacted soil and debris as well as delivery of imported clean materials, and equipment during off-peak hours to minimize disruption to local traffic; and,
- Flaggers used during the hauling of impacted soil and debris and delivery of imported borrow fill.

In order to prevent congestion of Site access roads during loading and hauling operations, no trucks will be allowed to queue along neighboring streets.

Other project-specific measures will be used to minimize the impacts of the construction activities. These measures include the following:

- Provide sufficient area to park all vehicles during construction, including parking for haul trucks.
- Traffic control activities shall conform to the applicable specifications of the State of California Manual of Traffic Controls for Construction and Maintenance Work Zones (Caltrans, 1996) and will be approved by SCE.

9.5.5 Treatment and Disposal Facilities

The excavated soil impacted with PAHs and arsenic will be transported to Soil Safe, located in Adelanto, California. The Soil Safe facility is approved by SoCalGas as a thermal desorption treatment/recycling facility. In the event profiling is indicative of elevated arsenic concentrations that exceed Soil Safe permit requirements, arsenic-impacted soil will be transported to an
appropriate disposal facility approved by SoCalGas. The soil impacted with lead will be transported to an approved facility approved by SoCalGas.

The excavated soil will be chemically profiled prior to shipment to Soil Safe or other appropriate facilities to ensure that it meets the standards under their permit requirements.

Water generated as a result of decontaminating the sampling tools or equipment will be placed inside 55-gallon, Department of Transportation (DOT)-approved drums. The drums will be labeled, and the contents will be profiled. Upon completing the waste profile, the drums will be transported to an appropriate recycling facility approved by SoCalGas.

9.5.6 Transportation Routes

Trucks will use the transportation route shown on Figure 7 for transportation to Soil Safe in Adelanto, California. In the event profiling is indicative of elevated arsenic concentrations that exceed Soil Safe permit requirements, the arsenic-impacted soil will be transported to an appropriate waste facility approved by SoCalGas. The soil impacted with lead will be transported to an appropriate waste facility approved by SoCalGas.

9.6 Mitigation Measures

The following sections address mitigation measures during the soil removal activities. These measures include noise control, stormwater management, dust and odor control, and air monitoring.

9.6.1 NOISE CONTROL

To effectively manage noise levels during the Site remediation, equipment operation will be limited to Monday through Friday. Occasional servicing of equipment and other non-equipmentbased activities may be conducted during weekends. If any noise complaint is received during the removal activities, appropriate measures will be taken to implement additional engineering controls to reduce the noise levels. These measures may include the following:

- Mufflers may be used on equipment;
- Sound barriers may be installed to deflect sound from sensitive areas;
- Alternate equipment may be considered; and,
- Operation times may be modified.

9.6.2 Stormwater Management

The targeted area of the excavation is approximately 20,000 square feet, which is significantly below the one-acre threshold for preparation of a formal Stormwater Pollution Prevention Plan (SWPPP) under the Construction General Permit. However, the selected remediation contractor will be required to develop a project-specific Erosion and Sediment Control Plan (ESCP) that will be in part based on the contractor's remedial approach. That is, the ESCP will be based in part on how and where the selected contractor stages equipment and materials.

The purpose of the ESCP is to control run-on runoff and such that excess sediment is contained and does not enter the local storm drain system and reach creeks that eventually reach the Pacific Ocean. Prior to removal action activities, the storm drains onsite and near the Site (offsite), if any, will be located and temporarily protected by placing a waterproof cover over the drains or placing berms (e.g., sand bags) around them to prevent an unauthorized discharge into storm drain. These temporary controls will be inspected daily to ensure proper placement and integrity.

During excavation activities, and in case of heavy rainfall, the excavation areas will be covered with heavy plastic sheets or will be protected by placing berms around the excavation area to prevent water run-on or run-off. In addition, sump pumps or a vacuum truck may be used to keep all excavations free of water. Any exposed soil will remain covered if rain continues for several days. All soil stockpiles will be covered with plastic and surrounded by berms.

In addition, the stormwater management activities will include the identification and implementation of best management practices (BMPs) to reduce sources of sediment and other pollutants that may affect stormwater discharges, in accordance with the California Stormwater Quality Association (CASQA) BMP Handbook. Prior to beginning excavation of impacted soil, the contractor will implement BMPs for field activities. On an as needed basis, the BMPs for erosion and sediment control may include:

- Silt fence or straw wattles to be used along the perimeter of the area to be excavated to redirect and filter stormwater flow.
- Sand or gravel bags to be used as a drainage diversion, sediment trapping, and stormwater velocity/erosion control.
- Street sweeping and vacuuming will be used as necessary to ensure that sediments are not tracked offsite. This will be implemented on the paved areas adjacent to the excavation.

9.6.3 DUST AND Odor CONTROL

Dust control measures will be implemented at the Site during the removal activities to reduce the potential for fugitive dust and migration of contamination, including, but not limited to, the following measures:

- The Site perimeter fencing will be fitted with low permeability windscreen, which reduces the potential for fugitive dust.
- Work will not be conducted when 15 -minute average wind speeds exceed 15 mph , or when instantaneous wind speeds exceed 25 mph .
- Dust suppression will be performed by lightly spraying or misting the active work areas (i.e., the working face and other points of dust generation) with water.
- Work will stop when visible dust is noticed, and additional misting of the area will be performed prior to continuing work.
- Efforts will be made to minimize the soil drop height from the excavator or loader bucket into the transport trucks and misting will be used to minimize dust.
- After the soil is loaded into the transport trucks, the soil will be covered (tarped) to prevent soil from spilling out of the truck during transport to the treatment/recycling facility.
- While on the Site, vehicles will maintain slow speeds (i.e., less than 5 mph) for safety purposes and for dust control measures.
- Track-out of particulates onto public paved roadways will be controlled by implementing a series of rumble plates and dry decontamination to remove bulk material from tires and trucks undercarriage before they exit the Site. In addition, the remedial contractor will clean the truck tires prior to exit from the site so that no soil track is left on offsite roads. Trucks will be loaded one truck at a time, to reduce any traffic congestion. Trucks will not enter the active excavation area, rather will be temporarily staged outside and radioed in one at a time.
- Street sweeping procedures will be implemented, as necessary, to reduce the potential for fugitive dust and migration of contamination.

9.6.4 AIr MONITORING

Prior to the start of the project, the contractor will contact VCAPCD to verify that the project will be exempt from VCAPCD permits as was the case during previous removal actions in Parcel A. However, compliance with VCAPCD Rule 50 (Opacity), Rule 51 (Nuisance), and Rule 55 (Fugitive Dust), and 74.29 (Soil Decontamination Operations) will be required. The Contractor will comply with all the applicable rules, in accordance with the requirements of the VCAPCD.

Airborne dust monitoring will be conducted using portable hand-held dust monitors to verify and document daily dust suppression efforts as well as using upwind and downwind sampling stations. As mentioned previously, fugitive dust control measures will be implemented at the Site to mitigate offsite dust migration onto neighboring properties through light watering of the active excavation area throughout the removal action activities. Factors considered in providing fugitive dust control measures include wind direction and speed monitoring, dust control, and dust suppression.

During excavation activities, dust monitoring through visible observations and continuous real time monitoring equipment equipped with data loggers will be conducted to ensure that dust suppression is sufficient to prevent visible dust from crossing the property boundary and creating a nuisance in violation of VCAPCD rules.

The National Ambient Air Quality Standard (NAAQS) for dust is 50 micrograms per cubic meter $\left(\mu \mathrm{g} / \mathrm{m}^{3}\right)$, based on dust particles measuring 10 micrometers or less (PM10). The NAAQS dust standard $\left(50 \mu \mathrm{~g} / \mathrm{m}^{3}\right)$, steady for five minutes, has been selected as the action level for dust monitoring activities at the perimeter of the property (difference between upwind and downwind readings).

The action level for dust for the equipment operators and workers will initially be set at 2 milligrams per cubic meter $\left(\mathrm{mg} / \mathrm{m}^{3}\right)$ steady for five minutes. This action level will trigger increased dust suppression activities to mitigate dust levels below $2 \mathrm{mg} / \mathrm{m}^{3}$. Respiratory protection will be worn by the craft field labor if dust levels exceed $2 \mathrm{mg} / \mathrm{m}^{3}$ for greater than five minutes. Additional dust suppression activities will be applied to reduce dust levels below $2 \mathrm{mg} / \mathrm{m}^{3}$.

Dust monitoring and visible observations will be conducted to ensure compliance with VCAPCD regulations which require that dust suppression be adequate to prevent visible dust from crossing the property boundary. Track-out of particulates onto public paved roadways will be controlled by cleaning truck tires before the trucks leave the Site and by providing street sweeping as necessary on adjacent streets.

Vapor monitoring will be conducted during excavation activities and transport and disposal activities, in accordance with VCAPCD Rule 74.29. Monitoring will be conducted using a photoionization detector (PID) in the work area and in the operator's breathing zone to document the absence of any VOCs within the work area.

9.7 Demobilization and Decontamination

Demobilization will consist of decontamination of all equipment, cleaning the project Site, inspection, and certification of completion. The activities will include decontamination and removal of all construction equipment and materials as well as collection and disposal of all contaminated material, including decontamination water.

Temporary storage and sanitary facilities, fencing and barricades, and other temporary structures added during the removal action will be removed following the completion of work.

9.7.1 EQUIPMENT AND TOOL DECONTAMINATION

Prior to removal from the Site, decontaminated equipment and material will be inspected and accepted by the Site Superintendent. The Site Superintendent will certify that decontamination was performed for all equipment and materials. Heavy equipment and other moving vehicles will be subject to the requirements of VCAPCD. Heavy equipment will be decontaminated using dry methods, a pressure washer and/or steam cleaner, or equivalent. Special attention will be paid to removal of material on and within the bucket, undercarriage and tires of the excavators and other equipment. Decontamination of temporary facilities will be limited to exterior cleaning.

9.7.2 Pre-Final Inspection

Site cleaning work will include cleaning of all areas used for construction; removal of all materials such as excess construction material, wood, debris, and other foreign material; and removal of all construction equipment. All office and storage trailers will be disconnected from utilities, removed, and returned to the rental company. A pre-final inspection will be conducted by a SoCalGas representative during demobilization activities. Outstanding items will be noted in the punch list and will be corrected prior to the final inspection.

10.0 POST REMEDIATION ACTIVITIES

The post-remediation activities are focused on shallow soil (0 to 15 feet) and vapor intrusion. These activities are discussed separately in the following sections.

10.1 Shallow Soil Post-Remediation

As discussed in Section 5.0, the fundamental remedial action objective for the shallow soil is to minimize potential future exposure of humans (hypothetical residents, site workers, construction workers, and visitors) to the COPCs in soil, thereby reducing or eliminating future land use restrictions.

To meet this objective, the remedial action goal is set to restore the shallow soils (0 to 15 feet) at the southern portion of the Site to background conditions such that hypothetical future residents (in a hypothetical residential scenario) will have no more exposure to PAHs and arsenic than they would have in the absence of the former MGP. In addition, the lead-impacted soil will be removed at or above concentrations exceeding the risk-based level. The goal, following remediation, is to be able to support the finding that residual levels of PAHs and arsenic are within the range of background concentrations, and that the cumulative cancer risks and noncancer hazards posed by all other residual chemicals are considered safe and acceptable for future unrestricted residential land use.

Following excavation, confirmation soil samples will be collected and analyzed for VOCs, PAHs, metals, and TPH. A post-remediation risk assessment will be conducted to document that the cumulative cancer risks and noncancer hazard posed by post-remedial conditions are acceptable and protective of a hypothetical future residential land use scenario. As part of the post-remediation risk assessment, statistical analyses will be conducted to compare post-remediation concentrations of CPAHs and arsenic against background concentrations and to confirm that concentrations of CPAHs and arsenic have been restored to background conditions. In addition, soil with concentrations of other chemicals (for example lead) exceeding the acceptable residential level has been removed and transported offsite for treatment/disposal.

If these criteria are met, SoCalGas will apply for a Certificate of Completion for shallow soil for the southern portion of the Site, following the DTSC's review of a comprehensive Completion Report that evaluates the results of the post- remediation conditions.

10.2 Vapor Intrusion Mitigation Measure

As discussed in Section 4.0, soil vapor concentrations exceeded the risk-based levels for industrial/commercial scenario beneath the proposed new Compressor Building. As discussed in Sections 3.2 and 4.0, the presence of VOCs in soil vapor is consistent with previous assessment data that indicate that VOCs in deep soil are likely related to residual groundwater impact, mainly
originating from upgradient sources in Parcels B and C. Therefore, remediation of groundwater or soil vapor from upgradient sources is not practical. As such, soil vapor mitigation measures should be considered for the proposed new Compressor Building. As discussed previously, operation of a ventilation system at Compressor Building is deemed to be the most effective mitigation measures for the proposed new Compressor Building. In addition, one round of post mitigation indoor-air sampling and analysis is proposed to make sure that the mitigation measures work as intended.

Once design drawings for the compressor building are complete, an Operations and Maintenance (O\&M) plan will be developed for review by DTSC. The intent of the O\&M Plan will be to outline the specific criteria that will be used to ensure that the building is adequately ventilated

10.3 Remedial Action Completion Report (RACR)

The goal, following remediation, is to be able to support the finding that residual levels of PAHs and arsenic are within the range of background concentrations, lead concentration is below the residential cleanup level, and that the cumulative cancer risks and noncancer hazards posed by all residual chemicals in shallow soil (0 to 15 feet) are considered safe and acceptable for future unrestricted residential land use. To achieve this goal, confirmation soil samples will be collected and analyzed for PAHs, metals, TPH, and VOCs. The analytical results will be used in a postremediation health risk assessment, the result of which will be presented to the DTSC in a RACR. The RACR will evaluate post-remediation conditions at the southern portion of the Site. SoCalGas will apply for a Certificate of Completion following the DTSC's review of the RACR.

10.4 Land Use Covenant (LUC)

As discussed in Section 5.0, the fundamental remedial action objective for the shallow soil is to minimize potential future exposure of humans (site workers, hypothetical residents, construction workers, and visitors) to the COPCs in soil, thereby reducing or eliminating future land use restrictions. Following soil removal discussed in Section 7.4, 8.0, and 9.0 it is anticipated that no restriction will be necessary for the shallow soil at the Site. However, a LUC will be required for shallow soil if the unrestricted land use criteria cannot be met due to physical constraints. In addition, as discussed in Sections 5.1 and 7.5, following shallow soil remediation, residual soil contamination in deeper soil (e.g., B1, B3, B5, and B6 at 30 feet or 35 feet bgs), as well as vapor concentrations are expected to remain in soil, requiring a LUC to prevent the potential use of the southern portion of the Site for future residential uses. The LUC will stipulate that a soil management plan will be required if the impacted soils are to be disturbed in the future. In addition, in case other buildings are planned at the Site, the LUC will require SoCalGas to evaluate proposed locations for potential risks associated with vapor intrusion and take adequate precautions for protection of human health and safety of the building occupants.

11.0 PROJECT SCHEDULE

The tentative schedule for remedial action at the southern portion of the Site work is listed below.

Site Remediation:
Within 90 Days of RAW approval

Draft Completion Report to the DTSC: Within 90 Days of Remediation Completion

The above tentative schedule was projected based on information available at the time of preparation of this document. The schedule may be modified based on potential circumstances outside the control of SoCalGas.

12.0 REFERENCES

California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, and San Francisco Regional Water Quality Control Board. 2015. Advisory, Active Soil Gas Investigations. July.

California Environmental Protection Agency (Cal/EPA). 1994. Memorandum, to Cal/EPA Departments, Boards, and Offices from Standards and Criteria Work Group, Office of Environmental Health Hazard Assessment. Subject: California Cancer Potency Factors. November 1.

California Regional Water Quality Control Board, San Francisco Region. 2019. Environmental Screening Levels (ESLs) https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.html. January.
County of Ventura, Environmental Health Division. 2013. Remedial Action Completion Certificate. Southern California Gas Company Maintenance Yard, 1555 North Olive Street, Ventura, California. August 21.

Dames \& Moore. 1989. Site Characterization Report. Environmental Site Investigation, Ventura Compressor Station, Ventura, California. March 31.

Department of Toxic Substances Control. 2008. Determination of a Southern California Regional Background Arsenic Concentration in Soil. G. Chernoff, W. Bosa, and D. Oudiz. March.

Department of Toxic Substances Control. 2016. Letter, Approval of Groundwater Evaluation Report - August 2015, Former Ventura Manufactured Gas Plant. March 18.

Department of Toxic Substances Control. 2017. Letter, Approval of Well Abandonment Closure Report, Former Ventura Manufactured Gas Plant, Parcels A, B, C \& G, 1555 \& 1689 North Olive Street and 380 West Stanley Avenue, Ventura, California. March 18.

Department of Toxic Substances Control. 2019. Human and Ecological Risk Office (HERO), Human Health Risk Assessment (HHRA) Note Number: 3, DTSC -Modified Screening Levels (DTSC-SLs). April.

Department of Toxic Substances Control. 2020. Letter, Work Plan for Soil Sampling and Chemical Analysis, SoCalGas Compressor Station Adjacent and South of Parcel A of the Former Ventura Manufactured Gas Plant (MGP) Site, 1555 North Olive Street, Ventura, California. February 4.

Eco \& Associates, Inc. 2007. Second Quarter 2007 Groundwater Monitoring Report, Southern California Gas Company, Ventura Maintenance Yard, 1555 North Olive Street, Ventura, California. August 30.

Eco \& Associates, Inc. 2013a. 4th Quarterly Remedial Progress and Groundwater Monitoring Report, Southern California Gas Company, Ventura Maintenance Yard, 1555 North Olive Street, Ventura, California. February 11.

Eco \& Associates, Inc. 2013b. Well Abandonment Report, Southern California Gas Company, Ventura Maintenance Yard, 1555 North Olive Street, Ventura, California. August 19.
NOREAS. 2020a. Supplemental Remedial Investigation Report, Former Ventura MGP, Ventura, California. June.

NOREAS. 2020b. Human Health Risk Assessment, Former Ventura MGP, Ventura, California. June, revised November.

NOREAS. 2020c. Revised Work Plan for Soil Sampling and Chemical Analysis, Southern California Gas Company, Ventura Maintenance Yard, 1555 North Olive Street, Ventura, California. January 22.

Tait Environmental Management, Inc., 2005. Underground Storage Tank Closure Report Southern California Gas Company - Sempra Energy Utilities, Ventura Maintenance Yard 1555 Olive Street - Ventura, California. January 12.
Tetra Tech, Inc. (Tetra Tech), 2006. Remedial Investigation Report for Former Ventura MGP Site, Ventura, California. September 2005, Revised October 31, 2006.

Tetra Tech, Inc. 2011. Removal Action Completion Report for Former Ventura MGP Site, Parcel A, 1555 North Olive Street, Ventura, California. October.

Tetra Tech, Inc. 2015. Groundwater Evaluation, Former Ventura MGP Site, 1555 \& 1689 North Olive Street and 380 West Stanley Avenue, Ventura, California. August.
U.S. Environmental Protection Agency (USEPA). 1988. CERCLA Compliance with Other Laws Manual (Part I). USEPA/540/G-89/006. August.

Wood Environmental \& Infrastructure Solutions, Inc. 2019. Report of Geotechnical Investigation, Proposed Compressor Station Upgrade, Ventura Compressor Station, 1555 North Olive Street, Ventura, California. April 17.

TABLES

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B1								B2							
Sample ID:	Units	B1-2	B1-5	B1-10	B1-15	B1-20	B1-25	B1-30	B1-35	B2-2	B2S-4.5	B2S-10	B2S-15	B2S-20	B2S-25	B2S-30	B2S-35
Sample Date:		2/12/2020	2/13/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/12/2020	2/12/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020
Laboratory Job Number:		103529	103581	103599	103599	103599	103599	103599	103599	103529	103529	103617	103617	103617	103617	103617	103617
TPH Using GC/FID Method (M8015D)																	
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	2.77	5.86	0.541 J	0.184J	0.233J	ND<0.100	2.45	3.42	ND<0.100	ND<0.100	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.168J	0.417J
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	353	102	8.50	ND<1.0	5.50	4.00J	384	880	4.90J	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	13.5	ND<1.0	ND<1.0	5.87
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	1,550	465	27.2	ND<1.0	ND<1.0	2.70 J	74.9	67.9	105	40.7	ND<1.0	$\mathrm{ND}<1.0$	15.5	ND<1.0	ND<1.0	ND<1.0
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	1,900	567	35.7	$\mathrm{ND}<1.0$	5.50	6.70	459	948	110	28.7	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	29.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	5.87
VOCs by GC/MS (SW846) Method (8260B)																	
Benzene	$\mathrm{ug} / \mathrm{Kg}$	ND<39	ND<5	1.66J	3.69J	3.45J	3.50J	ND<1.0	ND<55	1.30J	2.37 J	1.21J	1.73J	2.81 J	2.31 J	1.85J	1.34J
n-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<195	ND<25	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<275	ND<5.0							
sec-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<195	ND<25	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<275	ND<5.0							
tert-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	331J	65.5	23.2	5.27J	ND<5.0	ND<5.0	8.88J	ND<275	ND<5.0							
1,4-Dichlorobenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<195	98.0	11.9	4.13J	ND<5.0	ND<5.0	ND<5.0	ND<275	ND<5.0							
Ethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<39	ND<5	1.02J	1.35J	1.34J	ND<1.0	ND<1.0	ND<55	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.01 J	1.30J	1.95J	3.30J
Methyl-tert-butyl ether (MTBE)	$\mathrm{ug} / \mathrm{Kg}$	ND<78	ND<10	3.52J	2.01J	ND<2.0	$\mathrm{ND}<2.0$	ND<2.0	ND<110	3.07J	$\mathrm{ND}<2.0$	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0
Naphthalene	$\mathrm{ug} / \mathrm{Kg}$	ND<195	ND<25	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<275	ND<5.0							
n-Propylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<195	ND<25	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<275	ND<5.0							
Toluene (Methyl benzene)	$\mathrm{ug} / \mathrm{Kg}$	ND<39	ND<5	2.45J	7.52J	4.52J	6.95J	ND<1.0	ND<55	1.22J	2.57J	1.36J	2.88J	8.40J	4.84J	2.36 J	4.01J
1,2,4-Trimethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<195	ND<25	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<275	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	$\mathrm{ND}<5.0$	ND<5.0	ND<5.0
o-Xylene	$\mathrm{ug} / \mathrm{Kg}$	ND<39	ND<5	ND<1.0	1.22J	ND<1.0	ND<1.0	ND<1.0	ND<55	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.77 J	ND<1.0	ND<1.0	ND<1.0
m,p-Xylenes	$\mathrm{ug} / \mathrm{Kg}$	ND<39	ND<5	1.24J	3.61J	2.56 J	3.70J	$\mathrm{ND}<1.0$	ND<55	$\mathrm{ND}<1.0$	1.16J	$\mathrm{ND}<1.0$	1.39J	5.72J	3.20J	$\mathrm{ND}<1.0$	1.83 J
Other VOCs	$\mathrm{ug} / \mathrm{Kg}$	ND															

NOTES:
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \mathrm{TPH} & \text { - Total Petroleum Hydro }\end{array}$
TPH - Total Petroleum Hydrocarbons quantified as either Gasoline, Diesel Fuel, or Heavy Hydrocarbons based on carbon range (ie. C4-C12) by GC/FID Method: (M8015D)
3,290 - positive detections shown in bold
$\begin{array}{ll}\text { ug } \mathrm{Kg} & \text { - micrograms per kilogram or parts per billion } \\ \mathrm{ND}<0.100 & \text { - not detected at or above indicated method detection limit }\end{array}$
ND - indicates constituents not detected (refer to original laboratory reports for detection limits)

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B3								B4							
Sample ID:	Units	B3-2.5	B3-5	B3-10	B3-15	B3-20	B3-25	B3-30	B3-35	B4-1.5	B4-4.5	B4-10	B4-15	B4-20	B4-25	B4-30	B4-35
Sample Date:		2/11/2020	2/11/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/11/2020	2/11/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020
Laboratory Job Number:		103503	103503	103599	103599	103599	103599	103599	103599	103503	103503	103641	103641	103641	103641	103641	103641
TPH Using GC/FID Method (M8015D)																	
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	0.197J	0.190J	0.284J	0.250J	0.193J	4.12J	546	75.4	ND<0.100	ND<0.100	0.223J	0.253J	0.144J	0.263J	0.768J	0.782J
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	7.20	7.60	5.50	ND<1.0	4.20J	38.3	373	148	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5.90	9.60
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	142	138	5.80	ND<1.0	6.10	5.20	47.7	17.0	ND<1.0	26.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.80J
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	149	146	11.3	ND<1.0	10.3	43.5	421	165	ND<1.0	26.1	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5.90	13.4
VOCs by GC/MS (SW846) Method (8260B)																	
Benzene	ug/Kg	ND<1.0	ND<1.0	ND<1.0	2.59J	1.43J	ND<1.0	ND<41	ND<43	ND<1.0	ND<1.0	2.01J	$\mathrm{ND}<1.0$	1.66J	1.84J	2.06J	3.07J
n-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	15.4	2,140	ND<215	ND<5.0							
sec-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	391J	ND<215	ND<5.0							
tert-Butylbenzene	ug/Kg	9.72J	7.29J	13.6	5.92J	ND<5.0	ND<5.0	932	ND<215	ND<5.0							
1,4-Dichlorobenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<205	ND<215	ND<5.0							
Ethylbenzene	ug/Kg	ND<1.0	ND<1.0	ND<1.0	1.90J	1.34J	ND<1.0	162J	ND<43	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.47J	1.41J	3.71J	3.08J
Methyl-tert-butyl ether (MTBE)	ug/Kg	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<82	ND<86	ND<2.0	ND<2.0	2.59J	ND<2.0	2.59J	ND<2.0	ND<2.0	ND<2.0
Naphthalene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	92.9	1,180	ND<215	ND<5.0							
n-Propylbenzene	ug/Kg	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	2,540	ND<215	ND<5.0							
Toluene (Methyl benzene)	$\mathrm{ug} / \mathrm{Kg}$	1.00J	ND<1.0	1.45J	6.21J	4.16J	ND<1.0	ND<41	ND<43	ND<1.0	ND<1.0	2.21 J	ND<1.0	4.45J	4.85J	4.23J	9.40
1,2,4-Trimethylbenzene	ug $/ \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0	7.35J	ND<5.0	ND<5.0	ND<205	ND<215	ND<5.0							
o-Xylene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	ND<1.0	ND<1.0	2.24 J	1.60J	ND<1.0	ND<41	ND<43	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.41J	ND<1.0	1.85J
m,p-Xylenes	$\mathrm{ug} / \mathrm{Kg}$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	6.72J	4.56J	ND<1.0	ND<41	ND<43	ND<1.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	ND <1.0	3.13J	4.40J	1.95J	6.92J
Other VOCs	$\mathrm{ug} / \mathrm{Kg}$	ND															

NOTES:
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \text { TPH } & \text { - Total Petroleum Hydro }\end{array}$
TPH - Total Petroleum Hydrocarbons quantified as either Gasoline, Diesel Fuel, or Heavy Hydrocarbons based on carbon range (ie. C4-C12) by GC/FID Method: (M8015D)
3,290 - positive detections shown in bold
$\begin{array}{ll}\mathrm{ug} \mathrm{Kg} & \text { - micrograms per kilogram or parts per bilion } \\ \mathrm{ND}<0.100 & \text { - indicates constituent } \mathrm{s} \text {) not detected at or above method detection limit }\end{array}$

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B5								B6							
Sample ID:	Units	B5S-2.5	B5S-5	B5S-10	B5S-15	B5S-20	B5S-25	B5S-30	B5S-35	B6-2	B6-4	B6-10	B6-15	B6-20	B6-25	B6-30	B6-35
		2/13/2020	2/13/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/13/2020	2/13/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020
Laboratory Job Number:		103559	103559	103641	103641	103641	103641	103641	103641	103559	103559	103665	103665	103665	103665	103665	103665
TPH Using GC/FID Method (M8015D)																	
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	0.110J	0.182J	0.379J	0.676J	1.31	$\mathrm{ND}<0.100$	0.222J	261	ND<0.100	0.102J	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.168J	0.799J
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	3.20J	6.10	4.00J	5.00	16.4	11.8	11.7	3,290	8.50	2.60 J	ND<1.0	ND<1.0	ND<1.0	4.10J	24.7	410
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	21.6	91.4	ND<1.0	ND<1.0	ND<1.0	6.90	ND<1.0	468	134	31.1	ND<1.0	ND<1.0	ND<1.0	16.6	9.20	68.5
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	24.8	97.5	4.00J	5.00	16.4	18.7	11.7	3,760	143	33.7	ND<1.0	ND<1.0	ND<1.0	20.7	33.9	479
VOCs by GC/MS (SW846) Method (8260B)																	
Benzene	ug/Kg	2.75J	2.06J	3.30J	4.11J	ND<1.0	ND<1.0	2.30J	ND<47	1.30J	2.15J	1.78J	3.67J	ND<1.0	2.55J	2.64J	2.56J
n-Butylbenzene	ug/Kg	ND<5.0	ND<235	ND<5.0													
sec-Butylbenzene	ug/Kg	ND<5.0	ND<235	ND<5.0													
tert-Butylbenzene	ug/Kg	32.0	16.5	7.60J	15.7	ND<5.0	ND<5.0	ND<5.0	348J	ND<5.0	7.91J	7.97J	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
1,4-Dichlorobenzene	ug/Kg	ND<5.0	ND<235	ND<5.0													
Ethylbenzene	ug/Kg	ND<1.0	ND<1.0	1.35J	1.59J	ND 1.0	ND<1.0	1.50J	ND<47	ND<1.0	1.03J	ND<1.0	1.36J	ND<1.0	1.89J	1.35J	1.87J
Methyl-tert-butyl ether (MTBE)	ug/Kg	45.6	27.7	5.56J	9.23	ND<2.0	ND<2.0	3.40J	ND<94	9.17J	16.9	9.21	6.89J	ND<2.0	1.93J	ND<2.0	ND<2.0
Naphthalene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<235	ND<5.0													
n-Propylbenzene	ug/Kg	ND<5.0	ND<235	ND<5.0													
Toluene (Methyl benzene)	ug/Kg	3.13J	3.02J	7.53J	6.46J	ND<1.0	ND<1.0	3.72.	ND<47	1.23J	2.79J	3.04J	4.33J	1.19J	5.27J	4.77J	6.89J
1,2,4-Trimethylbenzene	ug/Kg	ND<5.0	ND<235	ND<5.0													
o-Xylene	ug/Kg	ND<1.0	ND<1.0	1.71J	1.34J	ND<1.0	ND <1.0	ND<1.0	ND<47	ND <1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.25J
m,p-Xylenes	ug/Kg	1.28J	1.24J	6.08J	4.22J	ND<1.0	$\mathrm{ND}<1.0$	2.06 J	ND<47	$\mathrm{ND}<1.0$	1.22J	1.50J	2.03J	$\mathrm{ND}<1.0$	2.73J	2.65J	5.03J
Other VOCs	$\mathrm{ug} / \mathrm{Kg}$	ND															

NOTES:
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \mathrm{TPH} & \text { - Total Petroleum Hyd }\end{array}$
TPH - Total Petroleum Hydrocarbons quantified as either Gasoline, Diesel Fuel, or Heavy Hydrocarbons based on carbon range (ie. C4-C12) by GC/FID Method: (M8015D)
3,290 - positive detections shown in bold
$\mathrm{ND}<0.100 \quad$ - indicates constituent(s) not detected at or above method detection limit

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B7							B8						
Sample ID:	Units	B7-5	B7-10	B7-15	B7-20	B7-25	B7-30	B7-35	B8-5	B8-10	B8-15	B8-20	B8-25	B8-30	B8-35
Sample Date:		2/13/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/13/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020
Laboratory Job Number:		103581	103641	103641	103641	103641	103641	103641	103581	103686	103686	103686	103686	103686	103686
TPH Using GC/FID Method (M8015D)															
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.100	0.215J	ND<0.100	0.100J	ND<0.100	0.177J	ND<0.100	0.169J						
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	ND <1.0	ND <1.0	ND<1.0	ND <1.0	9.90	ND <1.0	ND <1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	6.74	ND<1.0
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	6.20	ND<1.0	ND<1.0	ND<1.0	9.00	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	5.56	$\mathrm{ND}<1.0$
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	6.20	ND<1.0	ND<1.0	ND<1.0	18.9	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	12.3	$\mathrm{ND}<1.0$
VOCs by GC/MS (SW846) Method (8260B)															
Benzene	$\mathrm{ug} / \mathrm{Kg}$	2.88J	5.04J	4.50J	1.77J	2.72J	1.35J	ND<1.0	ND<1.0	1.23J	2.49J	1.26J	1.89J	2.39J	2.73J
n-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0													
sec-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0													
tert-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0													
1,4-Dichlorobenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0													
Ethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	1.81 J	2.42J	1.23J	1.97J	1.70J	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	2.39J	ND<1.0	1.18J	2.06 J	2.14 J
Methyl-tert-butyl ether (MTBE)	$\mathrm{ug} / \mathrm{Kg}$	ND<2.0													
Naphthalene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0													
n-Propylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0													
Toluene (Methyl benzene)	$\mathrm{ug} / \mathrm{Kg}$	1.68J	9.50J	14.5	4.43J	4.42J	2.69J	ND<1.0	ND<1.0	1.44J	5.78J	1.30J	3.20J	5.80J	7.47J
1,2,4-Trimethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	5.36J	ND<5.0										
o-Xylene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	1.79J	4.35J	1.02J	ND<1.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.84J
m, p-Xylenes Other VOCs	$\mathrm{ug} / \mathrm{Kg}$	$\mathrm{ND}<1.0$	5.50J	14.9J	3.23J	2.03 J	1.60J	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	2.26 J	ND<1.0	1.55J	2.88J	5.46J
	$\mathrm{ug} / \mathrm{Kg}$	ND													

NOTES:
$\mathrm{mg} / \mathrm{Kg}$$\quad$ - milligrams per kilogram or parts per million
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \text { TPH } & \text { - Total Petroleum Hydrocarbons quantified as }\end{array}$
3,290 - positive detections shown in bold
$\mathrm{ND}<0.100$ - indicates constituent(s) not detected at or above method detection limit

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/ Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B9								B10							
Sample ID:	Units	$\begin{array}{c\|} \hline \text { B9-2 } \\ \hline \text { 2/19/2020 } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { B9-5 } \\ \hline 2 / 19 / 2020 \\ \hline \end{array}$	$\begin{gathered} \hline \text { B9-10 } \\ \hline 2 / 25 / 2020 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { B9-15 } \\ \hline 2 / 25 / 2020 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { B9-20 } \\ \hline 2 / 25 / 2020 \\ \hline \end{array}$	$\begin{gathered} \hline \text { B9-25 } \\ \hline 2 / 25 / 2020 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { B9-30 } \\ \hline 2 / 25 / 2020 \\ \hline \end{array}$	$\begin{gathered} \hline \text { B9-35 } \\ \hline 2 / 25 / 2020 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B10-2 } \\ \hline 2 / 21 / 2020 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { B10-5 } \\ \hline 2 / 21 / 2020 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { B10-10 } \\ \hline \text { 2/26/2020 } \\ \hline \end{array}$	$\begin{gathered} \hline \text { B10-15 } \\ \hline 2 / 26 / 2020 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B10-20 } \\ \hline 2 / 26 / 2020 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B10-25 } \\ \hline 2 / 26 / 2020 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { B10-30 } \\ \hline 2 / 26 / 2020 \\ \hline \end{array}$	B10-35
Saboratory Job Number: Date:																	
		103617	103617	103707	103707	103707	103707	103707	103707	103665	103665	103737	103737	103737	103737	103737	103737
TPH Using GC/FID Method (M8015D)																	
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.139J	0.192J	ND<0.100	0.117J	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.189J	ND<0.100	0.117J	ND<0.100
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	ND <1.0	ND<1.0													
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0															
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	$\mathrm{ND}<1.0$	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$
VOCs by GC/MS (SW846) Method (8260B)																	
Benzene	ug/Kg	ND<1.0	3.11J	1.29J	2.91J	1.93J	6.50J	1.27J	2.85J	1.12J	1.27J	1.17J	2.26J	ND<1.0	ND<1.0	2.43J	1.21J
n-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
sec-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
tert-Butylbenzene	ug/Kg	ND<5.0															
1,4-Dichlorobenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
Ethylbenzene	ug/Kg	ND<1.0	1.40J	1.40J	1.16J	3.96J	2.52J	1.20J	2.14J	ND<1.0	ND<1.0	ND<1.0	1.92J	ND<1.0	1.12J	1.11J	1.15J
Methyl-tert-butyl ether (MTBE)	ug/Kg	ND<2.0															
Naphthalene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
n-Propylbenzene	ug/Kg	ND<5.0															
Toluene (Methyl benzene)	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	2.78J	1.43J	5.05J	6.14J	10.7	2.65J	6.00J	1.05J	1.22J	1.58J	5.60J	1.49J	2.07J	4.14J	2.50J
1,2,4-Trimethylbenzene	ug $/ \mathrm{Kg}$	ND<5.0															
o-Xylene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.02J	1.89J	ND<1.0	1.32J	ND<1.0							
m,p-Xylenes	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	3.29J	3.43J	5.23J	1.95J	4.37J	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	2.32J	ND<1.0	1.47J	2.04J	1.26J
Other VOCs	$\mathrm{ug} / \mathrm{Kg}$	ND															

