Appendix B

Air Quality and GHG Emissions Technical Report

SoCalGas

Ventura Compressor Station Modernization Project

1555 N. Olive St. Ventura, CA 93001

April 2023

Prepared by:

Office Locations: San Juan Capistrano, Long Beach, Diamond Bar, Los Angeles, Riverside, Ventura, San Diego, Berkeley, San Francisco, Fresno, Merced

> Tel: (949) 248-8490 Fax: (949) 248-8499

Copyright ©2023, Yorke Engineering, LLC

SoCalGas Ventura Compressor Station Modernization Project Air Quality and Greenhouse Gas Emissions Technical Report

Prepared for:

SoCalGas Ventura Compressor Station 1555 North Olive Street, Ventura, CA 93001

April 2023

Table of Contents

1.0 BACKGROUND	.1
1.1 Project Components	. 1
1.2 Report Contents	
2.0 AIR QUALITY IMPACT ANALYSES	.2
2.1 Air Quality Thresholds of Significance	.2
2.1.1 Criteria Pollutant Emissions	
2.1.2 Criteria Pollutants – Air Quality Impact Analysis	.3
2.1.3 Toxic Air Contaminants	
2.2 Proposed Project Construction and Operations Emissions Analyses	4
2.2.1 Construction and Demolition Emissions Impact Analysis	
2.2.2 Operational Emissions Impact Analysis	
2.3 Proposed Project Air Quality Impact Analyses 1	
2.3.1 Ambient Air Quality Impacts from Project Operation	
2.4 Proposed Project Health Risk Assessment	
2.4.1 Health Risk Assessment for Project Construction	
2.4.2 Health Risk Assessment for Project Operation	6
3.0 GREENHOUSE GAS EMISSIONS 1	8
3.1 GHG Emissions Significance Criteria1	8
3.2 GHG Emissions Analysis for the Proposed Project 1	8
3.2.1 GHG Emissions from Project Construction/Demolition1	8
3.2.2 GHG Emissions from Project Operation1	
3.2.3 Determination of GHG Emissions Significance	20
4.0 REFERENCES	22

Table of Attachments

ATTACHMENT A – CALEEMOD OUTPUTS

ATTACHMENT B – OPERATIONAL CRITERIA POLLUTANT AND TOXIC AIR CONTAMINANT EMISSIONS

ATTACHMENT C – OPERATIONS PM10 MODELING INPUT PARAMETERS AND RESULTS

ATTACHMENT D – CONSTRUCTION HRA INPUT PARAMETERS AND RESULTS

ATTACHMENT E – OPERATIONS HRA INPUT PARAMETERS AND RESULTS

ATTACHMENT F - GHG EMISSIONS AND ENERGY CALCULATIONS

List of Tables

2
3
4
5
5
6
6
9
1
2
3
3
4
4
5
6
7
8
9
0
1

List of Acronyms and Abbreviations

	•
AAQS	Ambient Air Quality Standard
AERMOD	American Meteorological Society/EPA Regulatory Model
AQIA	Air Quality Impact Analysis
AQMP	Air Quality Management Plan
ATC	Authority to Construct
BAAQMD	Bay Area Air Quality Management District
BACT	Best Available Control Technology
BHP	Brake Horsepower
BMP	Best Management Practice
Btu	British Thermal Unit
CAAQS	California Ambient Air Quality Standard
CalEEMod	California Emissions Estimator Model®
CAPCOA	California Air Pollution Control Officers Association
CARB	California Air Resources Board
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CH ₄	Methane
СО	Carbon Monoxide
CO ₂	Carbon Dioxide
CO ₂ e	Carbon Dioxide Equivalent
CPUC	California Public Utilities Commission
DPM	Diesel Particulate Matter
EDC	Electric-Driven Compressor
EIA	[United States] Energy Information Administration
EPA	[United States] Environmental Protection Agency
GHG	Greenhouse Gas
GLC	Ground Level Concentration
GWP	Global Warming Potential
HAE	Historic Actual Emissions
HARP2	Hotspots Analysis and Reporting Program, Version 2
HHDT	Heavy-Heavy Duty Truck
HIA	Acute Hazard Index
HIC	Chronic Hazard Index
HP	Horsepower
HRA	Health Risk Assessment
hr	Hour
IPCC	Intergovernmental Panel on Climate Change
kW	Kilowatt
lb	Pound

LDA	Light Duty Automobile
LDAR	Leak Detection and Reporting
LDT	Light Duty Truck
MEIR	Maximally Exposed Individual Resident
MEIW	Maximally Exposed Individual Worker
MHDT	Medium Heavy-Duty Truck
MICR	Maximum Individual Cancer Risk
MMBtu	Million British Thermal Units
MMscf	Million Standard Cubic Feet
MT	Metric Ton
MWh	Megawatt-hour
NA	Not Applicable
NAAQS	National Ambient Air Quality Standard
NEI	Net Emissions Increase
N ₂ O	Nitrous Oxide
NO _x	Nitrogen Oxides
NSCR	Non-Selective Catalytic Reduction
NSR	New Source Review
OEHHA	[California] Office of Environmental Health Hazard Assessment
OPR	[California] Office of Planning and Research
PEA	Proponents Environmental Assessment
PM10	Respirable Particulate Matter
PM _{2.5}	Fine Particulate Matter
PTE	Potential to Emit
ROC	Reactive Organic Compound
R/ODS	Refrigerants/Ozone-Depleting Substances
SCAQMD	South Coast Air Quality Management District
SCE	Southern California Edison
SIL	Significant Impact Level
SJVAPCD	San Joaquin Valley Air Pollution Control District
SoCalGas	Southern California Gas Company
SO_2	Sulfur Dioxide
SO _x	Oxides of Sulfur
TAC	Toxic Air Contaminant
TCR	The Climate Registry
VCAPCD	Ventura County Air Pollution Control District
VCS	Ventura Compressor Station
VMT	Vehicle Miles Traveled
VOC	Volatile Organic Compound
yr	year
$\mu g/m^3$	micrograms per cubic meter

Ventura Compressor Station Modernization Project Air Quality and Greenhouse Gas Emissions Technical Report

1.0 BACKGROUND

1.1 Project Components

SoCalGas is proposing a project to modernize the Ventura Compressor Station (VCS) by replacing the existing gas compression equipment at this site with new compression equipment that has state of the art air emission controls. The VCS is a natural gas gathering and boosting station with high-pressure gas transmission pipelines entering and leaving the station to move gas to the SoCalGas La Goleta Storage Field, as well as provide service to customers in the system. The VCS is located at 1555 North Olive Street, Ventura, CA 93001.

The existing facility consists of three 1,100 horsepower (HP) natural gas-fired reciprocating internal combustion engines that drive high-pressure gas compressors (natural gas compressors) and one 68 HP diesel-fired emergency generator engine. The existing equipment will be decommissioned and demolished approximately 1 year after the replacement equipment is fully operational with demonstrated reliability.

The proposed VCS Modernization Project (Project) includes installation of four new reciprocating compressors: two each driven by 1,900-HP natural gas engines with non-selective catalytic reduction (NSCR) emission control equipment and two each nominal up to 2,500 HP (1,963 kilowatts [kW]) electric-driven compressors (EDCs), as well as one new 840-HP natural gas-fired standby generator engine, rated at approximately 560 kW peak output power. New structures include the compressor building, office building, warehouse, and standby generator enclosure. Additional ancillary equipment includes gas filtration equipment, supporting mechanical equipment, and storage tanks/drums, where the engine oil, oil waste, and oily waste storage drums are anticipated to be the only ancillary equipment that could have air pollutant emissions, albeit the emissions would be negligible. The proposed facility enhancements would increase electric power demand, primarily for operation of the new EDCs. No off-site road improvements, pipeline extensions, or other permanent infrastructure would be necessary to construct the Project.

SoCalGas submitted an Authority to Construct (ATC) application package for a prior proposed Project that consisted of four replacement natural gas-fired engines in March 2020 and a preliminary draft ATC was provided by the Ventura County Air Pollution Control District (VCAPCD) in November 2020. That application has been withdrawn pending development of this revised Project.

1.2 Report Contents

This technical report analyzes impacts from air quality and greenhouse gas (GHG) emissions related to construction and operation of the proposed Project. The proposed Project criteria pollutant and GHG emissions and the effect of emissions on air quality are compared to relevant California Environmental Quality Act (CEQA) significance thresholds to determine the significance of the potential impacts.

2.0 AIR QUALITY IMPACT ANALYSES

The air quality impact analyses were prepared in accordance with the VCAPCD's Ventura County Air Quality Assessment Guidelines (VCAPCD Guidelines) (VCAPCD 2003).

2.1 Air Quality Thresholds of Significance

2.1.1 Criteria Pollutant Emissions

"Criteria" pollutants are those for which health-based standards have been established on either the national or State level. Ventura County has been designated as being over the established health-based ambient air quality standards (AAQS) at both the State and national levels for ozone and over the State standards for respirable particulate matter (PM_{10}). Ozone is not typically a directly emitted pollutant, but rather is a result of atmospheric photochemical reactions of nitrogen oxides (NO_x) and reactive organic compounds (ROC) "precursor" emissions in the presence of sunlight. Therefore, these "nonattainment" pollutants are of the most concern in determining the potential for a project in Ventura County to impact air quality.

2.1.1.1 Construction Emissions Significance Thresholds

The VCAPCD Guidelines provide significance thresholds for the ozone precursors NO_x and ROC of 25 pounds per day of emissions from construction activities related to a project as shown in Table 2-1 (VCAPCD 2003).

Pollutant	Project Emissions Significance Threshold (lbs/day)
ROC	25
NO _x	25

Table 2-1: VCAPCD CEQA Mass Daily Significance Thresholds

Source: VCAPCD 2003

For construction impacts, rather than having numeric significance thresholds for respirable particulate matter (PM₁₀), the VCAPCD Guidelines recommend minimizing fugitive dust through dust control measures.

Impacts related to fugitive dust are mitigated by the application of Best Management Practices (BMPs) such as watering, limiting track-out, covering haul trucks carrying bulk materials with a tarp, and reducing speed on unpaved areas. These measures are required by VCAPCD Rule 55, Fugitive Dust, which minimizes fugitive dust generation. Other BMPs such as limiting construction activities during high wind events are recommended by the California Public Utilities Commission (CPUC) Guidelines (2019). The BMPs that will be implemented for the Project are discussed in Section 5.3, Air Quality, of the Proponents Environmental Assessment (PEA).

2.1.1.2 Operational Emissions Significance Thresholds

According to the VCAPCD Guidelines, the thresholds shown in Table 2-1 are applied to unpermitted sources of NO_x and ROC emissions associated with operation of the Project. Emissions from equipment requiring VCAPCD permits, specifically stationary equipment, are not counted towards these air quality significance thresholds because they are subject to rigorous New Source Review (NSR) permit requirements. Unpermitted sources are not

subject to these NSR rules but could contribute ozone precursor emissions, which would exacerbate exceedances of the State and national ozone AAQS.

The VCAPCD Guidelines do not provide numeric thresholds for operational emissions of PM_{10} or other criteria pollutants. The VCAPCD's NSR program and other rules and regulations would limit criteria pollutant emissions from stationary sources and minimize the potential for emissions of other pollutants to lead to significant impacts. A modeling analysis of air quality impacts may also be needed as discussed below.

2.1.2 Criteria Pollutants – Air Quality Impact Analysis

VCAPCD Guidelines indicate that for criteria pollutants other than NO_x and ROC, an Air Quality Impact Analysis (AQIA) based on dispersion modeling may be needed to demonstrate that the emissions will not cause a substantial contribution to an existing exceedance of an air quality standard. "Substantial" is defined as making measurably worse an existing exceedance of a National or California Ambient Air Quality Standard (NAAQS/CAAQS). Because Ventura County is designated as nonattainment for the PM₁₀ CAAQS, a demonstration that the Project will not contribute to an exceedance is needed.

The California Office of Planning and Research (OPR) CEQA Guidelines (Title 14, Division 6, Chapter 3 of the California Code of Regulations) Appendix G checklist questions (OPR 2022) require assessment of any criteria pollutant for which the project region is designated as nonattainment under an applicable NAAQS or CAAQS to determine if there would be a cumulatively considerable net increase of that pollutant. Ventura County is designated as attainment for the NAAQS and CAAQS for carbon monoxide (CO), sulfur dioxide (SO₂), and fine particulate matter (PM_{2.5}), as well as other pollutants for which there are CAAQS, but is designated as nonattainment of the CAAQS for PM₁₀. Based on the OPR CEQA Guidelines, AQIA modeling is only needed for PM₁₀.

Since Ventura County is nonattainment for PM_{10} , the background concentration is greater than the CAAQS; thus, the AQIA modeling results are compared to Significant Impact Levels (SILs) to determine if the Project will have a "significant contribution" to an existing exceedance. Because the VCAPCD Guidelines do not identify SILs for PM_{10} , the PM_{10} SILs provided in the San Joaquin Valley Air Pollution Control District (SJVAPCD) Policy APR 1925 were used to assess the PM_{10} impacts for the proposed Project and are shown in Table 2-2.

Pollutant	Averaging Time	Significant Impact Level (SIL) ¹ (µg/m ³)
DM	24 Hour	5.0
PM_{10}	Annual	1.0

Table 2-2: AQIA Significant Impact Levels for PM₁₀

Note:

1. SJVAPCD Policy APR 1925 (2014)

2.1.3 Toxic Air Contaminants

In addition to criteria pollutants, carcinogenic and other health effects can be caused by toxic air contaminant (TAC) emissions. Impacts from TAC emissions are estimated by

conducting a health risk assessment (HRA). The VCAPCD Guidelines (2003) have defined significance criteria for health risks as shown in Table 2-3.

Table 2-3: VCAPCD HRA Significance Thresholds

Risk	Threshold
Maximum Individual Cancer Risk (MICR)	10 in one million
Chronic Hazard Index (HIC)	1
Acute Hazard Index (HIA)	1

2.2 Proposed Project Construction and Operations Emissions Analyses

2.2.1 Construction and Demolition Emissions Impact Analysis

2.2.1.1 Construction and Demolition Emissions Calculation Methodology

The analysis of offroad construction/demolition emissions was performed using the California Emissions Estimator Model[®] (CalEEMod) version 2022.1, the official statewide land use computer model designed to provide a uniform platform for estimating potential criteria pollutant and GHG emissions associated with both construction and operations of projects under CEQA. The model quantifies direct emissions from construction (including demolition) and operations (including vehicle use), as well as indirect emissions, such as GHG emissions from electricity use, solid waste disposal, vegetation planting and/or removal, and water use.

The mobile source emission factors used in the model – published by the California Air Resources Board (CARB) – include the Pavley standards and Low Carbon Fuel standards. The emissions model also identifies project design features, regulatory measures, and mitigation measures to reduce criteria pollutant and GHG emissions along with calculating the benefits achieved from the selected measures. CalEEMod was developed by the California Air Pollution Control Officers Association (CAPCOA) in collaboration with the South Coast Air Quality Management District (SCAQMD), the Bay Area Air Quality Management District (BAAQMD), the SJVAPCD, and other California air districts. Default land use data (e.g., emission factors, trip lengths, meteorology, source inventory, etc.) were provided by the various California air districts to account for local requirements and conditions. As the official assessment methodology for land use projects in California, CalEEMod is relied upon herein for construction offroad emissions quantification, which forms the basis for the emissions impact analyses.

2.2.1.2 Proposed Project Construction and Demolition Description

The proposed Project is expected to require up to approximately 25 months of planned work activities (i.e., from mobilization to substantial completion) comprising of the following construction phases:

- 1) Subsurface Exploration
- 2) Existing Project Site Demo
- 3) Site Preparation/ Rough Grading
- 4) Foundations
- 5) Trenching/Undergrounds
- 6) Equipment, Structural Steel & Building Erection, Piping

- 7) Electrical & Instrumentation
- 8) Paving
- 9) Painting/Insulation
- 10) Pre-Commissioning/Commissioning/ Startup and Testing
- 11) Post Construction/Site Restoration

Phase 2, Existing Project Site Demo, includes demolition of existing paved (asphalt and concrete) surfaces at the southern half of the Project site as well as other infrastructure around the site. Approximately 1 year after the proposed new compressors are fully operational, the existing equipment will be decommissioned and removed from the site (Phase 12). A description of the activities planned for each of these phases is provided in Chapter 3, Project Description, of the PEA.

Based on information received from SoCalGas, data used for CalEEMod inputs for construction are presented in Table 2-4. Since demolition of the existing structures will be done approximately 1 year after the replacement compressors are fully operational, the estimated square footages of the structures to be demolished during the decommissioning demolition phase (Phase 12) are presented separately in Table 2-5. A preliminary construction/demolition schedule is shown in Table 2-6. The proposed list of offroad construction/demolition equipment is shown in Table 2-7. CalEEMod defaults were used for the offroad construction/demolition equipment load factor. CalEEMod defaults were also used for the HP of the electric and some diesel offroad equipment when the HP was not available.

Project Element	CalEEMod Land Use Type	Land Use Subtype	Square Feet	Acres Disturbed
Office	Commercial	General Office Building	4,641	0.11
Warehouse	Industrial	General Heavy Industry	5,459	0.13
Compressor Station	Industrial	Industrial General Heavy Industry		0.24
Power Distribution Center (PDC) Building	Industrial General Heavy In		2,016	0.05
Standby Generator Enclosure	Industrial	Industrial General Heavy Industry		0.01
Paved Areas Parking Other Asphalt Surfaces		343,759	7.89	
	All Project Sites		366,775	8.42

Table 2-4: Proposed Project Construction Land Use Data for CalEEMod Input

Source: SoCalGas, CalEEMod version 2022.1

Notes:

Climate Zone 8 – Ventura, Ventura County Electric Utility: SCE

Table 2-5: Proposed Structure Demolition Data for CalEEMod Input

Project Element	Square Feet	Acres
Office Trailer	1,500	0.03
Storage Containers	1,500	0.03
Compressor Building, Piping, and Equipment	19,000	0.44
All Project Sites	22,000	0.51

Source: SoCalGas

Notes:

Climate Zone 8 – Ventura, Ventura County Electric Utility: SCE

Phase		Construction Phase	Phase Start Date ¹	Phase End Date	Expected Working Days Per Phase
	1	Subsurface Exploration	5/1/2029	7/3/2029	46
	2	Existing Project Site Demolition	6/15/2029	6/29/2029	11
	3	Site Preparation/Rough Grading	7/4/2029	7/25/2029	16
	4	Foundations	8/1/2029	3/20/2030	166
	5	Trenching/Undergrounds	2/1/2030	4/19/2030	56
Construction	6	Equipment, Structural Steel & Building Erection, Piping	10/1/2029	7/22/2030	211
	7	Electrical & Instrumentation	6/1/2030	4/5/2031	220
	8	Paving	6/1/2031	7/27/2031	40
	9	Painting/Insulation	7/1/2031	8/26/2031	41
	10	Commissioning/Startup and Testing	5/1/2031	9/30/2031	109
	11	Site Restoration ²		_	20
Demolition ³	12	Decommissioning Demolition	10/1/2032	12/30/2032	65

Table 2-6: Proposed Project Preliminary Construction/Demolition Schedule by Phase

Notes:

- 1. This analysis assumed construction would start in May 2029. Current expectation is that construction will start in July or August 2029. The analysis was not revised because the earlier start date is conservative.
- 2. No offroad equipment are expected to be used for Phase 11, so specific start and end dates are not included.
- 3. Decommissioning demolition is assumed to be done approximately one year after the new replacement compressors are fully operational.

Table 2-7: Proposed Project Offroad Construction Equipment Used for CalEEMod Input

	Phase Name	Equipment Type	HP ¹	No. per Day	Fuel Type ²	Hours Per Day ³	Load Factor ⁴
		Tractors/Loaders/Backhoes	107	1	Diesel	9	0.37
		Excavators	45	1	Diesel	9	0.38
1	Subsurface	Air Compressors	2	1	Diesel	9	0.48
1	Exploration (Site Preparation)	Off-Highway Trucks	500	1	Diesel	9	0.38
		Tractors/Loaders/Backhoes	321	1	Diesel	9	0.37
		Bore/Drill Rigs	300	1	Diesel	9	0.50
		Concrete/Industrial Saws	33	1	Diesel	9	0.73
		Tractors/Loaders/Backhoes	107	1	Diesel	9	0.37
	Existing Project	Excavators	45	1	Diesel	9	0.38
2	Site Demolition	Air Compressors	2	1	Diesel	9	0.48
	(Demolition A)	Off-Highway Trucks	500	1	Diesel	9	0.38
		Tractors/Loaders/Backhoes	321	1	Diesel	9	0.37
		Skid Steer Loaders	65	1	Diesel	9	0.37

SoCalGas Ventura Compressor Station Modernization Project Air Quality and Greenhouse Gas Emissions Technical Report

	Phase Name	Equipment Type	HP ¹	No. per Day	Fuel Type ²	Hours Per Day ³	Load Factor ⁴
		Excavators	45	1	Diesel	9	0.38
	Site Preparation/	Tractors/Loaders/Backhoes	107	1	Diesel	9	0.37
3	Rough Grading	Air Compressors	2	1	Diesel	9	0.48
	(Grading)	Rubber Tired Dozers	367	1	Diesel	8 ⁵	0.40
		Off-Highway Trucks	500	1	Diesel	9	0.38
		Air Compressors	10	1	Diesel	9	0.48
		Cranes	275	1	Diesel	9	0.29
		Excavators	45	1	Diesel	9	0.38
		Excavators	346	1	Diesel	9	0.38
		Forklifts	74	1	Diesel	9	0.20
	Foundations	Forklifts	[82]	1	Electric	9	0.20
4	(Building	Generator Sets	49	4	Diesel	9	0.74
	Construction 1)	Off-Highway Trucks	500	1	Diesel	9	0.38
		Rubber Tired Dozers	170	1	Diesel	9	0.40
		Tractors/Loaders/Backhoes	225	1	Diesel	9	0.37
		Tractors/Loaders/Backhoes	321	1	Diesel	9	0.37
		Tractors/Loaders/Backhoes	107	2	Diesel	9	0.37
		Welders	24	4	Diesel	9	0.45
5	Trenching/	Pumps ⁶	[11]	4	Diesel	9	0.74
5	Undergrounds (Trenching)	Excavators	45	1	Diesel	9	0.38
	Equipment,	Aerial Lifts	84	1	Diesel	9	0.31
		Aerial Lifts	67	2	Diesel	9	0.31
		Aerial Lifts	[46]	5	Electric	9	0.31
		Air Compressors	49	1	Diesel	9	0.48
		Air Compressors	10	2	Diesel	9	0.48
		Cranes	200	1	Diesel	9	0.29
	Structural Steel &	Cranes	275	2	Diesel	9	0.29
(Building Erection,	Excavators	45	1	Diesel	9	0.38
6	Piping	Forklifts	[82]	1	Electric	9	0.20
	(Building	Forklifts	122	1	Diesel	9	0.20
	Construction 2)	Forklifts	74	2	Diesel	9	0.20
		Generator Sets	49	5	Diesel	9	0.74
		Off-Highway Trucks	500	1	Diesel	9	0.38
		Tractors/Loaders/Backhoes	225	2	Diesel	9	0.37
		Welders	24	3	Diesel	9	0.45
		Welders	[46]	5	Electric	9	0.45
	Electrical &	Aerial Lifts	[46]	4	Electric	9	0.31
7	Instrumentation	Air Compressors	49	1	Diesel	9	0.48
7	(Building	Air Compressors	10	2	Diesel	9	0.48
	Construction 3)	Cranes	200	1	Diesel	9	0.29

SoCalGas Ventura Compressor Station Modernization Project Air Quality and Greenhouse Gas Emissions Technical Report

Phase Name		Equipment Type	uipment Type HP ¹		Fuel Type ²	Hours Per Day ³	Load Factor⁴
		Cranes	275	2	Diesel	9	0.29
		Forklifts	[82]	1	Electric	9	0.20
	Forklifts		74	2	Diesel	9	0.20
		Generator Sets	49	5	Diesel	9	0.74
		Off-Highway Trucks	500	1	Diesel	9	0.38
		Tractors/Loaders/Backhoes	225	2	Diesel	9	0.37
		Welders	[46]	5	Electric	9	0.45
		Welders	24	5	Diesel	9	0.45
8	Paving (Paving)	Rollers	125	1	Diesel	9	0.38
9	Painting/ Insulation	Air Compressors	10	1	Diesel	9	0.48
9	(Architectural Coating)	Generator Sets	49	1	Diesel	9	0.74
		Aerial Lifts	[46]	4	Electric	9	0.31
	Commissioning /	Air Compressors	49	1	Diesel	9	0.48
		Cranes	275	1	Diesel	9	0.29
	Startup and	Forklifts	74	1	Diesel	9	0.20
10	Testing (Building Construction 4)	Forklifts	[82]	1	Electric	9	0.20
		Generator Sets	49	3	Diesel	9	0.74
		Tractors/Loaders/Backhoes	225	2	Diesel	9	0.37
		Welders	[46]	2	Electric	9	0.45
		Welders	24	3	Diesel	9	0.45
		Concrete/Industrial Saws	33	1	Diesel	9	0.73
		Excavators	45	1	Diesel	9	0.38
		Aerial Lifts	[46]	4	Electric	9	0.31
		Air Compressors	49	1	Diesel	9	0.48
	Decommissioning	Cranes	275	1	Diesel	9	0.29
12	Demolition	Forklifts	74	1	Diesel	9	0.20
	(Demolition B)	Forklifts	[82]	1	Electric	9	0.20
		Generator Sets	49	3	Diesel	9	0.74
		Tractors/Loaders/Backhoes	225	2	Diesel	9	0.37
		Welders	[46]	2	Electric	9	0.45
		Welders	24	3	Diesel	9	0.45

Notes:

- 1. Engine horsepower ratings in brackets are CalEEMod default values (version 2022.1).
- 2. All diesel engines are assumed to be EPA Tier 4 Final and Electric engines have an average electric mix.
- 3. Construction is expected to occur for up to 10 hours/day, with equipment use up to 9 hours/day.
- 4. Engine load factors are CalEEMod default values (version 2022.1).
- 5. CalEEMod default value of 8 hours per day used for this equipment in Phase 3.
- 6. Pumps conservatively modeled as diesel units in Phase 5 rather than as electric units in Phase 4 as planned for construction.
- 7. No offroad equipment are expected to be used for Phase 11, Site Restoration, so this phase is not included.

Generally speaking, impacts of criteria pollutant emissions are analyzed within the local area or air basin, in this case within Ventura County. GHG emissions, on the other hand, are global impacts and are usually assessed anywhere within California for CEQA analyses. Therefore, the criteria pollutant emissions and GHG emissions from construction and demolition were estimated in two separate CalEEMod runs. In the first CalEEMod run (Attachment A.1), the criteria pollutant emissions for the hauling trips for subsurface exploration, site preparation/rough grading, foundation, and trenching phases were estimated using a one-way distance of 42 miles (the average distance from the Project site to the County line (e.g., going northeast toward Bakersfield, east toward Simi Valley, or southeast toward Westlake Village, CA). In the second CalEEMod run (Attachment A.2), the GHG emissions were estimated for the hauling trips for these phases using a distance of 296 miles (distance from the VCS site to the Arizona State line). These distances are based on a conservative estimate that some of the supplies may come from outside of Ventura County and that some of the equipment may come from outside of California. The CalEEMod default distance of 20 miles was used for the demolition phase hauling trips. Table 2-8 summarizes the construction and demolition trip rates and mileages.

	Phase Work Description	Trip Type	One-Way Trips per Day	Miles per One-Way Trip	Vehicle Mix ³
	Subsurface Exploration	Worker	28	10	LDA, LDT1, LDT2
1	Subsurface Exploration	Vendor	8	10	HHDT, MHDT
	Subsurface Exploration ¹	Hauling	13	42 (296)	HHDT
	Existing Project Site Demo	Worker	22	10	LDA, LDT1, LDT2
2	Existing Project Site Demo	Vendor	8	10	HHDT, MHDT
	Existing Project Site Demo ²	Hauling	48	20	HHDT
	Site Preparation/Rough Grading	Worker	30	10	LDA, LDT1, LDT2
3	Site Preparation/Rough Grading	Vendor	10	10	HHDT, MHDT
	Site Preparation/Rough Grading ¹	Hauling	8	42 (296)	HHDT
	Foundations	Worker	68	10	LDA, LDT1, LDT2
4	Foundations	Vendor	16	10	HHDT, MHDT
	Foundations ¹	Hauling	25	42 (296)	HHDT
	Trenching/Undergrounds	Worker	46	10	LDA, LDT1, LDT2
5	Trenching/Undergrounds	Vendor	2	10	HHDT, MHDT
	Trenching/Undergrounds ¹	Hauling	16	42 (296)	HHDT
6	Equipment, Structural Steel & Building Erection, and Piping	Worker	78	10	LDA, LDT1, LDT2
0	Equipment, Structural Steel & Building Erection, and Piping	Vendor	22	10	HHDT, MHDT
7	Electrical & Instrumentation	Worker	36	10	LDA, LDT1, LDT2
/	Electrical & Instrumentation	Vendor	16	10	HHDT, MHDT
8	Paving	Worker	22	10	LDA, LDT1, LDT2
9	Painting/Insulation	Worker	4	10	LDA, LDT1, LDT2
10	Commissioning/Startup and Testing	Worker	28	10	LDA, LDT1, LDT2

Table 2-8: Proposed Project Construction	on Traffic Summary
--	--------------------

	Phase Work Description		One-Way Trips per Day	Miles per One-Way Trip	Vehicle Mix ³
	Commissioning/Startup and Testing	Vendor	12	10	HHDT, MHDT
	Decommissioning Demolition	Worker	28	10	LDA, LDT1, LDT2
12	Decommissioning Demolition	Vendor	18	10	HHDT, MHDT
	Decommissioning Demolition ²	Hauling	3	20	HHDT

Notes:

- 1. Hauling trip mileages for Subsurface Exploration, Site Preparation/Rough Grading, Foundations, and Trenching phases are average one-way distances from the Project site to County Line for criteria pollutant emissions since the trip destinations/directions are not known. The second value in italics is the one-way hauling distances from the Project site to the Arizona State Line used to estimate GHG emissions.
- 2. Hauling trip mileages for Demolition phases (Phases 2 and 12) are CalEEMod defaults.
- Vehicle mix: LDA=Light Duty Automobile, LDT1=Light Duty Trucks up to 3,750 lbs loaded vehicle weight (LVW), LDT2=Light Duty Trucks 3,750-8,500 lbs LVW, MHDT=Medium Heavy-Duty Trucks (8,500-14,000 lbs), HHDT=Heavy, Heavy-Duty Trucks (>14,000 lbs).
- 4. No offroad equipment are expected to be used for Phase 11, Site Restoration, so this phase is not included.

2.2.1.3 Results of Emissions Analysis for Project Construction and Demolition

The construction/demolition schedule and data shown in Tables 2-4 through 2-8 are preliminary/subject to change and are dependent on when the required permits are issued; the information presented above represents a reasonable construction scenario to be used for emissions estimation. As noted in Table 2-6, this analysis assumed construction would start in May 2029. Current expectation is that construction will start in July or August 2029, however, the analysis was not revised because the earlier start date is conservative.

A project's construction/demolition phases produce many types of emissions. Particulate matter (i.e., PM_{10} and $PM_{2.5}$) is emitted from the construction equipment engine exhaust and also as fugitive dust that is caused by wind and construction activities on disturbed soil. The particulate matter emitted from diesel-powered construction-related emissions can cause temporary increases in localized concentrations of particulate matter, as well as affect compliance with the AAQS on a regional basis. The use of diesel-powered construction equipment also emits the ozone precursors NO_x and ROC. Use of architectural coatings and other materials associated with finishing buildings and equipment protection may also emit ROC and TACs. Table 2-9 presents the peak daily emissions of each criteria pollutant for each individual phase based on the CalEEMod outputs provided in Attachment A.1.