NOTES:
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \text { TPH } & \text { - Total Petroleum Hydro }\end{array}$
TPH - Total Petroleum Hydrocarbons quantified as either Gasoline, Diesel Fuel, or Heavy Hydrocarbons based on carbon range (ie. C4-C12) by GC/FID Method: (M8015D)
3,290 - positive detections shown in bold
$\mathrm{ND}<0.100$ - indicates constituent(s) not detected at or above method detection limit

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B11								B12						
Sample ID:	Units	B11-2	B11-5	B11-10	B11-15	B11-20	B11-25	B11-30	B11-35	B12-4.5	B12-10	B12-15	B12-20	B12-25	B12-30	B12-35
Sample Date:		2/13/2020	2/13/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/13/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/26/2020
Laboratory Job Number:		103559	103581	103736	103736	103736	103736	103736	103736	103581	103736	103736	103736	103736	103736	103736
TPH Using GC/FID Method (M8015D)																
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.170J	ND<0.100	ND<0.100	0.111J	ND<0.100	ND<0.100	ND<0.100	0.194J	ND<0.100	0.175J	0.198J
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	2.90J	ND<1.0	1.80J	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0						
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	80.0	22.1	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	78.9	ND<1.0	ND<1.0	ND<1.0	ND<1.0	20.9	$\mathrm{ND}<1.0$
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	82.9	22.1	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	ND<1.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	80.7	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	20.9	$\mathrm{ND}<1.0$
VOCs by GC/MS (SW846) Method (8260B)																
Benzene	ug/Kg	3.05J	ND<1.0	4.31J	1.44J	3.55J	2.01J	1.60J	2.20J	ND<1.0	2.16J	1.94J	3.80J	5.18J	1.98J	1.96J
n-Butylbenzene	ug/Kg	ND<5.0														
sec-Butylbenzene	ug/Kg	ND<5.0														
tert-Butylbenzene	ug $/ \mathrm{Kg}$	ND<5.0														
1,4-Dichlorobenzene	ug/Kg	ND<5.0														
Ethylbenzene	ug/Kg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.71J	2.73J	1.25J	1.21J	1.03J	1.63J	2.12J	1.78J	1.24J	3.97J	1.34J
Methyl-tert-butyl ether (MTBE)	ug/Kg	ND<2.0														
Naphthalene	ug/Kg	ND<5.0														
n-Propylbenzene	ug/Kg	ND<5.0														
Toluene (Methyl benzene)	ug/Kg	1.36J	ND<1.0	4.77J	1.21J	5.89J	5.15J	3.61J	4.62J	1.49J	5.47J	4.98J	10.1	5.94J	5.56J	3.81J
1,2,4-Trimethylbenzene	ug/Kg	ND<5.0														
o-Xylene	ug/Kg	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	1.37J	1.26J	ND<1.0	ND<1.0	ND<1.0	1.29J	1.11J	2.40J	1.41J	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$
m, p-Xylenes Other VOCs	ug/Kg	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	2.33J	$\mathrm{ND}<1.0$	5.23J	4.78J	3.09J	2.42J	$\mathrm{ND}<1.0$	4.12J	3.27J	7.47J	4.83J	2.61J	2.10J
	$\mathrm{ug} / \mathrm{Kg}$	ND														

$\begin{array}{cl}\text { NOTES: } & \\ \text { mg/Kg } & \text { - milligrams per kilogram or parts per million } \\ \text { TPH } & - \text { Total Petroleum Hydrocarbons quantified as }\end{array}$
3,290 - positive detections shown in bold
$\mathrm{ND}<0.100$ - indicates constituent(s) not detected at or above method detection limit

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B13							B14							
Sample ID:	Units	B13-5	B13-10	B13-15	B13-20	B13-25	B13-30	B13-35	B14-2	B14-5	B14-10	B14-15	B14-20	B14-25	B14-30	B14-35
Sample Date:		2/13/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/20/2020	2/20/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020
Laboratory Job Number:		103581	103686	103686	103686	103686	103686	103686	103641	103641	103736	103736	103736	103737	103737	103737
TPH Using GC/FID Method (M8015D)																
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.100	0.136J	ND<0.100	ND<0.100	0.220J	0.142J	ND<0.100	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.119J	0.101J	0.101J	ND<0.100
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	20.7	39.3	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0	ND<1.0						
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	6.04	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	56.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	6.04	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	77.2	39.3	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$
VOCs by GC/MS (SW846) Method (8260B)																
Benzene	ug/Kg	1.04J	3.04J	1.55J	1.68J	3.13J	1.09J	2.09J	ND<1.0	1.02J	ND<1.0	1.90J	3.54J	3.19J	1.42J	1.32J
n-Butylbenzene	ug/Kg	ND<5.0														
sec-Butylbenzene	ug/Kg	ND<5.0														
tert-Butylbenzene	ug $/ \mathrm{Kg}$	ND<5.0														
1,4-Dichlorobenzene	ug/Kg	ND<5.0														
Ethylbenzene	ug/Kg	ND<1.0	1.48J	1.06J	ND<1.0	1.49J	ND<1.0	1.18J	ND<1.0	ND<1.0	ND<1.0	1.07J	1.50J	1.69J	ND <1.0	1.20J
Methyl-tert-butyl ether (MTBE)	ug/Kg	ND<2.0														
Naphthalene	ug/Kg	ND<5.0														
n-Propylbenzene	ug/Kg	ND<5.0														
Toluene (Methyl benzene)	ug/Kg	1.26J	7.03J	3.04J	3.15J	6.10J	1.10J	3.35J	ND<1.0	ND<1.0	1.32J	2.94J	5.72J	4.75J	2.35J	1.82J
1,2,4-Trimethylbenzene	ug/Kg	ND<5.0														
o-Xylene	ug/Kg	ND<1.0	1.42J	ND<1.0	ND<1.0	1.08J	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	0.930J	ND <1.0	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$
m, p-Xylenes Other VOCs	ug/Kg	$\mathrm{ND}<1.0$	4.51J	1.55J	1.60J	3.89J	ND<1.0	1.83J	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	1.37J	3.27J	2.62J	1.44J	$\mathrm{ND}<1.0$
	$\mathrm{ug} / \mathrm{Kg}$	ND														

$\begin{array}{cc}\text { NOTES: } \\ \mathrm{mg} \text { Kg } & \text { - milligrams per kilogram or parts per million }\end{array}$
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \text { TPH } & \text { - Total Petroleum Hydrocarbons quantified as }\end{array}$
3,290 - positive detections shown in bold
$\mathrm{ND}<0.100$ - indicates constituent(s) not detected at or above method detection limit

TABLE 1
Summary of Soil Analytical Results for TPH as Gasoline/Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B15								B16							
Sample ID:	Units	B15S-2	B15S-5	B15S-10	B15S-15	B15S-20	B15S-25	B15S-30	B15S-35	B16-2	B16-5	B16-10	B16-15	B16-20	B16-25	B16-30	B16-35
Sample Date:		2/13/2020	2/13/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/20/2020	2/20/2020	2/21/2020	2/21/2020	2/21/2020	2/21/2020	2/21/2020	2/21/2020
Laboratory Job Number:		103559	103559	103617	103617	103617	103617	103617	103617	103641	103641	103665	103665	103665	103665	103665	103665
TPH Using GC/FID Method (M8015D)																	
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.100	ND<0.100	ND<0.100	ND<0.100	0.149J	ND<0.100	0.129J	0.123J	ND<0.100							
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	94.3	ND<1.0	ND<1.0	ND <1.0	ND<1.0	ND <1.0	ND<1.0	ND <1.0								
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	612	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	13.7	5.80	ND<1.0	ND<1.0	ND<1.0
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	706	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	13.7	5.80	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$
VOCs by GC/MS (SW846) Method (8260B)																	
Benzene	ug/Kg	4.81J	3.71J	1.50J	1.75J	1.74J	1.56J	1.55J	1.73J	1.65J	1.37J	4.42J	2.69J	2.65J	ND<1.0	3.27J	2.23J
n -Butylbenzene	ug/Kg	ND<5.0															
sec-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
tert-Butylbenzene	ug/Kg	ND<5.0															
1,4-Dichlorobenzene	ug/Kg	ND<5.0															
Ethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	1.76J	1.17J	1.42J	ND<1.0	1.25J	ND<1.0	1.15J	ND<1.0	ND<1.0	3.09J	1.23J	1.44J	ND <1.0	1.73J	1.69J
Methyl-tert-butyl ether (MTBE)	ug/Kg	ND<2.0															
Naphthalene n-Propylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
	ug/Kg	ND<5.0															
Toluene (Methyl benzene)	$\mathrm{ug} / \mathrm{Kg}$	3.27J	3.32J	1.90J	3.31J	3.16J	1.93J	1.86J	2.74J	ND<1.0	1.40J	10.2	4.31J	3.79J	1.29J	5.32J	4.45J
1,2,4-Trimethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0															
o-Xylene	ug/Kg	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND <1.0	$\mathrm{ND}<1.0$	ND<1.0	2.19J	ND<1.0	ND<1.0	ND<1.0	ND <1.0	ND <1.0
m, p-Xylenes Other VOCs	$\mathrm{ug} / \mathrm{Kg}$	1.05J	1.19J	$\mathrm{ND}<1.0$	1.85J	1.65J	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	1.25J	$\mathrm{ND}<1.0$	$\mathrm{ND}<1.0$	5.88J	1.80J	1.67 J	$\mathrm{ND}<1.0$	2.60 J	2.27J
	$\mathrm{ug} / \mathrm{Kg}$	ND															

NOTES:
$\begin{array}{ll}\mathrm{mg} / \mathrm{Kg} & \text { - milligrams per kilogram or parts per million } \\ \text { TPH } & \text { - Total Petroleum Hydro }\end{array}$
TPH - Total Petroleum Hydrocarbons quantified as either Gasoline, Diesel Fuel, or Heavy Hydrocarbons based on carbon range (ie. C4-C12) by GC/FID Method: (M8015D)
$\mathbf{3 , 2 9 0}$ - positive detections shown in bold
$\begin{array}{ll}\mathrm{ug} \mathrm{Kg} & \text { - micrograms per kilogram or parts per bilion } \\ \mathrm{ND}<0.100 & \text { - indicates constituent } \mathrm{s} \text {) not detected at or above method detection limit }\end{array}$

TABLE 1

Summary of Soil Analytical Results for TPH as Gasoline/ Diesel Fuel/Heavy Hydrocarbons and VOCs
Former Ventura Manufactured Gas Plan
1555 North Olive Street Ventura, California

Boring ID:		B17		
Sample ID:	Units	B17-5	B17-10	B17-15
Sample Date:		2/19/2020	2/26/2020	2/26/2020
Laboratory Job Number:		103617	103737	103737
TPH Using GC/FID Method (M8015D)				
TPH as Gasoline and Light HC (C4-C12)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.100	ND<0.100	ND<0.100
TPH as Diesel (C13-C22)[ESL=260]	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	ND<1.0	ND<1.0
TPH as Heavy Hydrocarbons (C23-C40)[1600]	$\mathrm{mg} / \mathrm{Kg}$	14.9	ND<1.0	ND<1.0
TPH Total as Diesel and Heavy HC (C13-C40)	$\mathrm{mg} / \mathrm{Kg}$	14.9	ND<1.0	ND<1.0
VOCs by GC/MS (SW846) Method (8260B)				
Benzene	ug/Kg	ND<1.0	1.44J	1.90J
n-Butylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0
sec-Butylbenzene	ug/Kg	ND<5.0	ND<5.0	ND<5.0
tert-Butylbenzene	ug/Kg	ND<5.0	ND<5.0	ND<5.0
1,4-Dichlorobenzene	ug/Kg	ND<5.0	ND<5.0	ND<5.0
Ethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	ND<1.0	ND<1.0
Methyl-tert-butyl ether (MTBE)	ug/Kg	ND<2.0	ND<2.0	ND<2.0
Naphthalene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0
n -Propylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0
Toluene (Methyl benzene)	$\mathrm{ug} / \mathrm{Kg}$	1.18J	2.56J	1.31J
1,2,4-Trimethylbenzene	$\mathrm{ug} / \mathrm{Kg}$	ND<5.0	ND<5.0	ND<5.0
o-Xylene	$\mathrm{ug} / \mathrm{Kg}$	ND<1.0	ND<1.0	$\mathrm{ND}<1.0$
m,p-Xylenes	$\mathrm{ug} / \mathrm{Kg}$	$\mathrm{ND}<1.0$	1.12J	$\mathrm{ND}<1.0$
Other VOCs	ug/Kg	ND	ND	ND

NOTES:
$\mathrm{mg} / \mathrm{Kg} \quad$ - milligrams per kilogram or parts per million
TPH - Total Petroleum Hydrocarbons quantified as either Gasoline, Diesel Fuel, or Heavy Hydrocarbons based on carbon range (ie. C4-C12) by GC/FID Method: (M8015D)
3,290 - positive detections shown in bold
$\begin{array}{ll}\text { NOg } & \text { - micrograms per kilogram or parts per billion } \\ \mathrm{ND}<0.100 & \text { - indicates constituent(s) not detected at or above method detection limit }\end{array}$

TABLE 2
Summary of Soil Analytical Results for PAHs and CAM Metals
Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B1								B2								B3			
Sample ID:	Units	B1-2	B1-5	B1-10	B1-15	B1-20	B1-25	B1-30	B1-35	B2-2	B2S-4.5	B2S-10	B2S-15	B2S-20	B2S-25	B2S-30	B2S-35	B3-2.5	B3-5	B3-10	B3-15
Sample Date:		2/12/2020	2/13/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/12/2020	2/12/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/11/2020	2/11/2020	2/18/2020	2/18/2020
Laboratory Job Number:		103529	103581	103599	103599	103599	103599	103599	103599	103529	103529	103617	103617	103617	103617	103617	103617	103503	103503	103599	103599
PAHs By Method 8310																					
Acenaphthene	mgKg	0.322	0.195	0.237	0.0329	ND<0.010	ND<0.010	ND<0.010	0.101	ND<0.010											
Antracene	mgKg	0.472	ND<0.010																		
Benzo(g.h,i)perylene	mgKg	1.44	0.0978	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0229	0.0637	0.0347	ND<0.010										
Fluoranthene	mg/Kg	1.97	0.103	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.172	0.0647	ND<0.010										
Fluorene	mgKg	0.365	0.0170J	0.0442	ND<0.010																
Naphthalene	mg/Kg	ND<0.020	ND<0.010																		
Phenanthrene	mgKg	1.82	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0245	ND<0.010	0.253	0.0412	ND<0.010	ND<0.010	ND<0.010	0.0108J	ND<0.010	ND<0.010	0.0126J	ND<0.010	ND<0.010	ND<0.010	ND<0.010
Pyrene	mgKg	2.27	0.120	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0686	0.372	0.0525	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0124J	ND<0.010	ND<0.010	ND<0.010	ND<0.010
2-Methylnaphthalene	mgKg	0.661	ND<0.010																		
Benzo(a)anthracene	mg/Kg	0.328	0.285	ND<0.010	ND<0.010	ND <0.010	ND<0.010	0.0463	0.502	0.0245	ND<0.010										
Benzo(a)pyrene	mgKg	0.885	0.0424	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0135J	0.0509	0.0536	ND<0.010	ND <0.010	ND<0.010								
Benzo(b)fluoranthene	mgKg	0.722	0.0381	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0121J	0.0353	0.033	ND<0.010										
Benzo(k)fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	0.263	0.0210	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0135J	0.0172J	ND<0.010										
Chrysene	$\mathrm{mg} / \mathrm{Kg}$	0.768	0.125	ND<0.010	ND<0.010	ND<0.010	0.0193J	0.0119J	0.109	0.0478	ND<0.010										
Indeno(1,2,3-cd)pyrene	mgKg	0.998	0.0793	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0276	0.0473	0.0413	ND<0.010										
B(a)P Pquivalent	$\mathrm{mg} / \mathrm{Kg}$	1.1	0.091	0.012	0.012	0.012	0.012	0.028	0.12	0.071	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
CAM Metals By Method 6010B/7000																					
Arsenic	mg/Kg	5.70	6.91	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	13.3	7.00	ND<1.0									
Barium	mgKg	655	142	72.5	92.6	107	111	135	138	127	112	82.3	75.8	194	155	111	143	33.8	26.6	35.4	82.3
Chromium	$\mathrm{mg} / \mathrm{Kg}$	35.1	14.8	21.6	13.8	14.1	17.0	14.0	26.1	11.8	10.9	11.1	14.9	17.2	22.6	25.8	18.1	4.37J	4.38J	4.94J	11.8
Cobalt	mgKg	6.11	6.68	4.08J	4.65J	4.06 J	5.14	4.24J	3.61 J	6.51	5.35	3.42J	4.53J	4.98J	4.89J	6.49	5.50	ND<2.5	ND<2.5	ND<2.5	4.23 J
Copper	mgKg	44.6	18.8	10.3	8.91	10.5	11.9	9.09	9.43	15.6	11.9	8.07	9.40	9.78	9.79	15.0	8.80	4.11J	4.42J	4.81 J	10.4
Lead	mgKg	560	45.1	3.78.J	3.90J	3.65J	4.35J	3.63J	6.54	8.69	5.98	3.26 J	3.14J	3.29J	3.45J	4.67J	4.46J	ND<2.5	ND<2.5	ND<2.5	2.93 J
Mercury (By EPA 7471)	mgKg	0.249	ND<0.1	0.156J																	
Molybdenum	mg/Kg	ND<2.0	3.32J	ND<2.0																	
Nickel	mgKg	25.0	29.7	17.0	12.1	13.2	12.2	12.4	13.7	22.8	18.3	13.0	17.0	15.3	12.5	27.9	10.8	4.22J	3.80J	5.20	12.0
Vanadium	mg/Kg	36.0	35.3	23.8	24.0	23.8	28.2	21.7	25.6	33.6	27.5	14.5	22.2	23.8	24.5	30.6	27.9	9.06	8.84	9.65	23.0
Zinc	mg/Kg	302	69.0	40.5	36.3	38.0	41.2	35.5	33.1	48.8	37.6	28.7	34.9	38.8	37.7	50.3	37.5	18.1	20.1	17.2	38.5

NOTES:
PAHs \quad - Polycyclic Aromatic Hydrocarbons (SW-846) analyzed using Method 8310
$\mathrm{mg} / \mathrm{Kg} \quad$ - milligrams per kilogram or parts per million
$331 \mathrm{~J}-$ indicates analyte was detected. however, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (POL).
$\begin{array}{ll}\text { 331 } & \text { - indicates analyte was detected. } \\ 1.134 & \text { - positive detections shown in bold } \\ \text { CAM Metals } \\ \text { - Title } & \\ \text { 22 }\end{array}$
CAM Metals - Titte 22 Metals (SW-846) analyzed using Method 6010B/7000

TABLE 2
Summary of Soil Analytical Results for PAHs and CAM Metals
Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B3				B4								B5							
Sample ID:	Units	B3-20	B3-25	B3-30	B3-35	B4-1.5	B4-4.5	B4-10	B4-15	B4-20	B4-25	B4-30	B4-35	B5S-2.5	B5S-5	B5S-10	B5S-15	B5S-20	B5S-25	B5S-30	B5S-35
Sample Date:		2/18/2020	2/18/2020	2/18/2020	2/18/2020	2/11/2020	2/11/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/13/2020	2/13/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020
Laboratory Job Number:		103599	103599	103599	103599	103503	103503	103641	103641	103641	103641	103641	103641	103559	103559	103641	103641	103641	103641	103641	103641
PAHs By Method 8310																					
Acenaphthene	mg/Kg	ND<0.010	0.0460	0.232	0.0171J	ND<0.010	0.549														
Anthracene	mg/Kg	ND<0.010	0.0480																		
Benzo(g,h,i)perylene	mg/Kg	ND<0.010	0.0302	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.256												
Fluoranthene	mg/Kg	ND<0.010	ND<0.010	0.0265	0.0208	ND<0.010	0.0209	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0153J	ND<0.010	ND<0.010	0.0592	ND<0.010	ND<0.010	0.0513	0.0145J	ND<0.010	0.743
Fluorene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010	0.0290	0.148	ND<0.010	0.0566															
Naphthalene	mg/Kg	0.0317	0.405	0.671	ND<0.010																
Phenanthrene	mg/Kg	0.0369	0.389	1.21	0.0252	ND<0.010	0.0129J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0102J	0.0158J	ND<0.010	0.038	0.0172J	ND<0.010	ND<0.010	0.0416	ND<0.010	1.04
Pyrene	mg/Kg	ND<0.010	0.0230	0.0806	0.0494	ND<0.010	0.0134J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0211	0.0154J	ND<0.010	0.0539	ND<0.010	ND<0.010	0.0697	0.0250	ND<0.010	1.15
2-Methylnaphthalene	mg/Kg	0.0610	0.596	2.05	ND<0.010																
Benzo(a)anthracene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010	0.0197J	0.0720	0.0295	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.600	ND<0.010	ND<0.010	ND<0.010	0.0178.J	ND<0.010	ND<0.010	0.0240	ND<0.010	ND<0.010	0.557
Benzo(a)pyrene	mg/Kg	ND<0.010	0.0299	ND<0.010	ND<0.010	0.0101J	ND<0.010	ND<0.010	0.239												
Benzo(b)fluoranthene	mg/Kg	ND<0.010	0.0196J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.162												
Benzo(k)fluoranthene	mg/Kg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND <0.010	ND<0.010	0.0142J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND <0.010	0.0661							
Chrysene	mg/Kg	ND<0.010	0.0113J	0.0320	0.0123J	ND<0.010	0.0138.J	ND<0.010	0.0284	ND<0.010	ND<0.010	0.0135J	0.0137J	ND<0.010	0.409						
Indeno(1,2,3-cd)pyrene	mg/Kg	ND<0.010	0.0550	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.213												
B(a)P Equivalent	$\mathrm{mg} / \mathrm{Kg}$	0.012	0.014	0.019	0.015	0.012	0.012	0.012	0.012	0.012	0.072	0.012	0.012	0.012	0.046	0.012	0.012	0.019	0.012	0.012	0.35
CAM Metals By Method 6010B/7000																					
Arsenic	mg/Kg	ND<1.0	3.19J	3.79J	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0											
Barium	mg/Kg	146	108	121	160	131	73.0	81.5	139	117	85.2	101	97.8	123	119	119	6.89	368	118	115	133
Chromium	$\mathrm{mg} / \mathrm{Kg}$	14.2	15.0	21.9	16.6	14.4	18.3	12.7	12.7	11.9	11.6	18.6	9.48	10.1	11.8	12.3	13.0	10.8	16.6	17.3	16.0
Cobalt	mg Kg	3.91 J	4.21 J	5.45	3.91 J	4.61 J	4.20.	4.12J	3.12J	2.80 J	3.66J	4.26 J	3.03J	5.11	6.01	3.03J	3.59J	2.99J	3.95J	4.02J	4.08J
Copper	mg Kg	8.11	12.2	12.2	13.2	12.6	10.1	9.92	8.94	7.52	8.68	12.6	6.60	12.6	14.0	6.60	7.69	8.28	9.79	11.0	10.5
Lead	mg/Kg	4.89J	5.66	3.94J	5.57	5.17	4.40J	3.43J	2.94J	ND<2.5	3.15J	3.37J	2.91 J	6.10	7.42	2.91 J	4.79J	2.64J	4.31 J	4.12J	5.97
Mercury (By EPA 7471)	mg/Kg	ND<0.1																			
Molybdenum	mg/Kg	ND<2.0																			
Nickel	mg/Kg	11.0	14.9	22.0	13.4	14.9	13.5	15.9	9.69	8.62	10.2	12.9	10.8	19.2	28.1	10.8	8.20	12.1	11.0	14.3	12.5
Vanadium	mg/Kg	21.8	25.7	25.4	21.9	22.6	22.3	20.6	25.7	18.2	21.5	26.2	17.7	27.7	27.1	17.7	19.2	21.5	24.1	20.5	21.7
Zinc	mgKg	31.3	42.5	43.8	36.1	38.7	37.1	36.1	30.5	28.6	31.9	40.2	26.9	39.9	52.3	26.9	29.5	29.9	36.1	34.0	37.9
NOTES:																					
		PAHs $\mathrm{mg} / \mathrm{Kg}$ $\mathrm{ND}<0.010$ 331 J 1.134 CAM Metals	Polynuclear milligrams - indicates co - indicates an positive det - Title 22 Me	Aromatic Hyd er kilogram or stituent(s) not lyte was detec ctions shown	carbons (SW parts per milli detected at or bold alyzed using	446) analyzed oove method alyte concent Method 6010B	sing Method tection limit tion is an esti	10	is betw	method	on limi	and the	cal quan	limit (P							

TABLE 2
Summary of Soil Analytical Results for PAHs and CAM Metals
Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B6								B7							B8				
Sample ID:	Units	B6-2	B6-4	B6-10	B6-15	B6-20	B6-25	B6-30	B6-35	B7-5	B7-10	B7-15	B7-20	B7-25	B7-30	B7-35	B8-5	B8-10	B8-15	B8-20	B8-25
Sample Date:		2/13/2020	2/13/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/20/2020	2/13/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/13/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020
Laboratory Job Number:		103559	103559	103665	103665	103665	103665	103665	103665	103581	103641	103641	103641	103641	103641	103641	103581	103686	103686	103686	103686
PAHs By Method 8310																					
Acenaphthene	mgKg	ND<0.010	0.0420	ND<0.010																	
Anthracene	mgKg	ND<0.010																			
Benzo(g, ,h,i)perylene	$\mathrm{mg} / \mathrm{Kg}$	0.0505	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0510	ND<0.010											
Fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	0.0298	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0740	ND<0.010	0.0187J	ND<0.010	ND<0.010	ND<0.010	ND<0.010						
Fluorene	mgKg	ND<0.010																			
Naphthalene	mgKg	ND<0.010																			
Phenanthrene	mg Kg	0.0192J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0154J	0.148	ND<0.010	0.0128J	ND<0.010	ND<0.010	ND<0.010	ND<0.010						
Pyrene	mg/Kg	0.0256	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0187J	0.222	ND<0.010	0.0149J	ND<0.010	ND<0.010	ND<0.010	ND<0.010						
2-Methylnaphthalene	mg Kg	ND<0.010																			
Benzo(a)anthracene	mg Kg	0.0147 J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.194	ND<0.010											
Benzo(a)pyrene	$\mathrm{mg} / \mathrm{Kg}$	0.0197J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0350	ND<0.010	ND <0.010	ND<0.010	ND<0.010								
Benzo(b)fluoranthene	mgKg	0.0107J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0290	ND<0.010											
Benzo(k)fluoranthene	mg Kg	ND<0.010	0.0100J	ND<0.010																	
Chrysene	mg Kg	0.0349	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0690	ND<0.010											
Indeno(1,2,3-cd)pyrene	$\mathrm{mg} / \mathrm{Kg}$	0.0591	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0300	ND<0.010											
B(a)P Equivalent	mgKg	0.034	0.012	0.012	0.012	0.012	0.012	0.012	0.067	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
CAM Metals By Method 60108/7000																					
Arsenic	mgKg	2.75J	3.85J	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.40J	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	4.00J	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Barium	mgKg	118	83.2	98.2	131	53.8	131	106	185	116	108	98.6	146	112	114	94.2	152	52.6	181	79.2	83.1
Chromium	mgKg	11.1	30.8	18.5	12.2	14.2	18.0	17.5	22.4	11.9	14.9	16.6	14.2	15.0	15.3	18.2	12.9	15.9	12.1	9.13	11.5
Cobalt	mgKg	8.63	6.77	4.16J	3.84J	3.05J	5.20	4.03J	3.70J	5.28	3.38J	2.82J	3.36J	3.88J	3.03J	3.56J	6.82	4.01J	4.00J	3.07J	2.77J
Copper	mgKg	12.2	13.1	12.6	8.37	7.66	11.9	12.2	8.84	13.1	13.7	7.95	9.06	9.25	10.9	13.0	13.8	10.4	10.0	5.65	8.42
Lead	mgKg	6.33	6.90	4.55J	3.80J	ND<2.5	3.84J	4.52J	5.41	6.59	3.85J	3.16J	3.46J	3.63J	3.59J	3.53J	6.97	ND<2.5	3.28J	2.57J	ND<2.5
Mercury (By EPA 7471)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.1	ND<0.1	0.181 J	ND<0.1																
Molybdenum	mgKg	ND<2.0	$\mathrm{ND}<2.0$	ND<2.0	$\mathrm{ND}<2.0$	$\mathrm{ND}<2.0$	ND<2.0	$\mathrm{ND}<2.0$	$\mathrm{ND}<2.0$	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0						
Nickel	mgKg	20.1	41.1	16.7	10.9	13.5	18.2	15.3	13.5	21.7	10.8	8.81	12.1	10.0	13.1	14.7	26.1	19.6	11.3	5.91	11.3
Vanadium	mgKg	27.7	28.4	20.2	22.9	16.5	27.7	20.3	22.9	24.7	20.7	16.7	20.2	20.9	21.3	20.6	26.5	22.1	24.1	20.5	18.2
Zinc	mg/Kg	40.5	40.1	37.0	29.0	19.2	42.0	34.7	38.4	37.3	34.6	25.8	29.2	30.4	31.9	33.8	39.3	33.6	35.2	21.7	27.1

NOTES:
PAHs \quad - Polynuclear Aromatic Hydrocarbons (SW-846) analyzed using Method 8310
$\mathrm{mg} / \mathrm{Kg} \quad$ - milligrams per kilogram or parts per million
$331 \mathrm{~J}-$ indicates analyte was detected. however, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (POL).

CAM Metals - Titte 22 Metals (SW-846) analyzed using Method $6010 \mathrm{~B} / 7000$

TABLE 2
Summary of Soil Analytical Results for PAHs and CAM Metals
Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B8		B9								B10								B11	
Sample ID:	Units	B8-30	B8-35	B9-2	B9-5	B9-10	B9-15	B9-20	B9-25	в9-30	в9-35	B10-2	B10-5	B10-10	B10-15	B10-20	B10-25	B10-30	B10-35	B11-2	B11-5
Sample Date:		2/24/2020	2/24/2020	2/19/2020	2/19/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/21/2020	2/21/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/13/2020	2/13/2020
Laboratory Job Number:		103686	103686	103617	103617	103707	103707	103707	103707	103707	103707	103665	103665	103737	103737	103737	103737	103737	103737	103559	103581
PAHs By Method 8310																					
Acenaphthene	mgKg	ND<0.010																			
Anthracene	mgKg	ND<0.010																			
Benzo(g, ,h,i)perylene	mgKg	ND<0.010																			
Fluoranthene	mg/Kg	ND<0.010	0.0191J																		
Fluorene	mgKg	ND<0.010	ND <0.010																		
Naphthalene	mgKg	ND<0.010																			
Phenanthrene	mgKg	ND<0.010																			
Pyrene	mgKg	ND<0.010	0.0123J																		
2-Methylnaphthalene	mgKg	ND<0.010	ND <0.010	ND<0.010																	
Benzo(a)anthracene	mgKg	ND<0.010																			
Benzo(a)pyrene	mgKg	ND<0.010																			
Benzo(b)fluoranthene	mg/Kg	ND<0.010																			
Benzo(k)fluoranthene	mgKg	ND<0.010																			
Chrysene	mgKg	ND<0.010																			
Indeno(1,2,3-cd)pyrene	mgKg	ND<0.010																			
B(a)P Equivalent	mg Kg	0.012	0.012	12	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
CAM Metals By Method 6010B/7000																					
Arsenic	mgKg	ND<1.0	3.67J	3.45J																	
Barium	mg/Kg	114	180	103	234	139	95.9	156	125	69.1	138	137	134	46.0	71.1	51.9	92.1	98.3	126	114	105
Chromium	$\mathrm{mg} / \mathrm{Kg}$	14.2	15.7	17.9	15.9	14.8	13.7	13.9	14.8	18.6	17.6	13.3	23.5	10.9	14.5	13.3	14.1	13.0	15.1	13.2	11.7
Cobalt	mg/Kg	3.14J	3.20J	6.02	3.42J	4.26J	3.39J	3.88J	4.02J	3.25J	4.22J	4.84,	7.46	3.07J	3.93J	3.58.J	ND<2.5	4.26J	3.38J	5.3	4.95J
Copper	$\mathrm{mg} / \mathrm{Kg}$	9.13	7.42	13.8	9.57	11.8	8.18	9.21	9.14	7.57	9.89	12.1	15.5	6.65	9.82	10.3	4.82J	11.1	8.96	11.7	10.9
Lead	mg/Kg	ND<2.5	ND<2.5	6.17	2.96J	3.34J	3.06J	3.01J	3.14J	4.12J	3.93J	5.43	5.16	ND<2.5	3.06J	3.13J	ND<2.5	4.73J	2.67 J	5.39	6.07
Mercury (By EPA 7471)	mg/Kg	ND<0.1	1.76	ND<0.1																	
Molybdenum	mgKg	ND<2.0	3.76J	ND<2.0																	
Nickel	mg/Kg	11.8	12.8	21.3	16.0	20.6	11.4	12.3	15.2	9.33	11.8	15.0	27.7	11.3	18.5	12.9	11.4	14.9	12.5	22.6	21.2
Vanadium	$\mathrm{mg} / \mathrm{Kg}$	27.2	19.6	26.1	22.2	20.8	19.6	23.5	20.9	20.9	25.8	21.0	28.7	17.8	21.7	20.2	12.5	25.7	20.4	32.1	28.9
Zinc	$\mathrm{mg} / \mathrm{Kg}$	32.9	30.2	48.9	33.8	34.9	31.4	36.4	30.8	30.4	32.9	39.0	50.4	23.3	33.2	33.5	19.7	37.4	31.5	37.7	36.0

NOTES:
PAHs \quad - Polynuclear Aromatic Hydrocarbons (SW-844) analyzed using Method 8310
$\mathrm{mg} / \mathrm{Kg} \quad$ - milligrams per kilogram or parts per million
$331 \mathrm{~J}-$ indicates analyte was detected. however, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (PPL).
$\begin{array}{ll}1.134 & \text { - indicates analye was } \\ \text { CAM Metals } \\ \text { - Titite } & \text { 2 dectections shown in bold }\end{array}$
CAM Metals -Title 22 Metals (SW-846) analyzed using Method 6010B/7000

TABLE 2
Summary of Soil Analytical Results for PAHs and CAM Metals
Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B11						B12							B13						
Sample ID:	Units	B11-10	B11-15	B11-20	B11-25	B11-30	B11-35	B12-4.5	B12-10	B12-15	B12-20	B12-25	B12-30	B12-35	B13-5	B13-10	B13-15	B13-20	B13-25	B13-30	B13-35
Sample Date:		2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/13/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/25/2020	2/26/2020	2/13/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020	2/24/2020
Laboratory Job Number:		103736	103736	103736	103736	103736	103736	103581	103736	103736	103736	103736	103736	103736	103581	103686	103686	103686	103686	103686	103686
PAHs By Method 8310																					
Acenaphthene	mg/Kg	ND<0.010	ND <0.010	ND<0.010																	
Antracene	mgKg	ND<0.010																			
Benzo(g.h,hi)perylene	mgKg	ND<0.010																			
Fluoranthene	mg/Kg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0604	ND<0.010												
Fluorene	mgKg	ND<0.010																			
Naphthalene	mg/Kg	ND<0.010																			
Phenanthrene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0396	ND<0.010												
Pyrene	mg Kg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0592	ND<0.010												
2-Methylnaphthalene	mgKg	ND<0.010																			
Benzo(a)anthracene	mg/Kg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0173J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND <0.010	ND<0.010	ND<0.010	ND<0.010	ND <0.010	ND<0.010	ND<0.010
Benzo(a)pyrene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0250	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND <0.010	ND<0.010						
Benzo(b)fluoranthene	mgKg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0167J	ND<0.010												
Benzo(k)fluoranthene	mgKg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0124J	ND<0.010												
Chrysene	mgKg	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.0279	ND<0.010												
Indeno(1,2,3-cd)pyrene	mg Kg	ND<0.010																			
B(a)P Pquivalent	$\mathrm{mg} / \mathrm{Kg}$	0.012	0.012	0.012	0.012	0.012	0.012	0.035	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
CAM Metals By Method 6010B/7000																					
Arsenic	mgKg	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.07J	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5.88	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Barium	mgKg	96.0	122	165	139	410	154	91.8	122	123	152	106	161	69.5	91.8	447	116	74.1	124	104	88.3
Chromium	mgKg	13.4	18.7	12.5	11.9	16.6	12.4	10.6	14.4	12.5	12.5	12.6	16.7	16.9	9.52	15.7	10.3	9.62	13.6	16.4	15.1
Cobalt	mgKg	4.23J	6.19	5.18	3.34J	3.00J	3.56J	5.28	3.86J	3.53J	3.62J	4.56J	3.82J	3.22J	4.06J	3.64J	3.75J	3.43J	3.48.J	2.94J	3.82J
Copper	mgKg	11.4	17.0	10.3	7.64	7.65	8.52	12.9	10.3	10.2	7.43	10.3	10.6	5.05	11.2	9.23	7.10	8.97	8.30	8.77	9.53
Lead	mgKg	4.16J	5.54	4.29J	3.36J	ND<2.5	3.01J	5.72	4.53J	3.74J	2.99J	3.35J	4.34J	ND<2.5	5.12	2.74J	2.73 J	2.90J	ND<2.5	ND<2.5	ND<2.5
Mercury (By EPA 7471)	mgKg	ND<0.1	0.152J	ND<0.1																	
Molybdenum	mgKg	ND<2.0	2.74J	ND<2.0																	
Nickel	mg/Kg	12.6	21.8	16.0	11.0	10.1	11.1	20.1	11.8	12.2	11.9	10.3	13.8	6.05	20.2	10.2	10.4	10.6	11.8	10.1	11.6
Vanadium	mgKg	22.6	29.7	21.8	21.7	19.7	22.7	27.6	24.7	24.3	18.9	24.4	26.3	16.0	22.4	22.1	21.0	19.1	20.1	21.3	24.9
Zinc	mgKg	39.2	49.4	37.3	29.7	27.9	33.0	37.7	40.7	37.0	29.8	40.3	36.2	19.0	31.8	36.6	28.9	31.5	34.3	45.3	35.3