As shown in this table, the peak daily ROC emissions will occur during Phase 9, Painting/Insulation, the peak daily NO_x and PM_{10} emissions during Phase 2, Existing Site Demo, peak daily CO and SO_x during Phase 4, Foundations, and peak daily PM_{2.5} during Phase 3, Site Preparation/Rough Grading. The ROC and NO_x peak daily emissions are below the 25 pounds per day significance threshold from the VCAPCD Guidelines (2003) shown in Table 2-1 for each individual phase.

			Emissions ¹ (lbs/day)					
Construction/Demolition ² Phase		Year ³	ROC	NOx	CO	SOx	Total ⁴ PM ₁₀	Total ⁴ PM _{2.5}
1	Subsurface Exploration	2029	0.76	6.33	38.0	0.08	0.93	0.37
2	Existing Project Site Demo	2029	0.59	9.31	25.7	0.07	3.90	0.83
3	Site Preparation/Rough Grading	2029	0.59	4.74	27.8	0.06	3.27	1.58
4	Foundations	2029- 2030	1.06	9.28	46.3	0.13	1.77	0.61
5	Trenching/Undergrounds	2030	0.21	3.41	3.2	0.04	1.01	0.30
6	Equipment, Structural Steel & Building Erection, Piping	2029- 2030	0.97	7.31	40.2	0.12	0.88	0.33
7	Electrical & Instrumentation	2030- 2031	0.69	3.53	30.8	0.11	0.50	0.21
8	Paving	2031	0.63	0.29	4.1	0.01	0.17	0.05
9	Painting/Insulation	2031	4.95	0.01	0.1	0.01	0.03	0.01
10	Commissioning/Startup and Testing	2031	0.68	3.5	30.7	0.11	0.50	0.21
12	Decommissioning Demolition	2032	0.33	3.64	12.6	0.04	0.58	0.17
Proposed Project Single Phase Maximum			4.95	9.31	46.3	0.13	3.90	1.58

Table 2-9: Estimated Peak Daily Emissions by Each Construction/Demolition Phase

Notes:

1. Emissions include offroad construction equipment and onroad vehicles (hauling, vendors, workers).

2. Construction/Demolition daily emissions calculated for maximum 9 hours per day operation for all offroad equipment running simultaneously (winter peak NO_x).

3. This analysis assumed construction would start in May 2029. Current expectation is that construction will start in July or August 2029. The analysis was not revised because the earlier start date is conservative.

4. Total PM₁₀/PM_{2.5} consists of fugitive dust plus engine exhaust and includes application of Project BMPs.

5. No offroad equipment are expected to be used for Phase 11, Site Restoration, so this phase is not included.

The construction/demolition schedule provided in Table 2-6 indicated that some of the phases could overlap. Even though it is unlikely that the peak day for a given phase would occur on the exact same peak day for another phase, where there was potential for overlap of the phase, the peak day emissions were added together to provide the potential peak daily emissions for ROC and NO_x. The results of this potential phase overlap peak daily emissions and significance evaluation is shown in Table 2-10, where only phases with potential overlap are shown. As shown in Table 2-10, the peak daily ROC emissions could occur during the overlap of Phases 8, 9, and 10, Paving + Painting/Insulation + Commissioning/Startup and Testing. The peak daily NO_x emissions could occur during the overlap of Phases 4, 5, and 6, Foundations + Trenching/Undergrounds + Equipment, Structural Steel & Building Erection, Piping. These emissions were compared to the VCAPCD Guidelines significance thresholds shown in Table 2-1. Only ROC and NO_x peak daily emissions are shown in Table 2-10 because the VCAPCD Guidelines (2003) do not include significance thresholds for emissions of the other criteria pollutants as described in Section 2.1.1.1. Even with the conservative assumption that the peak daily emissions for multiple phases could occur on the same day, the peak day emissions shown in Table 2-10

remain below the significance thresholds for ROC and NO_x during construction/demolition of the proposed Project.

Constr	Construction/Demolition Peak Day Emissions with Potential Phase Timeline Overlaps		Emissions ¹ (lbs/day)		
			ROC	NO _x	
1+2	Subsurface Exploration + Existing Project Site Demo	2029	1.4	15.6	
4+5+6	Foundations + Trenching/Undergrounds + Equipment, Structural Steel & Building Erection, and Piping		2.2	20.0	
6+7	Equipment, Structural Steel & Building Erection, Piping + Electrical & Instrumentation	2030	1.7	10.8	
8+9+10	Paving + Painting/Insulation + Commissioning/Startup and Testing	2031	6.3	3.8	
Proj	6.3	20.0			
	25	25			
	Significant?				

Table 2-10: Significance Evaluation for Estimated Peak Daily ROC and NOx
Emissions During Potential Construction/Demolition Phase Overlaps

Notes:

1. Emissions reflect the peak daily phase emissions totals from Table 2-9 combined for the phases indicated.

CalEEMod outputs (Attachment A.1) present the emissions results as unmitigated and mitigated to allow for additional emissions controls to be selected in the model. As discussed in Section 5.3.7, Avoidance and Minimization Measures, of this PEA, the CPUC recommended measures and additional fugitive dust BMPs from the VCAPCD Guidelines will be employed to minimize fugitive dust from the Project. Because these measures are incorporated as Project BMPs, the peak day mitigated and unmitigated emissions are the same.

Furthermore, the construction equipment will either be electric or have engines that meet EPA Tier 4 Final emission standards. As shown in Table 2-10 above, emissions of NO_x and ROC associated with the construction and demolition phases of the Project would be below the significance threshold of 25 pounds per day for both pollutants. The VCAPCD Guidelines do not provide significance thresholds for other criteria pollutants.

2.2.2 Operational Emissions Impact Analysis

The Project consists of the replacement of the three existing 1,100-HP natural gas compressors with two replacement 1,900-HP natural gas compressors and two new nominal up to 2,500-HP EDCs. The existing 68-HP diesel emergency generator will be replaced with a new 840-HP natural gas standby generator. The number of workers operating the VCS will increase from three to four due to the Project.

Stationary source project emissions were estimated on a maximum potential to emit (PTE) basis that assumes continuous operation of the two new 1,900-HP natural gas compressors

for consistency with the air permitting. The PTE for the new standby generator is based on the maximum permitted operation of 1,000 hours per year.

Baseline emissions were estimated for the three existing 1,100-HP natural gas compressors and emergency generator using their 2021 and 2022 fuel usage.

Emissions of criteria pollutants from the small number of vehicles to be used by VCS employees during operations were estimated using EMFAC2021 version 1.0.2 (CARB 2022) and AP-42 fugitive dust emissions estimation techniques for paved roads (EPA 2011). The proposed Project operational vehicle miles traveled (VMT) analysis assumes four employees commuting daily in separate light-duty vehicles for a one-way distance of 32 miles within Ventura County. Baseline vehicle use assumed three worker vehicles. The emissions calculations for the operational worker vehicles are provided in Attachment B.

Table 2-11 shows the baseline emissions, which are the average of the last 2 years of actual emissions (from 2021 and 2022) for the three existing natural gas compressors and emergency generator, as well as emissions from three worker vehicles. Table 2-12 shows the proposed Project annual emissions based on the PTE of the replacement units (two new natural gas compressors and one new standby generator) plus four worker vehicles (one more than in the baseline). The Project net emissions increase (NEI) during operation was calculated based on the difference between the PTE for the new engines and the historical actual emissions (HAE) for the existing engines as presented in Table 2-13. Additional details on these emission calculations are provided in Attachment B.

Pollutant	Natural Gas Compressor Engines	Emergency Generator	Worker Vehicles	Total Baseline Emissions
ROC	0.47	0.0002	0.0025	0.48
NO _x	2.88	0.004	0.002	2.89
$PM_{10}/PM_{2.5}$	0.44	0.0004	0.008	0.45
СО	0.60	0.005	0.036	0.64
SO _x	0.03	0.00001	0.0001	0.03

 Table 2-11: Baseline Criteria Pollutant Emissions During 2021-2022 (tons/year)

Pollutant	Natural Gas Compressor Engines	Standby Generator	Worker Vehicles	Total Project Potential Emissions
ROC	5.50	0.14	0.0033	5.64
NO _x	5.50	0.14	0.003	5.64
PM ₁₀ /PM _{2.5}	1.24	0.04	0.016	1.29
СО	22.00	0.56	0.048	22.56
SO _x	0.08	0.002	0.0002	0.08

Pollutant	Total Project Potential Emissions	Total Baseline Actual Emissions	Net Project Emissions (PTE – Baseline)
ROC	5.64	0.48	5.16
NO _x	5.64	2.89	2.75
PM10/PM2.5	1.29	0.45	0.84
СО	22.60	0.64	21.95
SO _x	0.08	0.03	0.06

Table 2-13: Proposed	Project Criterie	Dollutant Nat	Emissions	(tons/woor)
Table 2-15: Froposed	r roject Criteria	a ronutant Net	LIIIISSIUIIS	(tons/year)

As noted in Section 2.1.1, the VCAPCD Guidelines require that only unpermitted source emissions associated with the operational Project be compared to the significance thresholds. In addition to the four worker vehicles (annual emissions are shown in Table 2-12), PEA Section 3.2.2.1, Proposed Site Improvements, lists several storage tanks that would be installed including 1 engine oil, 1 waste oil, and 3 oily waste storage tanks. These storage tanks (or drums, see PEA Table 3-1, Dimensions of Structures) are considered ancillary equipment and would not be required to obtain a permit from VCAPCD. Used oil has a very low vapor pressure and tank throughput would be low; hence, ROC emissions from these tanks would be negligible. When the emissions are compared to the significance thresholds in Table 2-14, the operational emissions are less than significant.

Table 2-14: Maximum Daily Operational Non-Permitted Sources EmissionsSummary and Evaluation

Emission Source	NO _x (lbs/day)	ROC (lbs/day)
Non-stationary source emissions ¹	negligible	negligible
Non-stationary source threshold ²	25	25
Significant?	No	No

Notes:

- 1. Unpermitted sources include worker vehicles (see Table 2-12) and ancillary storage tanks, i.e., engine oil, oil waste, and oily waste storage drums, which would have very low emissions of ROC.
- 2. VCAPCD Guidelines (2003).

Per the VCAPCD and OPR CEQA Guidelines, a project is significant if it results in a cumulatively considerable net increase of any criteria pollutant for which the project region is nonattainment of an applicable NAAQS or CAAQS.

VCAPCD is designated attainment for CO, SO_x and $PM_{2.5}$ but is nonattainment of the CAAQS for PM_{10} . Based on the VCAPCD Guidelines, since Ventura County is nonattainment for PM_{10} , an AQIA was conducted to assess the significance of the Project PM_{10} emissions, as described in the next section.

2.3 Proposed Project Air Quality Impact Analyses

In addition to the emissions analyses, the VCAPCD Guidelines indicate that an AQIA should be performed to ensure that there are no localized impacts that would cause or contribute to an exceedance of a State or national AAQS for nonattainment pollutants. Emissions which cause or contribute to an exceedance of an applicable standard would be considered to have a significant impact.

Per the VCAPCD Guidelines, and as described in the previous sections, an AQIA was prepared to demonstrate the significance of the Project PM₁₀ operational emissions.

2.3.1 Ambient Air Quality Impacts from Project Operation

The purpose of the AQIA is to evaluate whether criteria pollutant emissions resulting from the proposed Project will cause or contribute significantly to an exceedance of the NAAQS or CAAQS. The United States Environmental Protection Agency's (EPA's) guideline American Meteorological Society/EPA Regulatory Model (AERMOD) was used to simulate the atmospheric transport and dispersion of airborne pollutants and to quantify the maximum expected ground level concentrations (GLCs) from Project emissions.

The modeling of PM_{10} emissions during operations analyzed the 24-hour and annual concentrations from the PTE of the new natural gas compressors and standby generator. The modeling input parameters and results are provided in Attachment C.

The modeling results for PM_{10} are summarized in Table 2-15. Since the background PM_{10} concentrations are greater than the CAAQS, the modeled concentrations were compared to the SILs as described above. The PM_{10} concentrations predicted by the model from onsite emissions sources are less than these significance levels. Therefore, the proposed Project will have a less than significant adverse impact to air quality based on modeling.

Pollutant	Averaging Time	Modeled Concentration (µg/m ³)	Significant Impact Level ¹ (µg/m ³)	Exceed SIL?
DM	24-Hour	3.92	5.0	No
PM_{10}	Annual	0.37	1.0	No

 Table 2-15: Proposed Project PM10 AQIA Results

Note:

1. SJVAPCD Policy APR 1925 (2014)

2.4 Proposed Project Health Risk Assessment

Both a construction HRA and operations HRA were conducted. The construction and operations HRAs were conducted in accordance with VCAPCD guidance following the California Office of Environmental Health Hazard Assessment (OEHHA) Air Toxics Hot Spots Program Guidance Manual (2015). The HRAs used refined air dispersion analyses and health risk modeling.

AERMOD was used to estimate the GLCs. The Hotspots Analysis and Reporting Program, Version 2 (HARP2) software was used to perform the calculations for this step for comparison to the current VCAPCD risk threshold values.

For the HRAs, AERMOD was run with all sources emitting unit emissions [1 gram per second (g/s)] to obtain the X/Q (i.e., the relative concentration given as the effluent concentration divided by the source strength at a given distance and direction from the source) values that are necessary for input into HARP2. The health risk calculations were performed using the HARP2 Air Dispersion Modeling and Risk Tool (ADMRT). The X/Q values that were determined for each source using AERMOD were imported into HARP2 and used in conjunction with hourly and annual emissions to determine the GLCs for each pollutant. The GLCs were then used to estimate the long-term cancer health risk to an individual and non-cancer chronic and acute health indices.

The Maximally Exposed Individual Resident (MEIR), Maximally Exposed Individual Worker (MEIW), and maximum impact at a sensitive receptor were calculated for cancer risk and non-cancer chronic and acute health indices.

2.4.1 Health Risk Assessment for Project Construction

The purpose of the construction HRA is to evaluate the potential health risks associated with the Project-related construction emissions. During construction and demolition, the use of diesel-fueled equipment will emit DPM. DPM emissions are derived from the CalEEMod runs in Attachment A.1, where DPM is conservatively assumed to be 100% of the exhaust PM₁₀ emissions.

Since the construction and demolition activities will last approximately 3 years, cancer risk was estimated for a 3-year period using the average annual DPM emissions over the entire construction and demolition period for both residential and off-site workers.

The construction HRA input parameters and results are provided in Attachment D. The construction HRA results are summarized in Table 2-16. The results show that, for all receptor types and locations, the predicted health risks are less than the VCAPCD cancer significance threshold and well below the non-cancer thresholds. The cancer risk at the MEIR occurs at a residence bordering the VCS's northeastern fenceline.

The HRA demonstrates that health risks related to construction and demolition activities for the proposed Project are less than significant.

Health Risk	MEIR	Maximum Sensitive Receptor	MEIW	VCAPCD Guidelines Threshold	Significant?
Cancer Risk (Per Million)	2.30	1.49	0.31	10	No
Chronic Hazard Index (HIC)	0.001	0.001	0.002	1	No

Table 2-16: Construction/Demolition Health Risk Assessment Results

Note:

1. Because DPM does not have an acute risk, an Acute Hazard Index (HIA) was not modeled for construction.

2.4.2 Health Risk Assessment for Project Operation

The operations HRA modeling conservatively analyzed the total post-Project TAC emissions based on the proposed Project's PTE from the new natural gas compressors and standby generator, rather than the delta between pre-Project and post-Project TAC emissions. Additional information on the TAC emission calculations is provided in Attachment B, and the input parameters and detailed results for the operational HRA are provided in Attachment E for each health risk and at each receptor type, broken down by pollutant and source. The results of the HRA for the proposed Project operational TAC emissions are summarized in Table 2-17.

The results show that, for all receptor types and locations, the predicted health risks are less than the VCAPCD cancer significance threshold and well below the non-cancer thresholds. For cancer risk, the MEIR occurs past the southern end of the facility.

The results show that the predicted health risks are below the VCAPCD health risk thresholds; thus, impacts from the Project TAC emissions during VCS operation are less than significant.

Health Risk	MEIR	Maximum Sensitive Receptor	MEIW	VCAPCD Guidelines Threshold	Significant?
Cancer Risk (In One Million)	2.81	0.54	1.25	10	No
Chronic Hazard Index (HIC)	0.009	0.002	0.01 (annual) 0.05 (8-hour)	1	No
Acute Hazard Index (HIA)	0.03	0.03	0.02	1	No

 Table 2-17: Operation Health Risk Assessment Results

3.0 GREENHOUSE GAS EMISSIONS

3.1 GHG Emissions Significance Criteria

The VCAPCD has not adopted a mass emissions threshold for GHGs. Other air districts such as the SCAQMD use a threshold of 10,000 metric tons (MT) of carbon dioxide equivalents (CO₂e) per year as the significance criteria for industrial facilities (SCAQMD 2023). This significance threshold is proposed for this Project.

3.2 GHG Emissions Analysis for the Proposed Project

GHG emissions are estimated for both construction/demolition and operations for the proposed Project. Construction GHG emissions are typically amortized over the life of the project (typically 30 years) and added to the annual operational GHG emissions for evaluation against the significance threshold to determine significance. Additional details on the emissions calculations are provided in Attachment F.

3.2.1 GHG Emissions from Project Construction/Demolition

During construction, GHGs – primarily carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), collectively reported as CO₂e – are directly emitted from mobile sources such as onroad vehicles and offroad construction equipment. Direct onsite and off-site GHG emissions were estimated for proposed Project construction activities using CalEEMod. CalEEMod also includes a calculation of GHG emissions related to refrigerants and ozone-depleting substances (R/ODS).

Table 3-1 shows a breakdown of proposed Project construction GHG emissions over the roughly 25-month main construction period (2029-2031) and 3-month demolition period (2032). The CalEEMod output file for GHG emissions can be found in Attachment A.2. Table 3-1 also aggregates the CO₂e emissions for all construction/demolition and determines the 30-year amortization amount for the operational GHG netting analysis. The maximum annual GHG emissions from construction are 2,731 MT in 2030. Together, construction and demolition emissions amortized over 30 years are 198 MT CO₂e per year.

GHGs	2029 (MT)	2030 (MT)	2031 (MT)	2032 (MT)	Total (MT)	30-Year (MT/yr)
CO ₂	2,549	2,677	580	4	_	—
CH ₄	0.06	0.08	0.02	0.00	_	—
N ₂ O	0.25	0.17	0.01	0.00		—
R/ODS	1.25	0.84	0.04	0.00		_
CO ₂ e	2,625	2,731	583	4	5,943	198

 Table 3-1: Construction and Demolition GHG Emissions by Year¹ (2029-2032)

Notes:

1. This analysis assumed construction would start in May 2029. Current expectation is that construction will start in July or August 2029. The analysis was not revised because the earlier start date is conservative.

3.2.2 GHG Emissions from Project Operation

The baseline GHG emissions for the proposed Project are shown in Table 3-2. The baseline is based on fuel use by the existing equipment to be replaced (three natural gas compressors

and an emergency generator), plus up to three operations workers commuting, and indirect GHG emissions from facility-wide electric power usage. Baseline emissions were estimated for the three existing 1,100-HP engine compressors and emergency generator using the average of their 2021 and 2022 fuel usage. Baseline facility-wide electricity usage was based on the average of 2021 and 2022 electricity purchased for the VCS site.

Emissions of GHGs from the limited number of onroad vehicles to be used by VCS employees during operations were estimated using EMFAC2021 version 1.0.2 (CARB 2022). Because EMFAC2021 outputs the GHGs as CO₂, CH₄, and N₂O, the Intergovernmental Panel on Climate Change (IPCC) global warming potentials (GWPs) were used to determine CO₂e from these mobile sources (CARB 2016). The operational baseline VMT analysis assumes three workers commuting daily in separate light-duty vehicles for a one-way distance of 32 miles within Ventura County, which is an average distance to communities within the County. Project worker vehicle emissions are based on four workers commuting, a net increase of one worker.

GHGs	Existing (3) Natural Gas Compressors	Existing Emergency Generator	Worker Vehicles	Indirect Electric Power	Total Baseline Emissions ¹
CO ₂	4,845	0.6	50.5	92.0	4,988
CH ₄	0.09	0.00003	0.0004	0.012	0.103
N ₂ O	0.01	0.00001	0.0008	0.001	0.011
CO ₂ e	4,850	1	51	93	4,994

Table 3-2: VCS Baseline GHG Emissions (MT/year)	Table 3-2:	VCS I	Baseline	GHG E	missions	(MT/year)
---	-------------------	-------	----------	-------	----------	-----------

Note:

1. Baseline emissions based on HAE for 2021-2022 for natural gas compressors and standby generator, three operations workers, and electricity purchased during these years.

The projected emissions of GHGs from the replacement combustion units (two new natural gas compressors and new standby generator) are provided in Table 3-3, along with worker commuting and indirect GHG emissions for the EDCs and other electric power usage. Stationary source GHG emissions for the proposed Project were estimated based on the projected annual usage of the two new 1,900-HP engine compressors, the new standby generator, one additional operations worker, and the electrical usage for the new EDCs.

As noted in Section 3.1, Project Overview (footnote 1), of this PEA, as a result of not having electric compressors selected at this time, SoCalGas has assumed that the two EDCs will each be 2,500 HP in the PEA for the purpose of environmental review. Upon completion of engineering related to the EDCs, the horsepower utilized may be lower than, but will not be higher than the 2,500 HP reviewed in this PEA. However, as discussed in Section 5.6, Energy, it was decided to analyze two scenarios for energy impacts, where Case 1 is based on two 2,500 HP EDCs and Case 2 is based on two 2,000 HP EDCs, both cases along with the two 1,900 HP natural gas compressors. These cases represent the projected maximum electricity use and maximum natural gas use, respectively.

The GHG emissions for both cases were estimated for the Project operations and are shown in Table 3-3. Both Cases 1 and 2 show a decrease in natural gas usage and an increase in electricity usage as compared to the baseline.

GHG emissions can occur from venting of natural gas to the blowdown stack during maintenance activities. These activities occur infrequently and typically consist of venting the residual amount of gas in a length of pipe from the equipment that is being serviced and the blowdown stack has a discharge scrubber. The Project will implement a vapor capture and recovery system that will prevent 85-100% of the natural gas from being released to the atmosphere during venting. Thus, the Project is expected to result in a reduction in GHG emissions associated with venting compared to the existing facility.

To meet the CARB Oil and Gas Regulation, the VCS has implemented a leak detection and reporting (LDAR) system to minimize natural gas leaks from the equipment components, such as flanges, valves, seals, etc., which lead to CH₄ emissions. The combination of the LDAR system and newer technologies for the equipment components will ensure that Project GHG emissions are similar or reduced from baseline conditions.

GHGs		atural Gas essors ^{1, 2}	New Standby	Worker Vehicles ³		Electric er ^{4, 2}		Project sions ²
	Case 1	Case 2	Generator	venicies	Case 1	Case 2	Case 1	Case 2
CO ₂	1,723.0	3071.1	79.3	67.4	2526.3	2208.7	4346.2	5376.8
CH ₄	0.0325	0.0579	0.0015	0.0006	0.32	0.28	0.35	0.34
N ₂ O	0.0032	0.0058	0.0001	0.0011	0.04	0.03	0.04	0.04
CO ₂ e	1,725	3,074	79	68	2,546	2,226	4,368	5,397

Table 3-3: Projected Annual Project GHG Emissions (MT/year)

Notes:

- 1. GHG emissions are based on a conservative projected usage of the natural gas compressors based on historic flow rates and accounting for a drop in the local production rate. It is assumed that the trend of the monthly demand for the new plant will continue to remain the same as the existing plant (lower demand in winter and higher demand in summer).
- 2. Case 1 is two 2,500 HP EDCs, which would have slightly lower natural gas use and higher electricity use. Case 2 is two 2,000 HP EDCs, which would have slightly higher natural gas use and lower electricity use.
- 3. Worker vehicle emissions based on 4 workers (1 more than the baseline) commuting from within Ventura County in separate vehicles (32 miles each one-way trip).
- 4. Indirect emissions based on electric power for projected use of new EDCs as well as station utilities and auxiliaries. The analysis is based on the EDCs turned on first and turned off last from an operational standpoint.

As shown in Table 3-3, Case 1 would have slightly lower natural gas use and higher electricity use than Case 2 since it includes the two larger 2,500 HP EDCs. Case 2 would have slightly higher natural gas use and lower electricity use than Case 1 since it includes two smaller 2,000 HP EDCs. Because GHG emissions are higher from natural gas use than from indirect electricity use, Case 2 would have slightly higher GHG emissions.

3.2.3 Determination of GHG Emissions Significance

Table 3-4 provides a comparison of the aggregated net GHG emissions for the proposed Project to the significance threshold. The net GHG emissions reflect the direct and indirect GHG emissions from the proposed Project (Table 3-3) plus the amortized GHG construction emissions (Table 3-1) minus the baseline GHG emissions (Table 3-2).

As shown in Table 3-4 the aggregated GHG net emissions show a small decrease in GHG emissions associated with the Case 1 Project and a small increase for the Case 2 Project

compared to the baseline. This result shows that the projected future operation of the Project will be similar to the operation of the VCS in the future. Further, the slightly larger EDC assumed in Case 1 will lead to a reduction in GHG emissions. In both cases, the net emissions decrease or increase is below the CO₂e significance threshold of 10,000 MT per year, and thus, the proposed Project will have a less than significant impact.

Additional details on these emission calculations are provided in Attachment F.

Annual CO₂e Net Emissions (MT/year) Item Case 1 Case 2 Total Direct Project Net Emissions (Project-Baseline) (3,042)(1,693)Total Indirect Project Net Emissions (Project-Baseline) 2,453 2,133 Amortized Construction Emissions (30 years) 198 198 Total Operation Net Emissions + Construction 639 (391) **Significance Threshold** 10,000 10,000 **Total Project Net Emissions Significant?** No No **Mitigation Required** None None

Table 3-4: Proposed Project GHG Significance Evaluation

4.0 **REFERENCES**

Association of Environmental Professionals (AEP), 2023. 2023 CEQA Statute & Guidelines. Website (<u>https://www.califaep.org/statute_and_guidelines.php</u>) accessed February 10, 2023.

California Air Resources Board (CARB). 2017. California's 2017 Climate Change Scoping Plan. Website (<u>https://ww3.arb.ca.gov/cc/scopingplan/scopingplan.htm</u>) accessed February 10, 2023.

California Air Resources Board (CARB). 2016. GHG Global Warming Potentials. Website (<u>https://ww2.arb.ca.gov/ghg-</u>

gwps#:~:text=CARB%20uses%202007%20IPCC%20AR4%20GWPs%20for%20the,AR4%20GWPs%20are%20included%20in%20the%20table%20above.) accessed February 10, 2023.

California Air Pollution Control Officers Association (CAPCOA). 2022. California Emissions Estimation Model[®] (CalEEMod). Version 2022.1. Website (<u>http://www.caleemod.com/</u>) accessed February 10, 2023.

California Independent System Operator (CAISO). 2023. "Today's Outlook/Capacity/Demand." Website (<u>https://www.caiso.com/TodaysOutlook/Pages/index.html</u>) accessed March 3, 2023.

California Office of Environmental Health Hazard Assessment (OEHHA). 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines: Guidance Manual for Preparation of Health Risk Assessments. February. Website (<u>https://oehha.ca.gov/air/crnr/notice-adoption-air-toxics-hot-spots-program-guidance-manual-preparation-health-risk-0</u>) accessed February 10, 2023.

California Office of Planning and Research (OPR). 2022. Appendix G Checklist Form. Website (<u>https://resources.ca.gov/CNRALegacyFiles/ceqa/docs/ab52/final-approved-appendix-G.pdf</u>) accessed March 3, 2023.

California Public Utilities Commission (CPUC). 2019. Guidelines for Energy Project Applications Requiring CEQA Compliance: Pre-filing and Proponent's Environmental Assessments. Version 1.0. November 2019. Website (<u>https://www.cpuc.ca.gov/-/media/cpuc-website/files/legacyfiles/c/6442463239-ceqa-pre-filing-guidelines-pea-checklist-nov-2019.pdf</u>) accessed March 3, 2023.

San Joaquin Valley Air Pollution Control District (SJVAPCD). 2014. APR-1925 Policy for District Rule 2201 AAQA Modeling. Website (https://www.valleyair.org/policies_per/policies_per_idx.htm) accessed February 10, 2023.

South Coast Air Quality Management District (SCAQMD). 2023. Air Quality Significance Thresholds. Website (<u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/south-coast-aqmd-air-quality-significance-thresholds.pdf?sfvrsn=25</u>) accessed March 27, 2023.

Southern California Edison (SCE). 2018. Fact Sheet on SCE's Green Rate and Community Renewables Programs. Website (<u>https://www.sce.com/sites/default/files/inline-files/G18-013%2BGreen%2BRate%2BBusiness%2BFact%2Bsheet-AA_0.pdf</u>) assessed February 10, 2023.

Southern California Edison (SCE). 2021. Power Content Label. Website (<u>https://www.sce.com/sites/default/files/custom-files/Web%20files/2021%20Power%20Content%20Label.pdf</u>) accessed February 17, 2023. Southern California Edison (SCE). 2019. "Southern California Edison's Service Area." Website (<u>https://newsroom.edison.com/internal_redirect/cms.ipressroom.com.s3.amazonaws.com/166/file s/20193/SCE%20Service%20Area%20Fact%20Sheet_Ver2_04252019.pdf#:~:text=Southern%2 0California%20Edison%20is%20one%20of%20the%20nation%E2%80%99s,15%20million%20 people%20through%205%20million%20customer%20accounts) accessed March 3, 2023.</u>

The Climate Registry (TCR). 2022. Default Emission Factors Document. Website (<u>https://theclimateregistry.org/registries-resources/protocols/</u>) accessed assessed February 10, 2023.

United States Energy Information Administration (EIA). 2021. Southern California Daily Energy Report. Website (<u>https://www.eia.gov/special/disruptions/socal/summer/#dashboard</u>) accessed February 10, 2023.

Ventura County Air Pollution Control District (VCAPCD). 2003. Ventura County Air Quality Assessment Guidelines. Website (<u>http://www.vcapcd.org/pubs/Planning/VCAQGuidelines.pdf</u>) accessed February 10, 2023.