NOTES:
PAHs \quad - Polynuclear Aromatic Hydrocarbons (SW-846) analyzed using Method 8310
$\mathrm{mg} / \mathrm{Kg} \quad$ - milligrams per kilogram or parts per million
331 J - indicates analyte was detected. however, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (PPL).
$\begin{array}{ll}1.134 & \text { - indicates analyte was detected. } \\ \text { - positive detections shown in bold }\end{array}$
CAM Metals - Title 22 Metals (SW-846) analyzed using Method 6010B/7000

TABLE 2
Summary of Soil Analytical Results for PAHs and CAM Metals
Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B14								B15								B16			
Sample ID:	Units	B14-2	B14-5	B14-10	B14-15	B14-20	B14-25	B14-30	B14-35	B15S-2	B15S-5	B15S-10	B15S-15	B15S-20	B15S-25	B15S-30	B15S-35	B16-2	B16-5	B16-10	B16-15
Sample Date:		2/20/2020	2/20/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/26/2020	2/13/2020	2/13/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/19/2020	2/20/2020	2/20/2020	2/21/2020	2/21/2020
Laboratory Job Number:		103641	103641	103736	103736	103736	103737	103737	103737	103559	103559	103617	103617	103617	103617	103617	103617	103641	103641	103665	103665
PAHs By Method 8310																					
Acenaphthene	mg/Kg	0.0161 J	ND<0.010	0.638	ND<0.010	ND<0.010	ND<0.010	ND <0.010	ND<0.010												
Antracene	$\mathrm{mg} / \mathrm{Kg}$	0.0596	0.0155J	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	1.81	ND<0.010										
Benzo(g, ,h,i)perylene	$\mathrm{mg} / \mathrm{Kg}$	0.592	0.0919	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	2.32	ND<0.010	0.0299	ND<0.010	ND<0.010	ND<0.010						
Fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	0.609	0.137	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	13.80	ND<0.010	0.0881	ND<0.010	ND<0.010	ND<0.010						
Fluorene	mg/Kg	0.0153J	ND<0.010	0.640	ND<0.010																
Naphthalene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010	ND<0.020	ND<0.010																	
Phenanthrene	$\mathrm{mg} / \mathrm{Kg}$	0.279	0.0722	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	9.11	ND<0.010	0.0548	ND<0.010	ND<0.010	ND<0.010						
Pyrene	$\mathrm{mg} / \mathrm{Kg}$	0.849	0.114	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	10.10	ND<0.010	0.0308	ND<0.010	ND<0.010	ND<0.010						
2-Methylnaphthalene	$\mathrm{mg} / \mathrm{Kg}$	0.0120J	ND<0.010	1.05	ND<0.010																
Benzo(a)anthracene	$\mathrm{mg} / \mathrm{Kg}$	0.238	0.0392	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	3.15	ND<0.010	0.0198J	ND<0.010	ND<0.010	ND<0.010						
Benzo(a)pyrene	$\mathrm{mg} / \mathrm{Kg}$	0.633	0.111	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	5.27	ND<0.010	0.0499	ND<0.010	ND<0.010	ND<0.010						
Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	0.372	0.0906	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	4.67	ND<0.010	0.0337	ND <0.010	ND<0.010	ND<0.010						
Benzo(k)fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	0.250	0.0424	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	2.37	ND<0.010	0.0228	ND<0.010	ND<0.010	ND<0.010						
Chrysene	$\mathrm{mg} / \mathrm{Kg}$	0.489	0.113	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	8.99	ND<0.010	0.0444	ND<0.010	ND<0.010	ND<0.010						
Indeno(1,2,3-cd)pyrene	$\mathrm{mg} / \mathrm{Kg}$	0.511	0.0735	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	2.59	ND<0.010	0.0298	ND<0.010	ND<0.010	ND<0.010						
B(a)P Equivalent	$\mathrm{mg} / \mathrm{Kg}$	0.78	0.14	0.012	0.012	0.012	0.012	0.012	0.012	6.6	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.066	0.012	0.012	0.012
CAM Metals By Method 60108/7000																					
Arsenic	$\mathrm{mg} / \mathrm{Kg}$	ND<1.0	29.5	3.78J	ND<1.0	$\mathrm{ND}<1.0$	ND<1.0	ND<1.0													
Barium	$\mathrm{mg} / \mathrm{Kg}$	90.3	76.9	50.2	110	111	113	60.6	95.5	181	173	160	181	177	114	94.1	109	117	93.8	113	95.9
Chromium	$\mathrm{mg} / \mathrm{Kg}$	19.6	14.9	9.83	13.2	11.7	15.2	8.76	13.6	15.6	12.2	18.5	17.9	13.7	21.2	11.1	17.1	17.9	14.8	17.7	18.2
Cobalt	$\mathrm{mg} / \mathrm{Kg}$	4.37J	4.12J	3.88.J	3.57J	3.83J	3.76J	ND<2.5	3.20J	7.34	5.76	4.44J	4.73J	3.86J	4.58.J	3.95J	4.50J	5.78	4.70.J	4.16J	4.88J
Copper	$\mathrm{mg} / \mathrm{Kg}$	15.8	11.5	7.58	8.72	10.1	10.0	4.41 J	8.29	16.7	11.4	12.1	12.9	9.94	11.2	12.2	11.6	13.4	10.8	9.66	14.6
Lead	$\mathrm{mg} / \mathrm{Kg}$	33.9	12.1	3.57J	3.27J	3.68J	3.29J	ND<2.5	2.67 J	16.6	5.50	4.54J	3.61J	3.93J	3.53J	5.29	4.23J	5.33	5.13	3.57J	4.13J
Mercury (By EPA 7471)	$\mathrm{mg} / \mathrm{Kg}$	0.439	ND<0.1	0.299	ND<0.1																
Molybdenum	mg/kg	ND<2.0																			
Nickel	$\mathrm{mg} / \mathrm{Kg}$	15.5	15.3	10.5	14.5	11.1	14.9	5.19	14.5	24.6	23.6	22.0	16.8	13.3	17.3	12.6	14.1	19.4	15.2	17.2	18.2
Vanadium	$\mathrm{mg} / \mathrm{Kg}$	19.8	21.5	16.2	20.1	20.6	23.9	11.5	17.1	29.6	28.7	26.8	37.6	24.8	28.5	18.2	25.9	24.6	19.6	22.3	30.2
Zinc	$\mathrm{mg} / \mathrm{Kg}$	66.3	39.2	25.3	31.3	35.4	33.8	16.0	26.4	57.6	36.4	42.8	42.1	36.1	38.3	37.4	39.5	43.3	36.0	33.8	42.5

NOTES:
PAHs - Polynuclear Aromatic Hydrocarbons (SW-846) analyzed using Method 8310
$\mathrm{mg} / \mathrm{Kg} \quad$ - milligrams per kilogram or parts per million
$331 \mathrm{~J}-$ indicates analyte was detected. however, analyte concentration is an estimated value which is between the method detection limit (MDL) and the practical quantitation limit (PPL).
$\begin{array}{ll}\text { 331 } & \text { - indicates analyte was detected. } \\ 1.134 & \text { - positive detections shown in bold } \\ \text { CAM Metals } \\ \text { - Title } & \\ \text { 22 }\end{array}$
CAM Metals - Title 22 Metals (SW-846) analyzed using Method 6010B/7000

Summary of Soil Analytical Results for PAHs and CAM Metals Former Ventura Manufactured Gas Plant
1555 North Olive Street Ventura, California

	Boring ID:	B16				B17			
Sample ID:	Units	B16-20	B16-25	B16-30	B16-35	B17-5	B17-10	B17-15	
Sample Date:		2/21/2020	2/21/2020	2/21/2020	2/21/2020	2/19/2020	2/26/2020	2/26/2020	
Laboratory Job Number:		103665	103665	103665	103665	103617	103737	103737	
PAHs By Method 8310									
Acenaphthene	mg/Kg	ND<0.010							
Anthracene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Benzo($($,h,i)) perylene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Fluorene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Naphthalene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Phenanthrene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Pyrene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
2-Methylnaphthalene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Benzo(a)anthracene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Benzo(a)pyrene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Benzo(k)fluoranthene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Chrysene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
Indeno(1,2,3-cd)pyrene	$\mathrm{mg} / \mathrm{Kg}$	ND<0.010							
B(a)P Pquivalent	$\mathrm{mg} / \mathrm{Kg}$	0.012	0.012	0.012	0.012	0.012	0.012	0.012	
CAM Metals By Method 60108/7000									
Arsenic	mg/Kg	ND<1.0							
Barium	$\mathrm{mg} / \mathrm{Kg}$	107	126	147	98.1	85.2	117	76.1	
Chromium	$\mathrm{mg} / \mathrm{Kg}$	25.3	17.2	17.8	12.4	15.1	14.2	28.1	
Cobalt	$\mathrm{mg} / \mathrm{Kg}$	4.31J	4.65J	4.52J	3.46J	5.84	3.90J	7.99	
Copper	$\mathrm{mg} / \mathrm{Kg}$	11.4	9.54	11.0	9.76	11.1	11.0	17.6	
Lead	$\mathrm{mg} / \mathrm{Kg}$	3.79J	3.62J	3.69J	3.33J	10.2	4.24J	5.62	
Mercury (By EPA 7471)	$\mathrm{mg} / \mathrm{Kg}$	ND<0.1							
Molybdenum	$\mathrm{mg} / \mathrm{Kg}$	ND<2.0							
Nickel	$\mathrm{mg} / \mathrm{Kg}$	17.5	15.4	16.1	13.5	17.3	14.5	30.7	
Vanadium	$\mathrm{mg} / \mathrm{Kg}$	23.6	23.0	26.7	18.9	27.3	25.3	38.6	
Zinc	$\mathrm{mg} / \mathrm{Kg}$	35.9	35.2	40.4	32.4	38.8	39.1	61.9	
NOTES:									
		PAHs mg/Kg ND<0.010 331 J 1.134 CAM Metals	- Polynuclear milligrams indicates co indicates an positive det - Title 22 M	Aromatic Hydro er kilogram or stituent(s) not lyte was detected ctions shown in als (SW-846) a	carbons (SWparts per milli detected at or bold alyzed using	846) analyzed bove method alyte concent Method 6010B	sing Method tection limit tion is an estin 000	310 ated value wh	ich is between the method detection limit (MDL) and the practical quantitation limit (PQL).

Table 3

Summary of Soil Vapor Analytical Results Using Methods TO-3 and TO-15
Southern California California Gas Company - 1555 N Olive St. Ventura, CA 93001

Vapor Monitoring Probe ID:		B1			B2			B3			B4			B5			B6	
Sample ID	Units	B1-5	B1-15	B1-25	B2-5	B2-15	B2-25	B3-5	B3-15	B3-25	B4-5	B4-15	B4-24	B5-5	B5-15	B5-25	B6-5	B6-15
Sample Date		3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/3/2020	3/5/2020	3/5/2020	3/5/2020	3/3/2020	3/3/2020	3/3/2020	3/5/2020	3/5/2020
Laboratory Job Number		103830	103830	103830	103830	103830	103830	103830	103830	103830	103882	103882	103882	103830	103830	103830	103882	103882
TPH-g by Method TO-3																		
TPH as Gasoline and Light HC. (C4-C12)	$\mu \mathrm{g} / \mathrm{m}^{3}$	1,790,000	1,940,000	1,970,000	595,000	423,000	1,100,000	1,450,000	1,460,000	1,800,000	687,000	695,000	1,120,000	1,720,000	1,910,000	1,660,000	717,000	758,000
VOCs by Method TO-15																		
4-Ethyltoluene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<100	ND<50	ND<50	ND<50	ND<100	ND<100	ND<100	ND<50	ND<50								
Benzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	199	309	99.8	ND<8	ND<8	41.6	82.3	133	172	ND<4.200	ND<4.200	258	195	192	248	41.8	41.8
Bromodichloromethane	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<6	ND<3.300	ND<3.300	ND<3.300	ND<6	ND<6	ND<6	ND<3.300	ND<3.300								
Carbon disulfide	$\mu \mathrm{g} / \mathrm{m}^{3}$	1,730	93.6	75.6	ND<30	ND<30	63.4	ND<30	ND<30	ND<30	ND<15	ND<15	17.0	71.9	ND<30	ND<30	ND<15	ND<15
Chlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<20	ND<10	ND<10	ND<10	ND<20	ND<20	ND<20	ND<10	ND<10								
Chloroform (Trichloromethane)	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	ND<15	ND<15	ND<15	ND<30	ND<30	ND<30	ND<15	ND<15								
Cyclohexane	$\mu \mathrm{g} / \mathrm{m}^{3}$	25,500	21,700	9,950	4,060	2,270	533	7,440	2,820	2,480	1,970	1,180	1,180	9,420	13,600	5,810	1,120	612
1,2-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	49.2	55.5	96.3	ND<40	ND<40	ND<40	ND<40	ND<40	72.4	ND<20	ND<20	ND<20	ND<40	ND<40	ND<40	ND<20	ND<20
1,4-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	396	739	1,030	ND<40	ND<40	80.9	ND<40	ND<40	95.6	ND<20	ND<20	100	72	68.2	172	ND<20	ND<20
cis-1,2-Dichloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	126	53.8	217	523	131	ND<30	ND<30	44.3	21.1	60.2	28.8	ND<30	ND<30	ND<30	ND<15	22.4
trans-1,2-Dichloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	94.6	60.4	126	137	ND<30	ND<30	ND<30	ND<30	ND<15	ND<15	ND<15	ND<30	ND<30	ND<30	ND<15	ND<15
Ethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	ND<30	ND<30	ND<30	ND<30	ND<30	70.3	40.4	10,500	ND<15	ND<15	ND<15	ND<30	ND<30	ND<30	ND<15	ND<15
n -Hexane	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	188	183	213	ND<30	ND<30	ND<30	105	69.0								
Methyl-tert-butyl ether (MTBE)	$\mu \mathrm{g} / \mathrm{m}^{3}$	1,730	6,870	3,840	364	659	194	714	628	722	744	4,570	1,940	20,500	18,500	5,710	4,910	11,400
Naphthalene	$\mu \mathrm{g} / \mathrm{m}^{3}$	283	475	600	ND<30	223	165	ND<30	ND<30	2,970	116	103	120	ND<30	ND<30	ND<30	ND<15	48.7
Propene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	1,440	1,010	459	ND<30	ND<30	ND<30	746	733								
Tetrachloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	ND<15	ND<15	ND<15	ND<30	ND<30	ND<30	ND<15	ND<15								
Toluene (Methyl benzene)	$\mu \mathrm{g} / \mathrm{m}^{3}$	82.2	103	147	ND<20	89.3	126	ND<20	40.9	535	ND<10	37.3	411	110	79.2	259	40.3	200
Trichloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	ND<30	ND<30	ND<30	75.6	ND<30	ND<30	ND<30	ND<30	ND<15	ND<15	ND<15	ND<30	ND<30	ND<30	ND<15	ND<15
1,2,4-Trimethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	65.1	72.8	344	ND<30	ND<30	188	374	683	42,400	ND<15	26.3	266	73.6	63.9	285	30.2	ND<15
1,3,5-Trimethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	836	ND<15	ND<15	ND<15	ND<30	ND<30	ND<30	ND<15	ND<15							
Vinyl chloride (Chloroethene)	$\mu \mathrm{g} / \mathrm{m}^{3}$	771	1,460	1,640	299	330	64.7	124	100	95.7	66.0	22.7	16.0	58.1	52.7	ND<3.200	ND<1.600	ND<1.600
o-Xylene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<20	1,630	ND<10	ND<10	ND<10	ND<20	ND<20	ND<20	ND<10	ND<10							
m,p-Xylenes	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<40	4,770	ND<20	ND<20	ND<20	ND<40	ND<40	ND<40	ND<20	ND<20							
n-Heptane	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<30	ND<15	ND<15	166	ND<30	ND<30	ND<30	22.7	20.7								
Ethyl alcohol (Ethanol)	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<100	ND<50	ND<50	ND<50	ND<100	ND<100	ND<100	ND<50	ND<50								
Other VOCs (see lab reports for analytes)	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND																

NOTES
199 - positive detections shown in bold
ID<50 - Indicates Constituent(s) Not Detected At Or Above Method Detection Limit (MDL)
J - Indicates Analyte Was Detected. However, Analyte Concentration Is An Estimated Value Which Is Between The MDL And The Practical Quantitation Limit (PQL)
$\mathrm{Hg} / \mathrm{m}^{3} \quad$ - micrograms per cubic meter

Table 3
Summary of Soil Vapor Analytical Results Using Methods TO-3 and TO-15
Southern California California Gas Company - 1555 N Olive St. Ventura, CA 93001

Vapor Monitoring Probe ID:		B8			B9			B11			B12			B15		VMP1		
Sample ID	Units	B8-5	B8-14	B8-25	B9-5	B9-15	B9-15DUP	B11-5	B11-16	B11-16DUP	B12-6	B12-15	B12-25	B15-5	B15-15	VMP1-5	VMP1-15	VMP1-25
Sample Date		3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/5/2020	3/6/2020	3/6/2020	3/6/2020	3/3/2020	3/3/2020	3/6/2020	3/6/2020	3/6/2020
Laboratory Job Number		103882	103882	103882	103882	103882	103882	103882	103882	103882	103898	103898	103898	103830	103830	103898	103898	103898
TPH-g by Method TO-3																		
TPH as Gasoline and Light HC. (C4-C12)	$\mu \mathrm{g} / \mathrm{m}^{3}$	2,550	4,520	5,100	8,290	18,500	17,800	2,250	2,970	3,670	2,030	1,560	3,140	13,900	10,100	970	1,280	1,590
VOCs by Method TO-15																		
4-Ethyltoluene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<5.0	ND<5.0	ND<5.0	ND<5.0	20.4	21.2	ND<5.0	6.08	6.70	ND<5.0	ND<5.0	14.6	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
Benzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	11.5	24.8	14.9	ND<0.420	77.8	76.9	ND<0.420	8.71	9.51	ND<0.420	2.97	26.6	1.97	2.68	ND<0.420	6.90	16.4
Bromodichloromethane	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<6	ND<0.330	$\mathrm{ND}<0.330$	ND<0.330	ND<0.330	$\mathrm{ND}<0.330$	7.17	ND<0.330	ND<0.330	ND<0.330	ND<0.330						
Carbon disulfide	$\mu \mathrm{g} / \mathrm{m}^{3}$	15.3	41.1	24.6	3.20	15.5	15.4	ND<1.5	8.55	7.12	3.71	2.10	17.0	42.0	35.8	ND<1.5	5.00	9.95
Chlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	4.39	9.20	19.0	ND<1.0	270	265	ND<1.0	2.99	3.38	ND<1.0	ND<1.0	42.3	ND<1.0	ND<1.0	ND<1.0	4.55	22.7
Chloroform (Trichloromethane)	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<1.5	3.05	ND<1.5	42.5	29.3	29.0	85.4	25.0	27.2	32.3	3.19	ND<1.5	16.8	18.3	2.69	3.92	ND<1.5
Cyclohexane	$\mu \mathrm{g} / \mathrm{m}^{3}$	5.37	11.7	16.7	ND<1.0	48.2	47.1	ND<1.0	4.06	3.54	ND<1.0	ND<1.0	ND<1.0	ND<1.0	19.7	ND<1.0	ND<1.0	ND<1.0
1,2-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<2.0	3.22	ND<2.0														
1,4-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<2.0	5.32	3.66	ND<2.0	ND<2.0	ND<2.0											
cis-1,2-Dichloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	ND<1.5	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	ND<1.5	ND<1.5	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	ND<1.5	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	$\mathrm{ND}<1.5$	ND<1.5
trans-1,2-Dichloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<1.5	$\mathrm{ND}<1.5$	ND<1.5	ND<1.5													
Ethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	8.81	19.1	19.4	2.86	38.9	38.7	ND<1.5	19.5	21.7	2.33	3.35	33.0	6.34	3.37	ND<1.5	10.3	9.94
n -Hexane	$\mu \mathrm{g} / \mathrm{m}^{3}$	5.49	6.72	15.4	ND<1.5	173	171	ND<1.5	20.8	15.6	ND<1.5	ND<1.5	ND<1.5	$\mathrm{ND}<1.5$	ND<1.5	ND<1.5	ND<1.5	ND<1.5
Methyl-ter-butyl ether (MTBE)	$\mu \mathrm{g} / \mathrm{m}^{3}$	3.07	ND<1.0	ND<1.0	1.96	3.56	2.35	ND<1.0	75.4	ND<1.0	ND<1.0	ND<1.0						
Naphthalene	$\mu \mathrm{g} / \mathrm{m}^{3}$	27.4	85.7	89.6	106	20.0	19.9	10.6	24.6	41.9	53.7	52.0	79.2	419	308	11.7	9.28	13.6
Propene	$\mu \mathrm{g} / \mathrm{m}^{3}$	9.39	16.0	43.00	8.58	346	525	2.73	4.99	5.06	2.36	1.50	18.9	ND<1.5	ND<1.5	ND<1.5	3.15	6.88
Tetrachloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	35.4	76.6	85.4	5.03	13.9	13.6	120	198	219	26.3	33.3	21.4	68.4	24.6	395	111	57.6
Toluene (Methyl benzene)	$\mu \mathrm{g} / \mathrm{m}^{3}$	68.2	155	107	41.1	167	165	2.38	66.0	72.0	43.7	15.5	154	48.6	17.4	94.3	117	39.6
Trichloroethene	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND<1.5																
1,2,4-Trimethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	21.7	21.9	27.1	4.75	55.5	54.0	5.91	20.8	22.9	2.83	6.800	45.0	15.7	7.79	5.7	12.8	17.1
1,3,5-Trimethylbenzene	$\mu \mathrm{g} / \mathrm{m}^{3}$	3.39	7.76	8.05	ND<1.5	15.3	15.1	ND<1.5	4.74	4.74	ND<1.5	ND<1.5	8.98	ND<1.5	ND<1.5	ND<1.5	2.63	2.54
Vinyl chloride (Chloroethene)	$\mu \mathrm{g} / \mathrm{m}^{3}$	$\mathrm{ND}<0.160$	ND<0.160	ND<0.160	ND<0.160	ND<0.160	ND<0.160	$\mathrm{ND}<0.160$	ND<0.160	ND<0.160	ND<0.160	ND<0.160	ND<0.160	ND<0.160	$\mathrm{ND}<0.160$	ND<0.160	$\mathrm{ND}<0.160$	ND<0.160
o-Xylene	$\mu \mathrm{g} / \mathrm{m}^{3}$	10.9	23.9	28.0	3.75	62.9	62.5	ND<1.0	22.2	24.6	2.42	5.16	37.5	8.50	3.01	2.74	12.2	14.5
m,p-Xylenes	$\mu \mathrm{g} / \mathrm{m}^{3}$	39.1	88.9	80.7	8.67	189	187	ND<2.0	59.0	65.0	3.71	15.1	129	16.9	7.75	6.73	35.9	38.8
n -Heptane	$\mu \mathrm{g} / \mathrm{m}^{3}$	2.08	5.46	6.31	ND<1.5	17.0	16.9	ND<1.5	2.15	2.67	ND<1.5	ND<1.5	6.31	$\mathrm{ND}<1.5$	ND<1.5	ND<1.5	2.20	3.26
Ethyl alcohol (Ethanol)	$\mu \mathrm{g} / \mathrm{m}^{3}$	129	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	53.0	33.0	ND<5.0							
Other VOCs (see lab reports for analytes)	$\mu \mathrm{g} / \mathrm{m}^{3}$	ND																

NOTES
199 - positive detections shown in bold
ND<50 - Indicates Constituent(s) Not Detected At Or Above Method Detection Limit (MDL)
J - Indicates Analyte Was Detected. However, Analyte Concentration Is An Estimated Value Which Is Between The MDL And The Practical Quantitation Limit (PQL)
$\mathrm{Jg} / \mathrm{m}^{3} \quad$ - - incrograms per cubic meter

Table 4
Summary of Chemicals of Potential Concern
Soil Soil Gas

Polycyclic Aromatice Hydrocarbons
Acenaphthene
Acenaphthylene
Anthracene
Benzo(g,h,i)perylene
Fluoranthene
Fluorene
Naphthalene(PAH)
Phenanthrene
Pyrene
2-Methylnaphthalene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Chrysene
Dibenzo(a,h)anthracene
Indeno(1,2,3-cd)pyrene

Metals

Arsenic
Lead
Cobalt
Mercury
Vanadium
Total Petroleum Hydrocarbons
TPH as Gasoline and Light HC (C4-C12)
TPH as Diesel (C13-C22)
TPH as Heavy Hydrocarbons (C23-C40)

Volatile Organic Compounds

Benzene
n-Butylbenzene
sec-Butylbenzene
tert-Butylbenzene
1,4-Dichlorobenzene
Ethylbenzene
Methyl-tert-butyl ether (MTBE)
Naphthalene
n -Propylbenzene
Toluene (Methyl benzene)
1,2,4-Trimethylbenzene
o-Xylene
m,p-Xylenes

TPH as Gasoline and Light HC. (C4-C12)
4-Ethyltoluene
Benzene
Bromodichloromethane
Carbon disulfide
Chlorobenzene
Chloroform (Trichloromethane)
Cyclohexane
1,2-Dichlorobenzene
1,4-Dichlorobenzene
cis-1,2-Dichloroethene
trans-1,2-Dichloroethene
Ethylbenzene
n-Hexane
Methyl-tert-butyl ether (MTBE)
Naphthalene
Tetrachloroethene
1,3,5-Trimethylbenzene
m,p-Xylenes

Table 5
Soil Health Based Goals

COPC in Soil	Compressor Room Soil Concentrations (EPCs)	Calculated Risks and Hazards						Calculation of Health Based Goals (HBG)*							
		Residential		Industrial		Construction		Residential		Industrial		Construction			
				Risk Target:	Hazard Target:			$\begin{gathered} \text { Risk } \\ \text { Target: } \end{gathered}$	Hazard Target:	$\begin{gathered} \text { Risk } \\ \text { Target: } \end{gathered}$	Hazard Target:				
		Risk	Hazard			Risk	Hazard	Risk	Hazard	1.00E-06	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$
Polycyclic Aromatice Hydrocarbons (mg/kg)															
Acenaphthene	$9.3 \mathrm{E}-02$	--	2.3E-05	--	2.6E-06	--	1.3E-05		$4.1 \mathrm{E}+03$		$3.6 \mathrm{E}+04$		$7.3 \mathrm{E}+03$		
Acenaphthylene	$2.3 \mathrm{E}-01$	--	--	--	--	--	--								
Anthracene	$2.0 \mathrm{E}-01$	--	9.7E-06	--	1.1E-06	--	5.4E-06		$2.0 \mathrm{E}+04$		$1.8 \mathrm{E}+05$		$3.7 \mathrm{E}+04$		
Benzo(g,h,i)perylene	$7.9 \mathrm{E}-01$	--	--	--	--	--	--								
Fluoranthene	$2.9 \mathrm{E}+00$	--	$1.1 \mathrm{E}-03$	--	$1.2 \mathrm{E}-04$	--	5.8E-04		$2.7 \mathrm{E}+03$		$2.4 \mathrm{E}+04$		$4.9 \mathrm{E}+03$		
Fluorene	$8.3 \mathrm{E}-02$	--	$3.0 \mathrm{E}-05$	--	$3.4 \mathrm{E}-06$	--	1.7E-05		$2.7 \mathrm{E}+03$		$2.4 \mathrm{E}+04$		$4.8 \mathrm{E}+03$		
Naphthalene(PAH)	$7.7 \mathrm{E}-02$	--	$4.9 \mathrm{E}-05$	--	6.4E-06	--	3.7E-05								
Phenanthrene	$2.3 \mathrm{E}+00$	--	--	--	--	--	--								
Pyrene	$2.3 \mathrm{E}+00$	--	$1.1 \mathrm{E}-03$	--	$1.3 \mathrm{E}-04$	--	6.3E-04		$2.0 \mathrm{E}+03$		$1.8 \mathrm{E}+04$		$3.6 \mathrm{E}+03$		
2-Methylnaphthalene	$2.2 \mathrm{E}+00$	--	$8.0 \mathrm{E}-03$	--	$9.0 \mathrm{E}-04$	--	4.5E-03		$2.7 \mathrm{E}+02$		$2.4 \mathrm{E}+03$		$4.8 \mathrm{E}+02$		
Benzo(a)anthracene	$6.2 \mathrm{E}-01$	--	--	--	--	--	--								
Benzo(a)pyrene	$1.2 \mathrm{E}+00$	--	$5.8 \mathrm{E}-02$	--	$6.7 \mathrm{E}-03$	--	1.7E-01		$2.0 \mathrm{E}+01$		$1.8 \mathrm{E}+02$		$7.1 \mathrm{E}+00$		
Benzo(b)fluoranthene	$9.8 \mathrm{E}-01$	--	--	--	--	--	--								
Benzo(k)fluoranthene	$9.1 \mathrm{E}-01$	--	--	--	--	--	--								
Chrysene	$1.9 \mathrm{E}+00$	--	--	--	--	--	--								
Dibenzo(a,h)anthracene	$1.9 \mathrm{E}+00$	--	--	--	--	--	--								
Indeno(1,2,3-cd)pyrene	$5.1 \mathrm{E}-01$	--	--	--	--	--	--								
Metals (mg/kg)															
Cobalt	$5.1 \mathrm{E}+00$	$3.7 \mathrm{E}-09$	2.2E-01	2.8E-09	1.5E-02	1.5E-07	$2.4 \mathrm{E}-01$	$1.4 \mathrm{E}+03$	$2.3 \mathrm{E}+01$	$1.9 \mathrm{E}+03$	$3.5 \mathrm{E}+02$	$3.4 \mathrm{E}+01$	$2.1 \mathrm{E}+01$		
Lead**	$9.7 \mathrm{E}+01$	--	--	--	--	--	--		$8.0 \mathrm{E}+01$		$3.2 \mathrm{E}+02$		$3.2 \mathrm{E}+02$		
Mercury(ByEPA7471)	$1.2 \mathrm{E}-01$	--	$4.3 \mathrm{E}-02$	--	$2.7 \mathrm{E}-02$	--	$2.9 \mathrm{E}-02$		$2.8 \mathrm{E}+00$		$4.5 \mathrm{E}+00$		$4.1 \mathrm{E}+00$		
Vanadium	$2.6 \mathrm{E}+01$	--	$6.6 \mathrm{E}-02$	--	$4.4 \mathrm{E}-03$	--	$7.3 \mathrm{E}-02$		$3.9 \mathrm{E}+02$		$5.8 \mathrm{E}+03$		$3.5 \mathrm{E}+02$		
Total Petroleum Hydrocarbons (mg/kg)															
TPH as Gasoline and Light HC (C4-C12)	$4.9 \mathrm{E}+02$	--	$2.9 \mathrm{E}-01$	--	2.2E-01	--	$2.3 \mathrm{E}-01$		$1.7 \mathrm{E}+03$		$2.2 \mathrm{E}+03$		$2.2 \mathrm{E}+03$		
TPH as Diesel (C13-C22)	$1.8 \mathrm{E}+02$	--	$7.5 \mathrm{E}-01$	--	$4.2 \mathrm{E}-01$	--	$4.6 \mathrm{E}-01$		$2.5 \mathrm{E}+02$		$4.4 \mathrm{E}+02$		$4.0 \mathrm{E}+02$		
TPH as Heavy Hydrocarbons (C23-C40)	$1.6 \mathrm{E}+03$	--	$6.1 \mathrm{E}-01$	--	$6.8 \mathrm{E}-02$	--	3.4E-01		$2.7 \mathrm{E}+03$		$2.4 \mathrm{E}+04$		$4.9 \mathrm{E}+03$		
Volatile Organic Compounds ($\mu \mathrm{g} / \mathrm{kg}$)															
Benzene	$1.2 \mathrm{E}-01$	1.2E-07	3.6E-03	8.2E-08	2.6E-03	3.6E-09	2.6E-03	9.7E-01	$3.2 \mathrm{E}+01$	$1.4 \mathrm{E}+00$	4.6E+01	$3.2 \mathrm{E}+01$	$4.4 \mathrm{E}+01$		
tert-Butylbenzene	$1.8 \mathrm{E}-02$	--	$4.0 \mathrm{E}-06$	--	$1.5 \mathrm{E}-06$	--	1.9E-06		$4.4 \mathrm{E}+03$		$1.2 \mathrm{E}+04$		$9.4 \mathrm{E}+03$		
1,4-Dichlorobenzene	$1.3 \mathrm{E}-02$	$1.7 \mathrm{E}-09$	$2.9 \mathrm{E}-06$	1.2E-09	5.4E-07	5.1E-11	9.2E-07	$7.9 \mathrm{E}+00$	$4.6 \mathrm{E}+03$	$1.1 \mathrm{E}+01$	$2.5 \mathrm{E}+04$	$2.6 \mathrm{E}+02$	$1.4 \mathrm{E}+04$		
Ethylbenzene	$3.4 \mathrm{E}+00$	$2.1 \mathrm{E}-07$	$6.1 \mathrm{E}-04$	1.3E-07	$1.7 \mathrm{E}-04$	6.4E-09	$2.3 \mathrm{E}-04$	1.6E+01	$5.6 \mathrm{E}+03$	$2.6 \mathrm{E}+01$	$2.1 \mathrm{E}+04$	$5.3 \mathrm{E}+02$	$1.5 \mathrm{E}+04$		
Methyl-tert-butyl ether (MTBE)	$9.9 \mathrm{E}-03$	8.2E-11	$2.0 \mathrm{E}-07$	4.8E-11	$1.5 \mathrm{E}-07$	$2.4 \mathrm{E}-12$	1.6E-07	1.2E+02	$5.1 \mathrm{E}+04$	$2.1 \mathrm{E}+02$	$6.4 \mathrm{E}+04$	$4.1 \mathrm{E}+03$	$6.4 \mathrm{E}+04$		
Toluene (Methyl benzene)	$3.5 \mathrm{E}-03$	--	$1.3 \mathrm{E}-06$	--	$6.6 \mathrm{E}-07$	--	7.5E-07		$2.6 \mathrm{E}+03$		$5.3 \mathrm{E}+03$		$4.7 \mathrm{E}+03$		
o-Xylene	$2.6 \mathrm{E}-01$	--	$1.3 \mathrm{E}-04$	--	$9.4 \mathrm{E}-05$	--	$9.7 \mathrm{E}-05$		$2.0 \mathrm{E}+03$		$2.8 \mathrm{E}+03$		$2.7 \mathrm{E}+03$		
m,p-Xylenes	$7.0 \mathrm{E}-01$	--	4.1E-04	--	$2.9 \mathrm{E}-04$	--	$3.0 \mathrm{E}-04$		$1.7 \mathrm{E}+03$		$2.4 \mathrm{E}+03$		$2.3 \mathrm{E}+03$		