ATTACHMENT A – CALEEMOD OUTPUTS

SCG-VCM Project Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2029) Unmitigated
 - 3.2. Demolition (2029) Mitigated
 - 3.3. Demolition (2032) Unmitigated
 - 3.4. Demolition (2032) Mitigated
 - 3.5. Site Preparation (2029) Unmitigated

- 3.6. Site Preparation (2029) Mitigated
- 3.7. Grading (2029) Unmitigated
- 3.8. Grading (2029) Mitigated
- 3.9. Building Construction (2029) Unmitigated
- 3.10. Building Construction (2029) Mitigated
- 3.11. Building Construction (2030) Unmitigated
- 3.12. Building Construction (2030) Mitigated
- 3.13. Building Construction (2031) Unmitigated
- 3.14. Building Construction (2031) Mitigated
- 3.15. Building Construction (2029) Unmitigated
- 3.16. Building Construction (2029) Mitigated
- 3.17. Building Construction (2030) Unmitigated
- 3.18. Building Construction (2030) Mitigated
- 3.19. Building Construction (2030) Unmitigated
- 3.20. Building Construction (2030) Mitigated
- 3.21. Building Construction (2031) Unmitigated
- 3.22. Building Construction (2031) Mitigated

- 3.23. Paving (2031) Unmitigated
- 3.24. Paving (2031) Mitigated
- 3.25. Architectural Coating (2031) Unmitigated
- 3.26. Architectural Coating (2031) Mitigated
- 3.27. Trenching (2030) Unmitigated
- 3.28. Trenching (2030) Mitigated
- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment

- 5.2.1. Unmitigated
- 5.2.2. Mitigated
- 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures

7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	SCG-VCM Project
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.20
Precipitation (days)	2.20
Location	1555 N Olive St, Ventura, CA 93001, USA
County	Ventura
City	Ventura
Air District	Ventura County APCD
Air Basin	South Central Coast
TAZ	3406
EDFZ	8
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
General Heavy Industry	5.46	1000sqft	0.13	5,459	0.00	_	_	-
General Heavy Industry	10.5	1000sqft	0.24	10,458	0.00		_	-

General Heavy Industry	2.02	1000sqft	0.05	2,016	0.00	—	—	_
General Heavy Industry	0.44	1000sqft	0.01	442	0.00	—	_	_
General Office Building	4.64	1000sqft	0.11	4,641	0.00	—	_	_
Other Asphalt Surfaces	344	1000sqft	7.89	0.00	0.00	—		_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-2*	Limit Heavy-Duty Diesel Vehicle Idling
Construction	C-10-C	Water Unpaved Construction Roads
Construction	C-11	Limit Vehicle Speeds on Unpaved Roads
Construction	C-12	Sweep Paved Roads

* Qualitative or supporting measure. Emission reductions not included in the mitigated emissions results.

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)			—			—		-			-		_				_
Unmit.	5.90	15.6	70.9	0.21	0.28	4.53	4.81	0.28	1.47	1.58	_	21,404	21,404	0.83	0.91	10.4	21,530
Mit.	5.90	15.6	70.9	0.21	0.28	4.53	4.81	0.28	1.47	1.58	_	21,404	21,404	0.83	0.91	10.4	21,530
% Reduced	—	_	-	—	—	—	—	-	_	—	-	_	_	—	_	—	-

Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Unmit.	2.17	19.7	89.2	0.26	0.38	3.26	3.63	0.38	0.85	1.22	_	28,721	28,721	1.00	1.19	0.37	29,101
Mit.	2.17	19.7	89.2	0.26	0.38	3.26	3.63	0.38	0.85	1.22	—	28,721	28,721	1.00	1.19	0.37	29,101
% Reduced	-	—	-	-	-	-	—	-	-	-	-	-	-	-	-	—	-
Average Daily (Max)	-	-	-	_	_	-	_	-	-	-	-	_	-	-	-	-	-
Unmit.	0.85	6.29	36.3	0.11	0.14	0.95	1.06	0.14	0.27	0.38	—	11,391	11,391	0.42	0.31	1.63	11,490
Mit.	0.85	6.29	36.3	0.11	0.14	0.95	1.06	0.14	0.27	0.38	—	11,391	11,391	0.42	0.31	1.63	11,490
% Reduced	-	-	-	-	-	-	—	-	-	-	-	-	-	-	-	—	-
Annual (Max)	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Unmit.	0.16	1.15	6.63	0.02	0.03	0.17	0.19	0.03	0.05	0.07	_	1,886	1,886	0.07	0.05	0.27	1,902
Mit.	0.16	1.15	6.63	0.02	0.03	0.17	0.19	0.03	0.05	0.07	_	1,886	1,886	0.07	0.05	0.27	1,902
% Reduced	_	—	-	-	-	_	_	-	_	-	_	-	-	-	_	_	_

2.2. Construction Emissions by Year, Unmitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily - Summer (Max)	-	_	-	-	—	-	-	-		—	-	-	_	—	—	_	-
2029	1.35	15.6	63.7	0.14	0.28	4.53	4.81	0.28	1.47	1.58	_	16,521	16,521	0.55	0.91	10.4	16,817
2030	1.65	10.7	70.9	0.21	0.26	1.69	1.86	0.26	0.43	0.61	_	21,404	21,404	0.83	0.53	6.78	21,530
2031	5.90	3.47	30.7	0.10	0.12	0.48	0.54	0.12	0.12	0.21	_	10,006	10,006	0.39	0.14	1.33	10,058
2032	_	_	_	_	_	_	_	_	_	_	_	2.82	2.82	< 0.005	< 0.005	_	2.83

Daily - Winter (Max)	_	_	_	—	_	-	_	_	_	_	_	-	_	_	_	—	_
2029	2.01	16.6	86.4	0.24	0.34	2.30	2.64	0.34	0.60	0.94	_	25,925	25,925	0.93	0.88	0.28	26,213
2030	2.17	19.7	89.2	0.26	0.38	3.26	3.63	0.38	0.85	1.22	—	28,721	28,721	1.00	1.19	0.37	29,101
2031	0.68	3.50	30.7	0.10	0.12	0.39	0.51	0.12	0.10	0.21	—	9,996	9,996	0.39	0.15	0.03	10,050
2032	0.32	3.88	12.6	0.04	0.05	0.60	0.65	0.05	0.13	0.18	—	3,951	3,951	0.14	0.13	0.03	3,994
Average Daily	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
2029	0.62	5.39	27.8	0.07	0.11	0.95	1.06	0.11	0.27	0.38	_	8,021	8,021	0.28	0.31	1.63	8,123
2030	0.85	6.29	36.3	0.11	0.14	0.84	0.98	0.14	0.21	0.36	—	11,391	11,391	0.42	0.29	1.44	11,490
2031	0.85	1.18	10.2	0.04	0.04	0.18	0.22	0.04	0.04	0.08	—	3,501	3,501	0.14	0.06	0.24	3,522
2032	0.06	0.69	2.25	0.01	0.01	0.11	0.12	0.01	0.02	0.03	—	704	704	0.03	0.02	0.10	711
Annual	-	_	-	_	_	-	—	-	—	-	—	_	_	—	_	-	-
2029	0.11	0.98	5.08	0.01	0.02	0.17	0.19	0.02	0.05	0.07	_	1,328	1,328	0.05	0.05	0.27	1,345
2030	0.16	1.15	6.63	0.02	0.03	0.15	0.18	0.03	0.04	0.06	_	1,886	1,886	0.07	0.05	0.24	1,902
2031	0.15	0.22	1.86	0.01	0.01	0.03	0.04	0.01	0.01	0.02	—	580	580	0.02	0.01	0.04	583
2032	0.01	0.13	0.41	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	117	117	< 0.005	< 0.005	0.02	118

2.3. Construction Emissions by Year, Mitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily - Summer (Max)	-	_	-	-	_	-	_	—			-	_			-		-
2029	1.35	15.6	63.7	0.14	0.28	4.53	4.81	0.28	1.47	1.58	_	16,521	16,521	0.55	0.91	10.4	16,817
2030	1.65	10.7	70.9	0.21	0.26	1.69	1.86	0.26	0.43	0.61	_	21,404	21,404	0.83	0.53	6.78	21,530
2031	5.90	3.47	30.7	0.10	0.12	0.48	0.54	0.12	0.12	0.21	_	10,006	10,006	0.39	0.14	1.33	10,058
2032	_	_	_	_	_	_	_	_	_	_	_	2.82	2.82	< 0.005	< 0.005	_	2.83

Daily - Winter (Max)	_	_	_	_	_	-	_	—	-	_	_	_	_	—	_	-	_
2029	2.01	16.6	86.4	0.24	0.34	2.30	2.64	0.34	0.60	0.94	_	25,925	25,925	0.93	0.88	0.28	26,213
2030	2.17	19.7	89.2	0.26	0.38	3.26	3.63	0.38	0.85	1.22	_	28,721	28,721	1.00	1.19	0.37	29,101
2031	0.68	3.50	30.7	0.10	0.12	0.39	0.51	0.12	0.10	0.21	_	9,996	9,996	0.39	0.15	0.03	10,050
2032	0.32	3.88	12.6	0.04	0.05	0.60	0.65	0.05	0.13	0.18	—	3,951	3,951	0.14	0.13	0.03	3,994
Average Daily	-	-	-	-	-	-	-	—	-	-	-	-	—	—	-	-	-
2029	0.62	5.39	27.8	0.07	0.11	0.95	1.06	0.11	0.27	0.38	_	8,021	8,021	0.28	0.31	1.63	8,123
2030	0.85	6.29	36.3	0.11	0.14	0.84	0.98	0.14	0.21	0.36	—	11,391	11,391	0.42	0.29	1.44	11,490
2031	0.85	1.18	10.2	0.04	0.04	0.18	0.22	0.04	0.04	0.08	_	3,501	3,501	0.14	0.06	0.24	3,522
2032	0.06	0.69	2.25	0.01	0.01	0.11	0.12	0.01	0.02	0.03	-	704	704	0.03	0.02	0.10	711
Annual	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	-	_
2029	0.11	0.98	5.08	0.01	0.02	0.17	0.19	0.02	0.05	0.07	_	1,328	1,328	0.05	0.05	0.27	1,345
2030	0.16	1.15	6.63	0.02	0.03	0.15	0.18	0.03	0.04	0.06	_	1,886	1,886	0.07	0.05	0.24	1,902
2031	0.15	0.22	1.86	0.01	0.01	0.03	0.04	0.01	0.01	0.02	_	580	580	0.02	0.01	0.04	583
2032	0.01	0.13	0.41	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	117	117	< 0.005	< 0.005	0.02	118

3. Construction Emissions Details

3.1. Demolition (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—		—	—	—	—	—	—	—
Daily, Summer (Max)	_		—	—	—						—	_					_

Off-Road Equipment		5.35	24.0	0.04	0.08	-	0.08	0.08	-	0.08	-	4,394	4,394	0.18	0.04	-	4,409
Demolitio n	—	-	-	-	-	2.69	2.69	-	0.41	0.41	-	-	-	-	-	-	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-		-		_	-	-	-		-	-	-	-	-	-	-
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Off-Road Equipment		0.16	0.72	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	132	132	0.01	< 0.005	-	133
Demolitio n	_	-	-	-	-	0.08	0.08	_	0.01	0.01	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.13	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	21.9	21.9	< 0.005	< 0.005	-	22.0
Demolitio n	_	-	-	-	-	0.01	0.01	_	< 0.005	< 0.005	-	-	-	_	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	-	_		_	-	_	-		-	-	-	_	-	-	-
Worker	0.07	0.04	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	149	149	< 0.005	0.01	0.43	152
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.05	3.67	0.98	0.02	0.04	0.86	0.90	0.04	0.24	0.28	_	2,988	2,988	0.06	0.47	5.46	3,136

Daily, Winter (Max)	_	_	_	—	_	_	_	—	_	—	—	_	_	_	_	—	—
Average Daily	-	_	-	-	-	-	-	_	-	—	-	_	-	_	_	—	_
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	4.34	4.34	< 0.005	< 0.005	0.01	4.40
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	6.67	6.67	< 0.005	< 0.005	0.01	6.98
Hauling	< 0.005	0.11	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	-	90.1	90.1	< 0.005	0.01	0.07	94.4
Annual	-	—	-	-	-	-	-	_	-	-	-	-	-	—	_	-	-
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.72	0.72	< 0.005	< 0.005	< 0.005	0.73
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.10	1.10	< 0.005	< 0.005	< 0.005	1.16
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	14.9	14.9	< 0.005	< 0.005	0.01	15.6

3.2. Demolition (2029) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	_	_		—	_		—	—	_	_		_	—		_
Off-Road Equipment	0.46	5.35	24.0	0.04	0.08	—	0.08	0.08	—	0.08	—	4,394	4,394	0.18	0.04	—	4,409
Demolitio n	—	—	—	—	—	2.69	2.69	—	0.41	0.41	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	—	-		_	—				_	_	—	—	—		—
Average Daily	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.01	0.16	0.72	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	132	132	0.01	< 0.005	-	133
Demolitio n	_	-	-	-	-	0.08	0.08	-	0.01	0.01	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.13	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	21.9	21.9	< 0.005	< 0.005	-	22.0
Demolitio n	_	-	-	-	-	0.01	0.01	-	< 0.005	< 0.005	-	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)			-	-	_	-	-	-	_	-	-	-	-	-	-	-	-
Worker	0.07	0.04	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	149	149	< 0.005	0.01	0.43	152
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.05	3.67	0.98	0.02	0.04	0.86	0.90	0.04	0.24	0.28	_	2,988	2,988	0.06	0.47	5.46	3,136
Daily, Winter (Max)			-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Average Daily	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	4.34	4.34	< 0.005	< 0.005	0.01	4.40
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.67	6.67	< 0.005	< 0.005	0.01	6.98
Hauling	< 0.005	0.11	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	90.1	90.1	< 0.005	0.01	0.07	94.4
Annual	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.72	0.72	< 0.005	< 0.005	< 0.005	0.73
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.10	1.10	< 0.005	< 0.005	< 0.005	1.16
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	14.9	14.9	< 0.005	< 0.005	0.01	15.6

3.3. Demolition (2032) - Unmitigated

ontonia i	onatant	e (ile/ day	.e,,	1011/10	i annaai	, and er		ay 101 aa			, any						
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	-	-	—	-	-	-	-	-	_	_	-		_	_	-
Daily, Winter (Max)		-	_	-		-	-	-	-	-			_		_	_	—
Off-Road Equipment		3.09	11.8	0.03	0.04	—	0.04	0.04	—	0.04	-	3,130	3,130	0.13	0.03	-	3,141
Demolitio n		_	_	_	—	0.19	0.19	—	0.03	0.03	—	—	—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	-	_	—	_	_	—	_	—	-	-	_	-	-	-	_
Off-Road Equipment		0.55	2.09	0.01	0.01	_	0.01	0.01	_	0.01	-	557	557	0.02	< 0.005	-	559
Demolitio n	_	—	—	_	—	0.03	0.03	—	0.01	0.01	-	_	_	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—
Off-Road Equipment		0.10	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	—	< 0.005	-	92.3	92.3	< 0.005	< 0.005	-	92.6
Demolitio n	_	-	-	_	-	0.01	0.01	-	< 0.005	< 0.005	-	_	_	—	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_

Daily, Summer (Max)	-	_	-	_	_	_	_	-	_	-	-	_	_	_	_	-	-
Daily, Winter (Max)	-	_	-	-	_		-	-	_	-	-	-	-	_	_	-	-
Worker	0.07	0.05	0.65	0.00	0.00	0.20	0.20	0.00	0.05	0.05	—	173	173	< 0.005	0.01	0.01	176
Vendor	0.01	0.50	0.18	< 0.005	< 0.005	0.15	0.15	< 0.005	0.04	0.05	_	451	451	0.01	0.07	0.02	471
Hauling	< 0.005	0.24	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	194	194	< 0.005	0.03	0.01	203
Average Daily	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.01	0.01	0.11	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	31.1	31.1	< 0.005	< 0.005	0.03	31.6
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	80.3	80.3	< 0.005	0.01	0.05	83.9
Hauling	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	34.5	34.5	< 0.005	0.01	0.02	36.2
Annual	_	-	_	_	-	-	_	_	-	_	_	-	_	-	-	_	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.15	5.15	< 0.005	< 0.005	< 0.005	5.23
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	13.3	13.3	< 0.005	< 0.005	0.01	13.9
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	5.72	5.72	< 0.005	< 0.005	< 0.005	5.99

3.4. Demolition (2032) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—		—	—					_		_				—
Daily, Winter (Max)		—	—			_		_		_	_		_			_	—
Off-Road Equipment		3.09	11.8	0.03	0.04	—	0.04	0.04	—	0.04	—	3,130	3,130	0.13	0.03	—	3,141

Demolitio			_	_	_	0.19	0.19	_	0.03	0.03	_	_	_	_	_		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	—	-	-	-	-	-	-	-	-	-	—
Off-Road Equipment	0.04	0.55	2.09	0.01	0.01	-	0.01	0.01	-	0.01	_	557	557	0.02	< 0.005	-	559
Demolitio n	_	-	-	-	-	0.03	0.03	_	0.01	0.01	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.01	0.10	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	92.3	92.3	< 0.005	< 0.005	-	92.6
Demolitio n	_	-	-	_	_	0.01	0.01	_	< 0.005	< 0.005	_	_	_	_	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	—	-	-	_	_	_	—	_	_	-	-	-	_	—	_	-
Daily, Winter (Max)		_	-	-		_	-	-		_	-	-	-	-	-	_	-
Worker	0.07	0.05	0.65	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	173	173	< 0.005	0.01	0.01	176
Vendor	0.01	0.50	0.18	< 0.005	< 0.005	0.15	0.15	< 0.005	0.04	0.05	_	451	451	0.01	0.07	0.02	471
Hauling	< 0.005	0.24	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	194	194	< 0.005	0.03	0.01	203
Average Daily	—	-	_	—	-	-	—	_	-	-	_	-	_	_	-	-	_
Worker	0.01	0.01	0.11	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	31.1	31.1	< 0.005	< 0.005	0.03	31.6
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	80.3	80.3	< 0.005	0.01	0.05	83.9

Hauling	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	34.5	34.5	< 0.005	0.01	0.02	36.2
Annual	—	_	—	_	—	-	_	-	_	-	_	—	-	_	—	-	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.15	5.15	< 0.005	< 0.005	< 0.005	5.23
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	13.3	13.3	< 0.005	< 0.005	0.01	13.9
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	5.72	5.72	< 0.005	< 0.005	< 0.005	5.99

3.5. Site Preparation (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	-	-	—	-	_	-	-	_		—	-	-	-	-	_	-
Off-Road Equipment		4.12	36.7	0.06	0.13	-	0.13	0.13	-	0.13	-	6,660	6,660	0.27	0.05	-	6,683
Dust From Material Movement	_	_		-		< 0.005	< 0.005		< 0.005	< 0.005	_	-	-	-	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	-	—	-	_	-	-	_	_	_	-	-	_	-	-	_
Average Daily	—	—	-	-	-	-	-	-	-	-	-	-	_	—	-	-	-
Off-Road Equipment		0.52	4.62	0.01	0.02	-	0.02	0.02	-	0.02	_	839	839	0.03	0.01	-	842
Dust From Material Movement		-	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	-	_	_	-	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	-	—	-	_	-	—	-	—	—	_	—	—	—	_	-	—
Off-Road Equipmen	0.01 1	0.09	0.84	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	139	139	0.01	< 0.005	-	139
Dust From Material Movement		-	_	_	-	< 0.005	< 0.005	_	< 0.005	< 0.005	_	-	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Daily, Summer (Max)	-	_	-	_	-	_	-	_	_	_	-	_	_	_	-	-	-
Worker	0.09	0.05	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	190	190	< 0.005	0.01	0.55	193
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.02	1.91	0.43	0.01	0.02	0.49	0.52	0.02	0.14	0.16	_	1,694	1,694	0.03	0.27	3.13	1,778
Daily, Winter (Max)	—		-	_	-	_	-	-	-	-	-	_	_	—	-	-	-
Average Daily	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-
Worker	0.01	0.01	0.10	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	23.1	23.1	< 0.005	< 0.005	0.03	23.4
Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	27.9	27.9	< 0.005	< 0.005	0.02	29.2
Hauling	< 0.005	0.25	0.05	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	213	213	< 0.005	0.03	0.17	224
Annual	-	-	_	-	_	-	_	_	-	_	_	_	_	_	_	-	_
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.82	3.82	< 0.005	< 0.005	< 0.005	3.88
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	4.62	4.62	< 0.005	< 0.005	< 0.005	4.83
Hauling	< 0.005	0.05	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	35.3	35.3	< 0.005	0.01	0.03	37.1

3.6. Site Preparation (2029) - Mitigated

ontonia i	•	(ib/ dd)	ior daily	, ,	n annaai			ay lor aa					_				
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	-	—	-	—	—	—	—	—	—	—	—	—	—	_
Daily, Summer (Max)		-	-		—		-	-	-	_	-	-	-	_	-	-	—
Off-Road Equipment		4.12	36.7	0.06	0.13	-	0.13	0.13	—	0.13	—	6,660	6,660	0.27	0.05	—	6,683
Dust From Material Movement		_	_	_		< 0.005	< 0.005		< 0.005	< 0.005	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-	-		—		_	—	_	_	-	_	-	_	-	_	—
Average Daily	—	-	-	—	-	—	-	-	-	-	_	—	—	-	—	—	—
Off-Road Equipment		0.52	4.62	0.01	0.02	-	0.02	0.02	-	0.02	-	839	839	0.03	0.01	_	842
Dust From Material Movement		_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	-	_	-	_	-	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	—	_	—	_	—	—	_	—	—	—
Off-Road Equipment		0.09	0.84	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	139	139	0.01	< 0.005	_	139

Dust From Material Movement	—	_	-	-	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	_	-	_	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	-	-	-	_	-	—	-	-	-	_	-	-	-	-	-	_	-
Worker	0.09	0.05	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	190	190	< 0.005	0.01	0.55	193
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.02	1.91	0.43	0.01	0.02	0.49	0.52	0.02	0.14	0.16	—	1,694	1,694	0.03	0.27	3.13	1,778
Daily, Winter (Max)	-	-	-	_	-	_	-	-	-	_	-	-	-	-	-	_	-
Average Daily	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
Worker	0.01	0.01	0.10	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	23.1	23.1	< 0.005	< 0.005	0.03	23.4
Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	27.9	27.9	< 0.005	< 0.005	0.02	29.2
Hauling	< 0.005	0.25	0.05	< 0.005	< 0.005	0.06	0.07	< 0.005	0.02	0.02	_	213	213	< 0.005	0.03	0.17	224
Annual	-	_	_	_	_	-	_	_	-	-		_	_	_	-	-	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.82	3.82	< 0.005	< 0.005	< 0.005	3.88
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	4.62	4.62	< 0.005	< 0.005	< 0.005	4.83
Hauling	< 0.005	0.05	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	35.3	35.3	< 0.005	0.01	0.03	37.1

3.7. Grading (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)	_	-	_	_	-	-	_	-	-	-	-	-	-	-	_	_	-
Off-Road Equipment		3.20	26.6	0.04	0.09	-	0.09	0.09	_	0.09	_	4,824	4,824	0.20	0.04	—	4,841
Dust From Material Movement		-	-	-	-	2.56	2.56	_	1.31	1.31	_	_	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	_		_	_	_	_	_	_	_	_	_	-	_	_	_
Average Daily	—	—	—	—	—	_	—	—	_	—	—	_	—	—	—	—	—
Off-Road Equipment	0.02	0.14	1.17	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	211	211	0.01	< 0.005	-	212
Dust From Material Movement		-	-	-	-	0.11	0.11	-	0.06	0.06	-	-	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	_	35.0	35.0	< 0.005	< 0.005	—	35.1
Dust From Material Movement		_	-	-	-	0.02	0.02	-	0.01	0.01	_	_	-	-	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	—	_	_	_	_	_	_	-	-	_	_	_	-	-
Worker	0.10	0.06	0.88	0.00	0.00	0.21	0.21	0.00	0.05	0.05	_	204	204	< 0.005	0.01	0.59	207
Vendor	0.01	0.31	0.10	< 0.005	< 0.005	0.08	0.09	< 0.005	0.02	0.03	—	277	277	< 0.005	0.04	0.53	290
Hauling	0.01	1.17	0.26	0.01	0.01	0.30	0.32	0.01	0.09	0.10	—	1,042	1,042	0.02	0.16	1.93	1,094
Daily, Winter (Max)	_		-	—	_			_			-	-	_	_	_	-	—
Average Daily	-	-	-	-	—	-	-	-	—	-	-	-	-	—	-	-	-
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	8.60	8.60	< 0.005	< 0.005	0.01	8.73
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.1	12.1	< 0.005	< 0.005	0.01	12.7
Hauling	< 0.005	0.05	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	45.7	45.7	< 0.005	0.01	0.04	47.9
Annual	_	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	1.42	1.42	< 0.005	< 0.005	< 0.005	1.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.01	2.01	< 0.005	< 0.005	< 0.005	2.10
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	7.57	7.57	< 0.005	< 0.005	0.01	7.93

3.8. Grading (2029) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)									—	_							_
Off-Road Equipment		3.20	26.6	0.04	0.09	—	0.09	0.09	—	0.09	—	4,824	4,824	0.20	0.04	—	4,841

Dust From Material Movement		_		_	_	2.56	2.56	_	1.31	1.31	-	_	-	_	_	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	-	-	-	-	-	-	-	-	_	_	-	-	-	_
Average Daily	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment		0.14	1.17	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	_	211	211	0.01	< 0.005	-	212
Dust From Material Movement		_		-		0.11	0.11	-	0.06	0.06	_	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	-	-	-	-	_	-	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	_	35.0	35.0	< 0.005	< 0.005	_	35.1
Dust From Material Movement		_				0.02	0.02	-	0.01	0.01	_	-	-	_	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	—	—	—	—	_	_	_	_	-	-	_	_	_	_	—
Daily, Summer (Max)		-	_	-	-	-	-	-	-	-	-	_	_	-	-	-	_
Worker	0.10	0.06	0.88	0.00	0.00	0.21	0.21	0.00	0.05	0.05	_	204	204	< 0.005	0.01	0.59	207
Vendor	0.01	0.31	0.10	< 0.005	< 0.005	0.08	0.09	< 0.005	0.02	0.03	_	277	277	< 0.005	0.04	0.53	290
Hauling	0.01	1.17	0.26	0.01	0.01	0.30	0.32	0.01	0.09	0.10	_	1,042	1,042	0.02	0.16	1.93	1,094

Daily, Winter (Max)	—	_	—	_	_	_	—	_	_	—	—	_	—	_	_	—	—
Average Daily	—	—	—	—	—	_	—	—	_	_	—	_	—	—	_	—	—
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	-	8.60	8.60	< 0.005	< 0.005	0.01	8.73
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	12.1	12.1	< 0.005	< 0.005	0.01	12.7
Hauling	< 0.005	0.05	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	-	45.7	45.7	< 0.005	0.01	0.04	47.9
Annual	-	-	-	-	-	_	_	-	-	-	-	-	_	-	_	_	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.42	1.42	< 0.005	< 0.005	< 0.005	1.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.01	2.01	< 0.005	< 0.005	< 0.005	2.10
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	7.57	7.57	< 0.005	< 0.005	0.01	7.93

3.9. Building Construction (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_		—	_	_	_	_		_	—	_	_	-	_	_	_	_
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	—	0.15	0.15	—	0.15	—	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—		_	_	—	-	-	—	_	-	-	-	-	—	—	-	_
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	—	0.15	0.15	—	0.15	_	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	-	-	—	_	-	-	_	-	-	-	-	-	-	-	-	-	-
Off-Road Equipmen	0.23 1	1.44	13.0	0.03	0.05	-	0.05	0.05	-	0.05	-	3,112	3,112	0.13	0.03	-	3,123
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	0.04 1	0.26	2.37	0.01	0.01	-	0.01	0.01	-	0.01	-	515	515	0.02	< 0.005	-	517
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_		_	—	_	_	_	_	_	_	_	_	_	_	-	_
Daily, Summer (Max)	_	-	-	-	_	-	-	-						_	-	-	-
Worker	0.23	0.13	1.99	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	462	462	0.01	0.02	1.33	469
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.85	463
Hauling	0.04	3.67	0.82	0.02	0.05	0.95	1.00	0.05	0.27	0.31	_	3,257	3,257	0.05	0.52	6.02	3,418
Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	—	_	_	_	—	-	-	-
Worker	0.21	0.17	1.89	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	442	442	0.01	0.02	0.03	448
Vendor	0.01	0.51	0.17	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.02	463
Hauling	0.04	3.80	0.83	0.02	0.05	0.95	1.00	0.05	0.27	0.31	_	3,258	3,258	0.05	0.52	0.16	3,413
Average Daily	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.06	0.04	0.56	0.00	0.00	0.14	0.14	0.00	0.03	0.03	_	133	133	< 0.005	0.01	0.17	135
Vendor	< 0.005	0.15	0.05	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	133	133	< 0.005	0.02	0.11	139
Hauling	0.01	1.14	0.25	0.01	0.01	0.28	0.30	0.01	0.08	0.09	_	975	975	0.02	0.15	0.78	1,023
Annual	-	_	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	22.1	22.1	< 0.005	< 0.005	0.03	22.4

Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	22.0	22.0	< 0.005	< 0.005	0.02	23.0
Hauling	< 0.005	0.21	0.04	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.02	-	161	161	< 0.005	0.03	0.13	169

3.10. Building Construction (2029) - Mitigated

ontonia i	onatai	no (ib/duj		y, ton yr i	or annua	j unu Or	100 (16/0	ay ior aa	, ivi i / y		aan						
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	-	—	—	—	—	—	—	—	—	—	—	-	—	-	—
Daily, Summer (Max)	_	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	-	0.15	0.15	-	0.15	—	10,394	10,394	0.42	0.08	_	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-	_	_	-	-	-	-	-	-	-	-	-	-	_	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	-	0.15	0.15	-	0.15	-	10,394	10,394	0.42	0.08	-	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	-	-	-	-	-	—	-	-	-	_	-
Off-Road Equipment		1.44	13.0	0.03	0.05	-	0.05	0.05	-	0.05	-	3,112	3,112	0.13	0.03	-	3,123
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	_	-	-	_	_	_	_	-	-	_	_	-	-	-	_
Off-Road Equipment		0.26	2.37	0.01	0.01	-	0.01	0.01	-	0.01	_	515	515	0.02	< 0.005	-	517
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_	-	-	-	_	_	_	_	_	_	-	_	_	_	_	-	-
Worker	0.23	0.13	1.99	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	462	462	0.01	0.02	1.33	469
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.85	463
Hauling	0.04	3.67	0.82	0.02	0.05	0.95	1.00	0.05	0.27	0.31	—	3,257	3,257	0.05	0.52	6.02	3,418
Daily, Winter (Max)	-	-	-	-	-	_	_	-		_	-	-	_			-	-
Worker	0.21	0.17	1.89	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	442	442	0.01	0.02	0.03	448
Vendor	0.01	0.51	0.17	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.02	463
Hauling	0.04	3.80	0.83	0.02	0.05	0.95	1.00	0.05	0.27	0.31	—	3,258	3,258	0.05	0.52	0.16	3,413
Average Daily	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	_	—
Worker	0.06	0.04	0.56	0.00	0.00	0.14	0.14	0.00	0.03	0.03	_	133	133	< 0.005	0.01	0.17	135
Vendor	< 0.005	0.15	0.05	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	133	133	< 0.005	0.02	0.11	139
Hauling	0.01	1.14	0.25	0.01	0.01	0.28	0.30	0.01	0.08	0.09	_	975	975	0.02	0.15	0.78	1,023
Annual	_	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	22.1	22.1	< 0.005	< 0.005	0.03	22.4
Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	22.0	22.0	< 0.005	< 0.005	0.02	23.0
Hauling	< 0.005	0.21	0.04	< 0.005	< 0.005	0.05	0.05	< 0.005	0.01	0.02	_	161	161	< 0.005	0.03	0.13	169

3.11. Building Construction (2030) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Summer (Max)	-	_	—	-	-	_	—	—	_	—	—	-	_	_	_	_	_

Daily, Winter (Max)	_	_	-	_	-	_	-	-	_	-	_	_	_	_	_	-	-
Off-Road Equipmen	0.78 1	4.80	43.3	0.10	0.15	—	0.15	0.15	_	0.15	_	10,394	10,394	0.42	0.08	_	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	—	-	-	-	—	-	-	—	-	-	-	—	—	-	-
Off-Road Equipmen	0.12 1	0.74	6.70	0.02	0.02	-	0.02	0.02	-	0.02	_	1,607	1,607	0.07	0.01	-	1,612
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	0.02 1	0.14	1.22	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	_	266	266	0.01	< 0.005	-	267
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	-	_	_	-	_	_	_	_	-	_	_	_	_	_
Daily, Summer (Max)	-	_	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-
Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-
Worker	0.20	0.15	1.77	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	434	434	0.01	0.02	0.03	440
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.02	448
Hauling	0.04	3.63	0.83	0.02	0.05	0.95	1.00	0.05	0.27	0.31	_	3,163	3,163	0.05	0.49	0.14	3,311
Average Daily	-	_		-	-	-	-	-	-	_	_	-	-	-	-	_	_
Worker	0.03	0.02	0.27	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	67.6	67.6	< 0.005	< 0.005	0.08	68.6
Vendor	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	66.4	66.4	< 0.005	0.01	0.05	69.3
Hauling	0.01	0.56	0.13	< 0.005	0.01	0.15	0.15	0.01	0.04	0.05	_	489	489	0.01	0.08	0.37	512

Annual	—	—	—	—	—	_	—	—	—	—	—	_	—	—	—	—	-
Worker	0.01	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.2	11.2	< 0.005	< 0.005	0.01	11.4
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	11.0	11.0	< 0.005	< 0.005	0.01	11.5
Hauling	< 0.005	0.10	0.02	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	81.0	81.0	< 0.005	0.01	0.06	84.8

3.12. Building Construction (2030) - Mitigated

Location	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
	RUG	NUX		502	PIVITUE	PINITUD	PIVITUT	PIVIZ.3E	PIVIZ.5D	PIVIZ.51	BCUZ	NBC02	COZI	CH4	N2O	R	COZe
Onsite	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	-	—
Daily, Summer (Max)		-		_	_	—	_	—	—	—	-	_	—	_	_	_	-
Daily, Winter (Max)	—	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	—	0.15	0.15	—	0.15	_	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.12	0.74	6.70	0.02	0.02	_	0.02	0.02	—	0.02	_	1,607	1,607	0.07	0.01	—	1,612
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.14	1.22	< 0.005	< 0.005	_	< 0.005	< 0.005	—	< 0.005	_	266	266	0.01	< 0.005	—	267
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	—	—	_	—	_	—	_	_	_	—	_	—	_	—	—

Daily, Summer (Max)	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.20	0.15	1.77	0.00	0.00	0.48	0.48	0.00	0.11	0.11	—	434	434	0.01	0.02	0.03	440
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	429	429	0.01	0.06	0.02	448
Hauling	0.04	3.63	0.83	0.02	0.05	0.95	1.00	0.05	0.27	0.31	_	3,163	3,163	0.05	0.49	0.14	3,311
Average Daily	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Worker	0.03	0.02	0.27	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	67.6	67.6	< 0.005	< 0.005	0.08	68.6
Vendor	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	66.4	66.4	< 0.005	0.01	0.05	69.3
Hauling	0.01	0.56	0.13	< 0.005	0.01	0.15	0.15	0.01	0.04	0.05	_	489	489	0.01	0.08	0.37	512
Annual	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_
Worker	0.01	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.2	11.2	< 0.005	< 0.005	0.01	11.4
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	11.0	11.0	< 0.005	< 0.005	0.01	11.5
Hauling	< 0.005	0.10	0.02	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	81.0	81.0	< 0.005	0.01	0.06	84.8

3.13. Building Construction (2031) - Unmitigated

Location	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_						_									-
Off-Road Equipment	0.24	1.27	12.7	0.05	0.05	—	0.05	0.05	—	0.05	—	4,588	4,588	0.19	0.04	—	4,604
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)			—	—	_	_	_	—	_	_	_	_	—	_	_	_	—
Average Daily	—	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	0.07	0.38	3.79	0.01	0.01	-	0.01	0.01	-	0.01	-	1,370	1,370	0.06	0.01	-	1,375
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	—	_	_	-	_	_	_	_	_	_	_	_	-
Off-Road Equipment	0.01	0.07	0.69	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	227	227	0.01	< 0.005	-	228
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_		—	_	_		-	—	_	-	-	-	_	-	-	-	_
Worker	0.08	0.05	0.72	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	184	184	< 0.005	< 0.005	0.43	185
Vendor	0.01	0.34	0.12	< 0.005	< 0.005	0.10	0.10	< 0.005	0.03	0.03	_	311	311	< 0.005	0.05	0.49	326
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)			-	_	_		-	-	-	-	-	-	_	-	-	-	-
Average Daily	_	-	-	-	-	-	_	-	-	-		-	-	-	-	-	—
Worker	0.02	0.02	0.20	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	52.9	52.9	< 0.005	< 0.005	0.06	53.7
Vendor	< 0.005	0.10	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	92.9	92.9	< 0.005	0.01	0.06	97.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.76	8.76	< 0.005	< 0.005	0.01	8.90
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	15.4	15.4	< 0.005	< 0.005	0.01	16.1

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.14. Building Construction (2031) - Mitigated

				y, tori/yr it		<i>'</i>					,						_
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	-	_	_	_	-	_	-	-	-	-	-	_	-	_	-
Daily, Summer (Max)	_	_	-	-	-	-	_	_	_	_	_	_	_	-	_	-	—
Off-Road Equipment		1.27	12.7	0.05	0.05	—	0.05	0.05	—	0.05	—	4,588	4,588	0.19	0.04	_	4,604
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-	-	-	-	-	-	_	_	_	-	_	-	-	-	-
Average Daily	—	-	-	_	-	-	_	-	-	-	-	_	-	-	-	-	-
Off-Road Equipment		0.38	3.79	0.01	0.01	-	0.01	0.01	-	0.01	-	1,370	1,370	0.06	0.01	-	1,375
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.07	0.69	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	227	227	0.01	< 0.005	-	228
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	_	—	-	-	-	_	_	_	_	_	_	-	-	-	-	-
Worker	0.08	0.05	0.72	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	184	184	< 0.005	< 0.005	0.43	185

Vendor	0.01	0.34	0.12	< 0.005	< 0.005	0.10	0.10	< 0.005	0.03	0.03	—	311	311	< 0.005	0.05	0.49	326
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	_	-	-	—	-	-	—	-	_	-	—	_	-	_	—
Average Daily	—	_	_	—	-	-	—	_	—	-	-	—	_	—	-	-	-
Worker	0.02	0.02	0.20	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	52.9	52.9	< 0.005	< 0.005	0.06	53.7
Vendor	< 0.005	0.10	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	-	92.9	92.9	< 0.005	0.01	0.06	97.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	-	_	-	_	_	_	_	—	_	_	_	_	_
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.76	8.76	< 0.005	< 0.005	0.01	8.90
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	15.4	15.4	< 0.005	< 0.005	0.01	16.1
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Building Construction (2029) - Unmitigated

Location	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Daily, Winter (Max)		-	-	-							-	_	_	_	_	-	-
Off-Road Equipment		6.41	37.8	0.11	0.14	—	0.14	0.14	—	0.14	_	10,270	10,270	0.42	0.08	-	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.13	1.15	6.80	0.02	0.02	-	0.02	0.02	-	0.02	—	1,849	1,849	0.08	0.02	-	1,855
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	_	_	_	-	-	_	-	_	-	-	_	_	-	-
Off-Road Equipment	0.02	0.21	1.24	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	_	306	306	0.01	< 0.005	-	307
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	_	-	-	_	—	_	-	_	_	-	-	_	-	_	-
Daily, Winter (Max)		—	—	-	-	—	-	—	-	_	_	-	-		-	_	—
Worker	0.24	0.19	2.16	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	507	507	0.01	0.02	0.04	514
Vendor	0.01	0.71	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	—	609	609	0.01	0.09	0.03	636
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	—	-	-	—	-	-	-	_	—	-	—	-	-	-
Worker	0.04	0.03	0.39	0.00	0.00	0.10	0.10	0.00	0.02	0.02	—	91.9	91.9	< 0.005	< 0.005	0.12	93.3
Vendor	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	110	110	< 0.005	0.02	0.09	115
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	_	—	—	—	—	-	—	—	—	—	_	—
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	-	15.2	15.2	< 0.005	< 0.005	0.02	15.4
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	-	18.1	18.1	< 0.005	< 0.005	0.02	19.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.16. Building Construction (2029) - Mitigated

Location	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite												_	_	_		_	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	_	-	_	-	_
Daily, Winter (Max)				-							_	-	_	-	_	-	_
Off-Road Equipment	0.72	6.41	37.8	0.11	0.14	—	0.14	0.14	—	0.14	—	10,270	10,270	0.42	0.08	_	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	-	—	—	—	—	—	—	—	—	—	_	-	-	—
Off-Road Equipment	0.13	1.15	6.80	0.02	0.02	—	0.02	0.02	—	0.02	-	1,849	1,849	0.08	0.02	-	1,855
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.21	1.24	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	-	306	306	0.01	< 0.005	-	307
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	-	-	-	_	—	-	_	_	-	-	-	_	_	_	_
Daily, Summer (Max)		—	—	-	—	—	—	—	—	—	—	-	—	-	—	-	—
Daily, Winter (Max)			_	—	_		_	_			_	—	—	_	—	—	_
Worker	0.24	0.19	2.16	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	507	507	0.01	0.02	0.04	514
Vendor	0.01	0.71	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	—	609	609	0.01	0.09	0.03	636

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	-	—	—	-	—	_	—	—	_	—	-	—	-	-	-
Worker	0.04	0.03	0.39	0.00	0.00	0.10	0.10	0.00	0.02	0.02		91.9	91.9	< 0.005	< 0.005	0.12	93.3
Vendor	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	110	110	< 0.005	0.02	0.09	115
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	—	_	_	_	-	—	_	-	—	_	-	_	-	—	_	-
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	15.2	15.2	< 0.005	< 0.005	0.02	15.4
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	18.1	18.1	< 0.005	< 0.005	0.02	19.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.17. Building Construction (2030) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	_	_	-	-	_	_	-	_	-	-	-	-	_	_	_	_
Daily, Summer (Max)	_	-		_	-	-	-	_	_	_	_	_	_	-	-	-	-
Off-Road Equipment		6.41	37.8	0.11	0.14	—	0.14	0.14	—	0.14	—	10,270	10,270	0.42	0.08	—	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	—	_	-	-	-	_	-	_	_	_	_	-	-	-	-
Off-Road Equipment		6.41	37.8	0.11	0.14	-	0.14	0.14	-	0.14	—	10,270	10,270	0.42	0.08	-	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	-	_	_	_	-	-	_	_	_	_	_	_	-	_

Off-Road Equipmen	0.29 1	2.55	15.0	0.04	0.05	-	0.05	0.05	-	0.05	-	4,080	4,080	0.17	0.03	—	4,094
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	—	_	—	_	—	—	—	—	—	-	—	-	—	—	—
Off-Road Equipmen	0.05 1	0.46	2.74	0.01	0.01	-	0.01	0.01	-	0.01	-	675	675	0.03	0.01	-	678
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	-	—	-	-	-	_	—	-	-	-	-	_	-	-	-	—
Worker	0.23	0.15	2.15	0.00	0.00	0.55	0.55	0.00	0.13	0.13	_	521	521	0.01	0.02	1.36	529
Vendor	0.01	0.65	0.22	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	_	590	590	0.01	0.09	1.03	617
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_		_	-	-	_		-	-	-	-	_	-	-	-	
Worker	0.23	0.17	2.04	0.00	0.00	0.55	0.55	0.00	0.13	0.13	_	498	498	0.01	0.02	0.04	505
Vendor	0.01	0.67	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	_	590	590	0.01	0.09	0.03	616
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.09	0.07	0.80	0.00	0.00	0.22	0.22	0.00	0.05	0.05	_	199	199	< 0.005	0.01	0.23	202
Vendor	0.01	0.27	0.09	< 0.005	< 0.005	0.07	0.08	< 0.005	0.02	0.02	_	234	234	< 0.005	0.03	0.18	245
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	_
Worker	0.02	0.01	0.15	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	33.0	33.0	< 0.005	< 0.005	0.04	33.5
Vendor	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.8	38.8	< 0.005	0.01	0.03	40.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.18. Building Construction (2030) - Mitigated

	0.110.10.1		,	, .o., ji i	or anniaai) and er		ay for au	,,,,,,,, .		aanj						
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	—	—	-	-	-	—	—	—	-	—	-	—	—	-	—	—
Daily, Summer (Max)	—	-	_	-	-	_	-	-	-	_	-	-	-	-	_	_	-
Off-Road Equipment		6.41	37.8	0.11	0.14	_	0.14	0.14	-	0.14	_	10,270	10,270	0.42	0.08	—	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	—	-	-	-	-	-	-	-	-	-	-	-	—	_	—
Off-Road Equipment		6.41	37.8	0.11	0.14	-	0.14	0.14	-	0.14	-	10,270	10,270	0.42	0.08	-	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	-	—	—	-	-	—	-	—	_	—	-	_	—	—	-
Off-Road Equipment		2.55	15.0	0.04	0.05	-	0.05	0.05	-	0.05	-	4,080	4,080	0.17	0.03	-	4,094
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.05	0.46	2.74	0.01	0.01	-	0.01	0.01	-	0.01	-	675	675	0.03	0.01	-	678
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	—	_	—	_	-	-	_	_	_	-	-	-	-	_	_	—	—
Worker	0.23	0.15	2.15	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	521	521	0.01	0.02	1.36	529
Vendor	0.01	0.65	0.22	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	-	590	590	0.01	0.09	1.03	617
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	—	_	-	_	—	-	-	-	_	-	-		_	_	—
Worker	0.23	0.17	2.04	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	498	498	0.01	0.02	0.04	505
Vendor	0.01	0.67	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	—	590	590	0.01	0.09	0.03	616
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	_	—	—	-	_	—	—	-	—	_	—	—	—	—	—	_
Worker	0.09	0.07	0.80	0.00	0.00	0.22	0.22	0.00	0.05	0.05	—	199	199	< 0.005	0.01	0.23	202
Vendor	0.01	0.27	0.09	< 0.005	< 0.005	0.07	0.08	< 0.005	0.02	0.02	-	234	234	< 0.005	0.03	0.18	245
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	-	—	—	—	-	—	—	—	—	—	—	—	—	—	_	—
Worker	0.02	0.01	0.15	0.00	0.00	0.04	0.04	0.00	0.01	0.01	-	33.0	33.0	< 0.005	< 0.005	0.04	33.5
Vendor	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.8	38.8	< 0.005	0.01	0.03	40.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.19. Building Construction (2030) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		—	—	_		_		_		—	_			_		_	_

Off-Road Equipment	0.57 I	2.96	29.6	0.10	0.11	—	0.11	0.11	-	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	_	-	—		—	_	_	—	_	_	-	_		-
Off-Road Equipment	0.57 I	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	0.24 1	1.24	12.4	0.04	0.05	-	0.05	0.05	-	0.05	-	3,916	3,916	0.16	0.03	-	3,929
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.04 I	0.23	2.26	0.01	0.01	-	0.01	0.01	-	0.01	-	648	648	0.03	0.01	-	651
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		-	_	-	-	-	_	-	-	-	-	_	-	_	_	_	-
Worker	0.11	0.07	0.99	0.00	0.00	0.25	0.25	0.00	0.06	0.06	-	240	240	0.01	0.01	0.63	244
Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.75	449
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	—	—	-	-	-	—	—	-	—	-	_	-	_	_	_	-
Worker	0.10	0.08	0.94	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	230	230	0.01	0.01	0.02	233

Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	429	429	0.01	0.06	0.02	448
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	_	_	—	—	-	—	—	—	—	-	—	-	—	—	-	_
Worker	0.04	0.03	0.39	0.00	0.00	0.11	0.11	0.00	0.02	0.02	—	97.0	97.0	< 0.005	< 0.005	0.11	98.4
Vendor	< 0.005	0.20	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	180	180	< 0.005	0.03	0.14	188
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	_
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	16.1	16.1	< 0.005	< 0.005	0.02	16.3
Vendor	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	29.8	29.8	< 0.005	< 0.005	0.02	31.1
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.20. Building Construction (2030) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	_	—	_	_	_	—	_	_	—	-	—	-	—	-	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	_	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	_	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	-	-	_	_	-	-	_	-	-	-	—	-	_	-	-	-	_
Off-Road Equipmen	0.24 1	1.24	12.4	0.04	0.05	-	0.05	0.05	-	0.05	_	3,916	3,916	0.16	0.03	-	3,929
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	-	_	_	_	-	-	_	_	-	-	-	_	_	_	_
Off-Road Equipmen	0.04 1	0.23	2.26	0.01	0.01	-	0.01	0.01	-	0.01	—	648	648	0.03	0.01	-	651
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Daily, Summer (Max)	_	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-
Worker	0.11	0.07	0.99	0.00	0.00	0.25	0.25	0.00	0.06	0.06	-	240	240	0.01	0.01	0.63	244
Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	-	429	429	0.01	0.06	0.75	449
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-	-	-	-	-	-	_	-	_	_	-	-	—	-	-	-
Worker	0.10	0.08	0.94	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	230	230	0.01	0.01	0.02	233
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.02	448
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	_	_	-	-	_	-	-	-	-	-	_
Worker	0.04	0.03	0.39	0.00	0.00	0.11	0.11	0.00	0.02	0.02	_	97.0	97.0	< 0.005	< 0.005	0.11	98.4
Vendor	< 0.005	0.20	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	180	180	< 0.005	0.03	0.14	188
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	16.1	16.1	< 0.005	< 0.005	0.02	16.3

Vendor	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	29.8	29.8	< 0.005	< 0.005	0.02	31.1
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.21. Building Construction (2031) - Unmitigated

				y, ton/yr to													
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Daily, Summer (Max)	—	-	_	-	-	_	_	-	-	_	-	_	-	-	_	-	_
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	-	-	-	_	_	-	-	_	-	-	_	-	-	_	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	-	0.11	0.11	-	0.11	-	9,351	9,351	0.38	0.08	-	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	-	—	-	-	-	-	-	—	—	—	-	—	—	—	-
Off-Road Equipment		0.55	5.51	0.02	0.02	-	0.02	0.02	-	0.02	-	1,738	1,738	0.07	0.01	-	1,744
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
Off-Road Equipment		0.10	1.00	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	288	288	0.01	< 0.005	-	289
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	-	_	-	-	_	_	_	-	_	-	-	_	_	_	_	_	-
Worker	0.10	0.06	0.92	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	237	237	< 0.005	< 0.005	0.56	238
Vendor	0.01	0.45	0.15	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	415	415	0.01	0.06	0.65	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	_	-	-	-		_	-		-	-	_	_		_	-	-
Worker	0.10	0.07	0.88	0.00	0.00	0.25	0.25	0.00	0.06	0.06	—	226	226	0.01	0.01	0.01	230
Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	415	415	0.01	0.06	0.02	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	_	—	—	—	-	—	—	—	—	—	—	—	-	-
Worker	0.02	0.01	0.16	0.00	0.00	0.05	0.05	0.00	0.01	0.01	—	42.4	42.4	< 0.005	< 0.005	0.04	43.0
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	—	77.1	77.1	< 0.005	0.01	0.05	80.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.01	7.01	< 0.005	< 0.005	0.01	7.12
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.8	12.8	< 0.005	< 0.005	0.01	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.22. Building Construction (2031) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	—	-	—	_		—	_	_	—	_	_	_	—	—	_

Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	-	0.11	0.11	-	0.11	-	9,351	9,351	0.38	0.08	-	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-		_	-	-	-	-	_	-	_	-	_	_	-	-	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	_	9,351	9,351	0.38	0.08	-	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	-	-	-	-	-	-	-	-	-	—	-	—	-	-	-
Off-Road Equipment	0.11	0.55	5.51	0.02	0.02	-	0.02	0.02	-	0.02	-	1,738	1,738	0.07	0.01	-	1,744
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.10	1.00	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	288	288	0.01	< 0.005	-	289
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	—	_	-	-	-	-	-	-	-	_	—	_	-	-	-
Worker	0.10	0.06	0.92	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	237	237	< 0.005	< 0.005	0.56	238
Vendor	0.01	0.45	0.15	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	415	415	0.01	0.06	0.65	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	—		_	-	-	—	_	-	-	-	—		_	-	-	—
Worker	0.10	0.07	0.88	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	226	226	0.01	0.01	0.01	230

Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	415	415	0.01	0.06	0.02	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	—	—	—	-	—	—	-	-	—	—	—	—	-	—
Worker	0.02	0.01	0.16	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	42.4	42.4	< 0.005	< 0.005	0.04	43.0
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	_	77.1	77.1	< 0.005	0.01	0.05	80.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	-	-	-	_	-	_	_	_	-	-	-	_	_	-
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.01	7.01	< 0.005	< 0.005	0.01	7.12
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	12.8	12.8	< 0.005	< 0.005	0.01	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.23. Paving (2031) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	—	_	_	—	_	_	_	—	_	_	_	_	_	_	_
Daily, Summer (Max)	—	-	—		—	—		—		—						—	—
Off-Road Equipmen	0.05	0.25	3.49	< 0.005	0.01	—	0.01	0.01	_	0.01	—	497	497	0.02	< 0.005	—	499
Paving	0.52	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-			—		—								—	_
Average Daily	—	_	-	_	_	_	_	_	_	—	_	_		_	_	_	-

Off-Road Equipment	0.01	0.03	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	54.5	54.5	< 0.005	< 0.005	-	54.7
Paving	0.06	_	_	_	—	_	_	_	_	_	_	_	—	—	_	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Off-Road Equipment	< 0.005	< 0.005	0.07	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	9.02	9.02	< 0.005	< 0.005	-	9.05
Paving	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Summer (Max)	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Worker	0.06	0.04	0.56	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	145	145	< 0.005	< 0.005	0.34	145
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-
Average Daily	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Worker	0.01	< 0.005	0.06	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	15.3	15.3	< 0.005	< 0.005	0.02	15.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.53	2.53	< 0.005	< 0.005	< 0.005	2.57
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.24. Paving (2031) - Mitigated

				, toni yr io													
Location	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	_	—	_	—	—	—	—	—	—	—	_	—	—	_
Daily, Summer (Max)	_	_	-	-	-	-	-	_	_	_	_	-	_	-	-	-	-
Off-Road Equipment		0.25	3.49	< 0.005	0.01	—	0.01	0.01	—	0.01	—	497	497	0.02	< 0.005	—	499
Paving	0.52	-	—	—	-	_	-	-	-	-	_	_	-	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	-	-	_	_		_		_	_	-	_	-	-	-	-
Average Daily		_	-	-	-	-	-	_	_	_	-	-	_	-	-	-	-
Off-Road Equipment		0.03	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	54.5	54.5	< 0.005	< 0.005	-	54.7
Paving	0.06	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	< 0.005	0.07	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	9.02	9.02	< 0.005	< 0.005	-	9.05
Paving	0.01	_	-	_	-	_	-	-	-	-	_	_	-	_	-	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	-	-	-	-				-	_	-	-	-	_	-	-

Worker	0.06	0.04	0.56	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	145	145	< 0.005	< 0.005	0.34	145
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	-	_	—	-	-	-	-		—	-	-	-	-	-	_
Average Daily	—	—	_	—	—	—	—		—	—	—	—	—	—	—	—	-
Worker	0.01	< 0.005	0.06	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	15.3	15.3	< 0.005	< 0.005	0.02	15.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	—	—	_	_	_	—	-	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.53	2.53	< 0.005	< 0.005	< 0.005	2.57
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.25. Architectural Coating (2031) - Unmitigated

Location	ROG		со	SO2				PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)																_	—
Off-Road Equipment		—	—	0.01	—	—	—	—	—	—	—	463	463	0.02	< 0.005	—	465
Architectu ral Coatings	4.94				—				—		—	_			—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	-	-	_	-	_	_	_	_	_	_	_	-	-	_	-	_
Average Daily	—	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	—	_	-	< 0.005	-	_	-	-	_	-	-	52.0	52.0	< 0.005	< 0.005	-	52.2
Architectu ral Coatings	0.55	-	-	_	-	—	-	-	_	-	-	—	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		-	-	< 0.005	-	_	-	-	_	-	-	8.61	8.61	< 0.005	< 0.005	-	8.64
Architectu ral Coatings	0.10	_	-	_	_	_	_	_	_	_	_	_	-	_	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		-	-	_	-	_	_	-	_	-	-	_	-	-	_	-	_
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	26.3	26.3	< 0.005	< 0.005	0.06	26.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-		-	—	—	_	—		_	_	-	-	—	-	—
Average Daily	—	-	-	-	—	—	-	-	—	-	-	-	_	-	-	-	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.84	2.84	< 0.005	< 0.005	< 0.005	2.89

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	—	—	—	_	_	—	—	—	—	—	—	—	—	—	-
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.47	0.47	< 0.005	< 0.005	< 0.005	0.48
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.26. Architectural Coating (2031) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Location	RUG	NUX	0	502	PINITUE	PINITUD	PIVITUT	PINZ.3E	PIVIZ.5D	PIVIZ.51	BCU2	NBC02	0021	U⊓4	NZO	R	COZe
Onsite	—	—	—	—	-	—	—	—	-	-	_	-	—	_	—	-	—
Daily, Summer (Max)	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	—	_		0.01	—	—	—	—	—	—	—	463	463	0.02	< 0.005	_	465
Architectu ral Coatings	4.94	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	-	_	—	-	—	-	—	—	_	-	-	-	_	_	—
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—
Off-Road Equipment	—	_	_	< 0.005	_	_	—	_	_	—	_	52.0	52.0	< 0.005	< 0.005	_	52.2
Architectu ral Coatings	0.55	-	_	-	-	-	-	_	-	-	_	-	-	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen		-	_	< 0.005	-	—	—	-	—	_	_	8.61	8.61	< 0.005	< 0.005	_	8.64
Architectu ral Coatings	0.10	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_
Daily, Summer (Max)	—	_	-	-	_	_	-	-	-	-	-	_	-	-	-	-	_
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	26.3	26.3	< 0.005	< 0.005	0.06	26.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	-	-	_	-	-	-	-	_	_	-	-	-	-	-
Average Daily	_	-	-	-	-	_	_	-	-	_	_	-	_	-	-	-	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	2.84	2.84	< 0.005	< 0.005	< 0.005	2.89
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-	-	-	_	_	-	_	-	_	_	-	_	-	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.47	0.47	< 0.005	< 0.005	< 0.005	0.48
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.27. Trenching (2030) - Unmitigated

Location	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	-	-	-	-	-	-	_	_	_	-	_	-	_	_	-
Off-Road Equipment		0.93	1.39	0.01	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	567	567	0.02	< 0.005	-	569
Dust From Material Movement	—	_	_	-	-	0.01	0.01	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	_
Off-Road Equipment	0.03	0.93	1.39	0.01	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	567	567	0.02	< 0.005	-	569
Dust From Material Movement		_	_	-	-	0.01	0.01		< 0.005	< 0.005	_	-	_	-	_		
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	_	-	-	-	_	-	-	-	-	-	-	-	-
Off-Road Equipment	< 0.005	0.14	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	86.9	86.9	< 0.005	< 0.005	-	87.2
Dust From Material Movement				_	-	< 0.005	< 0.005	_	< 0.005	< 0.005		_		_			_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.04	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	14.4	14.4	< 0.005	< 0.005	-	14.4
Dust From Material Movement		_	-			< 0.005	< 0.005		< 0.005	< 0.005	-	-		_	_	_	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	-	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_
Daily, Summer (Max)		_	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Worker	0.14	0.09	1.27	0.00	0.00	0.33	0.33	0.00	0.08	0.08	-	307	307	0.01	0.01	0.80	312
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.6	53.6	< 0.005	0.01	0.09	56.1
Hauling	0.03	2.24	0.53	0.02	0.03	0.61	0.64	0.03	0.17	0.20	-	2,024	2,024	0.03	0.31	3.50	2,122
Daily, Winter (Max)		_	-	-	-	-	-	-	-	-	—	-	-	-	-	-	-
Worker	0.13	0.10	1.20	0.00	0.00	0.33	0.33	0.00	0.08	0.08	_	294	294	0.01	0.01	0.02	298
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.7	53.7	< 0.005	0.01	< 0.005	56.0
Hauling	0.02	2.32	0.53	0.02	0.03	0.61	0.64	0.03	0.17	0.20	_	2,024	2,024	0.03	0.31	0.09	2,119
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	—	-	-	-	-
Worker	0.02	0.02	0.18	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	45.4	45.4	< 0.005	< 0.005	0.05	46.1
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	8.23	8.23	< 0.005	< 0.005	0.01	8.60
Hauling	< 0.005	0.36	0.08	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	_	311	311	0.01	0.05	0.23	325
Annual	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.52	7.52	< 0.005	< 0.005	0.01	7.63
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.36	1.36	< 0.005	< 0.005	< 0.005	1.42
Hauling	< 0.005	0.07	0.01	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	51.4	51.4	< 0.005	0.01	0.04	53.9

3.28. Trenching (2030) - Mitigated

ontonia i			,,,	, ton , ji io	annaan		100 (18/ 8	ay lor aa	ily, ivi i / yi	ior annie							
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	-	_	-	_	-	-	_	-	_	_	-	_	_	_	—
Daily, Summer (Max)		-	-	-	-	-	-	-		-	_	-	-	-	-	-	-
Off-Road Equipment		0.93	1.39	0.01	< 0.005	_	< 0.005	< 0.005	—	< 0.005	-	567	567	0.02	< 0.005	_	569
Dust From Material Movement		_	-	-	-	0.01	0.01	-	< 0.005	< 0.005	_	_	-	-	-	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	_	_	-	-	_	_	_	_	-	-	-	-	-	-	-
Off-Road Equipment		0.93	1.39	0.01	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	567	567	0.02	< 0.005	-	569
Dust From Material Movement			-	-	-	0.01	0.01	-	< 0.005	< 0.005				-			-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	< 0.005	0.14	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	86.9	86.9	< 0.005	< 0.005	_	87.2
Dust From Material Movement			_	-		< 0.005	< 0.005	-	< 0.005	< 0.005							-

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	< 0.005	0.03	0.04	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	14.4	14.4	< 0.005	< 0.005	-	14.4
Dust From Material Movement		_	_	_	-	< 0.005	< 0.005	-	< 0.005	< 0.005	_	_	_	-	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.14	0.09	1.27	0.00	0.00	0.33	0.33	0.00	0.08	0.08	_	307	307	0.01	0.01	0.80	312
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.6	53.6	< 0.005	0.01	0.09	56.1
Hauling	0.03	2.24	0.53	0.02	0.03	0.61	0.64	0.03	0.17	0.20	_	2,024	2,024	0.03	0.31	3.50	2,122
Daily, Winter (Max)	—	_	-	-	_	-	-	_	-	_	-	-	-	-	-	-	-
Worker	0.13	0.10	1.20	0.00	0.00	0.33	0.33	0.00	0.08	0.08	_	294	294	0.01	0.01	0.02	298
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.7	53.7	< 0.005	0.01	< 0.005	56.0
Hauling	0.02	2.32	0.53	0.02	0.03	0.61	0.64	0.03	0.17	0.20	_	2,024	2,024	0.03	0.31	0.09	2,119
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.02	0.02	0.18	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	45.4	45.4	< 0.005	< 0.005	0.05	46.1
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	8.23	8.23	< 0.005	< 0.005	0.01	8.60
Hauling	< 0.005	0.36	0.08	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	_	311	311	0.01	0.05	0.23	325
Annual	_	_	_	_	—	_	_	—	_	-	_	-	_	-	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.52	7.52	< 0.005	< 0.005	0.01	7.63
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.36	1.36	< 0.005	< 0.005	< 0.005	1.42

$- 114 \\ - 11$	Hauling	< 0.005	0.07	0.01	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	51.4	51.4	< 0.005	0.01	0.04	53.9
---	---------	---------	------	------	---------	---------	------	------	---------	---------	------	---	------	------	---------	------	------	------