* $\mathrm{HBG}_{\mathrm{i}}=\left(\right.$ Target Risk/Risk $\left._{\mathrm{i}}\right) \times \mathrm{EPC}_{\mathrm{i}}$
** HBG for lead are based on DTSC risk based concentrations predictive of blood lead levels (DTSC, 2020).
HBG Health Based Goal for $\mathrm{COPC}_{\mathrm{i}}$
Target Risk 1×10^{-6} for carcinogenic risk, and unity (1) for noncarcinogenic hazard
Risk $_{i} \quad$ Calculated risk or hazard of $\mathrm{COPC}_{\mathrm{i}}$
$\mathrm{EPC}_{i} \quad$ Exposure Point Concentration of COPC ${ }_{i}$

Table 6
Soil Vapor Health Based Goals

COPC In Soil Gas	Compressor RoomSoil GasConcentrations$(\mu \mathrm{g} / \mathrm{m} 3)$	Calculated Risks and Hazards				Calculation of Health Based Goals (HBG)*					
		Residential		Industrial		Residential		Industrial			
				Risk Target:	Hazard Target:	Risk Target:	Hazard Target:				
		Risk	Hazard			Risk	Hazard	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}-06$	$1.00 \mathrm{E}+00$
TPH as Gasoline and Light HC. (C4-C12)	$1.9 \mathrm{E}+06$	--	$3.0 \mathrm{E}+00$	--	7.3E-01		$6.3 \mathrm{E}+05$		$2.6 \mathrm{E}+06$		
4-Ethyltoluene	N/A	--	--	--	--						
Benzene	$2.6 \mathrm{E}+02$	2.7E-06	8.3E-02	6.1E-07	2.0E-02	$9.7 \mathrm{E}+01$	$3.1 \mathrm{E}+03$	$4.2 \mathrm{E}+02$	$1.3 \mathrm{E}+04$		
Bromodichloromethane	N/A	--	$0.0 \mathrm{E}+00$	--	--						
Carbon disulfide	$7.2 \mathrm{E}+01$	--	9.8E-05	--	2.3E-05		$7.3 \mathrm{E}+05$		$3.1 \mathrm{E}+06$		
Chlorobenzene	$2.3 \mathrm{E}+01$	--	$4.4 \mathrm{E}-04$	--	1.0E-04		$5.2 \mathrm{E}+04$		$2.2 \mathrm{E}+05$		
Chloroform (Trichloromethane)	$3.9 \mathrm{E}+00$	3.3E-08	3.9E-05	7.4E-09	9.1E-06	$1.2 \mathrm{E}+02$	$1.0 \mathrm{E}+05$	$5.3 \mathrm{E}+02$	$4.3 \mathrm{E}+05$		
Cyclohexane	$1.4 \mathrm{E}+04$	--	2.2E-03	--	3.1E-03		$6.3 \mathrm{E}+06$		$4.4 \mathrm{E}+06$		
1,2-Dichlorobenzene	$7.2 \mathrm{E}+01$	--	$3.4 \mathrm{E}-04$	--	$8.2 \mathrm{E}-05$		$2.1 \mathrm{E}+05$		$8.8 \mathrm{E}+05$		
1,4-Dichlorobenzene	$1.7 \mathrm{E}+02$	6.6E-07	$2.1 \mathrm{E}-04$	1.6E-07	4.9E-05	$2.6 \mathrm{E}+02$	$8.3 \mathrm{E}+05$	$1.1 \mathrm{E}+03$	$3.5 \mathrm{E}+06$		
cis-1,2-Dichloroethene	$5.2 \mathrm{E}+02$	--	$6.3 \mathrm{E}-02$	--	$1.5 \mathrm{E}-02$		$8.3 \mathrm{E}+03$		$3.5 \mathrm{E}+04$		
trans-1,2-Dichloroethene	$1.4 \mathrm{E}+02$	--	$1.7 \mathrm{E}-03$	--	3.9E-04		$8.3 \mathrm{E}+04$		$3.5 \mathrm{E}+05$		
Ethylbenzene	$1.1 \mathrm{E}+04$	9.5E-06	$1.1 \mathrm{E}-02$	2.1E-06	$2.4 \mathrm{E}-03$	$1.1 \mathrm{E}+03$	$1.0 \mathrm{E}+06$	$4.9 \mathrm{E}+03$	$4.4 \mathrm{E}+06$		
n-Hexane	$2.1 \mathrm{E}+02$	--	$2.9 \mathrm{E}-04$	--	$6.9 \mathrm{E}-05$		$7.3 \mathrm{E}+05$		$3.1 \mathrm{E}+06$		
Methyl-tert-butyl ether (MTBE)	$2.1 \mathrm{E}+04$	$1.9 \mathrm{E}-06$	$6.6 \mathrm{E}-04$	$4.4 \mathrm{E}-07$	$1.6 \mathrm{E}-03$	$1.1 \mathrm{E}+04$	$3.1 \mathrm{E}+07$	$4.7 \mathrm{E}+04$	$1.3 \mathrm{E}+07$		
Naphthalene	$3.0 \mathrm{E}+03$	3.6E-05	$9.6 \mathrm{E}-01$	8.3E-06	$2.3 \mathrm{E}-01$	$8.3 \mathrm{E}+01$	$3.1 \mathrm{E}+03$	$3.6 \mathrm{E}+02$	$1.3 \mathrm{E}+04$		
Propene	$1.4 \mathrm{E}+03$	--	4.6E-04	--	1.1E-04		$3.1 \mathrm{E}+06$		$1.3 \mathrm{E}+07$		
Tetrachloroethene	$4.0 \mathrm{E}+02$	8.6E-07	$9.4 \mathrm{E}-03$	2.0E-07	2.2E-03	$4.6 \mathrm{E}+02$	$4.2 \mathrm{E}+04$	$2.0 \mathrm{E}+03$	$1.8 \mathrm{E}+05$		
Toluene (Methyl benzene)	$5.4 \mathrm{E}+02$	--	$1.7 \mathrm{E}-03$	--	4.1E-04		$3.1 \mathrm{E}+05$		$1.3 \mathrm{E}+06$		
Trichloroethene	$7.6 \mathrm{E}+01$	1.6E-07	3.6E-02	2.5E-08	8.6E-03	$4.8 \mathrm{E}+02$	$2.1 \mathrm{E}+03$	$3.0 \mathrm{E}+03$	$8.8 \mathrm{E}+03$		
1,2,4-Trimethylbenzene	$4.2 \mathrm{E}+04$	--	$6.7 \mathrm{E}-01$	--	1.6E-01		$6.3 \mathrm{E}+04$		$2.6 \mathrm{E}+05$		
1,3,5-Trimethylbenzene	$8.4 \mathrm{E}+02$	--	$1.3 \mathrm{E}-02$	--	3.2E-03		$6.3 \mathrm{E}+04$		$2.6 \mathrm{E}+05$		
Vinyl chloride (Chloroethene)	$3.3 \mathrm{E}+02$	3.5E-05	3.3E-03	2.1E-06	7.5E-04	$9.5 \mathrm{E}+00$	$1.0 \mathrm{E}+05$	$1.6 \mathrm{E}+02$	$4.4 \mathrm{E}+05$		
o-Xylene	$1.6 \mathrm{E}+03$	--	$1.6 \mathrm{E}-02$	--	3.7E-03		$1.0 \mathrm{E}+05$		$4.4 \mathrm{E}+05$		
m,p-Xylenes	$4.8 \mathrm{E}+03$	--	$4.8 \mathrm{E}-02$	--	1.12-02		$1.0 \mathrm{E}+05$		$4.4 \mathrm{E}+05$		
n-Heptane	$1.7 \mathrm{E}+02$	--	4.0E-04	--	9.2E-05		$4.2 \mathrm{E}+05$		$1.8 \mathrm{E}+06$		
Ethyl alcohol (Ethanol)	N/A			--	--						

Red type indicates data from Control Room dataset
Totals

* $\mathrm{HBG}_{\mathrm{i}}=\left(\right.$ Target Risk/Risk $\left.{ }_{\mathrm{i}}\right) \times \mathrm{EPC}_{\mathrm{i}}$

HBG
Health Based Goal for COPC_{1}
Target Risk 1×10^{-6} for carcinogenic risk, and unity (1) for noncarcinogenic hazard
Risk $_{\text {i }}$
Calculated risk or hazard of COPC
EPC
Exposure Point Concentration of COPC_{i}

Table 7
Locations Where Soil Vapor Concentrations Exceed Health Based Goals
Concentrations in μ / \mathbf{m}^{3}

Total Petroleum Hydrocarbons Gasoline		Benzene		1,4-Dichl	enzene	Ethylbenzene		MTBE		Naphthalene		Vinyl Chloride	
Residential Soil Gas Health based Goal													
	000			260		1100		11000		83		9.5	
Industrial Soil Gas Health Based Goal													
2600000		420		1100		4900		47000		360		160	
B1-25	1,970,000	B1-15	309	B1-25	1030.00	B3-25*	10500.00	B5-5	20500.00	B3-25*	2970.00	B1-25*	1640.00
B1-15	1,940,000	B4-24	258	B1-15	739.00			B5-15	18500.00	B1-25*	600.00	B1-15*	1460.00
B5-15	1,910,000	B5-25	248	B1-5	396.00			B6-15	11400.00	B1-15*	475.00	B1-5*	771.00
B3-25	1,800,000	B1-5	199							B15-5*	419.00	B2-15*	330.00
B1-5	1,790,000	B5-5	195							B15-15	308.00	B2-5*	299.00
B5-5	1,720,000	B5-15	192							B1-5	283.00	B3-5	124.00
B5-25	1,660,000	B3-25	172							B2-15	223.00	B3-15	100.00
B3-15	1,460,000	B3-15	133							B2-25	165.00	B3-25	95.70
B3-5	1,450,000	B1-25	99.8							B4-24	120.00	B4-5	66.00
B4-24	1,120,000									B4-5	116.00	B2-25	64.70
B2-25	1,100,000									B9-5	106.00	B5-5	58.10
B6-15	758,000									B4-15	103.00	B5-15	52.70
B6-5	717,000									B8-25	89.60	B4-15	22.70
B4-15	695,000									B8-14	85.70	B4-24	16.00
B4-5	687,000												

*Concentration above residential and industrial HBG

TABLE 8

Summary of Technology Type and Process Options Screening for Soi
Former Ventura Manufactured Gas Plan
1555 North Olive Street
Ventura, California

General Response Actions	Technology Type	Process Options	Technology / Process Option Description	Effectiveness	Implementability	Cost	Remarks
No Further Action	Not applicable.	Not applicable.	No Action	Low: Shallow impacted soil is present near the surface and to depths of approximately 3.5 feet.	Easily implemented: No additional remedial activities would be conducted.	Minimal: There would be no additional soil remediation costs	Retained: As required under NCP
Land Use Covenant (LUC)	(Use Restrictions/ Notifications)	(Use Restrictions/ Notifications)	LUC includes administrative and legal controls that restrict use of the site in a manner that may result in unacceptable risk to human health. The site use restrictions would be to prevent potential exposure to impacted soil. Access restrictions are primarily incorporated through the implementation of LUC.	LUC does not directly reduce volume, toxicity, or mobility of contaminants in soil. However, LUC would minimize the potential for exposure to contaminants by restricting land use. No adverse impacts occur during the implementation of LUC since no construction activities are associated with this option.	LUC is relatively easy to implement. However, it may be difficult to obtain regulatory approval as a standalone strategy for remediation. A cap may be required at part of LUC.	Low	Retained: LUC may be used as an interim action to prevent disturbance of impacted soil at the Site.
Containment	Capping	Capping	This technology involves construction of a impermeable cap over source areas and soil contamination to prevent exposure. This technology often includes use of concrete pavement, inspections and monitoring.	This technology minimizes exposure to contaminated soils but it does not directly reduce volume or toxicity of COCs in soil. A cap or cover system is normally maintained to ensure effectiveness of LUCs. Construction and maintenance of a cap will interfere with teh planned construction a the Site. Therefore, this technology may not be effective in achieving the RAOs.	A major portion of the source areas where this technology would be applied is planned for upcoming construction. Therefore, construction of an effective cap in impacted soil area would be impractical.	High	Eliminated due to implementability and cost considerations.

TABLE 8

ummary of Technology Type and Process Options Screening for Soi

Former Ventura Manufactured Gas Plant
555 North Olive Street
Ventura, California

General Response Actions	Technology Type	Process Options	Technology / Process Option Description	Effectiveness	Implementability	Cost	Remarks
Active remediation	Soil Excavation and onsite treatment	Excavation and onsite treatment	This technology involves excavation of contaminated soil and onsite treatment using technologies such as bio-remediation or thermal desorption.	Low: This technology is not effective for PAHs and metals such as arsenic and lead.	Difficult: Although removal of impact soil is relatively easy, application of aboveground treatment technologies such as bio-remediation or thermal desorption will be difficult to implement.	High: Above-ground soil treatment technologies such as bio-remediation or thermal desorption will take time.	Eliminated: High costs of excavation and onsite treatment in addition to the uncertainty of achieving cleanup levels do not support retaining this option.
Active remediation	In situ chemical treatment.	Chemical oxidation: Introduce a chemical oxidant into the vadose zone to either destroy or degrade contaminants.	This technology involves injection of oxidizing agents into the contaminated soil zone for destruction of organic contaminants. This technology is not effective for metal contaminants such as arsenic or lead.	Low: Where implementable, this technology has been shown to remediate some hydrocarbons in soils. The oxidants used are readily available. However, contact between contaminated soil and oxidants cannot be effectively controlled in vadose zone, resulting in significant remnants of untreated contaminated soil. within the vadose zone. This technology is not effective for metals such as arsenic and lead.	Difficult: May not achieve treatment of the entire contaminated soil in vadose zone.	High: Potentially extensive drilling for injection of chemicals into the vadose zone and monitoring activities would increase costs.	Eliminated: Due to high cost and leaving significant untreated soil in vadose zone.
Active remediation	Soil Excavation and offsite treatment/ disposal	Excavation and offsite transportation/treatment/ disposal.	This technology involves excavation of contaminated soil and transportation to offsite facilities for treatment and/or disposal.	High: Provides long-term effectiveness and permanence. Provides protection of human health and the environment by reducing the amount of contamination in soil.	Moderate: Removal of the impacted soil will require a relatively large footprint. However, excavation technology and transportation to offsite facilities are common and routinely implemented. Treatment and/or disposal facilities are readily available in Southern California.	High: To excavate the impacted soil requires removal of a significant amount of impacted soil. In addition, transportation, treatment, and disposal are costly.	Retained: Excavation is expected to be limited to the top 3.5 feet in impacted areas to eliminate direct exposure pathways.

TABLE 9
Summary of Technology Type and Process Options Screening for Soil Vapor
Former Ventura Manufactured Gas Plant
1555 North Olive Street
Ventura, California

General Response Actions	Technology Type	Process Options	Technology / Process Option Description	Effectiveness	Implementability	Cost	Screening/Evaluation Comments
No-Action	None	None Available	No Action	No remedial action would be implemented to reduce volume, toxicity or mobility of VOCs in soil vapor. Any reduction in VOC concentrations, toxicity, or mobility would occur only through natural attenuation mechanisms such as dilution, dispersion, and biodegradation.	Easily implementable since no action needs to be taken.	There are no costs associated with this technology.	Selected as a stand-alone alternative in compliance with the NCP.
Land Use Covenant	Use Restrictions/ Notifications	Use Restrictions/ Notifications	LUC includes administrative and legal controls that restrict use of the site in a manner that may result in unacceptable risk to human health. The site use restrictions would be to prevent potential vapor intrusion exposure risk. Access restrictions are primarily incorporated through the implementation of LUC.	LUC does not directly reduce volume, toxicity, or mobility of VOCs in soil and soil vapor. No adverse impacts occur during the implementation of LUC since no construction activities are associated with this process option.	LUC is relatively easy to implement. However, it may be difficult to get regulatory approval for LUC as a stand-alone strategy for remediation.	Low	Selected. To be used in conjunction with other active remediation technologies for alternative development.
Soil Vapor Mitigation	Engineered Controls	Building design considerations	The engineered controls include vapor mitigation through the specific design of the Compressor Building, which will included ventilation of the building at a minimum rate of 6 air changes per hour during normal operation.	Engineered controls mitigate exposure to COCs in indoor air and subslab vapor. However, they do not reduce volume, toxicity or mobility of COCs in the subsurface.	Engineered controls are relatively easy to implement. However, it may be difficult to get regulatory approval for institutional controls (ICs) as a stand-alone strategy for remediation.	Low	Selected. To be used in conjunction with other active remediation technologies for alternative development.
In-Situ Treatment	Soil vapor extraction (SVE)	SVE	This technology reduces concentrations of volatile compounds in vadose zone soil by applying a vacuum to a network of vertical or horizontal wells. Compounds volatilized from the soil are collected in the extraction system and are often treated with carbon adsorption before being released. The increased air flow through the subsurface can stimulate biodegradation of some contaminants. SVE can be applied with heat (e.g., by injecting heated air) to enhance the removal of compounds that are less volatile.	SVE is a proven technology for removing volatile and semi-volatile contaminants in vadose soils but concentration reductions greater than about 90% are difficult to achieve. However, this technology is not deemed useful for the site because the source of VOCs in soil vapor is believed to be volatilization from groundwater, which is impacted at upgradient sites. Therefore, SVE will not be able to achieve soil vapor clean up at the Site.	SVE systems are constructed from readily available equipment but installation of SVE wells in the at the Site may lead to significant disruption of operations. An air emission permit may be required.	High	Eliminated. Due to presence of offsite sources, SVE will be impractical

TABLE 10
Preliminary Cost Estimates

Former Ventura Manufactured Gas Plant
 1555 North Olive Street

Ventura, California

Alternative	Quantity	Unit	Rate (\$)	Subtotal (\$)	Total (\$)
1. No Action	1	1	0	0	0
2. Land Use Covenant					
Land Use Covenant Preparation and Implementation	1	Est.	10,000	10,000	
DTSC Oversight Cost (assumed at 20\% of cost)	1	Est.		2,000	
Annual Inspections (see table 11 for detaile)				114,424	126,424
3. Excavation and Offsite Treatment/Disposal					
Mob/Demob/Permitting/Demolition	1	Est.	50,000	50,000	
Removal \& Loading of Soil	2,500	ton	30	75,000	
Transportation and Offsite Treatment	2,500	ton	70	175,000	
Backfilling with Clean Soil	3,000	ton	25	75,000	
Design/Oversight/Management	1	Est.	60,000	60,000	
Geotech/Testing/Closure Report	1	Est.	55,000	55,000	
Land Use Covenant Preparation and Implementation	1	Est.	10,000	10,000	
DTSC Oversight Cost (assumed at 10% of cost)	1	Est.		50,000	
Annual Inspections (see table 11 for dotaile)				114,424	664,424
4. Indoor Air Sampling and Analysis at Compressor Building					
Workplan and O\&M Plan Preparation	1	Est.	10,000	10,000	
Sampling and Analysis	1	Est.	15,000	15,000	
Report	1	Est.	10,000	10,000	
DTSC Oversight Cost (assumed at 20\% of cost)	1	Est.		7,000	42,000
Annual Inspections (included as part of Alternative 3)					

TABLE 11
30-Year Operation and Maintenance Cost
(Present Value)
Former Ventura Manufactures Gas Plant Site
1555 North Olive Street
Ventura, CA

Fiscal Year ${ }^{1}$	Actual Year ${ }^{1}$	Activity 1	Activity 2	Estimated DTSC Oversight ${ }^{2}$	Total Estimated Cost by Year	Discount Factor	Cumulative Present Value ${ }^{3}$
		Annual Site Inspection	5-year Review Reporting				
1	2022	\$3,000		\$600	\$3,600	0.98522	\$3,547
2	2023	\$3,000		\$600	\$3,600	0.97066	\$3,494
3	2024	\$3,000		\$600	\$3,600	0.95632	\$3,443
4	2025	\$3,000		\$600	\$3,600	0.94218	\$3,392
5	2026	\$3,000	\$5,000	\$1,600	\$9,600	0.92826	\$8,911
6	2027	\$3,000		\$600	\$3,600	0.91454	\$3,292
7	2028	\$3,000		\$600	\$3,600	0.90103	\$3,244
8	2029	\$3,000		\$600	\$3,600	0.88771	\$3,196
9	2030	\$3,000		\$600	\$3,600	0.87459	\$3,149
10	2031	\$3,000	\$5,000	\$1,600	\$9,600	0.86167	\$8,272
11	2032	\$3,000		\$600	\$3,600	0.84893	\$3,056
12	2033	\$3,000		\$600	\$3,600	0.83639	\$3,011
13	2034	\$3,000		\$600	\$3,600	0.82403	\$2,966
14	2035	\$3,000		\$600	\$3,600	0.81185	\$2,923
15	2036	\$3,000	\$5,000	\$1,600	\$9,600	0.79985	\$7,679
16	2037	\$3,000		\$600	\$3,600	0.78803	\$2,837
17	2038	\$3,000		\$600	\$3,600	0.77639	\$2,795
18	2039	\$3,000		\$600	\$3,600	0.76491	\$2,754
19	2040	\$3,000		\$600	\$3,600	0.75361	\$2,713
20	2041	\$3,000	\$5,000	\$1,600	\$9,600	0.74247	\$7,128
21	2042	\$3,000		\$600	\$3,600	0.73150	\$2,633
22	2043	\$3,000		\$600	\$3,600	0.72069	\$2,594
23	2044	\$3,000		\$600	\$3,600	0.71004	\$2,556
24	2045	\$3,000		\$600	\$3,600	0.69954	\$2,518
25	2046	\$3,000	\$5,000	\$1,600	\$9,600	0.68921	\$6,616
26	2047	\$3,000		\$600	\$3,600	0.67902	\$2,444
27	2048	\$3,000		\$600	\$3,600	0.66899	\$2,408
28	2049	\$3,000		\$600	\$3,600	0.65910	\$2,373
29	2050	\$3,000		\$600	\$3,600	0.64936	\$2,338
30	2051	\$3,000	\$5,000	\$1,600	\$9,600	0.63976	\$6,142
TOTALS:		\$90,000	\$30,000	\$24,000	\$144,000		\$114,424

Notes/Assumptions:

1) Assumes remediation will be completed in 2021 and annual inspection will start in 2022
2) DTSC oversight cost is estimated at 20% of the total cost
3) Present Value is based on 1.5% Rate. No escalation cost is assumed

FIGURES

ATTACHMENT A

DTSC APPROVAL LETTER FOR REMOVAL ACTION WORKPLAN (TETRA TECH, MAY 2009)

 Secretary for Environmental Protection

October 7, 2009

Masood Hosseini, Ph.D.
Senior Project Manager.
Site Assessment \& Mitigation
Southern California Gas Company
555. West Fifth Street, GT16G2

Los Angeles, California 90013-1036
Dear Dr. Hosseini:

APPROVAL OF REMOVAL ACTION WORKPLAN FOR THE FORMER VENTURA MANUFACTURED GAS PLANT (PARCELS A AND F)

A Public Comment.Period on the draft Removal Action Workplan (RAW) for the Former Ventura Manufactured Gas Plant (Parcels A and F) Site was conducted between May 22, 2009 and June 22, 2009. Comments received during the public comment period and Department of Toxic Substances Control (DTSC) responses to those comments are provided in the enclosed Responsiveness Summary dated August 18, 2009. Based upon review of the comments received, DTSC has determined that revisions to the content of the draft RAW are not required. On that basis, DTSC is hereby approving the draft RAW as final subject to the actions described below:

1. The enclosed Responsiveness Summary and CEQA - Notice of Exemption shall be added to the final RAW as appendices. Within five days of the date of this letter, two copies of the Final RAW shall be sent to DTSC (Kevin' Shaddy), and one copy shall be placed in the project repository at the Ventura County Library. A portable document format (pdf) version of the Final RAW shall also be provided to DTSC.
2. In the event that excavation activities conducted during the project encroach on the LUFT project area or the associated monitoring wells, Southern California Gas Company (SCG) shall notify and coordinate with the Ventura County Environmental Health Division, LUFT Program to minimize any impact on the LUFT project.
3. All project construction activities shall comply with applicable rules and requirements of the Ventura County Air Pollution Control District (VCAPCD). Subsequent to the public comment period and prior to commencement of soil

Masood Hosseini, Ph.D.
October 7, 2009
Page 2
excavation or grading activities, the applicable ruies and requirements shall be confirmed with the VCAPCD.
4. An appropriate sign shall be posted at the Site prior to the initiation of significance soil disturbances at the Site which lists contact numbers for DTSC and the VCAPCD. This will allow community members an avenue to express concerns regarding unreasonable odors or dust originating from the Site. DTSC will coordinate with Tetra Tech on the content of this sign.

If you should have any questions or concerns, please contact me at (559) 297-3929 or by email at kshaddy@dtsc.ca.gov.

Sincerely,

Supervising Hazardous Substances Engineer 1
Brownfields and Environmental Restoration Program

Enclosures

cc: Mr. Eric Hodder, PG., CHg
Corporate Environment, Health and Safety Division
Southern California Edison
P.O. Box 800

2244 Walnut Grove Avenue
Rosemead, California 91770
Mr. Salar D. Niku, Ph.D.
Project Manager
Tetra Tech, Inc.
3475 E. Foothill Boulevard
Pasadena, California 91107
Ms. Mona Arteaga Bontty
Public Participation Supervisor
Dept. of Toxic Substances Control
5796 Corporate Avenue
Cypress, California 90630

ATTACHMENT B

PARCEL MAP

ATTACHMENT C
APPLICABLE, RELEVANT, AND APPROPRIATE REQUIREMENTS (ARARS)

Attachment C - Table 1

Federal Chemical-Specific ARARs

Requirement	Prerequisite	Citation	ARAR Determination	Comments
Soil				
Resource Conservation and Recovery Act (RCRA)/HWCA				
Definition of RCRA hazardous waste.	Waste soil	```40 CFR 261.3; Title 22 CCR 66261.21, 66261.22(a)(1), 66261.23, 66261.24(a)(1), and 66261.100```	Relevant and appropriate to excavation alternative	Hazardous waste not expected to be generated at this site. All waste to be disposed will be profiled prior to disposal.
Toxic Substances Control Act (TSCA)				
Regulates use and manufacture of toxic substances and storage and disposal of polychlorinated biphenyls (PCBs).	Soils, debris, sludge, or dredged materials contaminated with PCBs at concentrations greater than 50 parts per million (ppm).	40 CFR 761.60, excluding 761.60(a)(B) and(D), 761.60(a)(3)(iii)(3), 761.60(e), 761.60(f); 761.65(a) and (b); 761.65(c) except 761.65(c)(9); 761.65(e)(6)(ii and iii); 765.65(e)(7) and (8); 761.79 (15 USC 2601 et seq)	Not an ARAR	Site has no known PCBcontaminated or PCBcontaining materials
Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)*				
Procedures recommended for all pesticide storage and disposal activities.	Recommendations for the disposal of organic pesticides, metal-organic pesticides, organic mercury, lead, cadmium, arsenic, and all inorganic pesticides	40 CFR 165.8	Not an ARAR	Processes and disposal practices at the site did not include any of the regulated substances under this act
Water				
Clean Water Act (CWA) 33 USC 1251-1376				
Regulates discharges of water from a facility or site including site runoff.	Wastewater discharge to a water body	40 CFR 100-149	Not an ARAR	There is no wastewater to be generated at this site.
Safe Drinking Water Act (SDWA) 42 USC 300f-300j				
Regulates the quality of drinking water supply and lists maximum contaminant levels.	Drinking water	40 CFR 141-143	Not an ARAR	There is no drinking water source at this site.

Attachment C - Table 1

Federal Chemical-Specific ARARs

Requirement	Prerequisite	Citation	ARAR Determination	Comments
Air				
Clean Air Act (CAA), 40 USC 7401 et.seq.				
National Ambient Air Quality Standards (NAAQS); Primary and secondary standards for ambient air quality to protect public health and welfare (including standards for particulate matter and lead).	Contamination of air affecting public health and welfare.	40 CFR 50.4-50.13	Not an ARAR	See Table 6 for VCAPCD ARARs
Provisions of State Implementation Plan (SIP) approved by EPA under Section 110 of CAA.	Major sources of air pollutants.	40 USC 7410; portions of 40 CFR 52.220 applicable to VCAPCD	Potentially relevant and appropriate.	See Table 6 for VCAPCD ARARs

*Statutes and policies, and their citations, are provided as headings to identify general categories of potential ARARs for the convenience of the reader. Listing the statutes and policies does not
indicate that the preparer accepts the entire statutes or policies as potential ARARs. Specific potential ARARs are addressed in the table below each general heading; only substantive requirements of the specific citations are considered potential ARARs.

ARARs = Applicable or relevant and appropriate requirements
CAA = Clean Air Act

CCR = California Code of Requlations
CFR = Code of Federal Regulations
EPA = U.S. Environmental Protection
FIFRA = Federal Insecticide, Fungicide, and Rodenticide Act
NAAQS = National Ambient Air Quality Standards (primary and secondary)
RCRA = Resource Conservation and Recovery
Act
ppm $=$ Parts per million
PCB = Polychlorinated biphenyls
RI = Remedial Investigation
SIP $=$ State Implementation Plan
TBC = "To Be Considered" Guidance
TSCA = Toxic Substances Control Act
USC = United States Code
VCAPCD = Ventura County Air Pollution Control District

Chemical-specific concentrations used may not be ARARs indicated in this table, but may be concentrations based upon other factors. Such factors may include the following:
. Human health risk-based concentrations (risk-based; PRGs 40 CFR 300.430(e)(A)(1) and (2))
. Ecological risk-based concentrations (40 CFR 300.430(e)(G)).
Practical quantitation limits of contaminants (40 CFR 300.430(e)(A)(3)).
Many potential action-specific ARARs contain chemical-specific limitations and are addressed in the action-specific ARAR tables.

Attachment C - Table 2

State Chemical-Specific ARARs

Requirement	Prerequisite	Citation	ARAR Determination	Comments
Soil				
Cal-EPA Department of Toxic Substances Control (DTSC)				
Definition of "NonRCRA hazardous waste"	Waste	$\begin{aligned} & 22 \text { CCR 66261.22(a)(3) } \\ & \text { and (4), } \\ & 66261.24(\mathrm{a})(2) \text { to }(\mathrm{a})(8), \\ & 66261.101, \\ & 66261.3(\mathrm{a})(2)(\mathrm{C}) \text {, or } \\ & 66261.3(\mathrm{a})(2)(\mathrm{F}) \end{aligned}$	Applicable	Hazardous waste not expected to be generated at this site. All waste to be disposed will be profiled prior to disposal.
Water				
State and Regional Water Quality Control Board (RWQCB)*				
Authorizes the State and Regional Water Boards to establish in Water Quality Control Plans beneficial uses and numerical and narrative standards to protect both surface and groundwater quality. Authorizes regional water boards to issue permits for discharges to land or surface or groundwater that could affect water quality, including NPDES permits, and to take enforcement action to protect water quality.	Waste discharge	California Water Code, Division 7, Sections 13241, 13243, 13263(a), and 13360 (Porter-Cologne Water Quality Control Act) and other provisions of the Porter-Cologne Water Quality Control Act	Potentially applicable, if groundwater or surface water are impacted by the site	Specific actions are focused in remediating soil, although, underlying groundwater is expected to be an impacted resource

Attachment C - Table 2

State Chemical-Specific ARARs

Describes the water basins in the Los Angeles Region, establishes beneficial uses of ground and surface waters, establishes water quality objectives, including narrative and numerical standards, establishes implementation plans to meet water quality objectives and protect beneficial uses, and incorporates statewide water quality control plans and policies.	Waste discharge	Water Quality Control Plan (Basin Plan) Los Angeles Region, June 13, 1994	Potentially applicable, if groundwater or surface water are impacted by the site	Substantive provisions in Chapters 2, 3, 4 and 5 include beneficial use designations, water quality objectives, waste discharge requirements, non-point source management requirements, drinking water policy and policies and procedures for investigation and cleanup and abatement of discharges.

*Statutes and policies, and their citations, are provided as headings to identify general categories of potential ARARs for the convenience of the reader. Listing the statutes and policies does not indicate that the preparer accepts the entire statutes or policies as potential ARARs. Specific potential ARARs are addressed in the table below each general heading; only substantive requirements of the specific citations are considered potential ARARs.

ARARs = Applicable or relevant and appropriate requirements
RCRA = Resource Conservation and Recovery Act
Chemical-specific concentrations used for removal action alternative evaluation may not be ARARs indicated in this table, but may be concentrations based upon other factors. Such factors may include the following:
. Human health risk-based concentrations (risk-based; PRGs 40 CFR 300.430(e)(A)(1) and (2))
. Ecological risk-based concentrations (40 CFR 300.430(e)(G))
. Practical quantitation limits of contaminants (40 CFR 300.430(e)(A)(3))
Many potential action-specific ARARs contain chemical-specific limitations and are addressed in the action-specific ARAR tables.

Attachment C - Table 3

Federal Location-Specific ARARs

Location	Requirement	Prerequisite	Citation	ARAR Determination	Comments
Hazardous Waste Control Act (HWCA)*					
Within 100-year floodplain	Facility must be designed, constructed, operated, and maintained to avoid washout.	RCRA hazardous waste, treatment, storage, or disposal of hazardous waste	22 CCR 66264.18(b)	TBC	Hazardous waste not expected to be generated at this site.
Executive Order 11988, Protection of Floodplains*					
Within floodplain	Actions taken should avoid adverse effects, minimize potential harm, and restore and preserve natural and beneficial resources	Action that will occur in a floodplain (i.e., lowlands) and relatively flat areas adjoining inland and coastal waters and other flood-prone areas	44 CFR 9, Appendix A	Relevant and Appropriate	Site is highly urbanized and is adjacent to the Ventura River. The River has been transformed as a flood control channel
Archaeological Resources Protection Act, 16 USC Section 469 at seq*					
Within area where action may cause irreparable harm, loss, or destruction of significant artifacts	Construction on previously undisturbed land would require an archaeological survey of the area	Alteration of terrain that threatens significant scientific, prehistoric, historic, or archaeologic data	Substantive requirements of 36 CFR 65	Relevant and Appropriate	Remedial excavation at Parcel A did not reveal archaeological artifacts.
National Historic Preservation Act, 16 USC Section 470*					
Historic project owned or controlled by Federal agency	Action to preserve historic properties; planning of action to minimize harm to national historic landmarks.	Property included in or eligible for the National Register of Historic Places	Substantive requirements of 36 CFR 800	Not an ARAR	No known historic property that needs to be preserved
Endangered Species Act of 1973*					
Critical habitat upon which endangered species or threatened species depend	Action to conserve endangered species or threatened species, including consultation with the Department of the Interior.	Determination of effect upon endangered or threatened species or their habitat	16 USC 1536(a)	Not an ARAR	No known endangered or listed species at site
Executive Order 11990, Protection of Wetlands*					
Wetland	Action to minimize the destruction, loss, or degradation of wetlands.	Wetland as defined by Executive Order 11990, Section 7	44 CFR 9, Appendix A	Not an ARAR	Site is not within a wetland zone
Clean Water Act, Section 404*					
Wetland	Action to prohibit discharge of dredged or fill material into wetland without permit. Mitigation may be required to avoid net loss of wetlands	Wetland as defined by Executive Order 11990, Section 7	40 CFR 230.10; 40 CFR 231 (excluding 231.1, 231.2, 231.7, and 231.8)	Not an ARAR	Site is not within a wetland zone

Attachment C - Table 3

Federal Location-Specific ARARs

Location	Requirement	Prerequisite	Citation	ARAR Determination	Comments
Wilderness Act*					
Wilderness Area	Area must be administered in a manner that will leave it unimpaired as wilderness and preserve its wilderness character	Federally owned area designated as wilderness area	50 CFR 35.1 et seq.	Not an ARAR	Site is highly urbanized
National Wildlife Refuge System*					
Wildlife refuge	Only actions allowed under the provisions of 16 USC 668 dd(c) may be undertaken in areas that are part of the National Wildlife Refuge System	Area designated as part of the National Wildlife Refuge System	50 CFR 27	Not an ARAR	Site is highly urbanized
Fish and Wildlife Coordination Act, Section 662*					
Area affecting stream or other water body	Action taken should protect fish or wildlife.	Diversion, channeling, or other activity that modifies a stream or other water body and affects fish or wildlife	16 USC 662	Not an ARAR	There will be no physical modification of any water body affecting fish or wildlife
Wild and Scenic Rivers Act*					
Within area affecting national wild, scenic, or recreational river	Avoid taking or assisting in an action that will have direct adverse effect on scenic river.	Activities that affect or may affect any of the rivers specified in 16 USC 1276(a)	16 USC 1271 et seq., Section 7 (a)	Not an ARAR	There will be no physical modification of any water body affecting fish or wildlife
Coastal Zone Management Act*					
Within coastal zone	Conduct activities in a manner consistent with approved State management programs.	Activities affecting the coastal zone, including lands thereunder and adjacent shoreland.	$\begin{aligned} & \text { Section 307(c) of } 16 \text { USC } \\ & 1456(\mathrm{c}) ; 15 \text { CFR } 930 \text { and } \\ & 923.45 \end{aligned}$	Not an ARAR	Site is inland, at least 20 miles from the ocean
Coastal Barrier Resources Act, Section 3504*					
Within designated coastal barrier	Prohibits any new Federal expenditure within the Coastal Barrier Resource System.	Activity within the Coastal Barrier Resource System	16 USC 3504	Not an ARAR	Site is inland, at least 1.5 miles from the ocean
Historic Sites, Buildings, and Antiquities Act*					
Historic Sites	Avoid undesirable impacts on landmarks.	Areas designated as historic sites	16 USC 461-467	Not an ARAR	There are no historic sites on site

Attachment C - Table 3

Federal Location-Specific ARARs

Location	Requirement	Prerequisite	Citation	ARAR Determination	Comments
Rivers and Harbors Act of 1890*					
Navigable waters	Permits required for structures or work in or affecting navigable waters.	Activities affecting navigable waters	33 USC 403	Not an ARAR	Ventura River is a flood control channel with little or no navigational activities
Migratory Bird Treaty Act of 1972*					
Migratory bird area	Protects almost all species of native birds in the United States from unregulated "take", which can include poisoning at hazardous waste sites	Presence of migratory birds	16 USC 703	Not an ARAR	Site is not a known migratory bird habitat
Marine Mammal Protection Act*					
Marine mammal area	Protects any marine mammal within the United States from unregulated "take" except as provided by international treaties	Presence of marine mammals	16 USC 1372(2)	Not an ARAR	Site is not a marine ecological system
Magnuson Fishery Conservation and Management Act*					
Fishery under management	Provides for conservation and management of specified fisheries within specified fishery conservation zones	Presence of managed fisheries	16 USC 1801 et seq.	Not an ARAR	Site is not a marine ecological system

ARARs = Applicable or relevant and appropriate requirements
CCC = California Coastal Commission
CCR = California Code of Regulations
CFR = Code of Federal Regulations
HWCA = Hazardous Waste Control Act
NWS = Naval Weapons Station
RCRA = Resource Conservation and Recovery Act
RWQCB = California Regional Water Quality Control Board
SHPO = State Historical Preservation Officer
USC = United States Code

Attachment C - Table 4

State Location-Specific ARARs

Location	Requirement	Prerequisite	Citation	ARAR Determination	Comments
Fish and Wildlife Game Code*					
Endangered Species Habitat	No persons shall import, export, take, possess, or sell any endangered or threatened species or part or product thereof.	Threatened or endangered species determination on or before 1 January 1985 or a candidate species with proper notification	FGC 2080	Not an ARAR	There is no threatened or endangered species listed for the site.
Endangered Species Habitat	Department policy and legislative findings and definitions for significant natural areas.		FGC 2050-2068	Not an ARAR	There is no threatened or endangered species listed for the site.
Endangered Species Habitat	Procedures for listing endangered species.		FGC 2070	Not an ARAR	There is no threatened or endangered species listed for the site.
Endangered Species Habitat	Ensures that action taken will not jeopardize the survival and reproduction of any threatened or endangered species.		FGC 2090-2096	Not an ARAR	Not effective after January 1, 1994.
California Coast Act of 1976*					
Coastal Zone	Regulates activities associated with development to control direct significant impacts on coastal waters and protect State and national interests in California coastal resources. Requires a consistency determination for federal activities within a coastal		$\begin{aligned} & \text { PRC 30000-30900; } 14 \text { CCR } \\ & 13001-136664.4 \end{aligned}$	Not an ARAR	Procedural, not a "cleanup standard," "standard of control," or "other substantive requirement, criteria or limitation." However, the CERCLA process contains the functional equivalent in the feasibility study report.

*Statutes and policies, and their citations, are provided as headings to identify general categories of potential ARARs for the convenience of the reader. Listing the statutes and policies does not indicate that the preparer accepts the entire statutes or policies as potential ARARs. Specific potential ARARs follow each general heading; only substantive requirements of the specific citations are considered potential ARARs.

ARARs = Applicable or relevant and appropriate requirements
CERCLA = Comprehensive Environmental Response, Compensation, and Liability Act
CCR = California Code of Regulations
FGC = Fish and Game Code
NA = Not an ARAR
PRC = Public Resources Code
TBC = To be considered

Attachment C - Table 5

Federal Action-Specific ARARs

Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls							
Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
Resource Conservation and Recovery Act (RCRA) 42 USC 6901 et seq.*							
On-site waste generation	Person who generates waste shall determine if that waste is hazardous.	Generator of hazardous waste in California	22 CCR 66262.11	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
Hazardous waste accumulation	Generator may accumulate waste on site for 90 days or less or must comply with requirements for operating a storage facility.	Accumulate hazardous waste	22 CCR 66262.34	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
Recordkeeping	Generator must keep manifests, biennial and exception reports and records of waste determination for at least 3 years.	Generate hazardous waste.	22 CCR 66262.40	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
Container storage	Containers of RCRA hazardous waste must be 1) maintained in good condition, 2) compatible with hazardous waste to be stored and 3) closed during storage except to add or remove waste	Storage of hazardous waste in containers for more than 90 days.	$\begin{aligned} & 22 \text { CCR 66264.171, 172, } \\ & 173 \end{aligned}$	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
	Inspect container storage areas weekly for deterioration.		22 CCR 66264.174	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
	Place containers on a sloped, crack-free base, and protect from contact with accumulated liquid. Provide containment system with a capacity of 10 percent of the volume of containers of free liquids. Remove spilled or leaked waste in a timely manner to prevent overflow of the containment system		22 CCR 66264.175(a) and (b)	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled.
	Keep containers of ignitable or reactive waste at least 50 feet from the facility property line.		22 CCR 66264.176	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled

Attachment C - Table 5
Federal Action-Specific ARARs

Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls

Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
	Keep incompatible materials separate. Separate incompatible materials stored near each other by a dike or other barrier.		22 CCR 66264.177	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
	At closure, remove all hazardous waste and residues from the containment system, and decontaminate or remove all containers, liners.		22 CCR 66264.178	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
Closure of surface impoundments	General performance standard requires elimination of need for further maintenance and control; elimination of post closure escape of hazardous waste, hazardous constituent, leachate, contaminated runoff, or hazardous waste decomposition products.	Land based unit containing hazardous waste. RCRA hazardous waste placed at site after the effective date of the requirements, or placed into another unit. Cleanup to healthbased standards that will not require long-term management. Not applicable to material treated, stored, or disposed only before the effective date of the requirements, or if treated in situ, or consolidated within	22 CCR 66264.111 except as it cross-references procedural requirements such as preparation and submittal of closure plans and other notifications.				No surface impoundments present at the site
Clean closure of surface impoundments (removal)	Removal or decontamination of all waste residues, contaminated containment system components, contaminated subsoils, and structures and equipment contaminated with waste and leachate, and management of them as hazardous waste.	Surface impoundments, container or tank liners and hazardous waste residues, or contaminated soil (including soil from dredging or soil disturbed in the course of drilling or excavation) returned	22 CCR 66264.111 and 66264.228(a)(1)and (c), except as it cross- references procedural requirements such as closure plans and annual reports.				No surface impoundments present at the site

Attachment C-Table 5
Federal Action-Specific ARARs

Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls							
Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
Closure of surface impoundments with waste in place (capping)	Requirements include eliminating free liquids, stabilizing remaining waste to support a cover and covering the surface impoundment. The cover should be constructed to prevent downward entry of water for 100 years, function with minimum maintenance, promote drainage and eliminate erosion, accommodate settling and shear forces, have a permeability of less than or equal to permeability of	Surface impoundment containing hazardous waste.	22 CCR 66264.228(a)(2), (b) and (d) through (r), except as it cross- references procedural requirements such as closure plans and annual reports				No surface impoundments present at the site
Excavation of soil from vicinity of surface impoundment	Area from which materials are excavated may require cleanup to levels established by closure requirements.	RCRA hazardous waste placed at site after the effective date of the requirements.	22 CCR 66264.228(a), (b), (e) through (k), (m), (o) through (q); 22 CCR 66264.258(a) and (b), except as it cross- references procedural				No surface impoundments present at the site
Groundwater monitoring for surface impoundment	Owners/operators of RCRA surface impoundment, waste pile, land treatment unit, or landfill shall conduct a monitoring and response program for each regulated unit.	Surface impoundment, waste pile, land treatment unit, or landfill for which constituents in or derived from waste in the unit may pose a threat to human health or the	22 CCR 66264. (c), 66264.91(a) and (c), 66264.92-.95, 66264.97-.98 except as it cross- references permit requirements				No surface impoundments present at the site
Excavation	Movement of excavated materials to new location and placement in or on land will trigger land disposal restrictions for the excavated waste or closure requirements for the unit in which the waste is being placed	environment aning RCRA Materials cont hazardous wastes subject to land disposal restrictions are placed in another unit.	22 CCR 66268.40	3, 4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
Treatment when waste will be land disposed	Treatment of waste subject to ban on land disposal must attain levels achievable by best demonstrated available treatment technologies (BDAT) for each hazardous constituent in each listed waste, if residual is to be land disposed.	Placement of RCRA hazardous waste in a landfill, surface impoundment, waste pile, injection well, land treatment facility, salt dome formation, or underground mine or cave	22 CCR 66268.40 and 42	3, 4			Hazardous waste not expected to be generated at this site. Soil will be treated through thermal desorption prior to disposal.
Placement of waste in land disposal unit	Attain land disposal treatment standards before putting waste into landfill in order to comply with land ban restrictions.		22 CCR 66268.40	3,4			Hazardous waste not expected to be generated at this site. Soil will be treated through thermal desorption prior to disposal.

Attachment C - Table 5

Federal Action-Specific ARARs

Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls							
Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
Clean Air Act (CAA) 40 USC 7401 et seq.							
Discharge to air	Provisions of State Implementation Plan (SIP) approved by EPA under Section 110 of CAA.	Major sources of air pollutants	VCAPCD Rules		3,4		See Table 6 for VCAPCD ARARs
	National Primary and Secondary Ambient Air Quality Standards (NAAQS) - standards for ambient air quality to protect public health and welfare (including standards for particulate matter and lead)	Contamination of air affecting public health and welfare	40 CFR Sections 50.4 50.13		3,4		
Hazardous Materials Transportation	No person shall represent that a container or package is safe unless it meets the requirements of 49 USC 1802, et seq. or represent that a hazardous material is present in a package or motor vehicle if it is not.	Interstate carriers transporting hazardous waste and substances by motor vehicle. Transportation of hazardous material under contract with any department of the executive branch of the Federal government.	49 CFR 171.2(f)	3,4		Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled.	
	No person shall unlawfully alter or deface labels, placards or descriptions, packages, containers, or motor vehicles used for transportation of hazardous materials		49 CFR 171.2(g)	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled
Hazardous Materials Marking, Labeling, and Placarding	Each person who offers hazardous material for transportation or each carrier that transports it shall mark each package, container, and vehicle in the manner required.	Person who offers hazardous material for transportation; carries hazardous material; or packages, labels, or placards hazardous material.	49 CFR 172.300	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled.
	Each person offering nonbulk hazardous materials for transportation shall mark the proper shipping name and identification number (technical name) and consignee's name and address		49 CFR 172.301	3,4			Hazardous waste is not expected to be generated during these activities. Hazardous waste determinations for excavated soil will be made at the time soils are stockpiled

Attachment C - Table 5

Federal Action-Specific ARARs

Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls

Attachment C-Table 5
Federal Action-Specific ARARs
Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls

Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	

*Statutes and policies, and their citations, are provided as headings to identify general categories of potential ARARs. Specific potential ARARs are addressed in the table below each general heading.

A = Applicable

ACLs = Alternate concentration limits.
ARAR = Applicable or relevant and appropriate requirement
BACT = Best available control technology
BDAT = Best demonstrated available technologies
CAA = Clean Air Act
CAMU $=$ Correction action management unit
CCR = California Code of Regulations
CERCLA = Comprehensive Environmental Response, Compensation, and Liability Act
CFR = Code of Federal Regulations
CWA = Clean Water Act
DOT = U.S. Department of Transportation
EPA = U.S. Environmental Protection Agency
LAER = Lowest achievable emission rate
MCLs = Maximum contaminant levels
MCLGs = Maximum contaminant level goals
NAAQS $=$ National Ambient Air Quality Standards (primary and secondary)

NCP = National Contingency Plan
NESHAPs = National emissions standards for hazardous air pollutants
NPDES = National Pollutant discharge elimination system
$\mathrm{ppm}=$ Parts per million
ppmv = Parts per million by weight
RA = Relevant and appropriate
RCRA = Resource Conservation and Recovery Act
RWQCB = California Regional Water Quality Control Board, San Diego Region SDWA = Safe Drinking Water Act

SIP = State Implementation Plan
SMCLs $=$ Secondary maximum contaminant levels
SWRCB = California State Water Resources Control Board
TBC = "To Be Considered" Guidance
UIC = Underground injection control
USDW = Underground source of drinking water
VCAPCD $=$ Ventura County Air Pollution Control District

Attachment C -Table 6

State Action-Specific ARARs
Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls

Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
State Water Resources Control Board (SWRCB) and Regional Water Quality Control Board (RWQCB)*							
Discharge affecting water quality	Authorizes the State and Regional Water Boards to establish in Water Quality Control Plans beneficial uses and numerical and narrative standards to protect both surface and ground water quality. Authorizes regional water boards to issue permits for discharges to land or surface or ground water that could affect water quality, including NPDES permits, and to take enforcement action to protect water quality.	Discharge to waters of the State	California Water Code, Division 7, Sections 13241, 13243, 13263(a), and 13360 (Porter-Cologne Water Quality Control Act) and other provisions of the Porter-Cologne Water Quality Control Act				No water discharge is expected from this site
Construction activity that results in 5 or more acres of soil disturbance	Requires discharges from construction sites to 1) submit a Notice of Intent to comply with the General Permit, 2) prepare a Storm Water Pollution Prevention Plan, 3) implement Best Management Practices that prevent construction pollutants from contacting storm water and prevent eroded products from moving off site, 4) eliminate or reduce nonstorm water discharges and 5) inspect Best Management Practices to make sure they are in place.	Soil disturbance	State Water Resources Control Board Water Quality Order No. 99-08- DWQ, National Pollutant Discharge Elimination System General Permit No. CAS 000002, Waste Discharge Requirements for Discharges of Storm Water Associated with Construction Activity				Site is less than 5 acres
Remediation of a surface impoundment	Authorizes the RWQCB to regulate surface impoundments containing hazardous waste as defined in 22 CCR, prohibits discharges to such surface impoundments unless they meet specified siting and design requirements. Requires compliance with specific investigation, remediation, and reporting	Surface impoundment containing waste	HSC Section 25208 (Toxic Pits Cleanup Act)				No surface impoundements present at the site

Attachment C -Table 6

State Action-Specific ARARs
Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4-Soil Vapor Mitigation with Institutional Controls

Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
Groundwater monitoring	Monitoring requirements for waste management units; establishes water quality protection standards for corrective action, including concentration limits for constituents of concern at background levels unless infeasible to achieve	Surface impoundment containing waste	$\begin{aligned} & \text { HSC Sections 2550.0(a) and (d), } \\ & 2550.1 \text { (a) and (c), 2550.2, } \\ & 2550.3,2550.4, \\ & 2550.5,2550.7(\mathrm{c}), 2550.8 \end{aligned}$				No surface impoundements present at the site.
Closure of surface impoundments with waste in place (capping)	Closure requirements for landfills and surface impoundments include removing free liquids, computing residual wastes and covering the waste. The cover should be designed to function with minimum maintenance and prevent ponding. The discharger shall maintain the cover, maintain monitoring systems, prevent erosion and protect and	$\begin{aligned} & \text { Surface impoundment containing } \\ & \text { waste } \end{aligned}$	HSC Sections 2581 and 2582				Site is not a landfill or surface impoundment.
Clean closure of surface impoundments (removal of waste)	Clean closure requirements for surface impoundments include removing all free liquid, all residual wastes, and underlying	Surface impoundment containing waste	HSC 2582(a) and (b)(1)				No surface impoundements present at the site
Los Angeles County Department of Public Works (LACDPW)							
Construction activity	Requires dischargers from construction sites to 1) incorporate good housekeeping measures and Best Management Practices into their subdivision improvement plans and grading plans, 2) prepare an Erosion Control Plan for any construction that occurs between October 1 and June 1 and 3) prepare a Storm Water Management Plan for LACDPW approval for construction projects with two or more acres of disturbed soil or 40,000 or more square feet of impervious area.	Soil disturbance	Los Angeles County Department of Public Works NPDES Permit		, 4		

Attachment C -Table 6

State Action-Specific ARARs
Alternatives: 1 - No Action, 2 - Institutional Controls, 3 - Excavation with Off-Site Treatment/Disposal, 4-Soil Vapor Mitigation with Institutional Controls

Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
California Department of Fish and Game Code*							
Waste discharge affecting ecological receptors	Prohibits taking animals with nets, poison, cage, etc.		$\begin{aligned} & \text { Fish and Game Code Section } \\ & 3005 \end{aligned}$				There is no threathened or endangered species listed for the site.
Ventura County Air Pollution Control District (VCAPCD)							
Discharges to air	Limits visible emissions from any point source.	Visible emission to the atmosphere	VCAPCD Rules		3, 4		Dust generated during removal actions will be controlled.
Discharges to air	Requires permit for construction and operation of equipment that can potentially emit VOCs or toxics.	Vapor extraction system and/or water treatment system	VCAPCD Rules				No SVE system or water treatment system is required.
Discharges to air	Prohibits the discharge of any air emissions in quantities that may cause injury, detriment, nuisance, or annoyance to the public.	Dust and/or vapor emissions	VCAPCD Rules		3,4		Dust and vapors generated during removal actions will be controlled.
Activities capable of generating fugitive dust, such as excavation	Requires actions to prevent, reduce or mitigate fugitive dust emissions such that concentrations of fugitive dust at the property line are not visible and the downwind particulate concentration is not more than 50 micrograms per cubic meter above the upwind particulate concentration. Also requires prevent the track-out of bulk material onto public roadways and remove any visible dust that is tracked out. Large and medium operators are required to prepare a fugitive dust emissions control plan for VCAPCD approval or notify the VCAPCD and maintain daily records of actions taken to prevent, or mitigate fugitive dust emissions.	These requirements do not apply when wind gusts exceed 25 miles per hour, provided that control measures for high wind conditions are implemented.	VCAPCD Rules		3, 4		Dust generated during removal actions will be controlled.

Attachment C -Table 6

State Action-Specific ARARs
Alternatives: 1 - No Action, 2 - Institutional Controls, 3-Excavation with Off-Site Treatment/Disposal, 4 - Soil Vapor Mitigation with Institutional Controls

Action	Requirement	Prerequisite	Citation	ARAR Determination			Comments
				A	RA	TBC	
California Health and Safety Code							
Recycling of hazardous waste	Prohibits the recycling of non-RCRA hazardous waste if it is used in a "use constituting disposal." Prohibits recycling RCRA-hazardous waste.	RCRA and non-RCRA hazardous waste	HSC 25143.2			3, 4	RCRA and non-RCRA hazardous wastes are not expected to be generated atr this site.

statutes or policies as potential ARARs. Specific potential ARARs are addressed in the table below each general heading; only substantive requirements of the specific actions are considered potential ARARs.

NCP = National Contingency Plan
NESHAPs = National emissions standards for hazardous air pollutants NPDES $=$ National Pollutant discharge elimination system
ppm = Parts per million
ppmv $=$ Parts per million by weigh
$R A=$ Relevant and appropriate
RCRA $=$ Resource Conservation and Recovery Act
RWQCB = California Regional Water Quality Control Board, San Diego Region SDWA = Safe Drinking Water Act

SIP = State Implementation Plan
SMCLs = Secondary maximum contaminant levels
SWRCB $=$ California State Water Resources Control Board
TBC = "To Be Considered" Guidance
UIC = Underground injection contro
USC= United Sdtates Code
USDW = Underground source of drinking water
VCAPCD $=$ Ventura County Air Pollution Control District

ATTACHMENT D

SAMPLING AND ANALYSIS PLAN

ATTACHMENT D SAMPLING AND ANALYSIS PLAN

The objective of the confirmation sampling program is to characterize the onsite residual levels of PAH, arsenic, lead remaining in-place following excavation in accessible areas. In addition, confirmation samples will be collected for analysis of total petroleum hydrocarbons (TPH) and volatile organic compounds (VOCs). An additional objective of the confirmation sampling program is to ensure that the difference between concentrations detected in the background samples and the concentrations detected at the Site could be discerned with a reasonable level of confidence. The confirmation sampling program consists of collection of soil samples with 30foot systematic triangular grid spacing for bottom samples and 30 -foot spacing for sidewall samples. This spacing was determined to provide more than an adequate level of statistical power necessary to demonstrate attainment of the remedial action goal. However, in order to obtain a better conceptual profile of PAHs, arsenic, and lead remaining onsite, and to account for the resulting irregular geometry of actual excavation, additional samples may be collected.

Confirmation soil samples will be collected from the bottom of the excavation and from the sidewalls. In general, if there is no visible discolored or lampblack layering, the sidewall samples will be taken from the midpoint between the top and the bottom of the sidewall. Photographs of remediation activities will be taken. Prior to sampling, any loose material or soil will gently be cut to clearly observe the soil lithology and to collect a sample from an area unaffected by the excavation. Samples will be collected in laboratory-supplied, 8- ounce, glass jars with Teflon-lined lids. Samples collected for analysis for VOCs will be collected in accordance with USEPA Method 5035. Each sample container will be labeled appropriately, and sealed in plastic bags before being stored on ice at 4 degrees Centigrade $\left({ }^{\circ} \mathrm{C}\right)$ in a cooler. The confirmation soil samples will be transported to the analytical laboratory, generally on the same day as collection, with chain-ofcustody documentation by a courier from the analytical laboratory.

5.3 ANALYTICAL PROGRAM

The soil confirmation samples will be analyzed for the following compounds:

- PAH by USEPA Method 8310;
- TPH extended range hydrocarbons in gasoline (TPH-g), diesel range (TPH-d) and as heavy hydrocarbon range (TPH-h) using USEPA Modified Method 8015;
- VOCs by USEPA Method 5035/8260B; and,
- Metals by USEPA Method 6010B/7471A.

ATTACHMENT E

QUALITY ASSURNACE/QUALITY CONTROL PLAN

QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) PLAN

Introduction

Quality Assurance (QA) is an integral part of all projects, particularly those involving collection and analysis of field and laboratory data. QA is not merely a series of requirements and procedures, but is a management discipline which results in validated and verifiable information. Moreover, QA is a discipline which begins with effective and conscientious work planning and ends with a carefully constructed set of checks designed to ensure that uncertainty has been reduced to a known and practical minimum.

QA/QC Objectives

The goal of the QA program is to assure that all environmental data obtained for the Site will be scientifically valid, defensible, of known quality and that reports are correct and accurate. This goal will be achieved by: 1) planning for QA and allocation of adequate resources as part of the initial planning for data collection and analysis efforts,
2) incorporating specific QA procedures into the entire process (from initial planning through data usage), and 3) assigning appropriately trained and experienced staff to perform the tasks. The following sections discuss specific quality assurance/quality control (QA/QC) procedures used for Site investigation or remediation sampling, data analyses, and report preparation. These same procedures will be applied to this project.

QA/QC Procedures for Sampling

For Site investigation or remediation sampling, procedures specified in the USEPA guidance for Superfund investigations (i.e., Scientific and Technical Standards for Hazardous Waste Site, Volume 1: Site Characterization) will be used.

Standard Operating Procedures (SOPs), specified throughout this RAW, will be used for all activities related to remediation. Calibration of equipment and maintenance procedures follow manufacturer's written instructions or accepted standard procedures.

Collection of QA/QC Samples

Additional samples will be collected to quantify potential sources of variability in the field and in the laboratory. The QA/QC samples will be labeled the same as regular samples so that the laboratory staff cannot identify them as QA samples. In addition, the laboratory will prepare the following samples to check internal accuracy and precision:

Matrix spike samples to provide percent recovery; and Matrix spike duplicates to check precision.

Use of Proper Sample Handing Procedures

Chain of Custody

The possession and handling of samples should be traceable from the time of collection, through analysis, until first disposition. Components of the chain of custody (sample labels and seals, a field log book, chain of custody record, and sample analysis request form) and procedures for their use are described in the following sections. Sample custody procedures will follow USEPA and DTSC guidance procedures.

A sample is considered to be under a person's custody if it is: 1) in a person's physical possession; 2) in view of the persons after he/she has taken possession; 3) secured by the person so that no one can tamper with the sample; and, 4) secured by that person in an area that is restricted to unauthorized personnel. To establish the documentation necessary to trace sample possession from the time of collection, a chain of custody record must be filled out and accompany every sample. Standard forms have been developed for labeling samples and tracing chain of custody. The person who collects the sample initially fills out the chain of custody form. Each person who later receives the samples must sign the form. Samples must not be left unattended unless they are secured and sealed.

Sample Labels

Sample labels are necessary to prevent misidentification of samples. Gummed paper labels will be affixed to sample containers prior to or at the time of sampling. The sample labels will be filled out at the time of sample collection. The sample label will identify each sample with the appropriate sample identification. The exact sample location and type of sample will be recorded in the sample log book.

Documentation

The most important aspect of sample custody is through record keeping. At the time of sampling, the sample identification code will be entered into a field log book along with date and time of sample collection, sample type and depth, and name of person collecting the sample. The types of chemical analyses requested will also be listed.

Shipping

Samples will be packaged and hand delivered or shipped according to the U.S. Department of Transportation and USEPA regulations. Samples will be delivered to the laboratory on a timely basis, preferably on the same day of collection, so that the requested analyses can be performed within the specified allowable holding times. Samples will be accompanied by a completed chain-of-custody record. The chain-ofcustody will list the variables to be analyzed by the laboratory and the total number and type of samples shipped for analysis. Authorized laboratory personnel will acknowledge receipt of shipment and condition of samples upon receipt by signing and dating the form and returning a copy to NOREAS, Inc. The laboratory will record the temperature
inside of the cooler on the chain-of-custody form. For hand delivered samples, the chain-of-custody form will be signed by an authorized laboratory staff member and a copy of it given to the person delivering the samples. A copy is also sent with the completed laboratory analysis results.

Use of USEPA-Recommended Laboratory Procedures

Standard USEPA methods will be used for all analyses as listed previously in this report. All analyses will be performed by laboratories certified by the State of California to perform such analyses.

Field Equipment Calibration and Maintenance

Equipment related to health and safety concerns (i.e., OVA, Miniram dust monitor, etc.) are discussed in the Health and Safety Plan.

Laboratory Data Validation

The laboratory data will be evaluated to see that units are correct, detection limits are provided, all analyses of the blanks are below detection, and that holding time requirements have been met. The percent recoveries from the matrix spike analyses will be checked to see that they are within the prescribed limits (± 25 percent). Duplicate samples will be used to determine the relative percent difference. This value should be within ± 20 percent for water and 35 percent for soil/residue samples when values are greater than five times the detection limit. For values below detection limit, the difference should be equal to the detection limit or less. The coefficient of variation for the replicate samples is then determined, and ideally should be low. All the data will be checked to be sure that the desired detection limits, as specified in the report, are achieved. Any questionable values or cases with high detection limits will be rechecked with the laboratory and, if needed, will be rerun.

QA/QC Audits and Correction Actions

Audits of data quality involve assessments of the methods used to collect, interpret, and report information. The assessment entails a detailed review of: 1) the recording and transfer of raw data; 2) data calculations; 3) documentation of procedures, particularly changes from those stated in the workplan; and, 4) verification that all available information has been used in the interpretation. This assessment will be completed prior to preparing report conclusions.

Field audits of sampling and documentation procedures will be conducted by NOREAS, Inc. staff. Any variances between actual procedures and those in the workplan will be brought to the attention of the project manager. Necessary changes to the workplan (i.e., relocating a borehole location) will be noted in the field log book and explained in the final report. Other variances (i.e., incomplete record in sample log book) will be corrected as soon as identified.

Audits of the laboratory will be made if data problems occur such as several samples with blank contamination or high variances among replicate samples. Calibration
procedures including control charts and documentation will be reviewed at this time. Corrective actions such as changing analytical methods will be suggested if necessary, to minimize matrix interference problems.

QA/QC for Review of Documents

As a final step to ensure that project objectives are met, a formal review of draft and final reports will be conducted prior to their release. Draft reports may be reviewed by senior staff familiar with the project objectives but who were not involved in the preparation of the report. This helps identify sections of the report which may not be clearly written or where more detailed substantiation of results is needed. Review of reports involving calculations will include rechecking the computations, review of assumptions used and the rationale for input data, and checking the input data against the original sources to be sure that one of the most common of all problems, transcription errors, has not occurred.

Quality Assurance Objectives for Measurement Data

Data quality objectives (DQOs) are qualitative and quantitative statements developed to specify the quality of data from field and laboratory collection activities to support specific decisions or regulatory actions. The DQOs describe what data are needed, why the data are needed, and how the data will be used to address the problem. DQOs also establish numeric limits for the data to determine whether data collected are of sufficient quality for use in their intended application. Data needs for the remedial effort include both screening measurements and data of sufficient quality to be used in achieving cleanup objectives.

The USEPA has established a hierarchy of DQOs that specify the quality of data required to support regulatory decisions during remedial response (USEPA, 1987). Table 1 provides a summary of analytical levels appropriate to data uses during the work effort. For data collected, the main analytical program will be performed at Level III protocol at a stationary laboratory. Site specific health and safety screening and measurement of parameters during environmental sample collection will be at Level I protocol. Quality criteria to be employed at the Site address the following data characteristics: accuracy, precision, completeness, representativeness, and comparability. These criteria are discussed below.

Definition of Criteria

Accuracy

Accuracy is the degree of agreement of a measurement or average of measurements with an accepted reference or "true" value, and is a measure of bias in the system. For this project, accuracy of the measured data will be assessed and controlled. Field instruments have a potential accuracy which is specified by the manufacturer. The ability to obtain this level of accuracy depends on proper calibration. For the laboratory, results of method blank analysis, as well as reagent, matrix, and surrogate

QC sample results will be the primary indicators of accuracy. These results will be used to control accuracy within acceptable limits by requiring that specific criteria be met. As these spiked QC samples are analyzed, spike recoveries will be calculated and compared to pre-established laboratory acceptance limits.

The calculation formula for percent recovery is:
$\%$ Spike Recovery $=($ Value of Sample Plus Spike Added) $-($ Value of Unspiked Sample $) \times 100$
(Value of Spike Added)
Acceptance criteria, also termed "control limits," will be based on previously established (i.e., historical) laboratory capabilities for similar samples using control chart techniques. In this approach, the control limits reflect the minimum and maximum recoveries expected for individual measurements to establish that the system was in control. Recoveries outside the established control limits indicate some assignable cause, other than normal measurement error, and the possible need for corrective action. Corrective action could include recalibration of the instrument, reanalysis of the QC sample, reanalysis of the samples in the batch, or flagging the data as suspect if the problem cannot be resolved. These results will be reported to the Project Manager.

Resampling may be performed if samples exceed their specific holding time requirements or are not preserved properly. If second column analysis, where appropriate, is not performed within the specified holding time, resampling may be undertaken.

Precision

Precision is a measure of mutual agreement among individual measurements of the same property under prescribed similar conditions.

Precision is defined as a measure of mutual agreement of a measurement or average of measurements with an accepted reference of "true" value. Based on these results, a measure of bias within the system can be estimated. Precision of the measurement data gathered during the work effort at the Site will be based on QC sample analyses (repeatability), replicate analyses (replicability), and results obtained from duplicate/replicate field samples (sample replicability).

Precision is independent of the error (accuracy) of the analyses and reflects only the degree to which the measurements agree with one another, not the degree to which they agree with the "true" value for the parameter measured.

Precision is calculated in terms of relative percent difference (RPD), which is expressed as follows:
$R P D=\frac{\left(X_{1}-X 2\right)}{\left[\left(X_{1}+X_{2}\right) / 2\right]} \times 100$
where:
X_{1} and $X 2$ represent the individual values for the target analyte in the two replicate analyses.

RPDs must be compared to the laboratory established RPD for the analysis. For concentrations less than 10 times the detection limit, RPD criteria are not valid, and variations may be as great as 100 percent. Precision of duplicates may again depend on sample homogeneity. Initial spike concentrations will be greater than the detection limits and will have a range comparable to those stated in pertinent USEPA guidelines.

When RPDs exceed previously established control limits, the analyst or his/her supervisor must investigate why the data exceed stated acceptance limits and report these findings to the Project Manager. RPDs outside the established control limits can indicate some assignable cause, other than normal measurements errors, and the need for corrective action. Follow-up action can include recalibration, reanalysis of the matrix spike/matrix spike duplicates (MS/MSD) or duplicate QC sample, environmental sample reanalysis, or flagging the data as suspect if problems cannot be resolved.

Replicate analysis of control samples will be obtained when QC samples specific to the environmental samples are analyzed. Analytical precision will be evaluated from MS/MSD RPD analyses. Use of duplicate samples during analysis can also allow a measure of precision to be determined.

Field duplicates normally apply to water samples and are defined as two samples collected independently at a single sampling location during a single act of sampling. Field duplicates will be acquired at a rate of 1 per 20 environmental samples, or 5 percent of the total number.

A field replicate is defined as a single sample that is collected, then divided into two equal parts for the purpose of analysis or two samples representative of one soil. Field replicates will be acquired at a rate of 1 per 20 environmental samples, or 5 percent of the total number. Field replicates will be collected for soil/sediment samples and analyzed for the same parameters. Discretely sampled field duplicates/replicates are useful in determining sampling variability. However, differences greater than expected between replicates may occur because of variability in the sample material. In these instances, a visual examination of the sample material will be performed to document the reason for the difference. Field sample duplicates/replicates shall be used as a QC measure to monitor precision relative to sample collection activities. Analytical precision shall be evaluated using RPDs for MS/MSD, or duplicate samples.

Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under correct, normal conditions. The target value for completeness of all parameters is 100 percent. Measurement data completeness is a measure of the extent that the database resulting from a specific measurement effort fulfills the objectives for the amount of data required. For this program, completeness will be defined as the valid data percentage of the total test requested as follows:

No. of Successful Analyses
Completeness (\%) =
No. of Requested Analyses
Successful analyses are defined as those in which the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must be analyzed within the specified holding time and according to QC acceptance criteria.

Completeness for the entire project also involves elements specific to field and laboratory documentation of sample collection. This includes documentation detailing whether samples and analyses specified in the Workplan have been processed using the procedures as specified, and whether laboratory SOPs have been implemented.

Representativeness

Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition.

Representativeness describes how well the data reflect site conditions in the vicinity of the data point at the time of collection. Representativeness may be maintained or attained by careful documentation of data collection procedures and adherence to standard data collection procedures.

The characteristics of representativeness are usually not quantifiable. Subjective factors to be taken into account are as follows:

- Degree of homogeneity of a site;
- Degree of homogeneity of a sample taken from one point in a site; and,
- Available information on which a sample plan is based.

Field duplicates (for water) and field replicates (for soil), as defined under precision, are also used to assess representativeness. Two samples that are collected at the same location and at the same time are considered to be equally representative of the Site at a given point in space and time. Soil borings will be chosen to represent the areas of interest at the Site. To maximize representativeness of results, sampling techniques, sample size, sample locations, and depths will be carefully selected so they provide laboratory samples that are representative of the Site and specific area. Samples exhibiting obvious stratification or lithologic changes should not be used as replicates. The analytical laboratory will take precautions to extract from the sample an
aliquot representative of the whole sample. The soil sample is mixed and foreign objects are removed; then the sample is passed through a 1-millimeter sieve. An aliquot is
removed for analysis. For samples requiring volatile analysis, premixing or homogenizing samples will be avoided.

Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured through the use of established and approved sample collection techniques and analytical methods, consistency in the basis of analytes (wet weight, volume, etc.), consistency in reporting units, and analysis of standard reference materials.

Comparability is the degree to which data from separate, data sets may be compared. For instance, sample data may be compared to data from background locations to established criteria or to data from earlier sampling events. Comparability is attained by careful adherence to standardized sampling procedures and rigorous documentation of sample locations (including depth, time, and date).

Data comparability will be achieved by using standard units of measure as specified for metals, inorganics, and organics in soil samples.

The use of standardized methods to collect and analyze samples (i.e., American Society for Testing and Materials [ASTM] and USEPA methods), along with instruments calibrated against National Institute for Standards and Technology (NIST) and USEPAtraceable standards, will also ensure comparability.

Comparability also depends on other data quality characteristics. Data sets can be compared with confidence only when data are judged to be representative of the environmental conditions, and when precision and accuracy are known.

Goals for Assessment Criteria

Project quality objectives for various measurement parameters associated with the remediation effort cannot be quantified for representativeness and comparability. The following elements delineate assessment criteria discussed in detail elsewhere in this QA/QC plan:

Laboratory accuracy limits and analytical precision criteria will be assessed to the current Contract Laboratory Program (CLP) Statement of Work (SOW) for each method;

Overall precision for the work effort at the Site, which includes both sampling and analytical factors, can be expected to show RPDs up to 40 percent for soil samples; and,

A completeness factor of 90 percent is acceptable for the work effort at the Site.