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	ROG	NOx	CO		PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	_		_		_		_			_	_			_
Total	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)		-	—					—		—							_
Total	_	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	—	—	_	—		_	_	_	_	_	—	_	_	—	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	—		_						—		_				—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	_		—	_							—	_					—

Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	-	-	—	_	—	_	-	-	-	—	—	_	-	—	—	_	_
Total	_	_	—	_	_	_	_	_	_	—	—	_	-	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

								ay for dur									
Species	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		-	_	_		-			_		_		_	_	-	-	—
Avoided	_	_	_	—	_	_	—	_	_	_	_	_	-	_	_	_	_
Subtotal	—	_	—	—	—	_	—	_	—	—	—	—	—	—	—	_	_
Sequeste red	—	-	—	—	—	-	—	—	—	—	—	—	—	-	-	-	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Winter (Max)		-				-								_	_	-	—
Avoided	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequeste red	—	_	—	—		-	—	—	—	—	—	—	—	—	-	-	—
Subtotal	_	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Removed	_	—	—	—	_	-	—	_	—	_	—	—	—	_	—	—	_
Subtotal	—	—	—	_	_	_	_	—	—	—	—	—	_	_	_	_	_
_	_	-	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	_	-	-	—	—	—	—	—	_	—	_	—	—	_	—	—	—
Subtotal	_	_	_	—	_	—	_	—	_	—	_	—	_	_	_	—	
Sequeste red	—	-	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—
Subtotal	_	_	_	—	_	—	_	_	_	_	_	_	_	_	_	—	
Removed	_	_	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_
Subtotal	_	_	_	_		_	_	_	_		_	_	_	_	_	_	_
_	_	_	—	_	_	—	_	_	_	_	_	_	_	_	_	—	—

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Vegetatio n	ROG	NOx	со		PM10E	PM10D	PM10T	PM2.5E		PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	-
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Daily, Winter (Max)	—		—	—	_			—						—	—	_	_
Total	—	—	_	-	_	—	—	_	—	—	_	—	—	-	-	-	-
Annual	—	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

	Criteria F	Pollutants	s (lb/day	for daily,	ton/yr fo	r annual)	and GH	Gs (lb/da	ay for dai	ly, MT/yr	for annu	al)						
I	Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e

Daily, Summer (Max)	_	_	_			_	—	_	_	—	_		—	—	_		
Total	—	—	—	—	—	—	—	—	—		—	—	—	—	—	—	—
Daily, Winter (Max)	-	-															
Total	-	_	_	—	—	—	_	—	—		—	—	—	—	—	—	_
Annual	_	_	_	_	_	_	_	_	_		_	_	_		_	_	
Total	_	_	_	_	_	_	_	_	_		_	_	_		_	_	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species		NOx	со	SO2	PM10E		PM10T			PM2.5T		NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	—	—	—	—			—	—	—		—			-	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequeste red	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Subtotal	—	_	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	_	_	_	_	_		_		_	_		_	_	_	_	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Sequeste red	—	—	—	—	—	—		—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	_	_	—	_	_	_	_	—	—	_	—	-	_	_	_	_	_
Sequeste red	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Removed	_	_	—	_	_	_	_	_	—	_	_	—	_	_	_	_	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
2-Existing Project Site Demo	Demolition	6/15/2029	6/29/2029	5.00	11.0	-
12-Decomissioning Demolition	Demolition	10/1/2032	12/30/2032	5.00	65.0	-
1-Subsurface Exploration	Site Preparation	5/1/2029	7/3/2029	5.00	46.0	-
3-Site Preparation/ Rough Grading	Grading	7/4/2029	7/25/2029	5.00	16.0	-
4-Foundations	Building Construction	8/1/2029	3/20/2030	5.00	166	_

10-Commissioning / Startup and Testing	Building Construction	5/1/2031	9/30/2031	5.00	109	_
6-Equipment , Structural Steel & Building Erection, Piping	Building Construction	10/1/2029	7/22/2030	5.00	211	_
7-Electrical & Instrumentation	Building Construction	6/1/2030	4/5/2031	5.00	220	_
8-Paving	Paving	6/1/2031	7/27/2031	5.00	40.0	_
9-Painting/Insulation	Architectural Coating	7/1/2031	8/26/2031	5.00	41.0	_
5-Trenching/Undergrounds	Trenching	2/1/2030	4/19/2030	5.00	56.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
3-Site Preparation/ Rough Grading	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
3-Site Preparation/ Rough Grading	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	3.00	9.00	107	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37
2-Existing Project Site Demo	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73
12-Decomissioning Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73
12-Decomissioning Demolition	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	4.00	9.00	107	0.37
3-Site Preparation/ Rough Grading	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29

4-Foundations	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
4-Foundations	Generator Sets	Diesel	Tier 4 Final	4.00	9.00	49.0	0.74
4-Foundations	Welders	Diesel	Tier 4 Final	4.00	9.00	24.0	0.45
10-Commissioning / Startup and Testing	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
10-Commissioning / Startup and Testing	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
10-Commissioning / Startup and Testing	Generator Sets	Diesel	Tier 4 Final	3.00	9.00	49.0	0.74
10-Commissioning / Startup and Testing	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
10-Commissioning / Startup and Testing	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74
6-Equipment , Structural Steel & Building Erection, Piping	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
6-Equipment , Structural Steel & Building Erection, Piping	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
7-Electrical & Instrumentation	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
7-Electrical & Instrumentation	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74

7-Electrical & Instrumentation	Tractors/Loaders/Backh	Diesel	Tier 4 Final	2.00	9.00	225	0.37
7-Electrical & Instrumentation	Welders	Diesel	Tier 4 Final	5.00	9.00	24.0	0.45
8-Paving	Rollers	Diesel	Tier 4 Final	1.00	9.00	125	0.38
9-Painting/Insulation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
12-Decomissioning Demolition	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	107	0.37
2-Existing Project Site Demo	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
2-Existing Project Site Demo	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
2-Existing Project Site Demo	Skid Steer Loaders	Diesel	Tier 4 Final	1.00	9.00	65.0	0.37
2-Existing Project Site Demo	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
12-Decomissioning Demolition	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
12-Decomissioning Demolition	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
12-Decomissioning Demolition	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
12-Decomissioning Demolition	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
12-Decomissioning Demolition	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
12-Decomissioning Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37

12-Decomissioning Demolition	Welders	Electric	Average	1.00	9.00	46.0	0.45
12-Decomissioning Demolition	Welders	Diesel	Tier 4 Final	1.00	9.00	24.0	0.45
1-Subsurface Exploration	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
1-Subsurface Exploration	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
1-Subsurface Exploration	Bore/Drill Rigs	Diesel	Tier 4 Final	1.00	9.00	300	0.50
3-Site Preparation/ Rough Grading	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
3-Site Preparation/ Rough Grading	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	107	0.37
4-Foundations	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	346	0.38
4-Foundations	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
4-Foundations	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	9.00	170	0.40
10-Commissioning / Startup and Testing	Welders	Electric	Average	2.00	9.00	46.0	0.45
10-Commissioning / Startup and Testing	Forklifts	Electric	Average	1.00	9.00	82.0	0.20

10-Commissioning / Startup and Testing	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
10-Commissioning / Startup and Testing	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	1.00	9.00	122	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Welders	Electric	Average	5.00	9.00	46.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	1.00	9.00	84.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	2.00	9.00	67.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Electric	Average	5.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
6-Equipment , Structural Steel & Building Erection, Piping	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38

6-Equipment , Structural Steel & Building Erection, Piping	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
7-Electrical & Instrumentation	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
7-Electrical & Instrumentation	Welders	Electric	Average	5.00	9.00	46.0	0.45
7-Electrical & Instrumentation	Aerial Lifts	Electric	Average	4.00	9.00	46.0	0.31
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
7-Electrical & Instrumentation	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
9-Painting/Insulation	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
5-Trenching/Undergroun ds	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
5-Trenching/Undergroun ds	Pumps	Diesel	Tier 4 Final	4.00	9.00	11.0	0.74

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
3-Site Preparation/ Rough Grading	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
3-Site Preparation/ Rough Grading	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	3.00	9.00	107	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37
2-Existing Project Site Demo	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73

12-Decomissioning Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73
12-Decomissioning Demolition	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	4.00	9.00	107	0.37
3-Site Preparation/ Rough Grading	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
4-Foundations	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
4-Foundations	Generator Sets	Diesel	Tier 4 Final	4.00	9.00	49.0	0.74
4-Foundations	Welders	Diesel	Tier 4 Final	4.00	9.00	24.0	0.45
10-Commissioning / Startup and Testing	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
10-Commissioning / Startup and Testing	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
10-Commissioning / Startup and Testing	Generator Sets	Diesel	Tier 4 Final	3.00	9.00	49.0	0.74
10-Commissioning / Startup and Testing	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
10-Commissioning / Startup and Testing	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74
6-Equipment , Structural Steel & Building Erection, Piping	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37

6-Equipment , Structural Steel & Building Erection, Piping	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
7-Electrical & Instrumentation	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
7-Electrical & Instrumentation	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74
7-Electrical & Instrumentation	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
7-Electrical & Instrumentation	Welders	Diesel	Tier 4 Final	5.00	9.00	24.0	0.45
8-Paving	Rollers	Diesel	Tier 4 Final	1.00	9.00	125	0.38
9-Painting/Insulation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
12-Decomissioning Demolition	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	107	0.37
2-Existing Project Site Demo	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
2-Existing Project Site Demo	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
2-Existing Project Site Demo	Skid Steer Loaders	Diesel	Tier 4 Final	1.00	9.00	65.0	0.37
2-Existing Project Site Demo	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
12-Decomissioning Demolition	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
12-Decomissioning Demolition	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29

12-Decomissioning Demolition	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
12-Decomissioning Demolition	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
12-Decomissioning Demolition	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
12-Decomissioning Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37
12-Decomissioning Demolition	Welders	Electric	Average	1.00	9.00	46.0	0.45
12-Decomissioning Demolition	Welders	Diesel	Tier 4 Final	1.00	9.00	24.0	0.45
1-Subsurface Exploration	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
1-Subsurface Exploration	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
1-Subsurface Exploration	Bore/Drill Rigs	Diesel	Tier 4 Final	1.00	9.00	300	0.50
3-Site Preparation/ Rough Grading	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
3-Site Preparation/ Rough Grading	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	107	0.37
4-Foundations	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	346	0.38

4-Foundations	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
4-Foundations	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	9.00	170	0.40
10-Commissioning / Startup and Testing	Welders	Electric	Average	2.00	9.00	46.0	0.45
10-Commissioning / Startup and Testing	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
10-Commissioning / Startup and Testing	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
10-Commissioning / Startup and Testing	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	1.00	9.00	122	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Welders	Electric	Average	5.00	9.00	46.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	1.00	9.00	84.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	2.00	9.00	67.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Electric	Average	5.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48

6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
6-Equipment , Structural Steel & Building Erection, Piping	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
6-Equipment , Structural Steel & Building Erection, Piping	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
7-Electrical & Instrumentation	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
7-Electrical & Instrumentation	Welders	Electric	Average	5.00	9.00	46.0	0.45
7-Electrical & Instrumentation	Aerial Lifts	Electric	Average	4.00	9.00	46.0	0.31
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
7-Electrical & Instrumentation	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
9-Painting/Insulation	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
5-Trenching/Undergroun ds	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
5-Trenching/Undergroun ds	Pumps	Diesel	Tier 4 Final	4.00	9.00	11.0	0.74

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix	
73/87					

1-Subsurface Exploration	-	-	-	—
1-Subsurface Exploration	Worker	28.0	10.0	LDA,LDT1,LDT2
1-Subsurface Exploration	Vendor	8.00	10.0	HHDT,MHDT
1-Subsurface Exploration	Hauling	13.0	42.0	HHDT
1-Subsurface Exploration	Onsite truck	—	—	HHDT
3-Site Preparation/ Rough Grading	_	—	—	—
3-Site Preparation/ Rough Grading	Worker	30.0	10.0	LDA,LDT1,LDT2
3-Site Preparation/ Rough Grading	Vendor	10.0	10.0	HHDT,MHDT
3-Site Preparation/ Rough Grading	Hauling	8.00	42.0	HHDT
3-Site Preparation/ Rough Grading	Onsite truck	—	—	HHDT
4-Foundations	—	—	—	—
4-Foundations	Worker	68.0	10.0	LDA,LDT1,LDT2
4-Foundations	Vendor	16.0	10.0	HHDT,MHDT
4-Foundations	Hauling	25.0	42.0	HHDT
4-Foundations	Onsite truck	—	—	HHDT
5-Trenching/Undergrounds	_	—	—	—
5-Trenching/Undergrounds	Worker	46.0	10.0	LDA,LDT1,LDT2
5-Trenching/Undergrounds	Vendor	2.00	10.0	HHDT,MHDT
5-Trenching/Undergrounds	Hauling	16.0	42.0	HHDT
5-Trenching/Undergrounds	Onsite truck	—	—	HHDT
6-Equipment , Structural Steel & Building Erection, Piping	—	—	_	—
6-Equipment , Structural Steel & Building Erection, Piping	Worker	78.0	10.0	LDA,LDT1,LDT2
6-Equipment , Structural Steel & Building Erection, Piping	Vendor	22.0	10.0	HHDT,MHDT
6-Equipment , Structural Steel & Building Erection, Piping	Hauling	0.00	20.0	ННОТ

6-Equipment , Structural Steel & Building Erection, Piping	Onsite truck	-	-	HHDT
7-Electrical & Instrumentation	_	_	_	_
7-Electrical & Instrumentation	Worker	36.0	10.0	LDA,LDT1,LDT2
7-Electrical & Instrumentation	Vendor	16.0	10.0	HHDT,MHDT
7-Electrical & Instrumentation	Hauling	0.00	20.0	HHDT
7-Electrical & Instrumentation	Onsite truck	_	_	HHDT
2-Existing Project Site Demo	_	—	_	—
2-Existing Project Site Demo	Worker	22.0	10.0	LDA,LDT1,LDT2
2-Existing Project Site Demo	Vendor	8.00	10.0	HHDT,MHDT
2-Existing Project Site Demo	Hauling	47.5	20.0	ННДТ
2-Existing Project Site Demo	Onsite truck	_	_	ННДТ
8-Paving	_	_	_	—
8-Paving	Worker	22.0	10.0	LDA,LDT1,LDT2
8-Paving	Vendor	_	10.0	HHDT,MHDT
8-Paving	Hauling	0.00	20.0	ННДТ
8-Paving	Onsite truck	_	_	ННДТ
12-Decomissioning Demolition	_	_	_	—
12-Decomissioning Demolition	Worker	28.0	10.0	LDA,LDT1,LDT2
12-Decomissioning Demolition	Vendor	18.0	10.0	HHDT,MHDT
12-Decomissioning Demolition	Hauling	3.37	20.0	ННДТ
12-Decomissioning Demolition	Onsite truck	_	_	ННДТ
10-Commissioning / Startup and Testing	_	_	-	-
10-Commissioning / Startup and Testing	Worker	28.0	10.0	LDA,LDT1,LDT2
10-Commissioning / Startup and Testing	Vendor	12.0	10.0	HHDT,MHDT

10-Commissioning / Startup and Testing	Hauling	0.00	20.0	HHDT
10-Commissioning / Startup and Testing	Onsite truck			HHDT
9-Painting/Insulation	_	—	_	_
9-Painting/Insulation	Worker	4.00	10.0	LDA,LDT1,LDT2
9-Painting/Insulation	Vendor	—	10.0	HHDT,MHDT
9-Painting/Insulation	Hauling	0.00	20.0	HHDT
9-Painting/Insulation	Onsite truck			HHDT

5.3.2. Mitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
1-Subsurface Exploration	—	—	_	—
1-Subsurface Exploration	Worker	28.0	10.0	LDA,LDT1,LDT2
1-Subsurface Exploration	Vendor	8.00	10.0	HHDT,MHDT
1-Subsurface Exploration	Hauling	13.0	42.0	HHDT
1-Subsurface Exploration	Onsite truck	—	_	HHDT
3-Site Preparation/ Rough Grading	—	—	_	—
3-Site Preparation/ Rough Grading	Worker	30.0	10.0	LDA,LDT1,LDT2
3-Site Preparation/ Rough Grading	Vendor	10.0	10.0	HHDT,MHDT
3-Site Preparation/ Rough Grading	Hauling	8.00	42.0	HHDT
3-Site Preparation/ Rough Grading	Onsite truck	—	_	HHDT
4-Foundations	—	—	_	—
4-Foundations	Worker	68.0	10.0	LDA,LDT1,LDT2
4-Foundations	Vendor	16.0	10.0	HHDT,MHDT
4-Foundations	Hauling	25.0	42.0	HHDT
4-Foundations	Onsite truck	—	_	HHDT
5-Trenching/Undergrounds	—	—	—	—

5-Trenching/Undergrounds	Worker	46.0	10.0	LDA,LDT1,LDT2
5-Trenching/Undergrounds	Vendor	2.00	10.0	HHDT,MHDT
5-Trenching/Undergrounds	Hauling	16.0	42.0	ННДТ
5-Trenching/Undergrounds	Onsite truck	_	_	ННДТ
6-Equipment , Structural Steel & Building Erection, Piping	—	-	_	-
6-Equipment , Structural Steel & Building Erection, Piping	Worker	78.0	10.0	LDA,LDT1,LDT2
6-Equipment , Structural Steel & Building Erection, Piping	Vendor	22.0	10.0	HHDT,MHDT
6-Equipment , Structural Steel & Building Erection, Piping	Hauling	0.00	20.0	HHDT
6-Equipment , Structural Steel & Building Erection, Piping	Onsite truck	_		HHDT
7-Electrical & Instrumentation		_	_	—
7-Electrical & Instrumentation	Worker	36.0	10.0	LDA,LDT1,LDT2
7-Electrical & Instrumentation	Vendor	16.0	10.0	HHDT,MHDT
7-Electrical & Instrumentation	Hauling	0.00	20.0	ННДТ
7-Electrical & Instrumentation	Onsite truck	_	_	ННДТ
2-Existing Project Site Demo	_	_	_	_
2-Existing Project Site Demo	Worker	22.0	10.0	LDA,LDT1,LDT2
2-Existing Project Site Demo	Vendor	8.00	10.0	HHDT,MHDT
2-Existing Project Site Demo	Hauling	47.5	20.0	HHDT
2-Existing Project Site Demo	Onsite truck	_	_	HHDT
8-Paving	_	_	_	—
8-Paving	Worker	22.0	10.0	LDA,LDT1,LDT2
8-Paving	Vendor	_	10.0	HHDT,MHDT
8-Paving	Hauling	0.00	20.0	HHDT
8-Paving	Onsite truck			HHDT

12-Decomissioning Demolition				_
12-Decomissioning Demolition	Worker	28.0	10.0	LDA,LDT1,LDT2
12-Decomissioning Demolition	Vendor	18.0	10.0	HHDT,MHDT
12-Decomissioning Demolition	Hauling	3.37	20.0	HHDT
12-Decomissioning Demolition	Onsite truck	_	_	HHDT
10-Commissioning / Startup and Testing	—	—	_	—
10-Commissioning / Startup and Testing	Worker	28.0	10.0	LDA,LDT1,LDT2
10-Commissioning / Startup and Testing	Vendor	12.0	10.0	HHDT,MHDT
10-Commissioning / Startup and Testing	Hauling	0.00	20.0	HHDT
10-Commissioning / Startup and Testing	Onsite truck	—	_	HHDT
9-Painting/Insulation	_	_	—	_
9-Painting/Insulation	Worker	4.00	10.0	LDA,LDT1,LDT2
9-Painting/Insulation	Vendor	—	10.0	HHDT,MHDT
9-Painting/Insulation	Hauling	0.00	20.0	HHDT
9-Painting/Insulation	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
9-Painting/Insulation	0.00	0.00	34,524	11,508	20,626

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (Ton of Debris)	Acres Paved (acres)
2-Existing Project Site Demo	0.00	0.00	0.00	2,092	—
12-Decomissioning Demolition	0.00	0.00	0.00	19,000	—
1-Subsurface Exploration	—	500	0.00	0.00	—
3-Site Preparation/ Rough Grading	-	1,500	26.0	0.00	
8-Paving	0.00	0.00	0.00	0.00	7.89
5-Trenching/Undergrounds	_	10,000	0.00	0.00	—

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%
Water Demolished Area	2	36%	36%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Heavy Industry	0.00	0%
General Heavy Industry	0.00	0%
General Heavy Industry	0.00	0%
General Heavy Industry	0.00	0%
General Office Building	0.00	0%
Other Asphalt Surfaces	7.89	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2029	1,393	532	0.03	< 0.005
2030	2,581	532	0.03	< 0.005
2032	345	532	0.03	< 0.005
2031	1,671	532	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres		Final Acres
5.18.1.2. Mitigated				
Vegetation Land Use Type	Vegetation Soil Type	Initial Acres		Final Acres
5.18.1. Biomass Cover Type				
5.18.1.1. Unmitigated				
Biomass Cover Type	Initial Acres		Final Acres	
5.18.1.2. Mitigated				

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
5.18.2.2. Mitigated			

Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	12.5	annual days of extreme heat
Extreme Precipitation	5.45	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.3	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 fet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score	
Temperature and Extreme Heat	1	0	0	N/A	
Extreme Precipitation	N/A	N/A	N/A	N/A	
Sea Level Rise	1	0	0	N/A	
Wildfire	1	0	0	N/A	
Flooding	N/A	N/A	N/A	N/A	
Drought	N/A	N/A	N/A	N/A	
Snowpack Reduction	N/A	N/A	N/A	N/A	
Air Quality Degradation	0	0	0	N/A	

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score	
Temperature and Extreme Heat	1	1	1	2	
Extreme Precipitation	N/A	N/A	N/A	N/A	
Sea Level Rise	1	1	1	2	
Wildfire	1	1	1	2	
Flooding	N/A	N/A	N/A	N/A	
Drought	N/A	N/A	N/A	N/A	
Snowpack Reduction	N/A	N/A	N/A	N/A	
Air Quality Degradation	1	1	1	2	

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	<u> </u>
AQ-Ozone	26.8
AQ-PM	29.0
AQ-DPM	50.7
Drinking Water	65.5
Lead Risk Housing	78.7
Pesticides	97.0
Toxic Releases	17.6
Traffic	38.6
Effect Indicators	_
CleanUp Sites	83.5
Groundwater	89.6
Haz Waste Facilities/Generators	88.6
Impaired Water Bodies	58.7
Solid Waste	35.7
Sensitive Population	
Asthma	61.2
Cardio-vascular	27.2

Low Birth Weights	58.6
Socioeconomic Factor Indicators	_
Education	89.7
Housing	82.4
Linguistic	74.1
Poverty	77.2
Unemployment	60.6

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	
Above Poverty	22.12241755
Employed	50.32721673
Median HI	32.6318491
Education	
Bachelor's or higher	25.84370589
High school enrollment	3.387655588
Preschool enrollment	66.45707686
Transportation	
Auto Access	44.50147568
Active commuting	49.108174
Social	
2-parent households	84.48607725
Voting	39.86911331
Neighborhood	
Alcohol availability	27.4092134

Park access	81.35506224
Retail density	61.9658668
Supermarket access	74.04080585
Тгее сапору	11.8311305
Housing	
Homeownership	29.911459
Housing habitability	29.33401771
Low-inc homeowner severe housing cost burden	8.648787373
Low-inc renter severe housing cost burden	67.81727191
Uncrowded housing	29.05171308
Health Outcomes	_
Insured adults	6.83947132
Arthritis	77.8
Asthma ER Admissions	39.8
High Blood Pressure	51.5
Cancer (excluding skin)	82.6
Asthma	23.6
Coronary Heart Disease	66.7
Chronic Obstructive Pulmonary Disease	37.6
Diagnosed Diabetes	54.0
Life Expectancy at Birth	33.7
Cognitively Disabled	33.5
Physically Disabled	36.0
Heart Attack ER Admissions	36.7
Mental Health Not Good	23.2
Chronic Kidney Disease	45.1
Obesity	25.8

Pedestrian Injuries	57.0
Physical Health Not Good	30.9
Stroke	64.5
Health Risk Behaviors	—
Binge Drinking	24.0
Current Smoker	23.0
No Leisure Time for Physical Activity	29.0
Climate Change Exposures	_
Wildfire Risk	10.2
SLR Inundation Area	0.0
Children	2.5
Elderly	92.1
English Speaking	15.1
Foreign-born	77.7
Outdoor Workers	4.1
Climate Change Adaptive Capacity	_
Impervious Surface Cover	35.5
Traffic Density	42.1
Traffic Access	23.0
Other Indices	
Hardship	70.5
Other Decision Support	
2016 Voting	40.0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	83.0

Healthy Places Index Score for Project Location (b)	27.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Project Specific
Construction: Off-Road Equipment	Project Specific
Construction: Trips and VMT	Project specific
Construction: Dust From Material Movement	Project specific

SCG-VCM Project Detailed Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.3. Construction Emissions by Year, Mitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2029) Unmitigated
 - 3.2. Demolition (2029) Mitigated
 - 3.3. Demolition (2032) Unmitigated
 - 3.4. Demolition (2032) Mitigated
 - 3.5. Site Preparation (2029) Unmitigated

- 3.6. Site Preparation (2029) Mitigated
- 3.7. Grading (2029) Unmitigated
- 3.8. Grading (2029) Mitigated
- 3.9. Building Construction (2029) Unmitigated
- 3.10. Building Construction (2029) Mitigated
- 3.11. Building Construction (2030) Unmitigated
- 3.12. Building Construction (2030) Mitigated
- 3.13. Building Construction (2031) Unmitigated
- 3.14. Building Construction (2031) Mitigated
- 3.15. Building Construction (2029) Unmitigated
- 3.16. Building Construction (2029) Mitigated
- 3.17. Building Construction (2030) Unmitigated
- 3.18. Building Construction (2030) Mitigated
- 3.19. Building Construction (2030) Unmitigated
- 3.20. Building Construction (2030) Mitigated
- 3.21. Building Construction (2031) Unmitigated
- 3.22. Building Construction (2031) Mitigated

- 3.23. Paving (2031) Unmitigated
- 3.24. Paving (2031) Mitigated
- 3.25. Architectural Coating (2031) Unmitigated
- 3.26. Architectural Coating (2031) Mitigated
- 3.27. Trenching (2030) Unmitigated
- 3.28. Trenching (2030) Mitigated
- 4. Operations Emissions Details
 - 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
 - 4.10.4. Soil Carbon Accumulation By Vegetation Type Mitigated
 - 4.10.5. Above and Belowground Carbon Accumulation by Land Use Type Mitigated
 - 4.10.6. Avoided and Sequestered Emissions by Species Mitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment

- 5.2.1. Unmitigated
- 5.2.2. Mitigated
- 5.3. Construction Vehicles
 - 5.3.1 Unmitigated
 - 5.3.2. Mitigated
- 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies
- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1.2. Mitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.1.2. Mitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

5.18.2.2. Mitigated

6. Climate Risk Detailed Report

- 6.1. Climate Risk Summary
- 6.2. Initial Climate Risk Scores
- 6.3. Adjusted Climate Risk Scores
- 6.4. Climate Risk Reduction Measures

7. Health and Equity Details

- 7.1. CalEnviroScreen 4.0 Scores
- 7.2. Healthy Places Index Scores
- 7.3. Overall Health & Equity Scores
- 7.4. Health & Equity Measures
- 7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	SCG-VCM Project
Lead Agency	
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.20
Precipitation (days)	2.20
Location	1555 N Olive St, Ventura, CA 93001, USA
County	Ventura
City	Ventura
Air District	Ventura County APCD
Air Basin	South Central Coast
TAZ	3406
EDFZ	8
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)		Special Landscape Area (sq ft)	Population	Description
General Heavy Industry	5.46	1000sqft	0.13	5,459	0.00	-	_	-
General Heavy Industry	10.5	1000sqft	0.24	10,458	0.00		_	-

General Heavy Industry	2.02	1000sqft	0.05	2,016	0.00	—	—	_
General Heavy Industry	0.44	1000sqft	0.01	442	0.00	—	_	_
General Office Building	4.64	1000sqft	0.11	4,641	0.00	—	_	_
Other Asphalt Surfaces	344	1000sqft	7.89	0.00	0.00	—		_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

Sector	#	Measure Title
Construction	C-2*	Limit Heavy-Duty Diesel Vehicle Idling
Construction	C-10-C	Water Unpaved Construction Roads
Construction	C-11	Limit Vehicle Speeds on Unpaved Roads
Construction	C-12	Sweep Paved Roads

* Qualitative or supporting measure. Emission reductions not included in the mitigated emissions results.