TABLE 1
SUMMARY OF ANALYTICAL LEVELS APPROPRIATE TO DATA USES
(According to USEPA Guidelines 1987)

DATA USES	ANALYTICAL LEVEL	TYPE OF ANALYSES	LIMITATION	DATA QUALITY OBJECTIVE
Site Characterization; Monitoring During Implementation	Level I	Total organic/inorganic vapor detection using portable instruments, field determination of pH , conductivity Field test kits	Instruments respond to naturally occurring compounds	Can provide indication of contamination if instruments are calibrated and data are interpreted correctly
Site Characterization; Evaluation of Alternatives; Engineering Design; Monitoring During Implementation	Level II	Variety of organics by gas chromatography during soil gas survey, geophysical survey to determine depth to bedrock; buried landfill materials; point counting of asbestos fibers using plane polarized microscopy. Detection limits vary from low parts per million to low parts per billion	Tentative identification	Dependent on QA/QC steps employed
Risk Assessment; Site Characterization; Evaluation of Alternatives; Engineering Design; Monitoring During Implementation	Level III	Organics/inorganics using USEPA procedures other than CLP; can be analyte specific RCRA characteristics tests	Tentative identification in some cases Can provide data of same quality as Level IV	Similar detection limits to CLP Less rigorous QA/QC
Risk Assessment; Evaluation of Alternatives; Engineering Design	Level IV	Hazardous Substance List; organics/inorganics by gas chromatography/mass spectroscopy; atomic absorption; inductively coupled plasma. Low parts per billion detection limits.	Tentative identification of nonhazardous substance list parameters. Some time may be required for validation of packages.	Goal is data of known quality Rigorous QA/QC
Risk Assessment	Level V	Nonconventional parameters. Method-specific detection limits. Modification of existing methods Appendix 8 parameters	May require method development/modification. Mechanism to obtain services requires special lead time.	Method-specific

Source: Environmental Protection Agency, 1987

ATTACHMENT F

RESPONSE TO COMMENTS

RESPONSE TO DTSC OCTOBER 19, 2020, HERO COMMENTS ON REMOVAL ACTION WORKPLAN FORMER VENTURA MANUFACTURED GAS PLANT SITE VENTURA, CALIFORNIA

Comment Number	Comment	Response
1	Section 3.1, Soil Impacts: HERO requests that the soil confirmation sampling results from the Removal Action for Parcel A (e.g., I7-S1, I11-S1, and I15-S3 on Figure 4) be added to Tables 1 and 2 and discussed in this section. Because PAH and TPH levels exceeding the screening levels were detected at these locations and did not appear to be removed due to lack of access previously, these sample locations should be addressed in the RAW (see Comment 2a).	Noted. Section 3.1 has been revised accordingly. Data from I7- S1, I11-S1, and I15-S3 have been added to Tables 1 and 2. The excavation areas have been expanded to cover these sampling points. The RAW has been revised accordingly. Please note the first and third paragraphs of Section 3.1.
2	Section 4.0, Human Health Risk Assessment: a)As noted in Comment 1, several confirmation samples along the southern boundary of Parcel A have elevated PAH and TPH levels, and these locations should also be included in the removal action plan described in Section 8. b)Besides elevated soil vapor concentrations in the area of the proposed Compressor Building, naphthalene concentrations at B8-14 and B8-24 located in the proposed Warehouse also exceed the corresponding residential Health Based Goal (see Table 7-3 of the Revised HHRA) and should also be noted in the last paragraph. c)HERO notes that some of the estimated health risks (e.g., direct soil contact at the Compressor Building) do not match those in the Revised HHRA. Please 2a: Noted. Please note response to Comment 1. Also, please note the second paragraphs of Section 5.1 and first paragraph of Section 8.1.1. 2b Noted. The RAW has been revised accordingly. Please note the fourth, fifth, and tenth paragraphs of Section 4.0.	2c: Noted. The RAW has been revised accordingly. Please note the fourth paragraph of Section 4.0.

	update this section following DTSC approval of the final HHRA Report (see HERO's 10/19/2020 memorandum on Revised HHRA).	
3	Section 5.1, RAOs for Shallow Soil: The remedial action objectives (RAOs) proposed for shallow soil are based on residential land use, and HERO notes the following issues that need to be addressed: (a) For soil in the Compressor Building area, the noncancer hazards exceed the threshold of one for the residential and construction scenarios (2.1 and 1.6, respectively), primarily attributed to TPH fractions according to Tables 6-11 and 6-13 of the Revised HHRA; thus, TPHs should be listed as COCs here and in Section 8.1 for the proposed removal action. (b) A land use covenant (LUC) is still required at the southern portion due to deeper soil impacts exceeding residential and/or industrial screening levels (e.g., B1, B3, B5, and B6 on Figure 4) left in place after the proposed development. Specifically, the LUC should stipulate that a soil management plan will be required if the impacted soils are to be disturbed in the future	Noted. 3a: Noted: The HIs exceeding 1 are mainly due to TPHs at I15-S3-5 and B1-2. Both locations are included in the areas targeted for soil excavated. The second paragraphs of Section 5.1 and first paragraph of Section 8.1.1 have been revised accordingly. 3b: Agreed. Section 10.4 has been revised accordingly to mention that a LUC will be required to prevent the potential use of the southern portion of the Site for future residential uses, and the LUC will stipulate that a soil management plan will be required if the impacted soils are to be disturbed in the future.
4	Section 5.2, RAOs for Vapor Intrusion: For clarity, HERO recommends expanding the RAOs for vapor intrusion pathway to note that mitigation measures to protect human receptors (onsite workers and/or hypothetical residents) may also be required for future buildings proposed outside the planned Compressor Building (i.e., Locations B1, B3, B5, B6, B8, B9, and B15 on Table 7-3 of the Revised HHRA).	Noted. The RAW has been revised accordingly. Please note the first paragraph of Section 5.2.

5	Section 7.3.4, Conclusion on Alternative 2: HERO recommends revising the discussion to indicate that a LUC is needed for (a) shallow soil if the unrestricted land use criteria cannot be met due to physical constraints as discussed in Section 5.1, and (b) deeper soil impacts exceeding residential and/or industrial screening levels (see Comment 3b). Please revise Section 10.4 accordingly.	Noted: 5a: Clarification has been added Section 10.4.
6	Sb: Clarification has been added Section 10.4. Section 7.5, Alternative 4 for Soil Vapor: This Alternative proposes soil vapor mitigation for the new Compressor Building only. Please clarify that mitigation measures may also be required for other future buildings (see Comment 4).	Noted: Section 7.5 has been revised accordingly.
6	Section 8.1.2, Mitigation Measures for Vapor Intrusion: While HERO does not object to reliance of adequate ventilation and post-construction indoor air sampling to verify that the proposed mitigation measures will be protective of future occupants, a long-term operation and maintenance (O\&M) plan should be prepared for DTSC approval to ensure that the building ventilation system be operated and maintained as designed. Section 10.2 should be revised accordingly.	Following the design of the compressor building, an O\&M Plan will be prepared for review by DTSC.
7	Section 10.2 is revised accordingly.	

8 	Section 9.2.4, Additional Investigation: HERO recommends adding TPH fractions to the analyte list as they are also considered COCs for shallow soil (see Comment 3a). Please also clarify whether these sampling results may be used to supplement the confirmation soil sampling results (Section 9.4.1) in the postremediation risk assessment discussed in Section 10.1.	TPH fractions have been added to list of the analytes in Section 9.2.4 for the samples that will be collected during the additional investigation and also confirmation samples. Please note that the additional investigation is meant to more accurately define the area of excavation prior to the start of the excavation. The results should also help to segregate the excavated soil for profiling purposes. Some of the results that represent the soil that ultimately will remain in place will be used in post-remediation risk assessment. The most important point that needs to be emphasized is that all the soil exceeding the cleanup levels will be targeted for removal based on field observations and/or confirmation sampling (see Sections 8.1.1, 9.0, and 9.4.1). If impacted soil has to remain in place due to physical constraints, samples will be collected and analyzed and the remaining impacted soil will be documented.
9	Section 9.3.2, VCAPCD Rules Implementation: Besides pertinent Ventura County Air Pollution Control District (VCAPCD) Rules, HERO recommends real-time air/dust monitoring along the eastern and southern property boundary to ensure protection of adjacent offsite receptors during soil excavation.	Noted. Please note the revised Section 9.3.2.
10	Section 9.4.1, Confirmation Sampling: If the soil excavation extends beyond four feet bgs, additional sidewall samples should be collected from deeper intervals (e.g., every two feet) to ensure the excavation boundary is properly defined vertically.	Noted: Additional notes are included in Section 9.4.1.

11	Section 9.4.2, Backfill Placement: Please follow the DTSC Clean Fill Advisory (https://dtsc.ca.gov/wp- content/uploads/sites/31/2018/09/SMP FS Cleanfill- Schools.pdf) for sampling and analysis of candidate borrow sources and providing this information for DTSC review prior to importing.	Noted: Additional notes are included in Section 9.4.2.
12	Figure 6, Excavation Plan: HERO recommends also depicting soil boring locations on this figure to demonstrate that the proposed excavation area includes the locations targeted for soil excavation, including B1, B2, B15, I7-S1, I11-S1, and I15-S3 (see Comment 1).	Noted: Figure 6 has been revised accordingly.
13	Attachment B, Human Health Risk Assessment (HHRA): HERO recommends removing this attachment, as the HHRA Report is still under review and will be approved as a standalone document by DTSC	Noted: This attachment has been removed.

Environmental Engineering and Science

NOREAS, Inc.
16361 Scientific Way, Irvine, CA 92618• Phone: 949.467-9100
\(\left.$$
\begin{array}{|l|l|l|}\hline & \begin{array}{l}\text { contingency) with vapor intrusion mitigation should be } \\
\text { considered. }\end{array} & \begin{array}{l}\text { sources, including MGP operations." Sections 4.0 and } \\
10.2 \text { of the RAW present professional opinions based } \\
\text { collectively on previous and recent data and include: } \\
\text { "..VOCs in deep soil are related to residual } \\
\text { groundwater impact, mainly originating from } \\
\text { upgradient non-MGP sources in Parcels B and C." }\end{array}
$$

The seepage pit was used for the disposal of sewage

wastes, not industrial wastes, before sanitary sewer

service became available in the northwest portion of the

City. Based on data generated as part of the supplemental

remedial investigation, sewage effluent from the seepage

pit has not appreciably contributed to soil vapor or

groundwater contamination. Similarly, analytical data

generated at former UST locations suggest a negligible

contribution to soil vapor or groundwater contamination.\end{array}\right\}\)| As acknowledged in the RAW and as outlined in the |
| :--- |
| HHRA, elevated VOCs concentrations occur in soil vapor |
| within the western portion of the site where the new |
| compressor building will be constructed. As it's neither |
| reasonable nor technically feasible to remediate soil vapor |
| or groundwater largely emanating from offsite, |
| upgradient sources, mitigation of soil vapor risks is the |
| only viable alternative. That is precisely why that |
| approach is outlined in the RAW and why DTSC's |
| Human and Ecological Risk Office (HERO) and Site |
| Mitigation and Restoration Program (SMRP) have |
| accepted this approach. |

3	Upgradient groundwater source (former bulk storage tank farm which was part of the MGP site prior) related information should be presented. Upgradient and onsite groundwater well concentrations, groundwater flow direction, supporting hydrogeological information and trends should be presented and discussed to substantiate the claim of an offsite source.	Please refer to the preceding response to Comment 2. Groundwater contamination has already been extensively assessed and the remedial investigation has already been completed to DTSC's satisfaction. In keeping with standard practice, previous groundwater assessment data are merely summarized in the RAW and the pertinent previous documents detailing offsite groundwater sources are cited therein.
4	Section 7.1 Remedial Technology Screening Rather than incorporating extensive details that have already been addressed to DTSC's satisfaction, we instead refer the reviewer to previous technical submittals and the associated DSTC correspondence that are readily available on Envirostor.	
Alternatives considered are listed based on the different impacted environmental media. For example, Alternative 2 addresses soil and soil vapor while Alternative 3 addresses soil only. Each remedial alternative should address all and environmental media for consistency. Please make appropriate changes. A land use covenant should be part of all the Alternatives	Please note that this is an RAW for a relatively small and simple project and it was designed to be as streamlined as possible. The screening process in Section 7.0 of the RAW addressed both soil and soil vapor together where it was reasonably feasible to do so. For example, both soil and soil vapor were evaluated together in Alternative 1 (no action) and Alternative 2 (land use covenant) as both	
mediums could be effectively evaluated together.		
However, Alternative 3 only included the excavation of		
shallow soil (and not soil vapor), mainly impacted with		
PAHs, arsenic and lead since excavation of deep,		
saturated, contaminated soil to address soil vapor issues		
would not be a practical or feasible scenario. Similarly,		
Alternative 4 only included mitigation of soil vapor, as		
ventilation of indoor air would have little effect on lead.		
arsenic or PAH-impacted soil.		

		4 (see Section 10.4. Addressing a land use covenant with the no action alternative wasn't considered as institutional controls are, in fact, action.
5	A land use covenant (LUC) will be required at the southern portion due to deeper soil/groundwater impacts exceeding residential and/or industrial screening levels	The reviewer is referred to Section 10.4 of the RAW.
6	Section 9.3.4 Soil Stockpile Area Construction and 3.14 Waste Transportation and Disposal. These sections should elaborate on the soil profiling procedure based on TTLC, TCLP, and STCL for RCRA and Cal-Hazardous Waste.	Section 9.3.4 of the RAW has not been modified, as this section is intended to address onsite soil stockpile management - not analytical test methods and waste classification procedures.
As the RAW does not include a section number of 3.14 and there is no section entitled "Waste Transportation and Disposal," the spirit of the reviewer's comments has been addressed in Section 9.5 (Transportation and Offsite Disposal) (see Section 9.5.1 Waste Stream). Please also note that not a single sample collected as part of the supplemental remedial investigation contained an analyte concentration that exceeded the respective Total Threshold Limit Concentration. As such, the potential for Resource Conservation and Recovery Act (RCRA) or non-RCRA hazardous waste is remote.		

7	Section 7.5 S (sic) Alternative 4 for Soil Vapor: Soil Vapor Mitigation at New Compressor Building and Section 10.2 Vapor Intrusion Mitigation Measure These sections propose soil vapor mitigation measures at the New Compressor Building. This includes roof-ridge ventilator and air supply fans to achieve a minimum rate of 6 air exchanges. Following are comments pertaining to vapor mitigation. - Provide discussion on the design basis or screening vapor intrusion mitigation alternatives. Note that no subslab components such as membrane and passive/active venting are proposed for one proposed building. For more information please refer to https://dtsc.ca.gov/wp- content/uploads/sites/31/2016/01/VIMA Final Oct 20111.pdf - Utility Trench dams and conduit seals should be included to eliminate any potential utility related preferential pathways - Sublsab and soil vapor monitoring points should be included as part of the mitigation measures.	The design basis for the compressor building, as noted in the RAW, includes a ventilation system that will provide for a minimum of six air exchanges per hour to minimize the potential for combustible vapor from the gas compression equipment to accumulate within the building. The minimum air exchange rate is based on criteria set forth in the American Petroleum Institute's (API's) Recommended Practice for Classification of Locations for Electrical Installations at Petroleum Facilities (aka RP 500). Considering building design requirements, including the minimum air exchange rate, the installation of trench dams, conduit seals, subslab monitoring points, and soil vapor monitoring points are unwarranted. Postconstruction indoor air sampling data will be used to demonstrate that the ventilation system adequately serves to mitigate vapor intrusion risks. The reviewer is reminded that DTSC's HERO and SMRP have acknowledged and accepted this approach. Preliminary design drawings remain conceptual in nature (30 percent design submittal) and are currently insufficient for the purposes of operation and maintenance (O\&M) plan preparation (see Section 10.2).

| - | Engineering controls that ensure continuous
 operation of the air supply fans should be
 discussed. |
| :---: | :---: | :---: |
| -Note that a design of the proposed vapor
 mitigation measures and operation and
 maintenance plan will be required. The design
 can be submitted under a separate cover. | |
| -Once the mitigation measures are in place, a full
 operation and maintenance plan can be
 developed with as-built drawings. The RAW
 should at least have a conceptual operation and
 maintenance plan including verification of
 desired air exchange, subslab, soil vapor and
 indoor air monitoring requirements | |

RESPONSE TO DTSC NOVEMBER 2, 2020, PROJECT MANAGER COMMENTS ON REMOVAL ACTION WORKPLAN FORMER VENTURA MANUFACTURED GAS PLANT SITE VENTURA, CALIFORNIA		
Comment Number	Comment	Response
1	Title Page: - Title should be changed to Removal Action Workplan Southern Portion of Parcel A Former Ventura Manufactured Gas Plant. - Revised date should be provided every time the document is revised. - The document should be signed and stamped by a professional license holder.	- Parcel A only covers the northern part of the Site. The southern portion is a not part of Parcel A. The title has been changed as follows: Removal Action Workplan Property South of Parcel A Former Ventura Manufactured Gas Plant - The revision date has been added to the title page. - The document has been signed and stamped as requested.
2	Table of Content: - Revise Table of Content according to the changes asked in this memorandum.	- The table of contents has been regenerated as requested.

3	Section 2.0: Background - Provide EPA Identification Number and Cal Sites Database Number - Assessor's Parcel Number(s) and Maps - Ownership - Contact Person, Mailing Address and Telephone Number	The requested background information has been added to Section 2.1. Parcel map is added as Attachment B.
4	Section 3:0: Nature, Source, And Extent of Soil and Soil Vapor Impacts - This section should include the past and present chemicals of concern (COCs) and chemicals of potential concern in the southern area of Parcel A. - Include maximum concentrations and depths of the contaminants found in soil, soil gas and ground water. - Figures should be included in the RAW showing concentrations of past and present COCs in the soil and soil gas.	- Section 4.0 of the RAW has been revised to include a discussion of the chemicals of the potential concern and health-based goals. - The maximum concentrations detected in soil are listed in Tables 1 and 2 and are graphically depicted on Figure 4. The maximum concentrations detected in soil vapor are listed in Table 3 and are graphically depicted on Figure 5. Groundwater contamination is not subject to removal action but is described in Section 3.2, where reference is made to Section 2.3 where additional background information pertaining to groundwater is presented. - Figures depicting COCs in soil and soil gas are included as Figures 4 and 5, respectively.

5	Section 7: Feasibility Study, Identification and Analysis of Removal Action Alternatives - Conclusion for each four of the Alternatives are provided. Add a conclusive paragraph about all the chosen Alternatives and the reason at the end of the section.	Section 7.6 has been added in the revised RAW to provide conclusions and the bases for the alternatives.
6	Section 9:0: Shallow Soil Removal Action Implementation Add following sub sections: - Noise Monitoring and Control Plan - Dust Control Plan - Odor Control Plan - Stormwater Management Plan - Quality Assurance Project Plan	Section 9.6 has been added to address the following: - Noise Monitoring and Control Plan - Dust Control Plan - Odor Control Plan - Stormwater Management Plan Please see Attachment E for Quality Assurance/Quality Control Plan.

7	Attachments - Remove Attachment A, Removal Action Workplan Former Ventura Manufactured Gas Plant Site (Parcels A And F) dated May 2009 as it was not signed and not required to enclose the whole document with the current RAW. DTSC's Approval Letter can be left in the Attachment A.	Attachment A now only includes the DTSC approval letter.
	Revise Attachment D, Health and Safety Plan for COVID-19 safety guidelines and submit as a standalone document.	The HASP has been revised to include Health and Safety guidelines for COVID-19. The HASP will be submitted separately as a standalone document.
\quadAdd following as Attachments: Quality Assurance Project Plan (QAPP)	A QA/QC Plan is included as Attachment E in the revised RAW	

Environmental Engineering and Science

RESPONSE TO ADDITIONAL DTSC COMMENTS FROM HEALTH AND ECOLOGICAL RISK ASSESSMENT AND ENGINEERING AND SPECIAL PROJECTS REMOVAL ACTION WORKPLAN FORMER VENTURA MANUFACTURED GAS PLANT SITE VENTURA, CALIFORNIA		
ADDITIONAL COMMENTS FROM HEALTH AND ECOLOGICAL RISK ASSESSMENT, DATED NOVEMBER 30, 2020 (Via Email)		
Comment Number	Comment	Response
1	Section 5.1, RAOs for Shallow Soil: The HERO notes that the proposed removal target levels for TPHs (1700, 250, and $2700 \mathrm{mg} / \mathrm{kg}$ for TPH-g, TPH-d, and TPH-hh, respectively) do not agree with regulatory screening levels (e.g., USEPA Regional Screening Levels [RSLs] and SFBRWQCB Environmental Screening Levels [ESLs]) commonly used for TPH cleanup. Specifically, these target levels correspond to the health-based goals (HBGs) derived from the toxicity values based on aliphatic fractions only (e.g., no oral reference dose value for TPH-g) in the Human Health Risk Assessment. Because no speciated TPH data (aromatics vs. aliphatics) will be collected during confirmation soil sampling, HERO recommends using the SFBRWQCB ESLs for residential shallow soil (430, 260, and $12,000 \mathrm{mg} / \mathrm{kg}$ for TPH-g, TPH-d, and TPH-hh,	Section 5.1 has been modified to incorporate the use of initial removal target levels for TPH-g, TPH-d, and TPHhh that are based on Environmental Screening Levels established by the San Francisco Bay Regional Water Quality Control Board.

NOREAS, Inc.
16361 Scientific Way, Irvine, CA 92618• Phone: 949.467-9100

	respectively) as initial removal target levels in this RAW for consistency with other DTSC projects.	
2	Arsenic and lead should also be listed as metals of potential concern on Table 4 for completeness.	Table 4 has been modified to include arsenic and lead as metals of potential concern.
3	The boring location B2 is shown outside the proposed excavation area on Figure 6, which contradicts with the recommendation that arsenic-impacted soil around B2 (13.3 mg/kg at 2-feet bgs) should be removed to meet the soil removal target of 12 mg/kg listed in Section 5.1.	Figure 6 has been modified to incorporate the removal of shallow soil in the B2 area.
ADDITIONAL COMMENTS FROM ENGINEERING AND SPECIAL PROJECTS, DATED DECMBER 2, 2020 (Via Email)		
Comment	Comment Number	Some of the Responses indicate that DTSC's HERO and SMRP have acknowledged and accepted this approach. Those comments were previous ESPO comments (comment 2, 3, 7). In this case, ESPO does not have any additional comments. The Responses provided make references to the impact in soil vapor and groundwater from the offsite sources and therefore negate the need for source removal/active remediation approach for the soil gas and groundwater and changes to the RAW.
1		

2	All other responses and changes to the RAW are adequate. However, ESPO recommends including a contingency (such as increased air exchange rate etc.) to the selected mitigation measures during development of operation and maintenance plan. ESPO also suggests installing a few soil vapor and groundwater monitoring points. Monitoring frequency can be reduced or terminated over period of time. This will document trend in soil vapor and groundwater in light of potential off site sources.	The Operation and Maintenance Plan will incorporate contingencies for alternate mitigative scenarios. We do note, however, that an increased air exchange rate is probably an unlikely scenario since design criteria already include a full air exchange at intervals not exceeding ten minutes. The minimum air exchange rate will make indoor air essentially equivalent to ambient outdoor air. Soil vapor was assessed as part of the supplemental remedial investigation. As outlined in the human health risk assessment report and in the subject removal action workplan, soil vapor risks are isolated in the western portion of the property where the proposed compressor building will be constructed. Given the unique and complicated foundation design, indoor air quality will be assessed within the building once it is constructed. As such, further soil vapor assessment would not serve a beneficial purpose. We acknowledge, however, that additional soil vapor assessment may be necessary in the future, should additional buildings be proposed in the western portion of the site. A requirement for additional assessment of vapor risks for any other buildings will be addressed as part of the pending land use covenant. Regarding the suggestion that groundwater monitoring wells should be installed to document water quality trends, we again note that 36 groundwater monitoring wells were previously installed and monitored to assess groundwater quality in and around the site. Based on an extensive dataset and thorough analysis, DTSC determined that no further action related to groundwater would be necessary and authorized destruction of all groundwater monitoring wells. The proposed plan to remove residual wastes by excavation of shallow soil has

		no direct relation to groundwater quality. Moreover, the supplemental remedial investigation completed earlier this year did not reveal any evidence that conflicted with earlier assessment data. In sum, there's no technical basis to support reinstallation of wells that DTSC previously determined were unnecessary.
3	Table 10 cost estimate for Alternative 4 should be revised to include capital and long term operation/maintenance/monitoring and reporting cost (30 year present worth).	Table 11 is added to the RAW that includes long term operation/maintenance/monitoring and reporting cost (30 year present worth).

TECHNICAL ADVISORY

ON EVALUATING TRANSPORTATION IMPACTS IN CEQA

December 2018

Contents

A. Introduction 1
B. Background 2
C. Technical Considerations in Assessing Vehicle Miles Traveled 4

1. Recommendations Regarding Methodology 4
D. General Principles to Guide Consideration of VMT 7
E. Recommendations Regarding Significance Thresholds 8
2. Screening Thresholds for Land Use Projects. 12
3. Recommended Numeric Thresholds for Residential, Office, and Retail Projects 15
4. Recommendations Regarding Land Use Plans 18
5. Other Considerations 19
F. Considering the Effects of Transportation Projects on Vehicle Travel 19
6. Recommended Significance Threshold for Transportation Projects 22
7. Estimating VMT Impacts from Transportation Projects 23
G. Analyzing Other Impacts Related to Transportation 25
H. VMT Mitigation and Alternatives 26
Appendix 1. Considerations About Which VMT to Count 29
Appendix 2. Induced Travel: Mechanisms, Research, and Additional Assessment Approaches 32

A. Introduction

This technical advisory is one in a series of advisories provided by the Governor's Office of Planning and Research (OPR) as a service to professional planners, land use officials, and CEQA practitioners. OPR issues technical assistance on issues that broadly affect the practice of land use planning and the California Environmental Quality Act (CEQA) (Pub. Resources Code, § 21000 et seq.). (Gov. Code, § 65040 , subds. (g), (I), (m).) The purpose of this document is to provide advice and recommendations, which agencies and other entities may use at their discretion. This document does not alter lead agency discretion in preparing environmental documents subject to CEQA. This document should not be construed as legal advice.

Senate Bill 743 (Steinberg, 2013), which was codified in Public Resources Code section 21099, required changes to the guidelines implementing CEQA (CEQA Guidelines) (Cal. Code Regs., Title 14, Div. 6, Ch. 3, $\S 15000$ et seq.) regarding the analysis of transportation impacts. As one appellate court recently explained: "During the last 10 years, the Legislature has charted a course of long-term sustainability based on denser infill development, reduced reliance on individual vehicles and improved mass transit, all with the goal of reducing greenhouse gas emissions. Section 21099 is part of that strategy" (Covina Residents for Responsible Development v. City of Covina (2018) 21 Cal.App.5th 712, 729.) Pursuant to Section 21099, the criteria for determining the significance of transportation impacts must "promote the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses." (ld., subd. (b)(1); see generally, adopted CEQA Guidelines, § 15064.3, subd. (b) [Criteria for Analyzing Transportation Impacts].) To that end, in developing the criteria, OPR has proposed, and the California Natural Resources Agency (Agency) has certified and adopted, changes to the CEQA Guidelines that identify vehicle miles traveled (VMT) as the most appropriate metric to evaluate a project's transportation impacts. With the California Natural Resources Agency's certification and adoption of the changes to the CEQA Guidelines, automobile delay, as measured by "level of service" and other similar metrics, generally no longer constitutes a significant environmental effect under CEQA. (Pub. Resources Code, § 21099, subd. (b)(3).)

This advisory contains technical recommendations regarding assessment of VMT, thresholds of significance, and mitigation measures. Again, OPR provides this Technical Advisory as a resource for the public to use at their discretion. OPR is not enforcing or attempting to enforce any part of the recommendations contained herein. (Gov. Code, $\S 65035$ ["It is not the intent of the Legislature to vest in the Office of Planning and Research any direct operating or regulatory powers over land use, public works, or other state, regional, or local projects or programs."].)

This December 2018 technical advisory is an update to the advisory it published in April 2018. OPR will continue to monitor implementation of these new provisions and may update or supplement this advisory in response to new information and advancements in modeling and methods.

1 | Page
December 2018

B. Background

VMT and Greenhouse Gas Emissions Reduction. Senate Bill 32 (Pavley, 2016) requires California to reduce greenhouse gas (GHG) emissions 40 percent below 1990 levels by 2030, and Executive Order B-16-12 provides a target of 80 percent below 1990 emissions levels for the transportation sector by 2050. The transportation sector has three major means of reducing GHG emissions: increasing vehicle efficiency, reducing fuel carbon content, and reducing the amount of vehicle travel. The California Air Resources Board (CARB) has provided a path forward for achieving these emissions reductions from the transportation sector in its 2016 Mobile Source Strategy. CARB determined that it will not be possible to achieve the State's 2030 and post-2030 emissions goals without reducing VMT growth. Further, in its 2018 Progress Report on California's Sustainable Communities and Climate Protection Act, CARB found that despite the State meeting its 2020 climate goals, "emissions from statewide passenger vehicle travel per capita [have been] increasing and going in the wrong direction," and "California cannot meet its [long-term] climate goals without curbing growth in single-occupancy vehicle activity." ${ }^{1}$ CARB also found that " $[w]$ ith emissions from the transportation sector continuing to rise despite increases in fuel efficiency and decreases in the carbon content of fuel, California will not achieve the necessary greenhouse gas emissions reductions to meet mandates for 2030 and beyond without significant changes to how communities and transportation systems are planned, funded, and built." ${ }^{2}$

Thus, to achieve the State's long-term climate goals, California needs to reduce per capita VMT. This can occur under CEQA through VMT mitigation. Half of California's GHG emissions come from the transportation sector ${ }^{3}$, therefore, reducing VMT is an effective climate strategy, which can also result in co-benefits. ${ }^{4}$ Furthermore, without early VMT mitigation, the state may follow a path that meets GHG targets in the early years, but finds itself poorly positioned to meet more stringent targets later. For example, in absence of VMT analysis and mitigation in CEQA, lead agencies might rely upon verifiable offsets for GHG mitigation, ignoring the longer-term climate change impacts resulting from land use development and infrastructure investment decisions. As stated in CARB's 2017 Scoping Plan:
"California's future climate strategy will require increased focus on integrated land use planning to support livable, transit-connected communities, and conservation of agricultural and other lands. Accommodating population and economic growth through travel- and energy-efficient land use provides GHG-efficient growth, reducing GHGs from both transportation and building energy use. GHGs can be further reduced at the project level through implementing energyefficient construction and travel demand management approaches." ${ }^{5}$ (Id. at p. 102.)

[^35]In light of this, the 2017 Scoping Plan describes and quantifies VMT reductions needed to achieve our long-term GHG emissions reduction goals, and specifically points to the need for statewide deployment of the VMT metric in CEQA:
> "Employing VMT as the metric of transportation impact statewide will help to ensure GHG reductions planned under SB 375 will be achieved through on-the-ground development, and will also play an important role in creating the additional GHG reductions needed beyond SB 375 across the State. Implementation of this change will rely, in part, on local land use decisions to reduce GHG emissions associated with the transportation sector, both at the project level, and in long-term plans (including general plans, climate action plans, specific plans, and transportation plans) and supporting sustainable community strategies developed under SB 375." ${ }^{6}$

VMT and Other Impacts to Health and Environment. VMT mitigation also creates substantial benefits (sometimes characterized as "co-benefits" to GHG reduction) in both in the near-term and the longterm. Beyond GHG emissions, increases in VMT also impact human health and the natural environment. Human health is impacted as increases in vehicle travel lead to more vehicle crashes, poorer air quality, increases in chronic diseases associated with reduced physical activity, and worse mental health. Increases in vehicle travel also negatively affect other road users, including pedestrians, cyclists, other motorists, and many transit users. The natural environment is impacted as higher VMT leads to more collisions with wildlife and fragments habitat. Additionally, development that leads to more vehicle travel also tends to consume more energy, water, and open space (including farmland and sensitive habitat). This increase in impermeable surfaces raises the flood risk and pollutant transport into waterways. ${ }^{7}$

VMT and Economic Growth. While it was previously believed that VMT growth was a necessary component of economic growth, data from the past two decades shows that economic growth is possible without a concomitant increase in VMT. (Figure 1.) Recent research shows that requiring development projects to mitigate LOS may actually reduce accessibility to destinations and impede economic growth. ${ }^{8,9}$

[^36]

Figure 1. Kooshian and Winkelman (2011) VMT and Gross Domestic Product (GDP), 1960-2010.

C. Technical Considerations in Assessing Vehicle Miles Traveled

Many practitioners are familiar with accounting for VMT in connection with long-range planning, or as part of the CEQA analysis of a project's greenhouse gas emissions or energy impacts. This document provides technical information on how to assess VMT as part of a transportation impacts analysis under CEQA. Appendix 1 provides a description of which VMT to count and options on how to count it. Appendix 2 provides information on induced travel resulting from roadway capacity projects, including the mechanisms giving rise to induced travel, the research quantifying it, and information on additional approaches for assessing it.

1. Recommendations Regarding Methodology

Proposed Section 15064.3 explains that a "lead agency may use models to estimate a project's vehicle miles traveled" CEQA generally defers to lead agencies on the choice of methodology to analyze impacts. (Santa Monica Baykeeper v. City of Malibu (2011) 193 Cal.App.4th 1538, 1546; see Laurel Heights Improvement Assn. v. Regents of University of California (1988) 47 Cal.3d 376, 409 ["the issue is not whether the studies are irrefutable or whether they could have been better" ... rather, the "relevant issue is only whether the studies are sufficiently credible to be considered" as part of the lead agency's overall evaluation].) This section provides suggestions to lead agencies regarding methodologies to analyze VMT associated with a project.

Vehicle Types. Proposed Section 15064.3, subdivision (a), states, "For the purposes of this section, 'vehicle miles traveled' refers to the amount and distance of automobile travel attributable to a project." Here, the term "automobile" refers to on-road passenger vehicles, specifically cars and light trucks. Heavy-duty truck VMT could be included for modeling convenience and ease of calculation (for example, where models or data provide combined auto and heavy truck VMT). For an apples-to-apples
comparison, vehicle types considered should be consistent across project assessment, significance thresholds, and mitigation.

Residential and Office Projects. Tour- and trip-based approaches ${ }^{10}$ offer the best methods for assessing VMT from residential/office projects and for comparing those assessments to VMT thresholds. These approaches also offer the most straightforward methods for assessing VMT reductions from mitigation measures for residential/office projects. When available, tour-based assessment is ideal because it captures travel behavior more comprehensively. But where tour-based tools or data are not available for all components of an analysis, a trip-based assessment of VMT serves as a reasonable proxy.

Models and methodologies used to calculate thresholds, estimate project VMT, and estimate VMT reduction due to mitigation should be comparable. For example:

- A tour-based assessment of project VMT should be compared to a tour-based threshold, or a trip-based assessment to a trip-based VMT threshold.
- Where a travel demand model is used to determine thresholds, the same model should also be used to provide trip lengths as part of assessing project VMT.
- Where only trip-based estimates of VMT reduction from mitigation are available, a trip-based threshold should be used, and project VMT should be assessed in a trip-based manner.

When a trip-based method is used to analyze a residential project, the focus can be on home-based trips. Similarly, when a trip-based method is used to analyze an office project, the focus can be on home-based work trips.

When tour-based models are used to analyze an office project, either employee work tour VMT or VMT from all employee tours may be attributed to the project. This is because workplace location influences overall travel. For consistency, the significance threshold should be based on the same metric: either employee work tour VMT or VMT from all employee tours.

For office projects that feature a customer component, such as a government office that serves the public, a lead agency can analyze the customer VMT component of the project using the methodology for retail development (see below).

Retail Projects. Generally, lead agencies should analyze the effects of a retail project by assessing the change in total VMT^{11} because retail projects typically re-route travel from other retail destinations. A retail project might lead to increases or decreases in VMT, depending on previously existing retail travel patterns.

[^37]Considerations for All Projects. Lead agencies should not truncate any VMT analysis because of jurisdictional or other boundaries, for example, by failing to count the portion of a trip that falls outside the jurisdiction or by discounting the VMT from a trip that crosses a jurisdictional boundary. CEQA requires environmental analyses to reflect a "good faith effort at full disclosure." (CEQA Guidelines, § 15151.) Thus, where methodologies exist that can estimate the full extent of vehicle travel from a project, the lead agency should apply them to do so. Where those VMT effects will grow over time, analyses should consider both a project's short-term and long-term effects on VMT.