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)		—	—									—	_				—
Unmit.	5.90	29.1	70.9	0.27	0.48	7.52	7.94	0.48	2.03	2.51	—	34,027	34,027	0.83	3.76	44.6	35,213
Mit.	5.90	29.1	70.9	0.27	0.48	7.52	7.94	0.48	2.03	2.51	-	34,027	34,027	0.83	3.76	44.6	35,213
% Reduced	—	-	—	—	—	—	—	_	—	-	_	-	_	—	_	—	-

Daily, Winter (Max)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Unmit.	2.40	52.1	95.0	0.49	0.84	12.7	13.5	0.84	3.49	4.33	_	59,713	59,713	1.46	6.01	1.78	61,542
Mit.	2.40	52.1	95.0	0.49	0.84	12.7	13.5	0.84	3.49	4.33	-	59,713	59,713	1.46	6.01	1.78	61,542
% Reduced	-	-	-	-	-	—	—	-	-	-	-	-	-	-	-	-	-
Average Daily (Max)	_	_	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-
Unmit.	0.89	13.3	37.2	0.15	0.22	3.12	3.34	0.22	0.88	1.10	-	16,168	16,168	0.49	1.48	7.58	16,494
Mit.	0.89	13.3	37.2	0.15	0.22	3.12	3.34	0.22	0.88	1.10	_	16,168	16,168	0.49	1.48	7.58	16,494
% Reduced	-	-	-	-	-	—	—	-	-	-	-	-	-	-	-	-	-
Annual (Max)	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-
Unmit.	0.16	2.43	6.79	0.03	0.04	0.57	0.61	0.04	0.16	0.20	_	2,677	2,677	0.08	0.25	1.25	2,731
Mit.	0.16	2.43	6.79	0.03	0.04	0.57	0.61	0.04	0.16	0.20	_	2,677	2,677	0.08	0.25	1.25	2,731
% Reduced	_	-	-	-	—	_	_	—	_	_	_	_	-	_	_	-	-

2.2. Construction Emissions by Year, Unmitigated

Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily - Summer (Max)	—		-	-	_	_	_	—	_	—	_	—	_	_		_	-
2029	1.43	29.1	65.5	0.27	0.48	7.52	7.94	0.48	2.03	2.51	_	34,027	34,027	0.77	3.76	44.6	35,213
2030	1.65	22.7	70.9	0.22	0.35	5.37	5.72	0.35	1.46	1.82	_	26,430	26,430	0.83	2.41	27.9	27,194
2031	5.90	3.47	30.7	0.10	0.12	0.48	0.54	0.12	0.12	0.21	_	10,006	10,006	0.39	0.14	1.33	10,058
2032	_	_	_	_	_	_	_	_	_	_	_	2.82	2.82	< 0.005	< 0.005	_	2.83

Daily - Winter (Max)	_	_	_	_	-	-	_	_	_	—	—	-	_	_	-	—	_
2029	2.15	37.3	89.9	0.38	0.62	8.05	8.67	0.62	2.21	2.83	_	45,393	45,393	1.21	3.96	1.23	46,606
2030	2.40	52.1	95.0	0.49	0.84	12.7	13.5	0.84	3.49	4.33	_	59,713	59,713	1.46	6.01	1.78	61,542
2031	0.68	3.50	30.7	0.10	0.12	0.39	0.51	0.12	0.10	0.21	_	9,996	9,996	0.39	0.15	0.03	10,050
2032	0.32	3.88	12.6	0.04	0.05	0.60	0.65	0.05	0.13	0.18	_	3,951	3,951	0.14	0.13	0.03	3,994
Average Daily	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2029	0.67	13.3	29.2	0.13	0.22	3.12	3.34	0.22	0.88	1.10	_	15,399	15,399	0.39	1.48	7.58	15,858
2030	0.89	11.3	37.2	0.15	0.21	2.29	2.51	0.21	0.62	0.83	_	16,168	16,168	0.49	1.04	5.06	16,494
2031	0.85	1.18	10.2	0.04	0.04	0.18	0.22	0.04	0.04	0.08	_	3,501	3,501	0.14	0.06	0.24	3,522
2032	0.06	0.69	2.25	0.01	0.01	0.11	0.12	0.01	0.02	0.03	_	704	704	0.03	0.02	0.10	711
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
2029	0.12	2.43	5.32	0.02	0.04	0.57	0.61	0.04	0.16	0.20	_	2,549	2,549	0.06	0.25	1.25	2,625
2030	0.16	2.06	6.79	0.03	0.04	0.42	0.46	0.04	0.11	0.15	_	2,677	2,677	0.08	0.17	0.84	2,731
2031	0.15	0.22	1.86	0.01	0.01	0.03	0.04	0.01	0.01	0.02	_	580	580	0.02	0.01	0.04	583
2032	0.01	0.13	0.41	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	117	117	< 0.005	< 0.005	0.02	118

2.3. Construction Emissions by Year, Mitigated

			,		/		· · ·		<i>J i</i>		. /						
Year	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily - Summer (Max)		—	-	—	—	—	—		—	—	—				—		-
2029	1.43	29.1	65.5	0.27	0.48	7.52	7.94	0.48	2.03	2.51	_	34,027	34,027	0.77	3.76	44.6	35,213
2030	1.65	22.7	70.9	0.22	0.35	5.37	5.72	0.35	1.46	1.82	_	26,430	26,430	0.83	2.41	27.9	27,194
2031	5.90	3.47	30.7	0.10	0.12	0.48	0.54	0.12	0.12	0.21	_	10,006	10,006	0.39	0.14	1.33	10,058
2032	_	-	-	-	_	-	-	_	_	-	_	2.82	2.82	< 0.005	< 0.005	_	2.83

Daily - Winter (Max)	_	-	_	—	-	-	_	-	-	-	-	_	_	-	-	-	-
2029	2.15	37.3	89.9	0.38	0.62	8.05	8.67	0.62	2.21	2.83	_	45,393	45,393	1.21	3.96	1.23	46,606
2030	2.40	52.1	95.0	0.49	0.84	12.7	13.5	0.84	3.49	4.33	_	59,713	59,713	1.46	6.01	1.78	61,542
2031	0.68	3.50	30.7	0.10	0.12	0.39	0.51	0.12	0.10	0.21	_	9,996	9,996	0.39	0.15	0.03	10,050
2032	0.32	3.88	12.6	0.04	0.05	0.60	0.65	0.05	0.13	0.18	_	3,951	3,951	0.14	0.13	0.03	3,994
Average Daily	-	—	-	-	-	-	-	-	-	-	-	-	-	-	-	—	-
2029	0.67	13.3	29.2	0.13	0.22	3.12	3.34	0.22	0.88	1.10	_	15,399	15,399	0.39	1.48	7.58	15,858
2030	0.89	11.3	37.2	0.15	0.21	2.29	2.51	0.21	0.62	0.83	_	16,168	16,168	0.49	1.04	5.06	16,494
2031	0.85	1.18	10.2	0.04	0.04	0.18	0.22	0.04	0.04	0.08	_	3,501	3,501	0.14	0.06	0.24	3,522
2032	0.06	0.69	2.25	0.01	0.01	0.11	0.12	0.01	0.02	0.03	_	704	704	0.03	0.02	0.10	711
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
2029	0.12	2.43	5.32	0.02	0.04	0.57	0.61	0.04	0.16	0.20	_	2,549	2,549	0.06	0.25	1.25	2,625
2030	0.16	2.06	6.79	0.03	0.04	0.42	0.46	0.04	0.11	0.15	_	2,677	2,677	0.08	0.17	0.84	2,731
2031	0.15	0.22	1.86	0.01	0.01	0.03	0.04	0.01	0.01	0.02	_	580	580	0.02	0.01	0.04	583
2032	0.01	0.13	0.41	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	117	117	< 0.005	< 0.005	0.02	118

3. Construction Emissions Details

3.1. Demolition (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—		—	—	—	—	—	—	—
Daily, Summer (Max)	—		—			—		—	—				—		—	_	_

Off-Road Equipment		5.35	24.0	0.04	0.08	-	0.08	0.08	-	0.08	-	4,394	4,394	0.18	0.04	-	4,409
Demolitio n	—	-	-	-	-	2.69	2.69	-	0.41	0.41	-	-	-	-	-	-	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-		-		_	-	-	-		-	-	-	-	-	-	-
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Off-Road Equipment		0.16	0.72	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	132	132	0.01	< 0.005	-	133
Demolitio n	_	-	-	-	-	0.08	0.08	_	0.01	0.01	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.13	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	21.9	21.9	< 0.005	< 0.005	-	22.0
Demolitio n	_	-	-	-	-	0.01	0.01	_	< 0.005	< 0.005	-	-	-	_	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	-	_		_	-	_	-		-	-	-	_	-	-	-
Worker	0.07	0.04	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	149	149	< 0.005	0.01	0.43	152
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.05	3.67	0.98	0.02	0.04	0.86	0.90	0.04	0.24	0.28	_	2,988	2,988	0.06	0.47	5.46	3,136

Daily, Winter (Max)	_	_	—	—	_	_	_	_	_	—	—	_	_	_	_	—	—
Average Daily	-	_	-	-	-	-	-	_	-	—	-	_	-	_	_	_	_
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	4.34	4.34	< 0.005	< 0.005	0.01	4.40
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	6.67	6.67	< 0.005	< 0.005	0.01	6.98
Hauling	< 0.005	0.11	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	-	90.1	90.1	< 0.005	0.01	0.07	94.4
Annual	-	—	-	-	-	-	-	_	_	-	-	-	-	—	_	-	-
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	-	0.72	0.72	< 0.005	< 0.005	< 0.005	0.73
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.10	1.10	< 0.005	< 0.005	< 0.005	1.16
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	14.9	14.9	< 0.005	< 0.005	0.01	15.6

3.2. Demolition (2029) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	_	_		—	_		—	—	_	_		_	—		_
Off-Road Equipment	0.46	5.35	24.0	0.04	0.08	—	0.08	0.08	—	0.08	—	4,394	4,394	0.18	0.04	—	4,409
Demolitio n	—	—	—	—	—	2.69	2.69	—	0.41	0.41	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	—	-		_	—				_	_	—	—	—		—
Average Daily	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.01	0.16	0.72	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	132	132	0.01	< 0.005	-	133
Demolitio n	_	-	-	-	-	0.08	0.08	-	0.01	0.01	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.13	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	21.9	21.9	< 0.005	< 0.005	-	22.0
Demolitio n	_	-	-	-	-	0.01	0.01	-	< 0.005	< 0.005	-	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)			-	-	_	-	-	-	_	-	-	-	-	-	-	-	-
Worker	0.07	0.04	0.64	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	149	149	< 0.005	0.01	0.43	152
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.05	3.67	0.98	0.02	0.04	0.86	0.90	0.04	0.24	0.28	_	2,988	2,988	0.06	0.47	5.46	3,136
Daily, Winter (Max)			-	-	_	-	-	-	-	-	-	-	-	-	-	-	-
Average Daily	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	4.34	4.34	< 0.005	< 0.005	0.01	4.40
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	6.67	6.67	< 0.005	< 0.005	0.01	6.98
Hauling	< 0.005	0.11	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01		90.1	90.1	< 0.005	0.01	0.07	94.4
Annual	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.72	0.72	< 0.005	< 0.005	< 0.005	0.73
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.10	1.10	< 0.005	< 0.005	< 0.005	1.16
Hauling	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	14.9	14.9	< 0.005	< 0.005	0.01	15.6

3.3. Demolition (2032) - Unmitigated

ontonia i	onatant	e (ile/ day	.e,,	1011/10	i annaai	, and er		ay 101 aa		ior arme	, any						
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	-	-	—	-	-	-	-	-	_	_	-	_	_	_	-
Daily, Winter (Max)		-	_	-		-	-	_	-	-			_		_	_	—
Off-Road Equipment		3.09	11.8	0.03	0.04	—	0.04	0.04	—	0.04	-	3,130	3,130	0.13	0.03	-	3,141
Demolitio n		_	_	_	—	0.19	0.19	—	0.03	0.03	—	—	—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	-	_	—	_	_	—	_	—	-	-	_	-	-	-	_
Off-Road Equipment		0.55	2.09	0.01	0.01	_	0.01	0.01	_	0.01	-	557	557	0.02	< 0.005	-	559
Demolitio n	_	—	—	_	—	0.03	0.03	—	0.01	0.01	-	_	_	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	-	—	—	—	—	—
Off-Road Equipment		0.10	0.38	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	-	92.3	92.3	< 0.005	< 0.005	-	92.6
Demolitio n	_	-	-	_	-	0.01	0.01	-	< 0.005	< 0.005	-	_	_	—	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_

Daily, Summer (Max)	-	_	-	_	_	_	_	-	_	-	-	_	_	_	_	-	-
Daily, Winter (Max)	-	_	-	-	_		-	-	_	-	-	-	-	_	_	-	-
Worker	0.07	0.05	0.65	0.00	0.00	0.20	0.20	0.00	0.05	0.05	—	173	173	< 0.005	0.01	0.01	176
Vendor	0.01	0.50	0.18	< 0.005	< 0.005	0.15	0.15	< 0.005	0.04	0.05	_	451	451	0.01	0.07	0.02	471
Hauling	< 0.005	0.24	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	194	194	< 0.005	0.03	0.01	203
Average Daily	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.01	0.01	0.11	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	31.1	31.1	< 0.005	< 0.005	0.03	31.6
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	80.3	80.3	< 0.005	0.01	0.05	83.9
Hauling	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	34.5	34.5	< 0.005	0.01	0.02	36.2
Annual	_	_	_	_	-	-	_	_	-	_	_	-	_	-	-	_	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.15	5.15	< 0.005	< 0.005	< 0.005	5.23
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	13.3	13.3	< 0.005	< 0.005	0.01	13.9
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	5.72	5.72	< 0.005	< 0.005	< 0.005	5.99

3.4. Demolition (2032) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—		—	—					_		_				—
Daily, Winter (Max)		—	—			_		_		_	_		_			_	—
Off-Road Equipment		3.09	11.8	0.03	0.04	—	0.04	0.04	—	0.04	—	3,130	3,130	0.13	0.03	—	3,141

Demolitio			_	_	_	0.19	0.19	_	0.03	0.03	_	_	_	_	_		_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	-	-	-	—	-	-	-	-	-	-	-	-	-	—
Off-Road Equipment	0.04	0.55	2.09	0.01	0.01	-	0.01	0.01	-	0.01	_	557	557	0.02	< 0.005	-	559
Demolitio n	_	-	-	-	-	0.03	0.03	_	0.01	0.01	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.01	0.10	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	92.3	92.3	< 0.005	< 0.005	-	92.6
Demolitio n	_	-	-	_	_	0.01	0.01	_	< 0.005	< 0.005	_	_	_	_	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	—	-	-	_	_	_	—	_	_	-	-	-	_	—	_	-
Daily, Winter (Max)		_	-	-		_	-	-		_	-	-	-	-	-	_	-
Worker	0.07	0.05	0.65	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	173	173	< 0.005	0.01	0.01	176
Vendor	0.01	0.50	0.18	< 0.005	< 0.005	0.15	0.15	< 0.005	0.04	0.05	_	451	451	0.01	0.07	0.02	471
Hauling	< 0.005	0.24	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	194	194	< 0.005	0.03	0.01	203
Average Daily	—	-	_	—	-	-	—	_	-	-	_	-	_	_	-	-	_
Worker	0.01	0.01	0.11	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	31.1	31.1	< 0.005	< 0.005	0.03	31.6
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	80.3	80.3	< 0.005	0.01	0.05	83.9

Hauling	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	34.5	34.5	< 0.005	0.01	0.02	36.2
Annual	—	_	—	_	—	-	_	-	_	-	_	—	-	_	—	-	-
Worker	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.15	5.15	< 0.005	< 0.005	< 0.005	5.23
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	_	13.3	13.3	< 0.005	< 0.005	0.01	13.9
Hauling	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	5.72	5.72	< 0.005	< 0.005	< 0.005	5.99

3.5. Site Preparation (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	-	-	—	-	_	-	-	_		—	-	-	-	-	_	-
Off-Road Equipment		4.12	36.7	0.06	0.13	-	0.13	0.13	-	0.13	-	6,660	6,660	0.27	0.05	-	6,683
Dust From Material Movement	_	_		-		< 0.005	< 0.005		< 0.005	< 0.005	_	-	-	-	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	-	—	-	_	-	-	_	_	_	-	-	_	-	-	_
Average Daily	—	—	-	-	-	-	-	-	-	-	-	-	—	—	-	-	-
Off-Road Equipment		0.52	4.62	0.01	0.02	-	0.02	0.02	-	0.02	_	839	839	0.03	0.01	-	842
Dust From Material Movement		-	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	-	_	_	-	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen	0.01 1	0.09	0.84	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	139	139	0.01	< 0.005	-	139
Dust From Material Movement	—	_	-	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-
Daily, Summer (Max)	-		-	-	-	-	-	-	-	-	-	_	_	-	-	-	-
Worker	0.09	0.05	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	190	190	< 0.005	0.01	0.55	193
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.09	12.3	2.25	0.09	0.17	3.48	3.65	0.17	0.98	1.15	_	11,817	11,817	0.17	1.87	22.1	12,401
Daily, Winter (Max)	-		-	-	-	_	-	-	_	-	-		_	_	-	-	-
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.01	0.01	0.10	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	23.1	23.1	< 0.005	< 0.005	0.03	23.4
Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	27.9	27.9	< 0.005	< 0.005	0.02	29.2
Hauling	0.01	1.62	0.28	0.01	0.02	0.44	0.46	0.02	0.12	0.14	_	1,489	1,489	0.02	0.24	1.20	1,561
Annual	_	-	_	_	_	_	—	—	_	—	_	—	_	_	_	—	—
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.82	3.82	< 0.005	< 0.005	< 0.005	3.88
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	4.62	4.62	< 0.005	< 0.005	< 0.005	4.83
Hauling	< 0.005	0.30	0.05	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.03	_	247	247	< 0.005	0.04	0.20	258

3.6. Site Preparation (2029) - Mitigated

ontonia i	•	(ib/ dd)	ior daily	, ,	n annaai			ay lor aa					_				
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	-	—	-	—	—	—	—	—	—	—	—	—	—	_
Daily, Summer (Max)		-	-		—		-	-	-	_	-	-	-	_	-	-	—
Off-Road Equipment		4.12	36.7	0.06	0.13	-	0.13	0.13	—	0.13	—	6,660	6,660	0.27	0.05	—	6,683
Dust From Material Movement		_	_	_		< 0.005	< 0.005		< 0.005	< 0.005	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-	-		—		_	—	_	_	-	_	-	_	-	_	—
Average Daily	—	-	-	—	-	—	-	-	-	-	_	—	—	-	—	—	—
Off-Road Equipment		0.52	4.62	0.01	0.02	-	0.02	0.02	-	0.02	-	839	839	0.03	0.01	_	842
Dust From Material Movement		_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	-	_	-	_	-	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	—	_	—	_	—	—	_	—	—	—
Off-Road Equipment		0.09	0.84	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	139	139	0.01	< 0.005	_	139

Dust From Material Movement		-	-	-	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	-	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.09	0.05	0.82	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	190	190	< 0.005	0.01	0.55	193
Vendor	0.01	0.25	0.08	< 0.005	< 0.005	0.07	0.07	< 0.005	0.02	0.02	_	221	221	< 0.005	0.03	0.43	232
Hauling	0.09	12.3	2.25	0.09	0.17	3.48	3.65	0.17	0.98	1.15	_	11,817	11,817	0.17	1.87	22.1	12,401
Daily, Winter (Max)	—	-	-	_	-	_	-	-	-	_	-	—	_	_	-	_	-
Average Daily	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.01	0.01	0.10	0.00	0.00	0.02	0.02	0.00	0.01	0.01	_	23.1	23.1	< 0.005	< 0.005	0.03	23.4
Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	27.9	27.9	< 0.005	< 0.005	0.02	29.2
Hauling	0.01	1.62	0.28	0.01	0.02	0.44	0.46	0.02	0.12	0.14	_	1,489	1,489	0.02	0.24	1.20	1,561
Annual	—	_	_	—	_	_	—	_	—	_	_	—	_	_	—	_	_
Worker	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	3.82	3.82	< 0.005	< 0.005	< 0.005	3.88
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	4.62	4.62	< 0.005	< 0.005	< 0.005	4.83
Hauling	< 0.005	0.30	0.05	< 0.005	< 0.005	0.08	0.08	< 0.005	0.02	0.03	_	247	247	< 0.005	0.04	0.20	258

3.7. Grading (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Daily, Summer (Max)	_	-	_	_	-	-	_	-	-	-	-	-	-	-	_	_	-
Off-Road Equipment		3.20	26.6	0.04	0.09	-	0.09	0.09	_	0.09	_	4,824	4,824	0.20	0.04	—	4,841
Dust From Material Movement		-	-	-	-	2.56	2.56	_	1.31	1.31	_	_	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Average Daily	—	—	—	—	—	_	—	—	_	—	—	_	—	—	—	—	—
Off-Road Equipment	0.02 I	0.14	1.17	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	211	211	0.01	< 0.005	-	212
Dust From Material Movement		-	-	-	-	0.11	0.11	-	0.06	0.06	-	-	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	_	35.0	35.0	< 0.005	< 0.005	—	35.1
Dust From Material Movement		-	-	-	-	0.02	0.02	-	0.01	0.01	_	_	-	-	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	-	_	_	—	_	_	_	_	_	-	—	-	—	_	-
Worker	0.10	0.06	0.88	0.00	0.00	0.21	0.21	0.00	0.05	0.05	_	204	204	< 0.005	0.01	0.59	207
Vendor	0.01	0.31	0.10	< 0.005	< 0.005	0.08	0.09	< 0.005	0.02	0.03	_	277	277	< 0.005	0.04	0.53	290
Hauling	0.06	7.58	1.38	0.05	0.10	2.14	2.25	0.10	0.60	0.71	—	7,272	7,272	0.11	1.15	13.6	7,631
Daily, Winter (Max)	-	_	-	_	_	-	-	_	_	-	-	-	_	-	_	-	-
Average Daily	-	-	-	-	-	-	-	-	-	-	-	—	-	-	-	-	-
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.60	8.60	< 0.005	< 0.005	0.01	8.73
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.1	12.1	< 0.005	< 0.005	0.01	12.7
Hauling	< 0.005	0.35	0.06	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	—	319	319	< 0.005	0.05	0.26	334
Annual	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.42	1.42	< 0.005	< 0.005	< 0.005	1.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	2.01	2.01	< 0.005	< 0.005	< 0.005	2.10
Hauling	< 0.005	0.06	0.01	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	52.8	52.8	< 0.005	0.01	0.04	55.3

3.8. Grading (2029) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)										—							_
Off-Road Equipment		3.20	26.6	0.04	0.09	—	0.09	0.09	—	0.09	—	4,824	4,824	0.20	0.04	—	4,841

Dust From Material Movement		_	_	-	_	2.56	2.56	_	1.31	1.31	_	_	-	_	_	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	-	-	_	-	-	-	-	-	-	—	-	-	-	_
Average Daily	—	_	—	—	-	_	—	_	-	—	-	—	—	—	—	—	—
Off-Road Equipment		0.14	1.17	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	211	211	0.01	< 0.005	-	212
Dust From Material Movement		_		_		0.11	0.11		0.06	0.06	_		-		_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	-	_	_	_	_	_	-	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	0.03	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	35.0	35.0	< 0.005	< 0.005	_	35.1
Dust From Material Movement		_		_		0.02	0.02		0.01	0.01	_		-	_	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	—	-	—	_	_	_	_	-	-	-	_	_	_	_	—
Daily, Summer (Max)		-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_
Worker	0.10	0.06	0.88	0.00	0.00	0.21	0.21	0.00	0.05	0.05	_	204	204	< 0.005	0.01	0.59	207
Vendor	0.01	0.31	0.10	< 0.005	< 0.005	0.08	0.09	< 0.005	0.02	0.03	_	277	277	< 0.005	0.04	0.53	290
Hauling	0.06	7.58	1.38	0.05	0.10	2.14	2.25	0.10	0.60	0.71	_	7,272	7,272	0.11	1.15	13.6	7,631

Daily, Winter (Max)	—	—	_	_	—	_	—	—	—	—		_	_	—	_	_	-
Average Daily	—	—	—	-	—	—	-	—	—	—	-	—	-	—	—	-	-
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	8.60	8.60	< 0.005	< 0.005	0.01	8.73
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	12.1	12.1	< 0.005	< 0.005	0.01	12.7
Hauling	< 0.005	0.35	0.06	< 0.005	< 0.005	0.09	0.10	< 0.005	0.03	0.03	_	319	319	< 0.005	0.05	0.26	334
Annual	_	-	-	_	_	-	-	-	-	-	_	-	-	-	-	-	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.42	1.42	< 0.005	< 0.005	< 0.005	1.45
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.01	2.01	< 0.005	< 0.005	< 0.005	2.10
Hauling	< 0.005	0.06	0.01	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	52.8	52.8	< 0.005	0.01	0.04	55.3

3.9. Building Construction (2029) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		-	_	-	—	—	—			_	—			-	-	—	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	—	0.15	0.15	—	0.15	—	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-	-	-	-	—	_	—	-	-	_	—	-	-	-	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	—	0.15	0.15	—	0.15	—	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	_	-	-	_	-	-	-	-	-	-	-	-	_	_	-	—	_
Off-Road Equipmen	0.23 I	1.44	13.0	0.03	0.05	-	0.05	0.05	-	0.05	-	3,112	3,112	0.13	0.03	-	3,123
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	_	_	_	-	_	_	_	-	_	-	-	-	_	_	_
Off-Road Equipmen	0.04 1	0.26	2.37	0.01	0.01	-	0.01	0.01	-	0.01	-	515	515	0.02	< 0.005	_	517
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	-	_
Daily, Summer (Max)	_	-		-	-		-	-	-	_			-	_	-	-	-
Worker	0.23	0.13	1.99	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	462	462	0.01	0.02	1.33	469
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.85	463
Hauling	0.18	23.7	4.32	0.16	0.33	6.70	7.02	0.33	1.88	2.20	_	22,725	22,725	0.33	3.60	42.5	23,847
Daily, Winter (Max)	—	-	-	-	-	-	-	-	-	_	_	_	_	-	-	-	-
Worker	0.21	0.17	1.89	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	442	442	0.01	0.02	0.03	448
Vendor	0.01	0.51	0.17	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.02	463
Hauling	0.18	24.5	4.33	0.16	0.33	6.70	7.02	0.33	1.88	2.20	_	22,726	22,726	0.33	3.60	1.10	23,807
Average Daily	—	-	-	-	-	-	-	-	-	-	-	-	-	—	-	—	-
Worker	0.06	0.04	0.56	0.00	0.00	0.14	0.14	0.00	0.03	0.03	_	133	133	< 0.005	0.01	0.17	135
Vendor	< 0.005	0.15	0.05	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	_	133	133	< 0.005	0.02	0.11	139
Hauling	0.05	7.39	1.29	0.05	0.10	2.00	2.10	0.10	0.56	0.66	_	6,804	6,804	0.10	1.08	5.48	7,133
Annual	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	22.1	22.1	< 0.005	< 0.005	0.03	22.4

Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	22.0	22.0	< 0.005	< 0.005	0.02	23.0
Hauling	0.01	1.35	0.24	0.01	0.02	0.37	0.38	0.02	0.10	0.12	-	1,127	1,127	0.02	0.18	0.91	1,181

3.10. Building Construction (2029) - Mitigated

omona	onatan	10 (10/44)		y, torn yr i				ay for ad						_		_	_
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)				-		-	-	-	_		_	_	-	_	_	_	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	_	0.15	0.15	—	0.15	—	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)			_	-	_	-	-	-	-		-	-	-	-	-	-	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	-	0.15	0.15	-	0.15	-	10,394	10,394	0.42	0.08	_	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	-	—	—	-	-	-	-	-	-	—	-	-	—	—	—
Off-Road Equipment	0.23	1.44	13.0	0.03	0.05	-	0.05	0.05	-	0.05	-	3,112	3,112	0.13	0.03	-	3,123
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	-	-
Off-Road Equipment	0.04	0.26	2.37	0.01	0.01	-	0.01	0.01	-	0.01	-	515	515	0.02	< 0.005	—	517
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	-	_	-	-	_	_	_	_	_	-	-	_	_	_	-	-	-
Worker	0.23	0.13	1.99	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	462	462	0.01	0.02	1.33	469
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	443	443	0.01	0.07	0.85	463
Hauling	0.18	23.7	4.32	0.16	0.33	6.70	7.02	0.33	1.88	2.20	—	22,725	22,725	0.33	3.60	42.5	23,847
Daily, Winter (Max)	-	_	-	-	_	_	_	_	_	-	-	_	_	_	-	-	-
Worker	0.21	0.17	1.89	0.00	0.00	0.48	0.48	0.00	0.11	0.11	—	442	442	0.01	0.02	0.03	448
Vendor	0.01	0.51	0.17	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	443	443	0.01	0.07	0.02	463
Hauling	0.18	24.5	4.33	0.16	0.33	6.70	7.02	0.33	1.88	2.20	—	22,726	22,726	0.33	3.60	1.10	23,807
Average Daily	—	-	—	_	—	—	—	—	—	—	—	—	—	—	—	_	—
Worker	0.06	0.04	0.56	0.00	0.00	0.14	0.14	0.00	0.03	0.03	_	133	133	< 0.005	0.01	0.17	135
Vendor	< 0.005	0.15	0.05	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	—	133	133	< 0.005	0.02	0.11	139
Hauling	0.05	7.39	1.29	0.05	0.10	2.00	2.10	0.10	0.56	0.66	—	6,804	6,804	0.10	1.08	5.48	7,133
Annual	_	—	—	—	—	—	_	—	—	—	—	—	—	_	—	—	—
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	22.1	22.1	< 0.005	< 0.005	0.03	22.4
Vendor	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	22.0	22.0	< 0.005	< 0.005	0.02	23.0
Hauling	0.01	1.35	0.24	0.01	0.02	0.37	0.38	0.02	0.10	0.12	_	1,127	1,127	0.02	0.18	0.91	1,181

3.11. Building Construction (2030) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	—	-	—	_		—	_	_	—	_	_	_	—	—	_

Daily, Winter (Max)	_	-	_	_	-	-	-	-	_	_	_	-	-	-	-	_	_
Off-Road Equipmen	0.78 1	4.80	43.3	0.10	0.15	_	0.15	0.15	_	0.15	_	10,394	10,394	0.42	0.08	_	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	-	-	-	—	-	-	-	-	-	-	-	-	-	—
Off-Road Equipmen	0.12 1	0.74	6.70	0.02	0.02	-	0.02	0.02	-	0.02	-	1,607	1,607	0.07	0.01	-	1,612
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	0.02 1	0.14	1.22	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	266	266	0.01	< 0.005	-	267
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Daily, Summer (Max)	-	_	-		-	-	-	-	-		-	-	-	-	-	-	_
Daily, Winter (Max)	-	_	-	_	-	-	_	-	-	_	-	-	-	-	-	-	_
Worker	0.20	0.15	1.77	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	434	434	0.01	0.02	0.03	440
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.02	448
Hauling	0.18	23.4	4.33	0.16	0.33	6.70	7.02	0.33	1.88	2.20	_	22,060	22,060	0.33	3.43	1.00	23,092
Average Daily	-	_	_	-	-	-	_	-	-	-	-	-	_	-	-	-	_
Worker	0.03	0.02	0.27	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	67.6	67.6	< 0.005	< 0.005	0.08	68.6
Vendor	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	66.4	66.4	< 0.005	0.01	0.05	69.3
Hauling	0.03	3.64	0.67	0.03	0.05	1.03	1.08	0.05	0.29	0.34	_	3,410	3,410	0.05	0.53	2.58	3,572

Annual	—	—	_	-	—	—	—	—	—	—	_	—	—	—	—	—	—
Worker	0.01	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	11.2	11.2	< 0.005	< 0.005	0.01	11.4
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	11.0	11.0	< 0.005	< 0.005	0.01	11.5
Hauling	0.01	0.66	0.12	< 0.005	0.01	0.19	0.20	0.01	0.05	0.06	—	565	565	0.01	0.09	0.43	591

3.12. Building Construction (2030) - Mitigated

Location	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
	RUG	NUX		502	PIVITUE	PINITUD	PIVITUT	PIVIZ.3E	PIVIZ.5D	PIVIZ.51	BCUZ	NBC02	021	СП4	N2O	R	COZe
Onsite	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		-		_	_	—	_	—	—	—	-	_	—	_	_	_	-
Daily, Winter (Max)	—	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Off-Road Equipment	0.78	4.80	43.3	0.10	0.15	—	0.15	0.15	—	0.15	—	10,394	10,394	0.42	0.08	—	10,430
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.12	0.74	6.70	0.02	0.02	_	0.02	0.02	—	0.02	_	1,607	1,607	0.07	0.01	—	1,612
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.14	1.22	< 0.005	< 0.005	_	< 0.005	< 0.005	—	< 0.005	_	266	266	0.01	< 0.005	—	267
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	—	—	—	_	—	_	_	_	_	_	—	_	—	_	—	—

Daily, Summer (Max)	_	-	-	-	_	_	-	_	_	-	-	-	_	_	_	-	-
Daily, Winter (Max)	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.20	0.15	1.77	0.00	0.00	0.48	0.48	0.00	0.11	0.11	_	434	434	0.01	0.02	0.03	440
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.02	448
Hauling	0.18	23.4	4.33	0.16	0.33	6.70	7.02	0.33	1.88	2.20	_	22,060	22,060	0.33	3.43	1.00	23,092
Average Daily	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Worker	0.03	0.02	0.27	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	67.6	67.6	< 0.005	< 0.005	0.08	68.6
Vendor	< 0.005	0.08	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	—	66.4	66.4	< 0.005	0.01	0.05	69.3
Hauling	0.03	3.64	0.67	0.03	0.05	1.03	1.08	0.05	0.29	0.34	_	3,410	3,410	0.05	0.53	2.58	3,572
Annual	_	—	—	—	—	—	—	—	—	—	_	—	—	—	—	_	—
Worker	0.01	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	11.2	11.2	< 0.005	< 0.005	0.01	11.4
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	11.0	11.0	< 0.005	< 0.005	0.01	11.5
Hauling	0.01	0.66	0.12	< 0.005	0.01	0.19	0.20	0.01	0.05	0.06	_	565	565	0.01	0.09	0.43	591