Combining land uses for VMT analysis is not recommended. Different land uses generate different amounts of VMT, so the outcome of such an analysis could depend more on the mix of uses than on their travel efficiency. As a result, it could be difficult or impossible for a lead agency to connect a significance threshold with an environmental policy objective (such as a target set by law), inhibiting the CEQA imperative of identifying a project's significant impacts and providing mitigation where feasible. Combining land uses for a VMT analysis could streamline certain mixes of uses in a manner disconnected from policy objectives or environmental outcomes. Instead, OPR recommends analyzing each use separately, or simply focusing analysis on the dominant use, and comparing each result to the appropriate threshold. Recommendations for methods of analysis and thresholds are provided below. In the analysis of each use, a mixed-use project should take credit for internal capture.

Any project that includes in its geographic bounds a portion of an existing or planned Transit Priority Area (i.e., the project is within a $1 / 2$ mile of an existing or planned major transit stop or an existing stop along a high quality transit corridor) may employ VMT as its primary metric of transportation impact for the entire project. (See Pub. Resources Code, § 21099, subds. (a)(7), (b)(1).)

Cumulative Impacts. A project's cumulative impacts are based on an assessment of whether the "incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects." (Pub. Resources Code, § 21083, subd. (b)(2); see CEQA Guidelines, § 15064, subd. (h)(1).) When using an absolute VMT metric, i.e., total VMT (as recommended below for retail and transportation projects), analyzing the combined impacts for a cumulative impacts analysis may be appropriate. However, metrics such as VMT per capita or VMT per employee, i.e., metrics framed in terms of efficiency (as recommended below for use on residential and office projects), cannot be summed because they employ a denominator. A project that falls below an efficiency-based threshold that is aligned with long-term environmental goals and relevant plans would have no cumulative impact distinct from the project impact. Accordingly, a finding of a less-than-significant project impact would imply a less than significant cumulative impact, and vice versa. This is similar to the analysis typically conducted for greenhouse gas emissions, air quality impacts, and impacts that utilize plan compliance as a threshold of significance. (See Center for Biological Diversity v. Department of Fish \& Wildlife (2015) 62 Cal. $4^{\text {th }} 204,219,223$; CEQA Guidelines, $\S 15064$, subd. (h)(3).)

D. General Principles to Guide Consideration of VMT

SB 743 directs OPR to establish specific "criteria for determining the significance of transportation impacts of projects[.]" (Pub. Resources Code, § 21099, subd. (b)(1).) In establishing this criterion, OPR was guided by the general principles contained within CEQA, the CEQA Guidelines, and applicable case law.

To assist in the determination of significance, many lead agencies rely on "thresholds of significance." The CEQA Guidelines define a "threshold of significance" to mean "an identifiable quantitative, qualitative ${ }^{12}$ or performance level of a particular environmental effect, non-compliance with which means the effect will normally be determined to be significant by the agency and compliance with which means the effect normally will be determined to be less than significant." (CEQA Guidelines, § 15064.7 , subd. (a) (emphasis added).) Lead agencies have discretion to develop and adopt their own, or rely on thresholds recommended by other agencies, "provided the decision of the lead agency to adopt such thresholds is supported by substantial evidence." (Id. at subd. (c); Save Cuyama Valley v. County of Santa Barbara (2013) 213 Cal.App.4th 1059, 1068.) Substantial evidence means "enough relevant information and reasonable inferences from this information that a fair argument can be made to support a conclusion, even though other conclusions might also be reached." (Id. at § 15384 (emphasis added); Protect the Historic Amador Waterways v. Amador Water Agency (2004) 116 Cal.App.4th 1099, 1108-1109.)

Additionally, the analysis leading to the determination of significance need not be perfect. The CEQA Guidelines describe the standard for adequacy of environmental analyses:

An EIR should be prepared with a sufficient degree of analysis to provide decision makers with information which enables them to make a decision which intelligently takes account of environmental consequences. An evaluation of the environmental effects of a proposed project need not be exhaustive, but the sufficiency of an EIR is to be reviewed in the light of what is reasonably feasible. Disagreement among experts does not make an EIR inadequate, but the EIR should summarize the main points of disagreement among the experts. The courts have looked not for perfection but for adequacy, completeness, and a good faith effort at full disclosure.
(CEQA Guidelines, § 15151 (emphasis added).)
These general principles guide OPR's recommendations regarding thresholds of significance for VMT set forth below.

[^38]
E. Recommendations Regarding Significance Thresholds

As noted above, lead agencies have the discretion to set or apply their own thresholds of significance. (Center for Biological Diversity v. California Dept. of Fish \& Wildlife (2015) 62 Cal.4th 204, 218-223 [lead agency had discretion to use compliance with AB 32 's emissions goals as a significance threshold]; Save Cuyama Valley v. County of Santa Barbara (2013) 213 Cal.App.4th at p. 1068.) However, Section 21099 of the Public Resources Code states that the criteria for determining the significance of transportation impacts must promote: (1) reduction of greenhouse gas emissions; (2) development of multimodal transportation networks; and (3) a diversity of land uses. It further directed OPR to prepare and develop criteria for determining significance. (Pub. Resources Code, § 21099, subd. (b)(1).) This section provides OPR's suggested thresholds, as well as considerations for lead agencies that choose to adopt their own

The VMT metric can support the three statutory goals: "the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses." (Pub. Resources Code, § 21099, subd. (b)(1), emphasis added.) However, in order for it to promote and support all three, lead agencies should select a significance threshold that aligns with state law on all three. State law concerning the development of multimodal transportation networks and diversity of land uses requires planning for and prioritizing increases in complete streets and infill development, but does not mandate a particular depth of implementation that could translate into a particular threshold of significance. Meanwhile, the State has clear quantitative targets for GHG emissions reduction set forth in law and based on scientific consensus, and the depth of VMT reduction needed to achieve those targets has been quantified. Tying VMT thresholds to GHG reduction also supports the two other statutory goals. Therefore, to ensure adequate analysis of transportation impacts, OPR recommends using quantitative VMT thresholds linked to GHG reduction targets when methods exist to do so.

Various legislative mandates and state policies establish quantitative greenhouse gas emissions reduction targets. For example:

- Assembly Bill 32 (2006) requires statewide GHG emissions reductions to 1990 levels by 2020 and continued reductions beyond 2020.
- Senate Bill 32 (2016) requires at least a 40 percent reduction in GHG emissions from 1990 levels by 2030 .
- Pursuant to Senate Bill 375 (2008), the California Air Resources Board GHG emissions reduction targets for metropolitan planning organizations (MPOs) to achieve based on land use patterns and transportation systems specified in Regional Transportation Plans and Sustainable Community Strategies (RTP/SCS). Current targets for the State's largest MPOs call for a 19 percent reduction in GHG emissions from cars and light trucks from 2005 emissions levels by 2035.
- Executive Order B-30-15 (2015) sets a GHG emissions reduction target of 40 percent below 1990 levels by 2030.
- Executive Order S-3-05 (2005) sets a GHG emissions reduction target of 80 percent below 1990 levels by 2050.
- Executive Order B-16-12 (2012) specifies a GHG emissions reduction target of 80 percent below 1990 levels by 2050 specifically for transportation.
- Executive Order B-55-18 (2018) established an additional statewide goal of achieving carbon neutrality as soon as possible, but no later than 2045, and maintaining net negative emissions thereafter. It states, "The California Air Resources Board shall work with relevant state agencies to develop a framework for implementation and accounting that tracks progress toward this goal."
- Senate Bill 391 requires the California Transportation Plan to support 80 percent reduction in GHGs below 1990 levels by 2050.
- The California Air Resources Board Mobile Source Strategy (2016) describes California's strategy for containing air pollutant emissions from vehicles, and quantifies VMT growth compatible with achieving state targets.
- The California Air Resources Board's 2017 Climate Change Scoping Plan Update: The Strategy for Achieving California's 2030 Greenhouse Gas Target describes California's strategy for containing GHG emissions from vehicles, and quantifies VMT growth compatible with achieving state targets.

Considering these various targets, the California Supreme Court observed:

Meeting our statewide reduction goals does not preclude all new development. Rather, the Scoping Plan ... assumes continued growth and depends on increased efficiency and conservation in land use and transportation from all Californians.
(Center for Biological Diversity v. California Dept. of Fish \& Wildlife, supra, 62 Cal.4th at p. 220.) Indeed, the Court noted that when a lead agency uses consistency with climate goals as a way to determine significance, particularly for long-term projects, the lead agency must consider the project's effect on meeting long-term reduction goals. (lbid.) And more recently, the Supreme Court stated that "CEQA requires public agencies . . . to ensure that such analysis stay in step with evolving scientific knowledge and state regulatory schemes." (Cleveland National Forest Foundation v. San Diego Assn. of Governments (2017) 3 Cal.5th 497, 504.)

Meeting the targets described above will require substantial reductions in existing VMT per capita to curb GHG emissions and other pollutants. But targets for overall GHG emissions reduction do not translate directly into VMT thresholds for individual projects for many reasons, including:

- Some, but not all, of the emissions reductions needed to achieve those targets could be accomplished by other measures, including increased vehicle efficiency and decreased fuel carbon content. The CARB's First Update to the Climate Change Scoping Plan explains:

```
9|Pag e
December }201
```

"Achieving California's long-term criteria pollutant and GHG emissions goals will require four strategies to be employed: (1) improve vehicle efficiency and develop zero emission technologies, (2) reduce the carbon content of fuels and provide market support to get these lower-carbon fuels into the marketplace, (3) plan and build communities to reduce vehicular GHG emissions and provide more transportation options, and (4) improve the efficiency and throughput of existing transportation systems. ${ }^{13}$ CARB's 2018 Progress Report on California's Sustainable Communities and Climate Protection Act states on page 28 that "California cannot meet its climate goals without curbing growth in single-occupancy vehicle activity." In other words, vehicle efficiency and better fuels are necessary, but insufficient, to address the GHG emissions from the transportation system. Land use patterns and transportation options also will need to change to support reductions in vehicle travel/VMT.

- New land use projects alone will not sufficiently reduce per-capita VMT to achieve those targets, nor are they expected to be the sole source of VMT reduction.
- Interactions between land use projects, and also between land use and transportation projects, existing and future, together affect VMT.
- Because location within the region is the most important determinant of VMT, in some cases, streamlining CEQA review of projects in travel efficient locations may be the most effective means of reducing VMT.
- When assessing climate impacts of some types of land use projects, use of an efficiency metric (e.g., per capita, per employee) may provide a better measure of impact than an absolute numeric threshold. (Center for Biological Diversity, supra.)

Public Resources Code section 21099 directs OPR to propose criteria for determining the significance of transportation impacts. In this Technical Advisory, OPR provides its recommendations to assist lead agencies in selecting a significance threshold that may be appropriate for their particular projects. While OPR's Technical Advisory is not binding on public agencies, CEQA allows lead agencies to "consider thresholds of significance . . . recommended by other public agencies, provided the decision to adopt those thresholds is supported by substantial evidence." (CEQA Guidelines, § 15064.7, subd. (c).) Based on OPR's extensive review of the applicable research, and in light of an assessment by the California Air Resources Board quantifying the need for VMT reduction in order to meet the State's long-term climate goals, OPR recommends that a per capita or per employee VMT that is fifteen percent below that of existing development may be a reasonable threshold.

Fifteen percent reductions in VMT are achievable at the project level in a variety of place types. ${ }^{14}$
Moreover, a fifteen percent reduction is consistent with SB 743's direction to OPR to select a threshold that will help the State achieve its climate goals. As described above, section 21099 states that the

[^39]criteria for determining significance must "promote the reduction in greenhouse gas emissions." In its document California Air Resources Board 2017 Scoping Plan-Identified VMT Reductions and Relationship to State Climate Goals ${ }^{15}$, CARB assesses VMT reduction per capita consistent with its evidence-based modeling scenario that would achieve State climate goals of 40 percent GHG emissions reduction from 1990 levels by 2030 and 80 percent GHG emissions reduction levels from 1990 by 2050. Applying California Department of Finance population forecasts, CARB finds per-capita light-duty vehicle travel would need to be approximately 16.8 percent lower than existing, and overall per-capita vehicle travel would need to be approximately 14.3 percent lower than existing levels under that scenario. Below these levels, a project could be considered low VMT and would, on that metric, be consistent with 2017 Scoping Plan Update assumptions that achieve climate state climate goals.

CARB finds per capita vehicle travel would need to be kept below what today's policies and plans would achieve.

CARB's assessment is based on data in the 2017 Scoping Plan Update and 2016 Mobile Source Strategy. In those documents, CARB previously examined the relationship between VMT and the state's GHG emissions reduction targets. The Scoping Plan finds:
"While the State can do more to accelerate and incentivize these local decisions, local actions that reduce VMT are also necessary to meet transportation sector-specific goals and achieve the 2030 target under SB 32. Through developing the Scoping Plan, CARB staff is more convinced than ever that, in addition to achieving GHG reductions from cleaner fuels and vehicles, California must also reduce VMT. Stronger SB 375 GHG reduction targets will enable the State to make significant progress toward needed reductions, but alone will not provide the VMT growth reductions needed; there is a gap between what SB 375 can provide and what is needed to meet the State's 2030 and 2050 goals." ${ }^{16}$

Note that, at present, consistency with RTP/SCSs does not necessarily lead to a less-than-significant VMT impact. ${ }^{17}$ As the Final 2017 Scoping Plan Update states,

VMT reductions are necessary to achieve the 2030 target and must be part of any strategy evaluated in this Plan. Stronger SB 375 GHG reduction targets will enable the State to make significant progress toward this goal, but alone will not provide all of the VMT growth reductions that will be needed. There is a gap between what SB 375 can provide and what is needed to meet the State's 2030 and 2050 goals." ${ }^{18}$

[^40]Also, in order to capture the full effects of induced travel resulting from roadway capacity projects, an RTP/SCS would need to include an assessment of land use effects of those projects, and the effects of those land uses on VMT. (See section titled "Estimating VMT Impacts from Transportation Projects" below.) RTP/SCSs typically model VMT using a collaboratively-developed land use "vision" for the region's land use, rather than studying the effects on land use of the proposed transportation investments.

In summary, achieving 15 percent lower per capita (residential) or per employee (office) VMT than existing development is both generally achievable and is supported by evidence that connects this level of reduction to the State's emissions goals.

1. Screening Thresholds for Land Use Projects

Many agencies use "screening thresholds" to quickly identify when a project should be expected to cause a less-than-significant impact without conducting a detailed study. (See e.g., CEQA Guidelines, §§ 15063(c)(3)(C), 15128, and Appendix G.) As explained below, this technical advisory suggests that lead agencies may screen out VMT impacts using project size, maps, transit availability, and provision of affordable housing.

Screening Threshold for Small Projects

Many local agencies have developed screening thresholds to indicate when detailed analysis is needed. Absent substantial evidence indicating that a project would generate a potentially significant level of VMT, or inconsistency with a Sustainable Communities Strategy (SCS) or general plan, projects that generate or attract fewer than 110 trips per day ${ }^{19}$ generally may be assumed to cause a less-thansignificant transportation impact.

Map-Based Screening for Residential and Office Projects

Residential and office projects that locate in areas with low VMT, and that incorporate similar features (i.e., density, mix of uses, transit accessibility), will tend to exhibit similarly low VMT. Maps created with VMT data, for example from a travel survey or a travel demand model, can illustrate areas that are

[^41]12 | Page
December 2018
currently below threshold VMT (see recommendations below). Because new development in such locations would likely result in a similar level of VMT, such maps can be used to screen out residential and office projects from needing to prepare a detailed VMT analysis.

Figure 2. Example map of household VMT that could be used to delineate areas eligible to receive streamlining for VMT analysis. (Source: City of San José, Department of Transportation, draft output of City Transportation Model.)

Presumption of Less Than Significant Impact Near Transit Stations

Proposed CEQA Guideline Section 15064.3, subdivision (b)(1), states that lead agencies generally should presume that certain projects (including residential, retail, and office projects, as well as projects that are a mix of these uses) proposed within $1 / 2$ mile of an existing major transit stop ${ }^{20}$ or an existing stop

[^42]along a high quality transit corridor ${ }^{21}$ will have a less-than-significant impact on VMT. This presumption would not apply, however, if project-specific or location-specific information indicates that the project will still generate significant levels of VMT. For example, the presumption might not be appropriate if the project:

- Has a Floor Area Ratio (FAR) of less than 0.75
- Includes more parking for use by residents, customers, or employees of the project than required by the jurisdiction (if the jurisdiction requires the project to supply parking)
- Is inconsistent with the applicable Sustainable Communities Strategy (as determined by the lead agency, with input from the Metropolitan Planning Organization)
- Replaces affordable residential units with a smaller number of moderate- or high-income residential units

A project or plan near transit which replaces affordable residential units ${ }^{22}$ with a smaller number of moderate- or high-income residential units may increase overall VMT because the increase in VMT of displaced residents could overwhelm the improvements in travel efficiency enjoyed by new residents. ${ }^{23}$

If any of these exceptions to the presumption might apply, the lead agency should conduct a detailed VMT analysis to determine whether the project would exceed VMT thresholds (see below).

Presumption of Less Than Significant Impact for Affordable Residential Development

Adding affordable housing to infill locations generally improves jobs-housing match, in turn shortening commutes and reducing VMT. ${ }^{24,25}$ Further, "... low-wage workers in particular would be more likely to choose a residential location close to their workplace, if one is available. ${ }^{26}$ In areas where existing jobshousing match is closer to optimal, low income housing nevertheless generates less VMT than market-

[^43]14 | Page
December 2018
rate housing. ${ }^{27,28}$ Therefore, a project consisting of a high percentage of affordable housing may be a basis for the lead agency to find a less-than-significant impact on VMT. Evidence supports a presumption of less than significant impact for a 100 percent affordable residential development (or the residential component of a mixed-use development) in infill locations. Lead agencies may develop their own presumption of less than significant impact for residential projects (or residential portions of mixed use projects) containing a particular amount of affordable housing, based on local circumstances and evidence. Furthermore, a project which includes any affordable residential units may factor the effect of the affordability on VMT into the assessment of VMT generated by those units.

2. Recommended Numeric Thresholds for Residential, Office, and Retail Projects

Recommended threshold for residential projects: A proposed project exceeding a level of 15 percent below existing VMT per capita may indicate a significant transportation impact. Existing VMT per capita may be measured as regional VMT per capita or as city VMT per capita. Proposed development referencing a threshold based on city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the number of units specified in the SCS for that city, and should be consistent with the SCS.

Residential development that would generate vehicle travel that is 15 or more percent below the existing residential VMT per capita, measured against the region or city, may indicate a less-thansignificant transportation impact. In MPO areas, development measured against city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the population or number of units specified in the SCS for that city because greater-than-planned amounts of development in areas above the region-based threshold would undermine the VMT containment needed to achieve regional targets under SB 375.

For residential projects in unincorporated county areas, the local agency can compare a residential project's VMT to (1) the region's VMT per capita, or (2) the aggregate population-weighted VMT per capita of all cities in the region. In MPO areas, development in unincorporated areas measured against aggregate city VMT per capita (rather than regional VMT per capita) should not cumulatively exceed the population or number of units specified in the SCS for that city because greater-than-planned amounts of development in areas above the regional threshold would undermine achievement of regional targets under SB 375.

[^44]15 | Page
December 2018

These thresholds can be applied to either household (i.e., tour-based) VMT or home-based (i.e., tripbased) VMT assessments. ${ }^{29}$ It is critical, however, that the agency be consistent in its VMT measurement approach throughout the analysis to maintain an "apples-to-apples" comparison. For example, if the agency uses a home-based VMT for the threshold, it should also be use home-based VMT for calculating project VMT and VMT reduction due to mitigation measures.

Recommended threshold for office projects: A proposed project exceeding a level of 15 percent below existing regional VMT per employee may indicate a significant transportation impact.

Office projects that would generate vehicle travel exceeding 15 percent below existing VMT per employee for the region may indicate a significant transportation impact. In cases where the region is substantially larger than the geography over which most workers would be expected to live, it might be appropriate to refer to a smaller geography, such as the county, that includes the area over which nearly all workers would be expected to live.

Office VMT screening maps can be developed using tour-based data, considering either total employee VMT or employee work tour VMT. Similarly, tour-based analysis of office project VMT could consider either total employee VMT or employee work tour VMT. Where tour-based information is unavailable for threshold determination, project assessment, or assessment of mitigation, home-based work trip VMT should be used throughout all steps of the analysis to maintain an "apples-to-apples" comparison.

Recommended threshold for retail projects: A net increase in total VMT may indicate a significant transportation impact.

Because new retail development typically redistributes shopping trips rather than creating new trips, ${ }^{30}$ estimating the total change in VMT (i.e., the difference in total VMT in the area affected with and without the project) is the best way to analyze a retail project's transportation impacts.

By adding retail opportunities into the urban fabric and thereby improving retail destination proximity, local-serving retail development tends to shorten trips and reduce VMT. Thus, lead agencies generally may presume such development creates a less-than-significant transportation impact. Regional-serving retail development, on the other hand, which can lead to substitution of longer trips for shorter ones, may tend to have a significant impact. Where such development decreases VMT, lead agencies should consider the impact to be less-than-significant.

Many cities and counties define local-serving and regional-serving retail in their zoning codes. Lead agencies may refer to those local definitions when available, but should also consider any project-

[^45]16 | Page
December 2018
specific information, such as market studies or economic impacts analyses that might bear on customers' travel behavior. Because lead agencies will best understand their own communities and the likely travel behaviors of future project users, they are likely in the best position to decide when a project will likely be local-serving. Generally, however, retail development including stores larger than 50,000 square feet might be considered regional-serving, and so lead agencies should undertake an analysis to determine whether the project might increase or decrease VMT.

Mixed-Use Projects

Lead agencies can evaluate each component of a mixed-use project independently and apply the significance threshold for each project type included (e.g., residential and retail). Alternatively, a lead agency may consider only the project's dominant use. In the analysis of each use, a project should take credit for internal capture. Combining different land uses and applying one threshold to those land uses may result in an inaccurate impact assessment.

Other Project Types

Of land use projects, residential, office, and retail projects tend to have the greatest influence on VMT. For that reason, OPR recommends the quantified thresholds described above for purposes of analysis and mitigation. Lead agencies, using more location-specific information, may develop their own more specific thresholds, which may include other land use types. In developing thresholds for other project types, or thresholds different from those recommended here, lead agencies should consider the purposes described in section 21099 of the Public Resources Code and regulations in the CEQA Guidelines on the development of thresholds of significance (e.g., CEQA Guidelines, § 15064.7).

Strategies and projects that decrease local VMT but increase total VMT should be avoided. Agencies should consider whether their actions encourage development in a less travel-efficient location by limiting development in travel-efficient locations.

Redevelopment Projects

Where a project replaces existing VMT-generating land uses, if the replacement leads to a net overall decrease in VMT, the project would lead to a less-than-significant transportation impact. If the project leads to a net overall increase in VMT, then the thresholds described above should apply.

As described above, a project or plan near transit which replaces affordable ${ }^{31}$ residential units with a smaller number of moderate- or high-income residential units may increase overall VMT, because

[^46]displaced residents' VMT may increase. ${ }^{32}$ A lead agency should analyze VMT for such a project even if it otherwise would have been presumed less than significant. The assessment should incorporate an estimate of the aggregate VMT increase experienced by displaced residents. That additional VMT should be included in the numerator of the VMT per capita assessed for the project.

If a residential or office project leads to a net increase in VMT, then the project's VMT per capita (residential) or per employee (office) should be compared to thresholds recommended above. Per capita and per employee VMT are efficiency metrics, and, as such, apply only to the existing project without regard to the VMT generated by the previously existing land use.

If the project leads to a net increase in provision of locally-serving retail, transportation impacts from the retail portion of the development should be presumed to be less than significant. If the project consists of regionally-serving retail, and increases overall VMT compared to with existing uses, then the project would lead to a significant transportation impact.

RTP/SCS Consistency (All Land Use Projects)

Section 15125, subdivision (d), of the CEQA Guidelines provides that lead agencies should analyze impacts resulting from inconsistencies with regional plans, including regional transportation plans. For this reason, if a project is inconsistent with the Regional Transportation Plan and Sustainable Communities Strategy (RTP/SCS), the lead agency should evaluate whether that inconsistency indicates a significant impact on transportation. For example, a development may be inconsistent with an RTP/SCS if the development is outside the footprint of development or within an area specified as open space as shown in the SCS.

3. Recommendations Regarding Land Use Plans

As with projects, agencies should analyze VMT outcomes of land use plans across the full area over which the plan may substantively affect travel patterns, including beyond the boundary of the plan or jurisdiction's geography. And as with projects, VMT should be counted in full rather than split between origin and destination. (Emissions inventories have sometimes spit cross-boundary trips in order to sum to a regional total, but CEQA requires accounting for the full impact without truncation or discounting). Analysis of specific plans may employ the same thresholds described above for projects. A general plan, area plan, or community plan may have a significant impact on transportation if proposed new residential, office, or retail land uses would in aggregate exceed the respective thresholds recommended above. Where the lead agency tiers from a general plan EIR pursuant to CEQA Guidelines sections 15152 and 15166, the lead agency generally focuses on the environmental impacts that are specific to the later project and were not analyzed as significant impacts in the prior EIR. (Pub. Resources Code, § 21068.5; Guidelines, § 15152, subd. (a).) Thus, in analyzing the later project, the lead agency

[^47]would focus on the VMT impacts that were not adequately addressed in the prior EIR. In the tiered document, the lead agency should continue to apply the thresholds recommended above.

Thresholds for plans in non-MPO areas may be determined on a case-by-case basis.

4. Other Considerations

Rural Projects Outside of MPOs

In rural areas of non-MPO counties (i.e., areas not near established or incorporated cities or towns), fewer options may be available for reducing VMT, and significance thresholds may be best determined on a case-by-case basis. Note, however, that clustered small towns and small town main streets may have substantial VMT benefits compared to isolated rural development, similar to the transit oriented development described above.

Impacts to Transit

Because criteria for determining the significance of transportation impacts must promote "the development of multimodal transportation networks" pursuant to Public Resources Code section 21099, subd. (b)(1), lead agencies should consider project impacts to transit systems and bicycle and pedestrian networks. For example, a project that blocks access to a transit stop or blocks a transit route itself may interfere with transit functions. Lead agencies should consult with transit agencies as early as possible in the development process, particularly for projects that are located within one half mile of transit stops.

When evaluating impacts to multimodal transportation networks, lead agencies generally should not treat the addition of new transit users as an adverse impact. An infill development may add riders to transit systems and the additional boarding and alighting may slow transit vehicles, but it also adds destinations, improving proximity and accessibility. Such development also improves regional vehicle flow by adding less vehicle travel onto the regional network.

Increased demand throughout a region may, however, cause a cumulative impact by requiring new or additional transit infrastructure. Such impacts may be adequately addressed through a fee program that fairly allocates the cost of improvements not just to projects that happen to locate near transit, but rather across a region to all projects that impose burdens on the entire transportation system, since transit can broadly improve the function of the transportation system.

F. Considering the Effects of Transportation Projects on Vehicle Travel

Many transportation projects change travel patterns. A transportation project which leads to additional vehicle travel on the roadway network, commonly referred to as "induced vehicle travel," would need to quantify the amount of additional vehicle travel in order to assess air quality impacts, greenhouse gas emissions impacts, energy impacts, and noise impacts. Transportation projects also are required to

19 | Page
December 2018
examine induced growth impacts under CEQA. (See generally, Pub. Resources Code, §§ 21065 [defining "project" under CEQA as an activity as causing either a direct or reasonably foreseeable indirect physical change], 21065.3 [defining "project-specific effect" to mean all direct or indirect environmental effects], 21100, subd. (b) [required contents of an EIR].) For any project that increases vehicle travel, explicit assessment and quantitative reporting of the amount of additional vehicle travel should not be omitted from the document; such information may be useful and necessary for a full understanding of a project's environmental impacts. (See Pub. Resources Code, §§ 21000, 21001, 21001.1, 21002, 21002.1 [discussing the policies of CEQA].) A lead agency that uses the VMT metric to assess the transportation impacts of a transportation project may simply report that change in VMT as the impact. When the lead agency uses another metric to analyze the transportation impacts of a roadway project, changes in amount of vehicle travel added to the roadway network should still be analyzed and reported. ${ }^{33}$

While CEQA does not require perfection, it is important to make a reasonably accurate estimate of transportation projects' effects on vehicle travel in order to make reasonably accurate estimates of GHG emissions, air quality emissions, energy impacts, and noise impacts. (See, e.g., California Clean Energy Com. v. City of Woodland (2014) 225 Cal.App.4th 173, 210 [EIR failed to consider project's transportation energy impacts]; Ukiah Citizens for Safety First v. City of Ukiah (2016) 248 Cal.App.4th 256,266 .) Appendix 2 describes in detail the causes of induced vehicle travel, the robust empirical evidence of induced vehicle travel, and how models and research can be used in conjunction to quantitatively assess induced vehicle travel with reasonable accuracy.

If a project would likely lead to a measurable and substantial increase in vehicle travel, the lead agency should conduct an analysis assessing the amount of vehicle travel the project will induce. Project types that would likely lead to a measurable and substantial increase in vehicle travel generally include:

- Addition of through lanes on existing or new highways, including general purpose lanes, HOV lanes, peak period lanes, auxiliary lanes, or lanes through grade-separated interchanges

Projects that would not likely lead to a substantial or measurable increase in vehicle travel, and therefore generally should not require an induced travel analysis, include:

- Rehabilitation, maintenance, replacement, safety, and repair projects designed to improve the condition of existing transportation assets (e.g., highways; roadways; bridges; culverts; Transportation Management System field elements such as cameras, message signs, detection, or signals; tunnels; transit systems; and assets that serve bicycle and pedestrian facilities) and that do not add additional motor vehicle capacity
- Roadside safety devices or hardware installation such as median barriers and guardrails

[^48]- Roadway shoulder enhancements to provide "breakdown space," dedicated space for use only by transit vehicles, to provide bicycle access, or to otherwise improve safety, but which will not be used as automobile vehicle travel lanes
- Addition of an auxiliary lane of less than one mile in length designed to improve roadway safety
- Installation, removal, or reconfiguration of traffic lanes that are not for through traffic, such as left, right, and U-turn pockets, two-way left turn lanes, or emergency breakdown lanes that are not utilized as through lanes
- Addition of roadway capacity on local or collector streets provided the project also substantially improves conditions for pedestrians, cyclists, and, if applicable, transit
- Conversion of existing general purpose lanes (including ramps) to managed lanes or transit lanes, or changing lane management in a manner that would not substantially increase vehicle travel
- Addition of a new lane that is permanently restricted to use only by transit vehicles
- Reduction in number of through lanes
- Grade separation to separate vehicles from rail, transit, pedestrians or bicycles, or to replace a lane in order to separate preferential vehicles (e.g., HOV, HOT, or trucks) from general vehicles
- Installation, removal, or reconfiguration of traffic control devices, including Transit Signal Priority (TSP) features
- Installation of traffic metering systems, detection systems, cameras, changeable message signs and other electronics designed to optimize vehicle, bicycle, or pedestrian flow
- Timing of signals to optimize vehicle, bicycle, or pedestrian flow
- Installation of roundabouts or traffic circles
- Installation or reconfiguration of traffic calming devices
- Adoption of or increase in tolls
- Addition of tolled lanes, where tolls are sufficient to mitigate VMT increase
- Initiation of new transit service
- Conversion of streets from one-way to two-way operation with no net increase in number of traffic lanes
- Removal or relocation of off-street or on-street parking spaces
- Adoption or modification of on-street parking or loading restrictions (including meters, time limits, accessible spaces, and preferential/reserved parking permit programs)
- Addition of traffic wayfinding signage
- Rehabilitation and maintenance projects that do not add motor vehicle capacity
- Addition of new or enhanced bike or pedestrian facilities on existing streets/highways or within existing public rights-of-way
- Addition of Class I bike paths, trails, multi-use paths, or other off-road facilities that serve nonmotorized travel
- Installation of publicly available alternative fuel/charging infrastructure
- Addition of passing lanes, truck climbing lanes, or truck brake-check lanes in rural areas that do not increase overall vehicle capacity along the corridor

21 | Page
December 2018

1. Recommended Significance Threshold for Transportation Projects

As noted in Section 15064.3 of the CEQA Guidelines, lead agencies for roadway capacity projects have discretion, consistent with CEQA and planning requirements, to choose which metric to use to evaluate transportation impacts. This section recommends considerations for evaluating impacts using vehicle miles traveled. Lead agencies have discretion to choose a threshold of significance for transportation projects as they do for other types of projects. As explained above, Public Resources Code section 21099, subdivision (b)(1), provides that criteria for determining the significance of transportation impacts must promote the reduction of greenhouse gas emissions, the development of multimodal transportation networks, and a diversity of land uses. (Id.; see generally, adopted CEQA Guidelines, § 15064.3, subd. (b) [Criteria for Analyzing Transportation Impacts].) With those goals in mind, OPR prepared and the Agency adopted an appropriate transportation metric.

Whether adopting a threshold of significance, or evaluating transportation impacts on a case-by-case basis, a lead agency should ensure that the analysis addresses:

- Direct, indirect and cumulative effects of the transportation project (CEQA Guidelines, § 15064, subds. (d), (h))
- Near-term and long-term effects of the transportation project (CEQA Guidelines, §§ 15063, subd. (a)(1), 15126.2, subd. (a))
- The transportation project's consistency with state greenhouse gas reduction goals (Pub. Resources Code, § 21099) ${ }^{34}$
- The impact of the transportation project on the development of multimodal transportation networks (Pub. Resources Code, § 21099)
- The impact of the transportation project on the development of a diversity of land uses (Pub. Resources Code, § 21099)

The CARB Scoping Plan and the CARB Mobile Source Strategy delineate VMT levels required to achieve legally mandated GHG emissions reduction targets. A lead agency should develop a project-level threshold based on those VMT levels, and may apply the following approach:

1. Propose a fair-share allocation of those budgets to their jurisdiction (e.g., by population);

[^49]2. Determine the amount of VMT growth likely to result from background population growth, and subtract that from their "budget";
3. Allocate their jurisdiction's share between their various VMT-increasing transportation projects, using whatever criteria the lead agency prefers.

2. Estimating VMT Impacts from Transportation Projects

CEQA requires analysis of a project's potential growth-inducing impacts. (Pub. Resources Code, § 21100, subd. (b)(5); CEQA Guidelines, § 15126.2, subd. (d).) Many agencies are familiar with the analysis of growth inducing impacts associated with water, sewer, and other infrastructure. This technical advisory addresses growth that may be expected from roadway expansion projects.

Because a roadway expansion project can induce substantial VMT, incorporating quantitative estimates of induced VMT is critical to calculating both transportation and other impacts of these projects. Induced travel also has the potential to reduce or eliminate congestion relief benefits. An accurate estimate of induced travel is needed to accurately weigh costs and benefits of a highway capacity expansion project.

The effect of a transportation project on vehicle travel should be estimated using the "change in total VMT" method described in Appendix 1. This means that an assessment of total VMT without the project and an assessment with the project should be made; the difference between the two is the amount of VMT attributable to the project. The assessment should cover the full area in which driving patterns are expected to change. As with other types of projects, the VMT estimation should not be truncated at a modeling or jurisdictional boundary for convenience of analysis when travel behavior is substantially affected beyond that boundary.

Transit and Active Transportation Projects

Transit and active transportation projects generally reduce VMT and therefore are presumed to cause a less-than-significant impact on transportation. This presumption may apply to all passenger rail projects, bus and bus rapid transit projects, and bicycle and pedestrian infrastructure projects. Streamlining transit and active transportation projects aligns with each of the three statutory goals contained in SB 743 by reducing GHG emissions, increasing multimodal transportation networks, and facilitating mixed use development.

Roadway Projects

Reducing roadway capacity (for example, by removing or repurposing motor vehicle travel lanes) will generally reduce VMT and therefore is presumed to cause a less-than-significant impact on transportation. Generally, no transportation analysis is needed for such projects.

Building new roadways, adding roadway capacity in congested areas, or adding roadway capacity to areas where congestion is expected in the future, typically induces additional vehicle travel. For the types of projects previously indicated as likely to lead to additional vehicle travel, an estimate should be made of the change in vehicle travel resulting from the project.

For projects that increase roadway capacity, lead agencies can evaluate induced travel quantitatively by applying the results of existing studies that examine the magnitude of the increase of VMT resulting from a given increase in lane miles. These studies estimate the percent change in VMT for every percent change in miles to the roadway system (i.e., "elasticity"). ${ }^{35}$ Given that lead agencies have discretion in choosing their methodology, and the studies on induced travel reveal a range of elasticities, lead agencies may appropriately apply professional judgment in studying the transportation effects of a particular project. The most recent major study, estimates an elasticity of 1.0, meaning that every percent change in lane miles results in a one percent increase in VMT. ${ }^{36}$

To estimate VMT impacts from roadway expansion projects:

1. Determine the total lane-miles over an area that fully captures travel behavior changes resulting from the project (generally the region, but for projects affecting interregional travel look at all affected regions).
2. Determine the percent change in total lane miles that will result from the project.
3. Determine the total existing VMT over that same area.
4. Multiply the percent increase in lane miles by the existing VMT, and then multiply that by the elasticity from the induced travel literature:
[\% increase in lane miles] x [existing VMT] x [elasticity] = [VMT resulting from the project]

A National Center for Sustainable Transportation tool can be used to apply this method: https://ncst.ucdavis.edu/research/tools

This method would not be suitable for rural (non-MPO) locations in the state which are neither congested nor projected to become congested. It also may not be suitable for a new road that provides new connectivity across a barrier (e.g., a bridge across a river) if it would be expected to substantially

[^50]shorten existing trips. If it is likely to be substantial, the trips-shortening effect should be examined explicitly.

The effects of roadway capacity on vehicle travel can also be applied at a programmatic level. For example, in a regional planning process the lead agency can use that program-level analysis to streamline later project-level analysis. (See CEQA Guidelines, § 15168.) A program-level analysis of VMT should include effects of the program on land use patterns, and the VMT that results from those land use effects. In order for a program-level document to adequately analyze potential induced demand from a project or program of roadway capacity expansion, lead agencies cannot assume a fixed land use pattern (i.e., a land use pattern that does not vary in response to the provision of roadway capacity). A proper analysis should account for land use investment and development pattern changes that react in a reasonable manner to changes in accessibility created by transportation infrastructure investments (whether at the project or program level).

Mitigation and Alternatives

Induced VMT has the potential to reduce or eliminate congestion relief benefits, increase VMT, and increase other environmental impacts that result from vehicle travel. ${ }^{37}$ If those effects are significant, the lead agency will need to consider mitigation or alternatives. In the context of increased travel that is induced by capacity increases, appropriate mitigation and alternatives that a lead agency might consider include the following:

- Tolling new lanes to encourage carpools and fund transit improvements
- Converting existing general purpose lanes to HOV or HOT lanes
- Implementing or funding off-site travel demand management
- Implementing Intelligent Transportation Systems (ITS) strategies to improve passenger throughput on existing lanes

Tolling and other management strategies can have the additional benefit of preventing congestion and maintaining free-flow conditions, conferring substantial benefits to road users as discussed above.

G. Analyzing Other Impacts Related to Transportation

While requiring a change in the methodology of assessing transportation impacts, Public Resources Code section 21099 notes that this change "does not relieve a public agency of the requirement to analyze a project's potentially significant transportation impacts related to air quality, noise, safety, or any other impact associated with transportation." OPR expects that lead agencies will continue to

[^51]25 | Page
December 2018
address mobile source emissions in the air quality and noise sections of an environmental document and the corresponding studies that support the analysis in those sections. Lead agencies should continue to address environmental impacts of a proposed project pursuant to CEQA's requirements, using a format that is appropriate for their particular project.

Because safety concerns result from many different factors, they are best addressed at a programmatic level (i.e., in a general plan or regional transportation plan) in cooperation with local governments, metropolitan planning organizations, and, where the state highway system is involved, the California Department of Transportation. In most cases, such an analysis would not be appropriate on a project-by-project basis. Increases in traffic volumes at a particular location resulting from a project typically cannot be estimated with sufficient accuracy or precision to provide useful information for an analysis of safety concerns. Moreover, an array of factors affect travel demand (e.g., strength of the local economy, price of gasoline), causing substantial additional uncertainty. Appendix B of OPR's General Plan Guidelines summarizes research which could be used to guide a programmatic analysis under CEQA. Lead agencies should note that automobile congestion or delay does not constitute a significant environmental impact (Pub. Resources Code, §21099(b)(2)), and safety should not be used as a proxy for road capacity.

H. VMT Mitigation and Alternatives

When a lead agency identifies a significant impact, it must identify feasible mitigation measures that could avoid or substantially reduce that impact. (Pub. Resources Code, § 21002.1, subd. (a).) Additionally, CEQA requires that an environmental impact report identify feasible alternatives that could avoid or substantially reduce a project's significant environmental impacts.

Indeed, the California Court of Appeal recently held that a long-term regional transportation plan was deficient for failing to discuss an alternative which could significantly reduce total vehicle miles traveled. In Cleveland National Forest Foundation v. San Diego Association of Governments, et al. (2017) 17 Cal.App.5th 413, the court found that omission "inexplicable" given the lead agency's "acknowledgment in its Climate Action Strategy that the state's efforts to reduce greenhouse gas emissions from on-road transportation will not succeed if the amount of driving, or vehicle miles traveled, is not significantly reduced." (Cleveland National Forest Foundation, supra, 17 Cal.App.5th at p. 436.) Additionally, the court noted that the project alternatives focused primarily on congestion relief even though "the [regional] transportation plan is a long-term and congestion relief is not necessarily an effective longterm strategy." (Id. at p. 437.) The court concluded its discussion of the alternatives analysis by stating: "Given the acknowledged long-term drawbacks of congestion relief alternatives, there is not substantial evidence to support the EIR's exclusion of an alternative focused primarily on significantly reducing vehicle trips." (Ibid.)

Several examples of potential mitigation measures and alternatives to reduce VMT are described below. However, the selection of particular mitigation measures and alternatives are left to the discretion of

26 | Page
December 2018
the lead agency, and mitigation measures may vary, depending on the proposed project and significant impacts, if any. Further, OPR expects that agencies will continue to innovate and find new ways to reduce vehicular travel.

Potential measures to reduce vehicle miles traveled include, but are not limited to:

- Improve or increase access to transit.
- Increase access to common goods and services, such as groceries, schools, and daycare.
- Incorporate affordable housing into the project.
- Incorporate neighborhood electric vehicle network.
- Orient the project toward transit, bicycle and pedestrian facilities.
- Improve pedestrian or bicycle networks, or transit service.
- Provide traffic calming.
- Provide bicycle parking.
- Limit or eliminate parking supply.
- Unbundle parking costs.
- Provide parking cash-out programs.
- Implement roadway pricing.
- Implement or provide access to a commute reduction program.
- Provide car-sharing, bike sharing, and ride-sharing programs.
- Provide transit passes.
- Shifting single occupancy vehicle trips to carpooling or vanpooling, for example providing ridematching services.
- Providing telework options.
- Providing incentives or subsidies that increase the use of modes other than single-occupancy vehicle.
- Providing on-site amenities at places of work, such as priority parking for carpools and vanpools, secure bike parking, and showers and locker rooms.
- Providing employee transportation coordinators at employment sites.
- Providing a guaranteed ride home service to users of non-auto modes.

Notably, because VMT is largely a regional impact, regional VMT-reduction programs may be an appropriate form of mitigation. In lieu fees have been found to be valid mitigation where there is both a commitment to pay fees and evidence that mitigation will actually occur. (Save Our Peninsula Committee v. Monterey County Bd. of Supervisors (2001) 87 Cal.App.4th 99, 140-141; Gentry v. City of Murrieta (1995) 36 Cal.App.4th 1359; Kings County Farm Bureau v. City of Hanford (1990) 221
Cal.App.3d 692, 727-728.) Fee programs are particularly useful to address cumulative impacts. (CEQA Guidelines, § 15130, subd. (a)(3) [a "project's incremental contribution is less than cumulatively considerable if the project is required to implement or fund its fair share of a mitigation measure or measures designed to alleviate the cumulative impact"].) The mitigation program must undergo CEQA evaluation, either on the program as a whole, or the in-lieu fees or other mitigation must be evaluated
on a project-specific basis. (California Native Plant Society v. County of El Dorado (2009) 170 Cal.App.4th 1026.) That CEQA evaluation could be part of a larger program, such as a regional transportation plan, analyzed in a Program EIR. (CEQA Guidelines, § 15168.)

Examples of project alternatives that may reduce vehicle miles traveled include, but are not limited to:

- Locate the project in an area of the region that already exhibits low VMT.
- Locate the project near transit.
- Increase project density.
- Increase the mix of uses within the project or within the project's surroundings.
- Increase connectivity and/or intersection density on the project site.
- Deploy management strategies (e.g., pricing, vehicle occupancy requirements) on roadways or roadway lanes.

Appendix 1. Considerations About Which VMT to Count

Consistent with the obligation to make a good faith effort to disclose the environmental consequences of a project, lead agencies have discretion to choose the most appropriate methodology to evaluate project impacts. ${ }^{38} \mathrm{~A}$ lead agency can evaluate a project's effect on VMT in numerous ways. The purpose of this document is to provide technical considerations in determining which methodology may be most useful for various project types.

Background on Estimating Vehicle Miles Traveled

Before discussing specific methodological recommendations, this section provides a brief overview of modeling and counting VMT, including some key terminology.

Here is an illustrative example of some methods of estimating vehicle miles traveled. Consider the following hypothetical travel day (all by automobile):

1. Residence to Coffee Shop
2. Coffee Shop to Work
3. Work to Sandwich Shop
4. Sandwich Shop to Work
5. Work to Residence
6. Residence to Store
7. Store to Residence

Trip-based assessment of a project's effect on travel behavior counts VMT from individual trips to and from the project. It is the most basic, and traditionally the most common, method of counting VMT. A trip-based VMT assessment of the residence in the above example would consider segments 1,5, 6 and 7. For residential projects, the sum of home-based trips is called home-based VMT.

A tour-based assessment counts the entire home-back-to-home tour that includes the project. A tourbased VMT assessment of the residence in the above example would consider segments 1, 2, 3, 4, and 5 in one tour, and 6 and 7 in a second tour. A tour-based assessment of the workplace would include segments 1, 2, 3, 4, and 5. Together, all tours comprise household VMT.

[^52][T]he issue is not whether the [lead agency's] studies are irrefutable or whether they could have been better. The relevant issue is only whether the studies are sufficiently credible to be considered as part of the total evidence that supports the [lead agency's] finding[.]
(Laurel Heights Improvement Assn. v. Regents of the University of California (1988) 47 Cal.3d 376, 409; see also Eureka Citizens for Responsible Gov't v. City of Eureka (2007) 147 Cal.App.4th 357, 372.)

29 | Page
December 2018

Both trip- and tour-based assessments can be used as measures of transportation efficiency, using denominators such as per capita, per employee, or per person-trip.

Trip- and Tour-based Assessment of VMT

As illustrated above, a tour-based assessment of VMT is a more complete characterization of a project's effect on VMT. In many cases, a project affects travel behavior beyond the first destination. The location and characteristics of the home and workplace will often be the main drivers of VMT. For example, a residential or office development located near high quality transit will likely lead to some commute trips utilizing transit, affecting mode choice on the rest of the tour.

Characteristics of an office project can also affect an employee's VMT beyond the work tour. For example, a workplace located at the urban periphery, far from transit, can require an employee to own a car, which in turn affects the entirety of an employee's travel behavior and VMT. For this reason, when estimating the effect of an office development on VMT, it may be appropriate to consider total employee VMT if data and tools, such as tour-based models, are available. This is consistent with CEQA's requirement to evaluate both direct and indirect effects of a project. (See CEQA Guidelines, § 15064, subd. (d)(2).)

Assessing Change in Total VMT

A third method, estimating the change in total VMT with and without the project, can evaluate whether a project is likely to divert existing trips, and what the effect of those diversions will be on total VMT. This method answers the question, "What is the net effect of the project on area VMT?" As an illustration, assessing the total change in VMT for a grocery store built in a food desert that diverts trips from more distant stores could reveal a net VMT reduction. The analysis should address the full area over which the project affects travel behavior, even if the effect on travel behavior crosses political boundaries.

Using Models to Estimate VMT

Travel demand models, sketch models, spreadsheet models, research, and data can all be used to calculate and estimate VMT (see Appendix F of the preliminary discussion draft). To the extent possible, lead agencies should choose models that have sensitivity to features of the project that affect VMT. Those tools and resources can also assist in establishing thresholds of significance and estimating VMT reduction attributable to mitigation measures and project alternatives. When using models and tools for those various purposes, agencies should use comparable data and methods, in order to set up an "apples-to-apples" comparison between thresholds, VMT estimates, and VMT mitigation estimates.

Models can work together. For example, agencies can use travel demand models or survey data to estimate existing trip lengths and input those into sketch models such as CalEEMod to achieve more
accurate results. Whenever possible, agencies should input localized trip lengths into a sketch model to tailor the analysis to the project location. However, in doing so, agencies should be careful to avoid double counting if the sketch model includes other inputs or toggles that are proxies for trip length (e.g., distance to city center). Generally, if an agency changes any sketch model defaults, it should record and report those changes for transparency of analysis. Again, trip length data should come from the same source as data used to calculate thresholds to be sure of an "apples-to-apples" comparison.

Additional background information regarding travel demand models is available in the California Transportation Commission's "2010 Regional Transportation Plan Guidelines," beginning at page 35.

Induced travel occurs where roadway capacity is expanded in an area of present or projected future congestion. The effect typically manifests over several years. Lower travel times make the modified facility more attractive to travelers, resulting in the following trip-making changes:

- Longer trips. The ability to travel a long distance in a shorter time increases the attractiveness of destinations that are farther away, increasing trip length and vehicle travel.
- Changes in mode choice. When transportation investments are devoted to reducing automobile travel time, travelers tend to shift toward automobile use from other modes, which increases vehicle travel.
- Route changes. Faster travel times on a route attract more drivers to that route from other routes, which can increase or decrease vehicle travel depending on whether it shortens or lengthens trips.
- Newly generated trips. Increasing travel speeds can induce additional trips, which increases vehicle travel. For example, an individual who previously telecommuted or purchased goods on the internet might choose to accomplish those tasks via automobile trips as a result of increased speeds.
- Land Use Changes. Faster travel times along a corridor lead to land development farther along that corridor; that new development generates and attracts longer trips, which increases vehicle travel. Over several years, this induced growth component of induced vehicle travel can be substantial, making it critical to include in analyses.

Each of these effects has implications for the total amount of vehicle travel. These effects operate over different time scales. For example, changes in mode choice might occur immediately, while land use changes typically take a few years or longer. CEQA requires lead agencies to analyze both short-term and long-term effects.

Evidence of Induced Vehicle Travel. A large number of peer reviewed studies ${ }^{39}$ have demonstrated a causal link between highway capacity increases and VMT increases. Many provide quantitative estimates of the magnitude of the induced VMT phenomenon. Collectively, they provide high quality evidence of the existence and magnitude of the induced travel effect.

[^53]32 | Page
December 2018

Most of these studies express the amount of induced vehicle travel as an "elasticity," which is a multiplier that describes the additional vehicle travel resulting from an additional lane mile of roadway capacity added. For example, an elasticity of 0.6 would signify an 0.6 percent increase in vehicle travel for every 1.0 percent increase in lane miles. Many of these studies distinguish "short run elasticity" (increase in vehicle travel in the first few years) from "long run elasticity" (increase in vehicle travel beyond the first few years). Long run elasticity is larger than short run elasticity, because as time passes, more of the components of induced vehicle travel materialize. Generally, short run elasticity can be thought of as excluding the effects of land use change, while long run elasticity includes them. Most studies find a long run elasticity between 0.6 and just over $1.0,{ }^{40}$ meaning that every increase in lanes miles of one percent leads to an increase in vehicle travel of 0.6 to 1.0 percent. The most recent major study finds the elasticity of vehicle travel by lanes miles added to be 1.03; in other words, each percent increase in lane miles results in a 1.03 percent increase in vehicle travel. ${ }^{41}$ (An elasticity greater than 1.0 can occur because new lanes induce vehicle travel that spills beyond the project location.) In CEQA analysis, the long-run elasticity should be used, as it captures the full effect of the project rather than just the early-stage effect.

Quantifying Induced Vehicle Travel Using Models. Lead agencies can generally achieve the most accurate assessment of induced vehicle travel resulting from roadway capacity increasing projects by applying elasticities from the academic literature, because those estimates include vehicle travel resulting from induced land use. If a lead agency chooses to use a travel demand model, additional analysis would be needed to account for induced land use. This section describes some approaches to undertaking that additional analysis.

Proper use of a travel demand model can capture the following components of induced VMT:

- Trip length (generally increases VMT)
- Mode shift (generally shifts from other modes toward automobile use, increasing VMT)
- Route changes (can act to increase or decrease VMT)
- Newly generated trips (generally increases VMT)
- Note that not all travel demand models have sensitivity to this factor, so an off-model estimate may be necessary if this effect could be substantial.

However, estimating long-run induced VMT also requires an estimate of the project's effects on land use. This component of the analysis is important because it has the potential to be a large component of

[^54]the overall induced travel effect. Options for estimating and incorporating the VMT effects that are caused by the subsequent land use changes include:

1. Employ an expert panel. An expert panel could assess changes to land use development that would likely result from the project. This assessment could then be analyzed by the travel demand model to assess effects on vehicle travel. Induced vehicle travel assessed via this approach should be verified using elasticities found in the academic literature.
2. Adjust model results to align with the empirical research. If the travel demand model analysis is performed without incorporating projected land use changes resulting from the project, the assessed vehicle travel should be adjusted upward to account for those land use changes. The assessed VMT after adjustment should fall within the range found in the academic literature.
3. Employ a land use model, running it iteratively with a travel demand model. A land use model can be used to estimate the land use effects of a roadway capacity increase, and the traffic patterns that result from the land use change can then be fed back into the travel demand model. The land use model and travel demand model can be iterated to produce an accurate result.

A project which provides new connectivity across a barrier, such as a new bridge across a river, may provide a shortened path between existing origins and destinations, thereby shortening existing trips. In rare cases, this trip-shortening effect might be substantial enough to reduce the amount of vehicle travel resulting from the project below the range found in the elasticities in the academic literature, or even lead a net reduction in vehicle travel overall. In such cases, the trip-shortening effect could be examined explicitly.

Whenever employing a travel demand model to assess induced vehicle travel, any limitation or known lack of sensitivity in the analysis that might cause substantial errors in the VMT estimate (for example, model insensitivity to one of the components of induced VMT described above) should be disclosed and characterized, and a description should be provided on how it could influence the analysis results. A discussion of the potential error or bias should be carried into analyses that rely on the VMT analysis, such as greenhouse gas emissions, air quality, energy, and noise.

[^0]: ${ }^{1}$ The terms "General Plan" and "Comprehensive Plan" are interchangeable in the context of this EIR. The current plan is termed a "Comprehensive Plan." However, a change to the term "General Plan" is proposed for consistency with State General Plan law and to better reflect the broader nature of the plan.

[^1]: ${ }^{1}$ Primary arterials are major streets designed to expedite through traffic, with restricted access to abutting properties. Secondary arterials provide access to Major Arterials, other Secondary Arterials, and Collectors, with some access to local roads and major traffic-generating uses. Collectors provide both land access and movement within residential, commercial, and industrial areas, as well as connecting the local areas with the arterial street system.

[^2]: Note: All acreage numbers are approximate.

[^3]: - The Department of Housing and Urban Development Empowerment Zone/Enterprise Community program
 - The Department of Transportation Livable Communities program
 - The Department of Commerce Economic Development Administration
 - Various Department of the Interior programs
 - The State Department of Toxic Substances Control Cleanup Loans and Environmental Assistance to Neighborhoods (CLEAN) Brownfield Loan Program

[^4]: ${ }^{1}$ Unlike the VFD, most fire protection districts do not include a building division that is responsible for enforcing the Uniform Building Code (which is typically found in public works or planning departments). As such, the 0.69 firefighters/1,000 residents ratio only includes the 73 sworn firefighters and is based on the 2004 City population of 104,952 residents.

[^5]: ${ }^{a}$ Staffing levels are based on the number of sworn firefighters and do not include Inspection Services' employees (cf setting discussion above). Facilities are measured in terms of number of fire stations.
 ${ }^{b}$ This analysis is based on a desired staffing ratio of 0.98 firefighters/1,000 residents.
 ${ }^{c}$ Approximately 121 firefighters would be required to achieve the desired staffing ratio; however, the actual number of new firefighters that would be hired would be based on whether or not an additional fire station is built in the North Ventura Avenue area under Scenario 1. Please see the Scenario 1 impact analysis below for a more detailed discussion of the requisite number of new fire stations and firefighters required under Scenario 1.

[^6]: Source: Austin-Foust Associates, Inc., May 2005

[^7]: Source: Austin-Foust Associates, Inc., May 2005

[^8]: Source: Austin-Foust Associates, Inc., May 2005

[^9]: Source: Austin-Foust Associates, Inc., May 2005

[^10]: ${ }^{1}$ Improvement made in April 2002.
 Source: City of Ventura Public Works.

[^11]: ${ }^{1}$ The "coastal zone" includes all offshore islands and extends inland generally 1,000 yards from the mean high tide line of the Pacific Ocean. In significant coastal estuarine, habitat, and recreational areas, the coastal zone extends inland to the first major ridgeline paralleling the sea or five miles from the mean high tide line of the sea, whichever is less, and in developed urban areas the zone generally extends inland less than 1,000 yards.

[^12]: County Government Center • Hall of Administration • 800 S. Victoria Avenue • Ventura, CA 93009-1850 Tel (805) 654-2576 • Fax (805) 477-7101 http://www.ventura.lafco.ca.gov

[^13]: County Government Center • Hall of Administration - 800 3. Victoria Avenue = Ventura, CA 93009-185D
 Tel (805) 654-2576 • Fax (805) 477-7101
 http://www.ventura.lafico.ca.gov

[^14]: ${ }^{1}$ Future estimates of development differ slightly than those in the EIR project description. However, estimates are similar enough to reflect possible impacts.

[^15]: Revlewing Resources Agency; Regional Water Quality Control Board, Region 4; Department of Parks and' Agencies Recreation; Native American Heritage Commission; Department of Heath Services; Deparment of Housing and Communlty Development; Office of Emergency Services; Dopartment of Fish and Game, Region 5: Department of Water Resources; Department of Conservation; Calfornia Highway Patrol; Caltrans, District 7; Califomia Coastal Commission; Department of Toxic Substances Control

[^16]: cc: Ventura LAFCO
 Susan J. Daluddung, Community Development Director Joe Power, Principal, Rincon Consultants, Inc.

[^17]: 5) $4-16$ refers to criteria that properties eigible to be part of Scenario 1 must meet, such as properties not subject to City SOAR, can include agricultural land but must be designated for urban use, not subject to an LCA
 contract, not within a greenbeit and within the current sol. However, Page
 indicate that no land outside the Sol will be included. Thus, the parameters of Scenario 1 are inconsistent and unclear.
 (6) According the County GIS maps, approximately 29 acres within the W. Canada Larga PEA and approximately 66 acres in the North Ventura Avenue PEA, for a total of approximately 95 acres, are subject to the City SOAR.
[^18]: ${ }^{1}$ General Plan Draft Environmental Impact Report June 2005
 ${ }^{2}$ Water System Operational Evaluation \& Improvement Program, June 1993
 ${ }^{3}$ General Plan Draft Environmental Impact Report June 2005
 ${ }^{4}$ General Plan Draft Environmental Impact Report, Historic and Projected Water Production,
 Table 4.13-8
 ${ }_{5}$ 2004Biennial Water Supply Report, September 2004
 ${ }^{6}$ 2004Biennial Water Supply Report, September 2004
 ${ }^{7}$ Water System Operational Evaluation \& Improvement Program Historic Water Consumption Summary, Table ES-2
 ${ }^{8}$ Water System Operational Evaluation \& Improvement Program Potential Yield of Existing Water Sources, Table ES -8
 ${ }^{9}$ Water System Operational Evaluation \& Improvement Program Potential Future Water Source Requirements, Table ES-10

[^19]: ${ }^{10}$ General Plan Draft Environmental Impact Report June 2005
 ${ }^{11}$ General Plan Draft Environmental Impact Report, Historic and Projected Water Production,
 Table 4.13-8
 ${ }^{12}$ Water System Operational Evaluation \& Improvement Program Historic Water Demand Trends, Table ES-1
 ${ }^{13}$ General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8

[^20]: ${ }^{14}$ Water System Operational Evaluation \& Improvement Program Historic Water Demand Trends, Table ES-1
 15 General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8
 ${ }^{16}$ General Plan Draft Environmental Impact Report, Projected Water Demand, Intensification/Reuse Only, Table 4.13-15

[^21]: ${ }^{17}$ Water System Operational Evaluation \& Improvement Program Potential Future Water Sources Requirements, Page ES-16

[^22]: ${ }^{18}$ General Plan Draft Environmental Impact Report June 2005
 ${ }^{19}$ General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8
 ${ }^{20}$ Water System Operational Evaluation \& Improvement Program Historic Water Demand Trends, Table ES-1
 ${ }_{21}$ General Plan Draft Environmental Impact Report, Historic and Projected Water Production, Table 4.13-8

[^23]: Jean Howard Mann

[^24]: Terra Donlon
 Director of Government Affairs

[^25]: Cc: Mr. Brian Brennan, Mayor
 San Buenaventura City Council Members
 Mr. Rick Cole, City Manager
 Susan Daluddung, Community Development Director

[^26]: 1 Adopted City of San Buenaventura 2000-2006 Housing Element, April 2004, pp. 4-1,
 Chart 4-1 on p. 4-2.

[^27]: 2 The DEIR labels this Parks and Recreational Faciities map as Figure as 4,11-2, however this appears to be a typographical error as page 4.11-5 contains another Figure 4.11-2 (Wildfire Risk Areas) and the text of the DEMR refers to the Parks and Recreational Facilities map as Figure 4.11-4 (see page 4.11-14).

 3 DEIR, p. 2-14.

[^28]: ${ }^{1}$ The sources of the remaining groundwater contaminants in Parcels C and G (and the southwestern portion of Parcel B) are deep-seated petroleum fuel releases from former bulk storage tank farm operations not associated with former MGP operations.

[^29]: ${ }^{2}$ DTSC PAH Studies in the Manufactured Gas Plant Site Cleanup Process (July 1, 2009) (https://dtsc.ca.gov/AssessingRis k/upload/MGP PAH Advisory 070109.pdf)
 ${ }^{3}$ A $0.9 \mathrm{mg} / \mathrm{kg}$ in $\mathrm{B}(\mathrm{a}) \mathrm{P}$ equivalent corresponds to the 95% Upper Tolerance Limit (UTL) of the background distribution

[^30]: ${ }^{4}$ The goal of unrestricted land use applies only to the shallow soil (top 15 feet). However, presence of elevated TPH concentrations in deeper soils (e.g., B1, B3, B5, and B6 at 30 feet or 35 feet bgs) exceed both residential or industrial HBGs. As such, a LUC will be required for the Site, as discussed in Section 10.4.

[^31]: ${ }^{5}$ This assumes the currently existing office building and warehouse will be demolished and removed in the near future, as called for in the modernization plans.
 ${ }^{6}$ Impacted soil is currently capped.

[^32]: ${ }^{7}$ American Petroleum Institute (API) RP 500 - Recommended Practice for Classification of Locations for Electrical Installation at Petroleum Facilities Classified as Class I, Division 1 and Division 2.

[^33]: ${ }^{8}$ American Petroleum Institute (API) RP 500 - Recommended Practice for Classification of Locations for Electrical Installation at Petroleum Facilities Classified as Class I, Division 1 and Division 2.

[^34]: ${ }^{9}$ Prior to importing the fill material to the Site, it will be tested following the DTSC Clean Fill Advisory (https://dtsc.ca.gov/wp-content/uploads/sites/31/2018/09/SMP FS CleanfillSchools.pdf) for sampling and analysis of candidate borrow sources. The test results will be provided to DTSC for review prior to importing.

[^35]: ${ }^{1}$ California Air Resources Board (Nov. 2018) 2018 Progress Report on California's Sustainable Communities and Climate Protection Act, pp. 4, 5, available at https://ww2.arb.ca.gov/sites/default/files/2018-11/Final2018Report SB150 11261802 Report.pdf. ${ }^{2}$ Id., p. 28.
 ${ }^{3}$ See https://ca50million.ca.gov/transportation/
 ${ }^{4}$ Fang et al. (2017) Cutting Greenhouse Gas Emissions Is Only the Beginning: A Literature Review of the Co-Benefits of Reducing Vehicle Miles Traveled.
 ${ }^{5}$ California Air Resources Board (Nov. 2017) California's 2017 Climate Change Scoping Plan, p. 102, available at https://www.arb.ca.gov/cc/scopingplan/scoping plan 2017.pdf.

[^36]: ${ }^{6}$ Id. at p. 76.
 ${ }^{7}$ Fang et al. (2017) Cutting Greenhouse Gas Emissions Is Only the Beginning: A Literature Review of the Co-Benefits of Reducing Vehicle Miles Traveled, available at https://ncst.ucdavis.edu/wp-content/uploads/2017/03/NCST-VMT-Co-Benefits-White-Paper Fang March-2017.pdf.
 ${ }^{8}$ Haynes et al. (Sept. 2015) Congested Development: A Study of Traffic Delays, Access, and Economic Activity in Metropolitan Los Angeles, available at http://www.its.ucla.edu/wpcontent/uploads/sites/6/2015/11/Haynes Congested-Development 1-Oct-2015 final.pdf.
 ${ }^{9}$ Osman et al. (Mar. 2016) Not So Fast: A Study of Traffic Delays, Access, and Economic Activity in the San Francisco Bay Area, available at http://www.its.ucla.edu/wp-content/uploads/sites/6/2016/08/Taylor-Not-so-Fast-04-01-2016 final.pdf.

[^37]: ${ }^{10}$ See Appendix 1, Considerations About Which VMT to Count, for a description of these approaches.
 ${ }^{11}$ See Appendix 1, Considerations About Which VMT to Count, "Assessing Change in Total VMT" section, for a description of this approach.

[^38]: ${ }^{12}$ Generally, qualitative analyses should only be conducted when methods do not exist for undertaking a quantitative analysis.

[^39]: ${ }^{13}$ California Air Resources Board (May 2014) First Update to the Climate Change Scoping Plan, p. 46 (emphasis added).
 ${ }^{14}$ CAPCOA (2010) Quantifying Greenhouse Gas Mitigation Measures, p. 55, available at http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf.

[^40]: ${ }^{15}$ California Air Resources Board (Jan. 2019) California Air Resources Board 2017 Scoping Plan-Identified VMT Reductions and Relationship to State Climate Goals, available at https://ww2.arb.ca.gov/resources/documents/carb-2017-scoping-plan-identified-vmt-reductions-and-relationship-state-climate.
 ${ }^{16}$ California Air Resources Board (Nov. 2017) California's 2017 Climate Change Scoping Plan, p. 101.
 ${ }^{17}$ California Air Resources Board (Feb. 2018) Updated Final Staff Report: Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets, Figure 3, p. 35, available at https://www.arb.ca.gov/cc/sb375/sb375 target update final staff report feb2018.pdf.
 ${ }^{18}$ California Air Resources Board (Nov. 2017) California's 2017 Climate Change Scoping Plan, p. 75.
 11 | Page
 December 2018

[^41]: ${ }^{19}$ CEQA provides a categorical exemption for existing facilities, including additions to existing structures of up to 10,000 square feet, so long as the project is in an area where public infrastructure is available to allow for maximum planned development and the project is not in an environmentally sensitive area. (CEQA Guidelines, § 15301, subd. (e)(2).) Typical project types for which trip generation increases relatively linearly with building footprint (i.e., general office building, single tenant office building, office park, and business park) generate or attract an additional 110-124 trips per 10,000 square feet. Therefore, absent substantial evidence otherwise, it is reasonable to conclude that the addition of 110 or fewer trips could be considered not to lead to a significant impact.

[^42]: ${ }^{20}$ Pub. Resources Code, § 21064.3 ("'Major transit stop' means a site containing an existing rail transit station, a ferry terminal served by either a bus or rail transit service, or the intersection of two or more major bus routes with a frequency of service interval of 15 minutes or less during the morning and afternoon peak commute periods.").

[^43]: ${ }^{21}$ Pub. Resources Code, $\S 21155$ ("For purposes of this section, a high-quality transit corridor means a corridor with fixed route bus service with service intervals no longer than 15 minutes during peak commute hours.").
 ${ }^{22}$ Including naturally-occurring affordable residential units.
 ${ }^{23}$ Chapple et al. (2017) Developing a New Methodology for Analyzing Potential Displacement, Chapter 4, pp. 159-160, available at https://www.arb.ca.gov/research/apr/past/13-310.pdf.
 ${ }^{24}$ Karner and Benner (2016) The convergence of social equity and environmental sustainability: Jobshousing fit and commute distance ("[P]olicies that advance a more equitable distribution of jobs and housing by linking the affordability of locally available housing with local wage levels are likely to be associated with reduced commuting distances").
 ${ }^{25}$ Karner and Benner (2015) Low-wage jobs-housing fit: identifying locations of affordable housing shortages.
 ${ }^{26}$ Karner and Benner (2015) Low-wage jobs-housing fit: identifying locations of affordable housing shortages.

[^44]: ${ }^{27}$ Chapple et al. (2017) Developing a New Methodology for Analyzing Potential Displacement, available at https://www.arb.ca.gov/research/apr/past/13-310.pdf.
 ${ }^{28}$ CAPCOA (2010) Quantifying Greenhouse Gas Mitigation Measures, pp. 176-178, available at http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf.

[^45]: ${ }^{29}$ See Appendix 1 for a description of these approaches.
 ${ }^{30}$ Lovejoy, et al. (2013) Measuring the impacts of local land-use policies on vehicle miles of travel: The case of the first big-box store in Davis, California, The Journal of Transport and Land Use.

[^46]: ${ }^{31}$ Including naturally-occurring affordable residential units.

[^47]: ${ }^{32}$ Chapple et al. (2017) Developing a New Methodology for Analyzing Potential Displacement, Chapter 4, pp. 159-160, available at https://www.arb.ca.gov/research/apr/past/13-310.pdf.

[^48]: ${ }^{33}$ See, e.g., California Department of Transportation (2006) Guidance for Preparers of Growth-related, Indirect Impact Analyses, available at http://www.dot.ca.gov/ser/Growthrelated IndirectImpactAnalysis/GRI guidance06May files/gri guidance.pdf.

 20 | Page
 December 2018

[^49]: ${ }^{34}$ The California Air Resources Board has ascertained the limits of VMT growth compatible with California containing greenhouse gas emissions to levels research shows would allow for climate stabilization. (See The 2017 Climate Change Scoping Plan: The Strategy for Achieving California's 2030 Greenhouse Gas Target (p. 78, p. 101); Mobile Source Strateqy (p. 37).) CARB's Updated Final Staff Report on Proposed Update to the SB 375 Greenhouse Gas Emission Reduction Targets illustrates that the current Regional Transportation Plans and Sustainable Communities Strategies will fall short of achieving the necessary on-road transportation-related GHG emissions reductions called for in the 2017 Scoping Plan (Figure 3, p. 35). Accordingly, OPR recommends not basing GHG emissions or transportation impact analysis for a transportation project solely on consistency with an RTP/SCS.

[^50]: ${ }^{35}$ See U.C. Davis, Institute for Transportation Studies (Oct. 2015) Increasing Highway Capacity Unlikely to Relieve Traffic Congestion; Boarnet and Handy (Sept. 2014) Impact of Highway Capacity and Induced Travel on Passenger Vehicle Use and Greenhouse Gas Emissions, California Air Resources Board Policy Brief, available at https://www.arb.ca.gov/cc/sb375/policies/hwycapacity/highway capacity brief.pdf. ${ }^{36}$ See Duranton and Turner (2011) The Fundamental Law of Road Congestion: Evidence from US cities, available at http://www.nber.org/papers/w15376.

[^51]: ${ }^{37}$ See National Center for Sustainable Transportation (Oct. 2015) Increasing Highway Capacity Unlikely to Relieve Traffic Congestion, available at
 http://www.dot.ca.gov/newtech/researchreports/reports/2015/10-12-2015-
 NCST Brief InducedTravel CS6 v3.pdf; see Duranton and Turner (2011) The Fundamental Law of Road Congestion: Evidence from US cities, available at http://www.nber.org/papers/w15376.

[^52]: ${ }^{38}$ The California Supreme Court has explained that when an agency has prepared an environmental impact report:

[^53]: ${ }^{39}$ See, e.g., Boarnet and Handy (Sept. 2014) Impact of Highway Capacity and Induced Travel on Passenger Vehicle Use and Greenhouse Gas Emissions, California Air Resources Board Policy Brief, available at https://www.arb.ca.gov/cc/sb375/policies/hwycapacity/highway capacity brief.pdf; National Center for Sustainable Transportation (Oct. 2015) Increasing Highway Capacity Unlikely to Relieve Traffic Congestion, available at
 http://www.dot.ca.gov/research/researchreports/reports/2015/10-12-2015-
 NCST Brief InducedTravel CS6 v3.pdf.

[^54]: ${ }^{40}$ See Boarnet and Handy (Sept. 2014) Impact of Highway Capacity and Induced Travel on Passenger Vehicle Use and Greenhouse Gas Emissions, California Air Resources Board Policy Brief, p. 2, available at https://www.arb.ca.gov/cc/sb375/policies/hwycapacity/highway capacity brief.pdf.
 ${ }^{41}$ Duranton and Turner (2011) The Fundamental Law of Road Congestion: Evidence from US cities, available at http://www.nber.org/papers/w15376.