3.13. Building Construction (2031) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)																	
Off-Road Equipment		1.27	12.7	0.05	0.05	—	0.05	0.05	—	0.05	—	4,588	4,588	0.19	0.04	—	4,604
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)			—	—	_	_	_	—	_	_	_	_	—	_	_	_	—
Average Daily	—	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	0.07	0.38	3.79	0.01	0.01	-	0.01	0.01	-	0.01	-	1,370	1,370	0.06	0.01	-	1,375
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	—	_	_	-	_	_	_	_	_	_	_	_	-
Off-Road Equipment	0.01	0.07	0.69	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	227	227	0.01	< 0.005	-	228
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_		—	_	_		-	—	_	-	-	-	_	-	-	-	_
Worker	0.08	0.05	0.72	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	184	184	< 0.005	< 0.005	0.43	185
Vendor	0.01	0.34	0.12	< 0.005	< 0.005	0.10	0.10	< 0.005	0.03	0.03	_	311	311	< 0.005	0.05	0.49	326
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)			-	_	_		_	-	-	-	-	-	_	-	-	-	-
Average Daily	_	-	-	-	-	-	_	-	-	-		-	-	-	-	-	—
Worker	0.02	0.02	0.20	0.00	0.00	0.06	0.06	0.00	0.01	0.01	_	52.9	52.9	< 0.005	< 0.005	0.06	53.7
Vendor	< 0.005	0.10	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	92.9	92.9	< 0.005	0.01	0.06	97.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.76	8.76	< 0.005	< 0.005	0.01	8.90
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	15.4	15.4	< 0.005	< 0.005	0.01	16.1

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.14. Building Construction (2031) - Mitigated

				y, tori/yr it		<i>'</i>					,						_
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	-	_	_	_	-	-	-	-	-	-	-	_	-	_	-
Daily, Summer (Max)	_	_	-	-	-	-	_	_	_	_	_	_	_	-	_	-	—
Off-Road Equipment		1.27	12.7	0.05	0.05	—	0.05	0.05	—	0.05	—	4,588	4,588	0.19	0.04	_	4,604
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-	-	-	-	-	-	_	_	-	-	_	-	-	-	-
Average Daily	_	-	-	_	-	-	_	-	-	-	-	_	-	-	-	-	-
Off-Road Equipment		0.38	3.79	0.01	0.01	-	0.01	0.01	-	0.01	-	1,370	1,370	0.06	0.01	-	1,375
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		0.07	0.69	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	227	227	0.01	< 0.005	-	228
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	_	—	-	-	-	_	_	_	_	_	_	-	-	-	-	-
Worker	0.08	0.05	0.72	0.00	0.00	0.20	0.20	0.00	0.05	0.05	_	184	184	< 0.005	< 0.005	0.43	185

Vendor	0.01	0.34	0.12	< 0.005	< 0.005	0.10	0.10	< 0.005	0.03	0.03	—	311	311	< 0.005	0.05	0.49	326
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	_	-	-	—	-	-	—	-	_	-	—	_	-	_	—
Average Daily	—	_	_	—	-	-	—	_	_	-	-	—	_	—	-	-	-
Worker	0.02	0.02	0.20	0.00	0.00	0.06	0.06	0.00	0.01	0.01	—	52.9	52.9	< 0.005	< 0.005	0.06	53.7
Vendor	< 0.005	0.10	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	-	92.9	92.9	< 0.005	0.01	0.06	97.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	-	_	-	_	_	_	_	—	_	_	_	_	_
Worker	< 0.005	< 0.005	0.04	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	8.76	8.76	< 0.005	< 0.005	0.01	8.90
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	15.4	15.4	< 0.005	< 0.005	0.01	16.1
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Building Construction (2029) - Unmitigated

Location	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Daily, Winter (Max)		-	-	-							-	_	_	_	_	-	-
Off-Road Equipment		6.41	37.8	0.11	0.14	—	0.14	0.14	—	0.14	_	10,270	10,270	0.42	0.08	-	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily		_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.13	1.15	6.80	0.02	0.02	-	0.02	0.02	-	0.02	—	1,849	1,849	0.08	0.02	-	1,855
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	-	-	_	_	_	-	-	_	-	_	-	-	_	_	-	-
Off-Road Equipment	0.02	0.21	1.24	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	_	306	306	0.01	< 0.005	-	307
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	_	-	-	_	—	_	-	_	_	-	-	_	-	_	-
Daily, Winter (Max)		—	—	-	-	—	-	_	-	_	_	-	-		-	_	—
Worker	0.24	0.19	2.16	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	507	507	0.01	0.02	0.04	514
Vendor	0.01	0.71	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	—	609	609	0.01	0.09	0.03	636
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	—	-	-	—	-	-	-	_	—	-	—	-	-	-
Worker	0.04	0.03	0.39	0.00	0.00	0.10	0.10	0.00	0.02	0.02	—	91.9	91.9	< 0.005	< 0.005	0.12	93.3
Vendor	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	—	110	110	< 0.005	0.02	0.09	115
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	_	—	—	—	—	-	—	—	—	—	_	—
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	-	15.2	15.2	< 0.005	< 0.005	0.02	15.4
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	-	18.1	18.1	< 0.005	< 0.005	0.02	19.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.16. Building Construction (2029) - Mitigated

Location	ROG	NOx	co	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite												_	_	_		_	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	_	-	_	-	_
Daily, Winter (Max)				-							_	-	_	-	_	-	_
Off-Road Equipment	0.72	6.41	37.8	0.11	0.14	—	0.14	0.14	—	0.14	—	10,270	10,270	0.42	0.08	_	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	-	—	—	—	—	—	—	—	—	—	—	-	-	—
Off-Road Equipment	0.13	1.15	6.80	0.02	0.02	—	0.02	0.02	—	0.02	-	1,849	1,849	0.08	0.02	-	1,855
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.21	1.24	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	-	306	306	0.01	< 0.005	-	307
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	-	-	-	_	—	-	_	_	-	-	-	_	_	_	_
Daily, Summer (Max)		—	—	-	—	—	—	—	—	—	—	-	—	-	—	-	—
Daily, Winter (Max)			_	—	_		_	_			_	—	—	_	—	—	_
Worker	0.24	0.19	2.16	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	507	507	0.01	0.02	0.04	514
Vendor	0.01	0.71	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	—	609	609	0.01	0.09	0.03	636

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	—	—	-	—	—	—	—	_	—	-	—	-	-	-
Worker	0.04	0.03	0.39	0.00	0.00	0.10	0.10	0.00	0.02	0.02		91.9	91.9	< 0.005	< 0.005	0.12	93.3
Vendor	< 0.005	0.13	0.04	< 0.005	< 0.005	0.03	0.03	< 0.005	0.01	0.01	_	110	110	< 0.005	0.02	0.09	115
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	—	_	_	-	-	—	_	-	—	_	-	_	-	—	_	-
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	15.2	15.2	< 0.005	< 0.005	0.02	15.4
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	18.1	18.1	< 0.005	< 0.005	0.02	19.0
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.17. Building Construction (2030) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	_	—	—	—	—	—	—	-	_	—	_	—
Daily, Summer (Max)		-		_	-	-	—	_					_	-	—	—	-
Off-Road Equipment		6.41	37.8	0.11	0.14	—	0.14	0.14	—	0.14	—	10,270	10,270	0.42	0.08	—	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	—	_	-	-	-	_	_	_	_	_	_	-	-	-	-
Off-Road Equipment		6.41	37.8	0.11	0.14	-	0.14	0.14	—	0.14	—	10,270	10,270	0.42	0.08	-	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-

Off-Road Equipmen	0.29 1	2.55	15.0	0.04	0.05	-	0.05	0.05	-	0.05	-	4,080	4,080	0.17	0.03	—	4,094
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	—	_	—	_	—	—	—	-	—	—	-	—	—	—	—
Off-Road Equipmen	0.05 1	0.46	2.74	0.01	0.01	-	0.01	0.01	-	0.01	-	675	675	0.03	0.01	-	678
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	—	-	—	-	-	-	_	_	-	_	-	_	-	-	-	-	—
Worker	0.23	0.15	2.15	0.00	0.00	0.55	0.55	0.00	0.13	0.13	_	521	521	0.01	0.02	1.36	529
Vendor	0.01	0.65	0.22	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	_	590	590	0.01	0.09	1.03	617
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_		_	-	-	_		-		-	—	-	-		-	
Worker	0.23	0.17	2.04	0.00	0.00	0.55	0.55	0.00	0.13	0.13	_	498	498	0.01	0.02	0.04	505
Vendor	0.01	0.67	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	_	590	590	0.01	0.09	0.03	616
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Worker	0.09	0.07	0.80	0.00	0.00	0.22	0.22	0.00	0.05	0.05	_	199	199	< 0.005	0.01	0.23	202
Vendor	0.01	0.27	0.09	< 0.005	< 0.005	0.07	0.08	< 0.005	0.02	0.02	_	234	234	< 0.005	0.03	0.18	245
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Worker	0.02	0.01	0.15	0.00	0.00	0.04	0.04	0.00	0.01	0.01	_	33.0	33.0	< 0.005	< 0.005	0.04	33.5
Vendor	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.8	38.8	< 0.005	0.01	0.03	40.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.18. Building Construction (2030) - Mitigated

	0.110.10.1		,	, .o., ji i	or anniaai) and er		ay for au	,,,,,,,, .		aanj						
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	_	—	—	-	-	-	—	—	—	-	—	-	—	—	-	-	—
Daily, Summer (Max)	—	-	_	-	-	_	-	-	-	_	-	-	-	-	_	_	_
Off-Road Equipment		6.41	37.8	0.11	0.14	_	0.14	0.14	-	0.14	_	10,270	10,270	0.42	0.08	—	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	—	-	-	-	-	-	-	-	-	-	-	-	—	-	-
Off-Road Equipment		6.41	37.8	0.11	0.14	-	0.14	0.14	-	0.14	-	10,270	10,270	0.42	0.08	-	10,305
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	_	-	-	-	_	_	-	-	-	-	-
Off-Road Equipment		2.55	15.0	0.04	0.05	-	0.05	0.05	-	0.05	-	4,080	4,080	0.17	0.03	-	4,094
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.05	0.46	2.74	0.01	0.01	-	0.01	0.01	-	0.01	-	675	675	0.03	0.01	-	678
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	—	_	—	_	-	-	_	_	_	-	-	-	-	_	_	—	—
Worker	0.23	0.15	2.15	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	521	521	0.01	0.02	1.36	529
Vendor	0.01	0.65	0.22	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	-	590	590	0.01	0.09	1.03	617
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	-	_	—	-	-	-	_	-	-		_	_	—
Worker	0.23	0.17	2.04	0.00	0.00	0.55	0.55	0.00	0.13	0.13	—	498	498	0.01	0.02	0.04	505
Vendor	0.01	0.67	0.23	< 0.005	< 0.005	0.18	0.19	< 0.005	0.05	0.06	—	590	590	0.01	0.09	0.03	616
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	_	—	—	-	_	—	—	-	—	_	—	—	—	—	_	_
Worker	0.09	0.07	0.80	0.00	0.00	0.22	0.22	0.00	0.05	0.05	-	199	199	< 0.005	0.01	0.23	202
Vendor	0.01	0.27	0.09	< 0.005	< 0.005	0.07	0.08	< 0.005	0.02	0.02	-	234	234	< 0.005	0.03	0.18	245
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	-	—	—	—	-	—	—	—	—	—	—	—	—	—	-	-
Worker	0.02	0.01	0.15	0.00	0.00	0.04	0.04	0.00	0.01	0.01	-	33.0	33.0	< 0.005	< 0.005	0.04	33.5
Vendor	< 0.005	0.05	0.02	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	38.8	38.8	< 0.005	0.01	0.03	40.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.19. Building Construction (2030) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		—	—	_		_	_			—		_		_		_	_

Off-Road Equipment	0.57 I	2.96	29.6	0.10	0.11	—	0.11	0.11	-	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	-	-	—		—	_	_	—	_	_	-	_		-
Off-Road Equipment	0.57 I	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	0.24 1	1.24	12.4	0.04	0.05	-	0.05	0.05	-	0.05	-	3,916	3,916	0.16	0.03	-	3,929
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.04 I	0.23	2.26	0.01	0.01	-	0.01	0.01	-	0.01	-	648	648	0.03	0.01	-	651
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		-	_	-	-	-	_	-	-	-	-	_	-	_	_	_	-
Worker	0.11	0.07	0.99	0.00	0.00	0.25	0.25	0.00	0.06	0.06	-	240	240	0.01	0.01	0.63	244
Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.75	449
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	—	—	-	-	-	—	—	-	—	-	_	-	_	_	_	-
Worker	0.10	0.08	0.94	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	230	230	0.01	0.01	0.02	233

Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	429	429	0.01	0.06	0.02	448
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	_	—	—	-	—	—	—	—	-	—	-	—	—	-	_
Worker	0.04	0.03	0.39	0.00	0.00	0.11	0.11	0.00	0.02	0.02	—	97.0	97.0	< 0.005	< 0.005	0.11	98.4
Vendor	< 0.005	0.20	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	180	180	< 0.005	0.03	0.14	188
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	_
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	16.1	16.1	< 0.005	< 0.005	0.02	16.3
Vendor	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	29.8	29.8	< 0.005	< 0.005	0.02	31.1
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.20. Building Construction (2030) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)		_	_	—	_	_	_	—	_	_	—	-	—	-	—	-	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	_	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	_	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Average Daily	-	-	_	_	-	-	_	-	-	-	—	-	_	-	-	-	_
Off-Road Equipmen	0.24 1	1.24	12.4	0.04	0.05	-	0.05	0.05	-	0.05	_	3,916	3,916	0.16	0.03	-	3,929
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	_	_	_	-	-	_	_	-	-	-	_	_	_	_
Off-Road Equipmen	0.04 1	0.23	2.26	0.01	0.01	-	0.01	0.01	-	0.01	—	648	648	0.03	0.01	-	651
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Daily, Summer (Max)	_	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-
Worker	0.11	0.07	0.99	0.00	0.00	0.25	0.25	0.00	0.06	0.06	-	240	240	0.01	0.01	0.63	244
Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	-	429	429	0.01	0.06	0.75	449
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-	-	-	-	-	-	_	-	_	_	-	-	—	-	-	-
Worker	0.10	0.08	0.94	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	230	230	0.01	0.01	0.02	233
Vendor	0.01	0.49	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	429	429	0.01	0.06	0.02	448
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	_	_	-	-	_	-	-	-	-	-	_
Worker	0.04	0.03	0.39	0.00	0.00	0.11	0.11	0.00	0.02	0.02	_	97.0	97.0	< 0.005	< 0.005	0.11	98.4
Vendor	< 0.005	0.20	0.07	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	_	180	180	< 0.005	0.03	0.14	188
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Worker	0.01	0.01	0.07	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	16.1	16.1	< 0.005	< 0.005	0.02	16.3

Vendor	< 0.005	0.04	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	29.8	29.8	< 0.005	< 0.005	0.02	31.1
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00

3.21. Building Construction (2031) - Unmitigated

				y, ton/yr to													
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Daily, Summer (Max)	—	-	_	-	-	_	_	-	-	_	-	_	-	-	_	-	_
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	—	9,351	9,351	0.38	0.08	—	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	-	-	-	_	_	-	-	_	-	-	_	-	-	_	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	-	0.11	0.11	-	0.11	-	9,351	9,351	0.38	0.08	-	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	-	—	-	-	-	-	-	—	—	—	-	—	—	—	-
Off-Road Equipment		0.55	5.51	0.02	0.02	-	0.02	0.02	-	0.02	-	1,738	1,738	0.07	0.01	-	1,744
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_
Off-Road Equipment		0.10	1.00	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	288	288	0.01	< 0.005	-	289
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	-	_	-	-	_	_	_	-	_	-	-	_	_	_	_	_	-
Worker	0.10	0.06	0.92	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	237	237	< 0.005	< 0.005	0.56	238
Vendor	0.01	0.45	0.15	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	415	415	0.01	0.06	0.65	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	_	-	-	-		_	-		-	-	_	_		_	-	-
Worker	0.10	0.07	0.88	0.00	0.00	0.25	0.25	0.00	0.06	0.06	—	226	226	0.01	0.01	0.01	230
Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	415	415	0.01	0.06	0.02	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	—	_	—	—	—	-	—	—	—	—	—	—	—	-	-
Worker	0.02	0.01	0.16	0.00	0.00	0.05	0.05	0.00	0.01	0.01	—	42.4	42.4	< 0.005	< 0.005	0.04	43.0
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	—	77.1	77.1	< 0.005	0.01	0.05	80.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	7.01	7.01	< 0.005	< 0.005	0.01	7.12
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	12.8	12.8	< 0.005	< 0.005	0.01	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.22. Building Construction (2031) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	_	—	-	—	_		—	_	_	—	_	_	_	—	—	_

Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	-	0.11	0.11	-	0.11	-	9,351	9,351	0.38	0.08	-	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	-		_	-	-	-	-	_	-	-	-	_	_	-	-	-
Off-Road Equipment	0.57	2.96	29.6	0.10	0.11	—	0.11	0.11	—	0.11	_	9,351	9,351	0.38	0.08	-	9,383
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	-	-	-	-	-	-	-	-	-	-	—	-	—	-	-	-
Off-Road Equipment	0.11	0.55	5.51	0.02	0.02	-	0.02	0.02	-	0.02	-	1,738	1,738	0.07	0.01	-	1,744
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	0.02	0.10	1.00	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	288	288	0.01	< 0.005	-	289
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	—	_	-	-	-	-	-	-	-	_	—	_	-	-	-
Worker	0.10	0.06	0.92	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	237	237	< 0.005	< 0.005	0.56	238
Vendor	0.01	0.45	0.15	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	_	415	415	0.01	0.06	0.65	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	—		_	-	-	—	_	-	-	-	—		_	-	-	—
Worker	0.10	0.07	0.88	0.00	0.00	0.25	0.25	0.00	0.06	0.06	_	226	226	0.01	0.01	0.01	230

Vendor	0.01	0.47	0.16	< 0.005	< 0.005	0.13	0.14	< 0.005	0.04	0.04	—	415	415	0.01	0.06	0.02	434
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	-	-	-	—	—	—	-	—	-	-	-	—	—	—	—	-	—
Worker	0.02	0.01	0.16	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	42.4	42.4	< 0.005	< 0.005	0.04	43.0
Vendor	< 0.005	0.09	0.03	< 0.005	< 0.005	0.02	0.03	< 0.005	0.01	0.01	_	77.1	77.1	< 0.005	0.01	0.05	80.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	-	-	-	_	-	_	_	_	-	-	-	_	_	-
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.01	7.01	< 0.005	< 0.005	0.01	7.12
Vendor	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	12.8	12.8	< 0.005	< 0.005	0.01	13.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.23. Paving (2031) - Unmitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	-	—	_	_	—	_	_	_	—	_	_	_	_	_	_	_
Daily, Summer (Max)	—	-	—		—	—		—		—						—	—
Off-Road Equipmen	0.05	0.25	3.49	< 0.005	0.01	—	0.01	0.01	_	0.01	—	497	497	0.02	< 0.005	—	499
Paving	0.52	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-			—		—								—	_
Average Daily	—	_	-	_	_	_	_	_	_	—	_	_		_	_	_	-

Off-Road Equipment	0.01	0.03	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	54.5	54.5	< 0.005	< 0.005	-	54.7
Paving	0.06	_	_	_	—	_	_	_	_	_	_	_	—	—	_	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Off-Road Equipment	< 0.005	< 0.005	0.07	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	9.02	9.02	< 0.005	< 0.005	-	9.05
Paving	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Daily, Summer (Max)	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Worker	0.06	0.04	0.56	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	145	145	< 0.005	< 0.005	0.34	145
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-
Average Daily	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Worker	0.01	< 0.005	0.06	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	_	15.3	15.3	< 0.005	< 0.005	0.02	15.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.53	2.53	< 0.005	< 0.005	< 0.005	2.57
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.24. Paving (2031) - Mitigated

				, toni yr io													
Location	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	_	—	_	—	—	—	—	—	—	—	_	—	—	_
Daily, Summer (Max)	_	_	-	-	-	-	-	_	_	_	_	-	_	-	-	-	-
Off-Road Equipment		0.25	3.49	< 0.005	0.01	—	0.01	0.01	—	0.01	—	497	497	0.02	< 0.005	—	499
Paving	0.52	-	—	—	-	-	-	-	-	-	_	_	-	—	—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		_	-	-	_	_		_	_	_	_	-	_	-	-	-	-
Average Daily		_	-	-	-	-	-	_	_	_	-	-	-	-	-	-	-
Off-Road Equipment		0.03	0.38	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	54.5	54.5	< 0.005	< 0.005	-	54.7
Paving	0.06	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	< 0.005	< 0.005	0.07	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	9.02	9.02	< 0.005	< 0.005	-	9.05
Paving	0.01	_	-	_	-	_	-	-	-	-	_	_	-	_	-	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	-	-	-	-				-	_	-	-	-	_	-	-

Worker	0.06	0.04	0.56	0.00	0.00	0.16	0.16	0.00	0.04	0.04	—	145	145	< 0.005	< 0.005	0.34	145
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	-	-	-	_	—	-	-	-	-		—	-	-	-	-	-	_
Average Daily	—	—	_	—	—	—	—		—	—	—	—	—	—	—	—	-
Worker	0.01	< 0.005	0.06	0.00	0.00	0.02	0.02	0.00	< 0.005	< 0.005	—	15.3	15.3	< 0.005	< 0.005	0.02	15.5
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	_	_	—	—	_	_	_	—	-	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.53	2.53	< 0.005	< 0.005	< 0.005	2.57
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.25. Architectural Coating (2031) - Unmitigated

Location	ROG		со	SO2				PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)																_	—
Off-Road Equipment		—	—	0.01	—	—	—	—	—	—	—	463	463	0.02	< 0.005	—	465
Architectu ral Coatings	4.94				—				—		—	_			—	—	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	_	-	-	_	-	_	_	_	_	_	_	_	-	-	_	-	_
Average Daily	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	—	_	-	< 0.005	-	_	-	-	_	-	-	52.0	52.0	< 0.005	< 0.005	-	52.2
Architectu ral Coatings	0.55	-	-	_	-	—	-	-	_	-	-	—	-	-	-	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment		-	-	< 0.005	-	_	-	-	_	-	-	8.61	8.61	< 0.005	< 0.005	-	8.64
Architectu ral Coatings	0.10	_	-	_	_	_	_	_	_	_	_	_	-	_	_	-	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		-	-	_	-	_	_	-	_	-	-	_	-	-	_	-	_
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	26.3	26.3	< 0.005	< 0.005	0.06	26.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	-		-	—	—	_	—		_	_	-	-	—	-	—
Average Daily	—	-	-	-	—	—	-	-	—	-	-	-	_	-	-	-	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.84	2.84	< 0.005	< 0.005	< 0.005	2.89

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	_	—	—	—	_	_	—	—	—	—	—	—	—	—	—	-
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.47	0.47	< 0.005	< 0.005	< 0.005	0.48
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.26. Architectural Coating (2031) - Mitigated

Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Location	RUG	NUX	0	502	PINITUE	PINITUD	PIVITUT	PINZ.3E	PIVIZ.5D	PIVIZ.51	BCU2	NBC02	0021	0⊓4	NZO	R	COZe
Onsite	—	—	—	-	-	—	—	—	-	-	_	-	—	_	—	-	—
Daily, Summer (Max)	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipment	—	_		0.01	—	—	—	—	—	—	—	463	463	0.02	< 0.005	_	465
Architectu ral Coatings	4.94	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	_	-	_	—	-	—	-	—	—	_	-	-	-	_	_	—
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—
Off-Road Equipment	—	_	_	< 0.005	_	_	—	_	_	—	_	52.0	52.0	< 0.005	< 0.005	_	52.2
Architectu ral Coatings	0.55	-	_	-	-	-	-	_	-	-	_	-	-	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipmen		-	_	< 0.005	-	—	—	-	—	_	_	8.61	8.61	< 0.005	< 0.005	_	8.64
Architectu ral Coatings	0.10	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_
Daily, Summer (Max)	—	_	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-
Worker	0.01	0.01	0.10	0.00	0.00	0.03	0.03	0.00	0.01	0.01	_	26.3	26.3	< 0.005	< 0.005	0.06	26.4
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	-	-	-	_	-	-	-	-	_	_	-	-	-	-	-
Average Daily	-	-	-	-	-	_	_	-	-	_	_	-	_	-	-	-	-
Worker	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	2.84	2.84	< 0.005	< 0.005	< 0.005	2.89
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	-	-	-	-	_	_	-	_	-	_	_	-	_	-	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	0.47	0.47	< 0.005	< 0.005	< 0.005	0.48
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.27. Trenching (2030) - Unmitigated

Location	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)		_	-	-	-	-	-	-	_	_	_	-	_	-	_	_	-
Off-Road Equipment		0.93	1.39	0.01	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	567	567	0.02	< 0.005	-	569
Dust From Material Movement	—	_	_	-	-	0.01	0.01	_	< 0.005	< 0.005	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	_
Off-Road Equipment	0.03	0.93	1.39	0.01	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	567	567	0.02	< 0.005	-	569
Dust From Material Movement		_	_	-	-	0.01	0.01		< 0.005	< 0.005	_	-	_	-	_		
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	_	-	-	-	_	-	-	-	-	-	-	-	-
Off-Road Equipment	< 0.005	0.14	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	86.9	86.9	< 0.005	< 0.005	-	87.2
Dust From Material Movement				_	-	< 0.005	< 0.005	_	< 0.005	< 0.005		_		_			_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen	< 0.005 1	0.03	0.04	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	14.4	14.4	< 0.005	< 0.005	-	14.4
Dust From Material Movement		_	-	-	_	< 0.005	< 0.005	_	< 0.005	< 0.005	-	-	-	_	-	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Worker	0.14	0.09	1.27	0.00	0.00	0.33	0.33	0.00	0.08	0.08	—	307	307	0.01	0.01	0.80	312
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	-	53.6	53.6	< 0.005	0.01	0.09	56.1
Hauling	0.11	14.4	2.77	0.10	0.21	4.29	4.49	0.21	1.20	1.41	-	14,118	14,118	0.21	2.20	24.6	14,803
Daily, Winter (Max)	—	-	-	-	-	-	_	-	-	-	-	—	_	—	_	-	-
Worker	0.13	0.10	1.20	0.00	0.00	0.33	0.33	0.00	0.08	0.08	_	294	294	0.01	0.01	0.02	298
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.7	53.7	< 0.005	0.01	< 0.005	56.0
Hauling	0.11	15.0	2.77	0.10	0.21	4.29	4.49	0.21	1.20	1.41	_	14,119	14,119	0.21	2.20	0.64	14,779
Average Daily	-	-	-	-	-	-	_	-	_	-	—	-	-	-	_	-	-
Worker	0.02	0.02	0.18	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	45.4	45.4	< 0.005	< 0.005	0.05	46.1
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	8.23	8.23	< 0.005	< 0.005	0.01	8.60
Hauling	0.02	2.31	0.42	0.02	0.03	0.66	0.69	0.03	0.18	0.22	_	2,166	2,166	0.03	0.34	1.64	2,269
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.52	7.52	< 0.005	< 0.005	0.01	7.63
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.36	1.36	< 0.005	< 0.005	< 0.005	1.42
Hauling	< 0.005	0.42	0.08	< 0.005	0.01	0.12	0.13	0.01	0.03	0.04	_	359	359	0.01	0.06	0.27	376

3.28. Trenching (2030) - Mitigated

ontonia i			,,,	, ton , ji io	annaan		100 (18/ 8	ay lor aa	ily, ivi i / yi	ior annie							
Location	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	-	_	-	_	-	-	_	-	_	_	-	_	_	_	—
Daily, Summer (Max)		-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-
Off-Road Equipment		0.93	1.39	0.01	< 0.005	_	< 0.005	< 0.005	—	< 0.005	-	567	567	0.02	< 0.005	_	569
Dust From Material Movement		_	-	-	-	0.01	0.01	-	< 0.005	< 0.005	_	_	-	-	-	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)		-	_	_	-	-	_	_	_	_	-	-	-	-	-	-	-
Off-Road Equipment		0.93	1.39	0.01	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	567	567	0.02	< 0.005	-	569
Dust From Material Movement			-	-	-	0.01	0.01	-	< 0.005	< 0.005				-			-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Off-Road Equipment	< 0.005	0.14	0.21	< 0.005	< 0.005	-	< 0.005	< 0.005	_	< 0.005	-	86.9	86.9	< 0.005	< 0.005	_	87.2
Dust From Material Movement			_	-		< 0.005	< 0.005	-	< 0.005	< 0.005							-

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Off-Road Equipmen	< 0.005 1	0.03	0.04	< 0.005	< 0.005	-	< 0.005	< 0.005	-	< 0.005	-	14.4	14.4	< 0.005	< 0.005	-	14.4
Dust From Material Movement		_	-	-	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	-	-	-	-	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Daily, Summer (Max)	_	_	_	-	-	_	-	-	-	-	_	-	_	_	_	-	_
Worker	0.14	0.09	1.27	0.00	0.00	0.33	0.33	0.00	0.08	0.08	_	307	307	0.01	0.01	0.80	312
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.6	53.6	< 0.005	0.01	0.09	56.1
Hauling	0.11	14.4	2.77	0.10	0.21	4.29	4.49	0.21	1.20	1.41	—	14,118	14,118	0.21	2.20	24.6	14,803
Daily, Winter (Max)	_	_	_	-	-	_	-	-	-	-	—	-	_	_	_	-	_
Worker	0.13	0.10	1.20	0.00	0.00	0.33	0.33	0.00	0.08	0.08	_	294	294	0.01	0.01	0.02	298
Vendor	< 0.005	0.06	0.02	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	_	53.7	53.7	< 0.005	0.01	< 0.005	56.0
Hauling	0.11	15.0	2.77	0.10	0.21	4.29	4.49	0.21	1.20	1.41	_	14,119	14,119	0.21	2.20	0.64	14,779
Average Daily	—	-	—	_	—	-	_	_	_	—	-	—	—	—	—	—	—
Worker	0.02	0.02	0.18	0.00	0.00	0.05	0.05	0.00	0.01	0.01	_	45.4	45.4	< 0.005	< 0.005	0.05	46.1
Vendor	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	8.23	8.23	< 0.005	< 0.005	0.01	8.60
Hauling	0.02	2.31	0.42	0.02	0.03	0.66	0.69	0.03	0.18	0.22	_	2,166	2,166	0.03	0.34	1.64	2,269
Annual	-	-	_	—	—	—	—	—	—	_	_	—	—	—	—	—	—
Worker	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.52	7.52	< 0.005	< 0.005	0.01	7.63
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.36	1.36	< 0.005	< 0.005	< 0.005	1.42

Hauling	< 0.005	0.42	0.08	< 0.005	0.01	0.12	0.13	0.01	0.03	0.04	_	359	359	0.01	0.06	0.27	376
0																	

4. Operations Emissions Details

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetatio n	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	-	—		_	_				—	—		—	—	_	—	—
Total	_	-	-	—	—	—	—	—	—	—	—	—	—	-	—	—	—
Daily, Winter (Max)	—	-	—										—	—			
Total	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_
Annual	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	—	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	—		_					_			_				—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	_		—	_						_							—

Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	-	-	—	_	—	_	-	-	-	—	—	_	-	—	—	_	_
Total	_	_	—	_	_	_	_	_	_	—	—	_	-	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)		-		—	—	—			_		_		_	_	-	-	—
Avoided	_	_	_	_	_	_	—	_	_	_	_	_	-	_	_	_	_
Subtotal	—	_	—	—	—	—	—	_	—	—	—	—	—	—	—	_	_
Sequeste red	—	-	—	—	—	—	—	—	—	—	—	—	—	-	-	_	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_
	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	_
Daily, Winter (Max)		-		—		—								_	—	-	—
Avoided	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Subtotal	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—
Sequeste red	—	_	—	—	—	—	—	—	—	—	—	—	—	—	-	_	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Removed	_	—	—	—	_	—	—	_	—	_	—	—	—	_	—	—	_
Subtotal	—	—	—	_	_	_	_	—	—	—	—	—	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_		_	_		_	_	_

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	-	_	-	—	—	-	—	—	—	—	—	-	—	—	—	_	—
Subtotal	_	_	_	_	_	-	_	_	_	_	_	_	—	_	—	_	_
Sequeste red	-	-	-	—	—	-	—	—	—	—	—	—	—	—	—	-	—
Subtotal	_	_	-	_	_	-	_	_	_	_	_	_	—	_	_	_	_
Removed	_	_	_	_	_	-	_	_	_	_	_	_	—	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	—

4.10.4. Soil Carbon Accumulation By Vegetation Type - Mitigated

Vegetatio n	ROG	NOx	со		PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—		—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)			—	—	—		_				—		_	_	—		_
Total	—	—	—	-	-	—	—	_	—	_	—	—	—	-	-	_	_
Annual	—	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

4.10.5. Above and Belowground Carbon Accumulation by Land Use Type - Mitigated

	Criteria F	Pollutants	s (lb/day	for daily,	ton/yr fo	r annual)	and GH	Gs (lb/da	ay for dai	ly, MT/yr	for annu	al)						
I	Land Use	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e

Daily, Summer (Max)	_	_	_			—	—	_	_	_	_		—	—	_		
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	-	-															_
Total	—	_	_	—	_	—	—	—	—	—	_	_	—	—	_	—	—
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_
Total	_	_	_	_	_	_	_	_	_		_	_	_		_	_	_

4.10.6. Avoided and Sequestered Emissions by Species - Mitigated

Species		NOx	СО	SO2	PM10E		PM10T			PM2.5T		NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	_	_	_		—	—	—		_	_			-	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequeste red	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	—	—
Subtotal	—	—	—	—	_	—	—	—	—	—	—	—	—	—	_	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	_	-	_	_	_		_		_	_	_	_	_	_	_	_
Avoided	—	—	—	_	_	_	—	—	_	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	-	—

Sequeste red	—	—	—	—	—	—		—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	_	_	—	_	_	_	_	—	—	_	—	-	_	_	_	_	_
Sequeste red	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—
Removed	_	_	—	_	_	_	_	_	—	_	_	—	_	_	_	_	—
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
2-Existing Project Site Demo	Demolition	6/15/2029	6/29/2029	5.00	11.0	_
12-Decomissioning Demolition	Demolition	10/1/2032	12/30/2032	5.00	65.0	-
1-Subsurface Exploration	Site Preparation	5/1/2029	7/3/2029	5.00	46.0	-
3-Site Preparation/ Rough Grading	Grading	7/4/2029	7/25/2029	5.00	16.0	-
4-Foundations	Building Construction	8/1/2029	3/20/2030	5.00	166	_

10-Commissioning / Startup and Testing	Building Construction	5/1/2031	9/30/2031	5.00	109	_
6-Equipment , Structural Steel & Building Erection, Piping	Building Construction	10/1/2029	7/22/2030	5.00	211	_
7-Electrical & Instrumentation	Building Construction	6/1/2030	4/5/2031	5.00	220	_
8-Paving	Paving	6/1/2031	7/27/2031	5.00	40.0	_
9-Painting/Insulation	Architectural Coating	7/1/2031	8/26/2031	5.00	41.0	_
5-Trenching/Undergrounds	Trenching	2/1/2030	4/19/2030	5.00	56.0	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
3-Site Preparation/ Rough Grading	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
3-Site Preparation/ Rough Grading	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	3.00	9.00	107	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37
2-Existing Project Site Demo	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73
12-Decomissioning Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73
12-Decomissioning Demolition	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	4.00	9.00	107	0.37
3-Site Preparation/ Rough Grading	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29

4-Foundations	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
4-Foundations	Generator Sets	Diesel	Tier 4 Final	4.00	9.00	49.0	0.74
4-Foundations	Welders	Diesel	Tier 4 Final	4.00	9.00	24.0	0.45
10-Commissioning / Startup and Testing	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
10-Commissioning / Startup and Testing	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
10-Commissioning / Startup and Testing	Generator Sets	Diesel	Tier 4 Final	3.00	9.00	49.0	0.74
10-Commissioning / Startup and Testing	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
10-Commissioning / Startup and Testing	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74
6-Equipment , Structural Steel & Building Erection, Piping	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
6-Equipment , Structural Steel & Building Erection, Piping	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
7-Electrical & Instrumentation	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
7-Electrical & Instrumentation	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74

7-Electrical & Instrumentation	Tractors/Loaders/Backh	Diesel	Tier 4 Final	2.00	9.00	225	0.37
7-Electrical & Instrumentation	Welders	Diesel	Tier 4 Final	5.00	9.00	24.0	0.45
8-Paving	Rollers	Diesel	Tier 4 Final	1.00	9.00	125	0.38
9-Painting/Insulation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
12-Decomissioning Demolition	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	107	0.37
2-Existing Project Site Demo	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
2-Existing Project Site Demo	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
2-Existing Project Site Demo	Skid Steer Loaders	Diesel	Tier 4 Final	1.00	9.00	65.0	0.37
2-Existing Project Site Demo	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
12-Decomissioning Demolition	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
12-Decomissioning Demolition	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
12-Decomissioning Demolition	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
12-Decomissioning Demolition	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
12-Decomissioning Demolition	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
12-Decomissioning Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37

12-Decomissioning Demolition	Welders	Electric	Average	1.00	9.00	46.0	0.45
12-Decomissioning Demolition	Welders	Diesel	Tier 4 Final	1.00	9.00	24.0	0.45
1-Subsurface Exploration	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
1-Subsurface Exploration	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
1-Subsurface Exploration	Bore/Drill Rigs	Diesel	Tier 4 Final	1.00	9.00	300	0.50
3-Site Preparation/ Rough Grading	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
3-Site Preparation/ Rough Grading	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	107	0.37
4-Foundations	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	346	0.38
4-Foundations	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
4-Foundations	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	9.00	170	0.40
10-Commissioning / Startup and Testing	Welders	Electric	Average	2.00	9.00	46.0	0.45
10-Commissioning / Startup and Testing	Forklifts	Electric	Average	1.00	9.00	82.0	0.20

10-Commissioning / Startup and Testing	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
10-Commissioning / Startup and Testing	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	1.00	9.00	122	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Welders	Electric	Average	5.00	9.00	46.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	1.00	9.00	84.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	2.00	9.00	67.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Electric	Average	5.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
6-Equipment , Structural Steel & Building Erection, Piping	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38

6-Equipment , Structural Steel & Building Erection, Piping	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
7-Electrical & Instrumentation	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
7-Electrical & Instrumentation	Welders	Electric	Average	5.00	9.00	46.0	0.45
7-Electrical & Instrumentation	Aerial Lifts	Electric	Average	4.00	9.00	46.0	0.31
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
7-Electrical & Instrumentation	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
9-Painting/Insulation	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
5-Trenching/Undergroun ds	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
5-Trenching/Undergroun ds	Pumps	Diesel	Tier 4 Final	4.00	9.00	11.0	0.74

5.2.2. Mitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
3-Site Preparation/ Rough Grading	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	8.00	367	0.40
3-Site Preparation/ Rough Grading	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	3.00	9.00	107	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37
2-Existing Project Site Demo	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73

12-Decomissioning Demolition	Concrete/Industrial Saws	Diesel	Tier 4 Final	1.00	9.00	33.0	0.73
12-Decomissioning Demolition	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	4.00	9.00	107	0.37
3-Site Preparation/ Rough Grading	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
4-Foundations	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
4-Foundations	Generator Sets	Diesel	Tier 4 Final	4.00	9.00	49.0	0.74
4-Foundations	Welders	Diesel	Tier 4 Final	4.00	9.00	24.0	0.45
10-Commissioning / Startup and Testing	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29
10-Commissioning / Startup and Testing	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
10-Commissioning / Startup and Testing	Generator Sets	Diesel	Tier 4 Final	3.00	9.00	49.0	0.74
10-Commissioning / Startup and Testing	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
10-Commissioning / Startup and Testing	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74
6-Equipment , Structural Steel & Building Erection, Piping	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37

6-Equipment , Structural Steel & Building Erection, Piping	Welders	Diesel	Tier 4 Final	3.00	9.00	24.0	0.45
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	1.00	9.00	200	0.29
7-Electrical & Instrumentation	Forklifts	Diesel	Tier 4 Final	2.00	9.00	74.0	0.20
7-Electrical & Instrumentation	Generator Sets	Diesel	Tier 4 Final	5.00	9.00	49.0	0.74
7-Electrical & Instrumentation	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	225	0.37
7-Electrical & Instrumentation	Welders	Diesel	Tier 4 Final	5.00	9.00	24.0	0.45
8-Paving	Rollers	Diesel	Tier 4 Final	1.00	9.00	125	0.38
9-Painting/Insulation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
12-Decomissioning Demolition	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	107	0.37
2-Existing Project Site Demo	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
2-Existing Project Site Demo	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
2-Existing Project Site Demo	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
2-Existing Project Site Demo	Skid Steer Loaders	Diesel	Tier 4 Final	1.00	9.00	65.0	0.37
2-Existing Project Site Demo	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
12-Decomissioning Demolition	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
12-Decomissioning Demolition	Cranes	Diesel	Tier 4 Final	1.00	9.00	275	0.29

12-Decomissioning Demolition	Forklifts	Diesel	Tier 4 Final	1.00	9.00	74.0	0.20
12-Decomissioning Demolition	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
12-Decomissioning Demolition	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
12-Decomissioning Demolition	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	225	0.37
12-Decomissioning Demolition	Welders	Electric	Average	1.00	9.00	46.0	0.45
12-Decomissioning Demolition	Welders	Diesel	Tier 4 Final	1.00	9.00	24.0	0.45
1-Subsurface Exploration	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
1-Subsurface Exploration	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
1-Subsurface Exploration	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
1-Subsurface Exploration	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
1-Subsurface Exploration	Bore/Drill Rigs	Diesel	Tier 4 Final	1.00	9.00	300	0.50
3-Site Preparation/ Rough Grading	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	2.00	0.48
3-Site Preparation/ Rough Grading	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	1.00	9.00	321	0.37
4-Foundations	Tractors/Loaders/Backh oes	Diesel	Tier 4 Final	2.00	9.00	107	0.37
4-Foundations	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	10.0	0.48
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
4-Foundations	Excavators	Diesel	Tier 4 Final	1.00	9.00	346	0.38

4-Foundations	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
4-Foundations	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
4-Foundations	Rubber Tired Dozers	Diesel	Tier 4 Final	1.00	9.00	170	0.40
10-Commissioning / Startup and Testing	Welders	Electric	Average	2.00	9.00	46.0	0.45
10-Commissioning / Startup and Testing	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
10-Commissioning / Startup and Testing	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
10-Commissioning / Startup and Testing	Aerial Lifts	Electric	Average	1.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Diesel	Tier 4 Final	1.00	9.00	122	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
6-Equipment , Structural Steel & Building Erection, Piping	Welders	Electric	Average	5.00	9.00	46.0	0.45
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	1.00	9.00	84.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Diesel	Tier 4 Final	2.00	9.00	67.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Aerial Lifts	Electric	Average	5.00	9.00	46.0	0.31
6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48

6-Equipment , Structural Steel & Building Erection, Piping	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
6-Equipment , Structural Steel & Building Erection, Piping	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
6-Equipment , Structural Steel & Building Erection, Piping	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
7-Electrical & Instrumentation	Cranes	Diesel	Tier 4 Final	2.00	9.00	275	0.29
7-Electrical & Instrumentation	Forklifts	Electric	Average	1.00	9.00	82.0	0.20
7-Electrical & Instrumentation	Welders	Electric	Average	5.00	9.00	46.0	0.45
7-Electrical & Instrumentation	Aerial Lifts	Electric	Average	4.00	9.00	46.0	0.31
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	1.00	9.00	49.0	0.48
7-Electrical & Instrumentation	Air Compressors	Diesel	Tier 4 Final	2.00	9.00	10.0	0.48
7-Electrical & Instrumentation	Off-Highway Trucks	Diesel	Tier 4 Final	1.00	9.00	500	0.38
9-Painting/Insulation	Generator Sets	Diesel	Tier 4 Final	1.00	9.00	49.0	0.74
5-Trenching/Undergroun ds	Excavators	Diesel	Tier 4 Final	1.00	9.00	45.0	0.38
5-Trenching/Undergroun ds	Pumps	Diesel	Tier 4 Final	4.00	9.00	11.0	0.74

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix				
73 / 87								

1-Subsurface Exploration	-	-	-	-
1-Subsurface Exploration	Worker	28.0	10.0	LDA,LDT1,LDT2
1-Subsurface Exploration	Vendor	8.00	10.0	HHDT,MHDT
1-Subsurface Exploration	Hauling	13.0	296	HHDT
1-Subsurface Exploration	Onsite truck	-	-	HHDT
3-Site Preparation/ Rough Grading	-	-	-	—
3-Site Preparation/ Rough Grading	Worker	30.0	10.0	LDA,LDT1,LDT2
3-Site Preparation/ Rough Grading	Vendor	10.0	10.0	HHDT,MHDT
3-Site Preparation/ Rough Grading	Hauling	8.00	296	HHDT
3-Site Preparation/ Rough Grading	Onsite truck	—	—	HHDT
4-Foundations	—	—	—	—
4-Foundations	Worker	68.0	10.0	LDA,LDT1,LDT2
4-Foundations	Vendor	16.0	10.0	HHDT,MHDT
4-Foundations	Hauling	25.0	296	HHDT
4-Foundations	Onsite truck	—	—	ННОТ
5-Trenching/Undergrounds	—	—	—	—
5-Trenching/Undergrounds	Worker	46.0	10.0	LDA,LDT1,LDT2
5-Trenching/Undergrounds	Vendor	2.00	10.0	HHDT,MHDT
5-Trenching/Undergrounds	Hauling	16.0	296	ННОТ
5-Trenching/Undergrounds	Onsite truck	—	—	ННОТ
6-Equipment , Structural Steel & Building Erection, Piping	—			_
6-Equipment , Structural Steel & Building Erection, Piping	Worker	78.0	10.0	LDA,LDT1,LDT2
6-Equipment , Structural Steel & Building Erection, Piping	Vendor	22.0	10.0	HHDT,MHDT
6-Equipment , Structural Steel & Building Erection, Piping	Hauling	0.00	20.0	HHDT

6-Equipment , Structural Steel & Building Erection, Piping	Onsite truck	-	-	HHDT
7-Electrical & Instrumentation	—	_	_	_
7-Electrical & Instrumentation	Worker	36.0	10.0	LDA,LDT1,LDT2
7-Electrical & Instrumentation	Vendor	16.0	10.0	HHDT,MHDT
7-Electrical & Instrumentation	Hauling	0.00	20.0	HHDT
7-Electrical & Instrumentation	Onsite truck	_	_	HHDT
2-Existing Project Site Demo	—	_	_	_
2-Existing Project Site Demo	Worker	22.0	10.0	LDA,LDT1,LDT2
2-Existing Project Site Demo	Vendor	8.00	10.0	HHDT,MHDT
2-Existing Project Site Demo	Hauling	47.5	20.0	HHDT
2-Existing Project Site Demo	Onsite truck	_	_	ННДТ
8-Paving	—	_	_	—
8-Paving	Worker	22.0	10.0	LDA,LDT1,LDT2
8-Paving	Vendor	_	10.0	HHDT,MHDT
8-Paving	Hauling	0.00	20.0	ННДТ
8-Paving	Onsite truck	_	_	ННДТ
12-Decomissioning Demolition	—	_	_	_
12-Decomissioning Demolition	Worker	28.0	10.0	LDA,LDT1,LDT2
12-Decomissioning Demolition	Vendor	18.0	10.0	HHDT,MHDT
12-Decomissioning Demolition	Hauling	3.37	20.0	ННДТ
12-Decomissioning Demolition	Onsite truck	_	_	ННДТ
10-Commissioning / Startup and Testing	_	-	-	-
10-Commissioning / Startup and Testing	Worker	28.0	10.0	LDA,LDT1,LDT2
10-Commissioning / Startup and Testing	Vendor	12.0	10.0	HHDT,MHDT

10-Commissioning / Startup and Testing	Hauling	0.00	20.0	HHDT
10-Commissioning / Startup and Testing	Onsite truck			HHDT
9-Painting/Insulation	_	—	_	_
9-Painting/Insulation	Worker	4.00	10.0	LDA,LDT1,LDT2
9-Painting/Insulation	Vendor	—	10.0	HHDT,MHDT
9-Painting/Insulation	Hauling	0.00	20.0	HHDT
9-Painting/Insulation	Onsite truck			HHDT

5.3.2. Mitigated

Phase Name	Тгір Туре	One-Way Trips per Day	Miles per Trip	Vehicle Mix
1-Subsurface Exploration	—	-	-	_
1-Subsurface Exploration	Worker	28.0	10.0	LDA,LDT1,LDT2
1-Subsurface Exploration	Vendor	8.00	10.0	HHDT,MHDT
1-Subsurface Exploration	Hauling	13.0	296	HHDT
1-Subsurface Exploration	Onsite truck	_	_	HHDT
3-Site Preparation/ Rough Grading	—	_	_	—
3-Site Preparation/ Rough Grading	Worker	30.0	10.0	LDA,LDT1,LDT2
3-Site Preparation/ Rough Grading	Vendor	10.0	10.0	HHDT,MHDT
3-Site Preparation/ Rough Grading	Hauling	8.00	296	HHDT
3-Site Preparation/ Rough Grading	Onsite truck	_	_	HHDT
4-Foundations	-	_	_	_
4-Foundations	Worker	68.0	10.0	LDA,LDT1,LDT2
4-Foundations	Vendor	16.0	10.0	HHDT,MHDT
4-Foundations	Hauling	25.0	296	HHDT
4-Foundations	Onsite truck	_	_	HHDT
5-Trenching/Undergrounds	—	_	_	—

5-Trenching/Undergrounds	Worker	46.0	10.0	LDA,LDT1,LDT2
5-Trenching/Undergrounds	Vendor	2.00	10.0	HHDT,MHDT
5-Trenching/Undergrounds	Hauling	16.0	296	HHDT
5-Trenching/Undergrounds	Onsite truck	_	_	HHDT
6-Equipment , Structural Steel & Building Erection, Piping		-	-	-
6-Equipment , Structural Steel & Building Erection, Piping	Worker	78.0	10.0	LDA,LDT1,LDT2
6-Equipment , Structural Steel & Building Erection, Piping	Vendor	22.0	10.0	HHDT,MHDT
6-Equipment , Structural Steel & Building Erection, Piping	Hauling	0.00	20.0	ННОТ
6-Equipment , Structural Steel & Building Erection, Piping	Onsite truck			ННДТ
7-Electrical & Instrumentation	—	-	_	_
7-Electrical & Instrumentation	Worker	36.0	10.0	LDA,LDT1,LDT2
7-Electrical & Instrumentation	Vendor	16.0	10.0	HHDT,MHDT
7-Electrical & Instrumentation	Hauling	0.00	20.0	HHDT
7-Electrical & Instrumentation	Onsite truck	_	—	HHDT
2-Existing Project Site Demo	—	-	_	_
2-Existing Project Site Demo	Worker	22.0	10.0	LDA,LDT1,LDT2
2-Existing Project Site Demo	Vendor	8.00	10.0	HHDT,MHDT
2-Existing Project Site Demo	Hauling	47.5	20.0	HHDT
2-Existing Project Site Demo	Onsite truck	_	_	HHDT
8-Paving	_	_	_	-
8-Paving	Worker	22.0	10.0	LDA,LDT1,LDT2
8-Paving	Vendor	_	10.0	HHDT,MHDT
8-Paving	Hauling	0.00	20.0	HHDT
8-Paving	Onsite truck	_	_	ННДТ

12-Decomissioning Demolition				_
12-Decomissioning Demolition	Worker	28.0	10.0	LDA,LDT1,LDT2
12-Decomissioning Demolition	Vendor	18.0	10.0	HHDT,MHDT
12-Decomissioning Demolition	Hauling	3.37	20.0	HHDT
12-Decomissioning Demolition	Onsite truck	_	_	HHDT
10-Commissioning / Startup and Testing	—	—	_	—
10-Commissioning / Startup and Testing	Worker	28.0	10.0	LDA,LDT1,LDT2
10-Commissioning / Startup and Testing	Vendor	12.0	10.0	HHDT,MHDT
10-Commissioning / Startup and Testing	Hauling	0.00	20.0	HHDT
10-Commissioning / Startup and Testing	Onsite truck	—	_	HHDT
9-Painting/Insulation	_	_	—	_
9-Painting/Insulation	Worker	4.00	10.0	LDA,LDT1,LDT2
9-Painting/Insulation	Vendor	—	10.0	HHDT,MHDT
9-Painting/Insulation	Hauling	0.00	20.0	HHDT
9-Painting/Insulation	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
9-Painting/Insulation	0.00	0.00	34,524	11,508	20,626

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)	Acres Graded (acres)	Material Demolished (Ton of Debris)	Acres Paved (acres)
2-Existing Project Site Demo	0.00	0.00	0.00	2,092	—
12-Decomissioning Demolition	0.00	0.00	0.00	19,000	—
1-Subsurface Exploration	—	500	0.00	0.00	—
3-Site Preparation/ Rough Grading	-	1,500	26.0	0.00	
8-Paving	0.00	0.00	0.00	0.00	7.89
5-Trenching/Undergrounds	_	10,000	0.00	0.00	—

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	2	61%	61%
Water Demolished Area	2	36%	36%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
General Heavy Industry	0.00	0%
General Heavy Industry	0.00	0%
General Heavy Industry	0.00	0%
General Heavy Industry	0.00	0%
General Office Building	0.00	0%
Other Asphalt Surfaces	7.89	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2029	1,393	532	0.03	< 0.005
2030	2,581	532	0.03	< 0.005
2032	345	532	0.03	< 0.005
2031	1,671	532	0.03	< 0.005

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres		Final Acres
5.18.1.2. Mitigated				
Vegetation Land Use Type	Vegetation Soil Type	Initial Acres		Final Acres
5.18.1. Biomass Cover Type				
5.18.1.1. Unmitigated				
Biomass Cover Type	Initial Acres		Final Acres	
5.18.1.2. Mitigated				

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
5.18.2.2. Mitigated			

Тгее Туре	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	12.5	annual days of extreme heat
Extreme Precipitation	5.45	annual days with precipitation above 20 mm
Sea Level Rise	0.00	meters of inundation depth
Wildfire	15.3	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider different increments of sea level rise coupled with extreme storm events. Users may select from four model simulations to view the range in potential inundation depth for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 50 meters (m) by 50 m, or about 164 fet (ft) by 164 ft.

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	0	0	N/A
Wildfire	1	0	0	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	0	0	0	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	1	1	1	2
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	1	1	1	2
Wildfire	1	1	1	2
Flooding	N/A	N/A	N/A	N/A
Drought	N/A	N/A	N/A	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	1	1	1	2

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	<u> </u>
AQ-Ozone	26.8
AQ-PM	29.0
AQ-DPM	50.7
Drinking Water	65.5
Lead Risk Housing	78.7
Pesticides	97.0
Toxic Releases	17.6
Traffic	38.6
Effect Indicators	_
CleanUp Sites	83.5
Groundwater	89.6
Haz Waste Facilities/Generators	88.6
Impaired Water Bodies	58.7
Solid Waste	35.7
Sensitive Population	
Asthma	61.2
Cardio-vascular	27.2

Low Birth Weights	58.6
Socioeconomic Factor Indicators	_
Education	89.7
Housing	82.4
Linguistic	74.1
Poverty	77.2
Unemployment	60.6

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract		
Economic	—		
Above Poverty	22.12241755		
Employed	50.32721673		
Median HI	32.6318491		
Education			
Bachelor's or higher	25.84370589		
High school enrollment	3.387655588		
Preschool enrollment	66.45707686		
Transportation			
Auto Access	44.50147568		
Active commuting	49.108174		
Social			
2-parent households	84.48607725		
Voting	39.86911331		
Neighborhood			
Alcohol availability	27.4092134		

Park access	81.35506224
Retail density	61.9658668
Supermarket access	74.04080585
Тгее сапору	11.8311305
Housing	
Homeownership	29.911459
Housing habitability	29.33401771
Low-inc homeowner severe housing cost burden	8.648787373
Low-inc renter severe housing cost burden	67.81727191
Uncrowded housing	29.05171308
Health Outcomes	_
Insured adults	6.83947132
Arthritis	77.8
Asthma ER Admissions	39.8
High Blood Pressure	51.5
Cancer (excluding skin)	82.6
Asthma	23.6
Coronary Heart Disease	66.7
Chronic Obstructive Pulmonary Disease	37.6
Diagnosed Diabetes	54.0
Life Expectancy at Birth	33.7
Cognitively Disabled	33.5
Physically Disabled	36.0
Heart Attack ER Admissions	36.7
Mental Health Not Good	23.2
Chronic Kidney Disease	45.1
Obesity	25.8

Pedestrian Injuries	57.0
Physical Health Not Good	30.9
Stroke	64.5
Health Risk Behaviors	—
Binge Drinking	24.0
Current Smoker	23.0
No Leisure Time for Physical Activity	29.0
Climate Change Exposures	_
Wildfire Risk	10.2
SLR Inundation Area	0.0
Children	2.5
Elderly	92.1
English Speaking	15.1
Foreign-born	77.7
Outdoor Workers	4.1
Climate Change Adaptive Capacity	_
Impervious Surface Cover	35.5
Traffic Density	42.1
Traffic Access	23.0
Other Indices	
Hardship	70.5
Other Decision Support	
2016 Voting	40.0

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	83.0

Healthy Places Index Score for Project Location (b)	27.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	Yes
Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Project Specific
Construction: Off-Road Equipment	Project Specific
Construction: Trips and VMT	Project specific
Construction: Dust From Material Movement	Project specific

ATTACHMENT B – OPERATIONAL CRITERIA POLLUTANT AND TOXIC AIR CONTAMINANT EMISSIONS

Table B-1: Summary Criteria Pollutants Emissions

Table B-1a: Baseline Emissions (tpy)

Pollutant	Existing Gas Compressors	Emergency Generator Worker Vehicles		Total Baseline Emissions
ROC	0.47	0.0002	0.0022	0.48
NO _X	2.88	0.004	0.0004	2.89
PM ₁₀	0.44	0.0004	0.0074	0.45
SOx	0.03	0.00001	0.0000	0.03
CO	0.60	0.005	0.0045	0.61

Table B-1b: Project Emissions (tpy)

Pollutant	New Gas Compressors	Worker V		Total Project Emissions
ROC	5.50	0.14	0.0029	5.64
NO _X	5.50	0.14	0.0005	5.64
PM ₁₀	1.24	0.04	0.0162	1.29
SOx	0.08	0.002	0.0000	0.08
CO	22.00	0.56	0.0060	22.56

Table B-1c: Net Project Emissions (tpy)

Pollutant	Total Project Emissions	Emissions Emissions	
ROC	5.64	0.48	5.16
NO _X	5.64	2.89	2.75
PM ₁₀	1.29	0.45	0.84
SOx	0.08	0.03	0.06
СО	22.56	0.61	21.95

Notes:

Project emissions based on PTE for the 2 new natural gas compressor engines and standby generator Baseline emissions based on HAE for 2021-2022 for gas compressors and emergency generator Worker emissions based on 3 vehicles for baseline and 4 for project, calculated from EMFAC2021

Table B-2: Proposed Natural Gas Compressor Emissions Estimates

Table B-2a: Two Waukesha Compressors - Process Information

Source	Engine Rating (BHP)	HHV Heat Rate (BTU/BHP-hr)	Heat Input (mmBTU/hr)	Default HHV (BTU/cf)	Hourly Process Rate (cf/hr)	Annual Hours (PTE)	Annual Process Rate (mmcf/yr)	
Natural Gas Compressor #1	1,900	7,880	14.97	1,020	14,676	8,760	128.56	4SRB w/NSCR
Natural Gas Compressor #2	1,900	7,880	14.97	1,020	14,676	8,760	128.56	4SRB w/NSCR
Totals	3,800	—	29.94	—	29,352	_	257.12	_

Table B-2b: Two Waukesha Compressors - Criteria Pollutant Emissions

		Waukesha	Compressor 1	Waukesha Compressor 2		
Pollutant	BACT EF (lb/mmcf)	Annual Emissions (tpy)	Hourly Emissions (lb/hr)	Annual Emissions (tpy)	Hourly Emissions (lb/hr)	
ROC	42.8	2.75	0.63	2.75	0.63	
NO _X	42.8	2.75	0.63	2.75	0.63	
PM ₁₀	9.7	0.62	0.14	0.62	0.14	
SO _x	0.6	0.04	0.01	0.04	0.01	
СО	171.2	11.00	2.51	11.00	2.51	

Table B-2c: Summary of Compressor Emissions

Pollutant	BACT EF (g/BHP-hr)	BACT EF (lb/mmcf)	BACT Conc. (ppmv @15% O ₂) [gr/dscf PM ₁₀]	New Annual PTE (tpy)	New Hourly PTE (lb/hr)	BACT Reference
ROC	0.15	42.8	32.7	5.50	1.26	Manf. Guarantee
NO _X	0.15	42.8	11.4	5.50	1.26	Manf. Guarantee
PM ₁₀	0.034	9.7	0.0022	1.24	0.28	AP-42 Table 3.2-3 4SRB
SO _X	0.002	0.6	0.10	0.08	0.02	AP-42 Table 3.2-3 4SRB
CO	0.6	171.2	74.9	22.00	5.02	Vendor data

Copyright ©2023, Yorke Engineering, LLC

Table B-3: Proposed Standby Generator Emission Estimates

Table B-3a: Waukesha Standby Generator - Process Information

Source	Engine Rating (BHP)	HHV Heat Rate (BTU/BHP-hr)	Heat Input (mmBTU/hr)	Default HHV (BTU/cf)	Hourly Process Rate (cf/hr)	Annual Hours	Annual Process Rate (mmcf/yr)	Process Description
Waukesha VHP-F3524GSI	840	8,903	7.48	1,020	7,333	1,000	7.33	4SRB w/NSCR
Totals	840	—	7.48	—	7,333	—	7.33	—

Table B-3b: Waukesha Standby Generator - Criteria Pollutant Emissions

Pollutant	BACT EF (g/BHP-hr)	BACT EF (lb/mmcf)	BACT Conc. (ppmv @15% O ₂) [gr/dscf PM ₁₀]	Standby Gen. Annual PTE (tons/yr)	Standby Gen. Hourly PTE (lb/hr)	BACT Reference
ROC	0.15	37.9	29.0	0.14	0.28	BACT (SCAQMD A/N 359876)
NO _x	0.15	37.9	10.1	0.14	0.28	BACT (SCAQMD A/N 359876)
PM ₁₀	0.038	9.7	0.0022	0.04	0.07	BACT (AP-42 Table 3.2-3 4SRB)
SO _x	0.002	0.6	0.10	0.00	0.00	BACT (AP-42 Table 3.2-3 4SRB)
СО	0.6	151.5	66.2	0.56	1.11	Vendor data

Copyright ©2023, Yorke Engineering, LLC

Table B-4: Summary of 2021-2022 Natural Gas Compressor Engine Emissions

Table B-4a: Historic Fuel Use

	HP1	HP1 HP2	
Year	Fuel use	Fuel use	Fuel use
	(MMscf)	(MMscf)	(MMscf)
2021	26.316	29.364	28.003
2022	32.076	28.276	35.150

Table B-4b: Emission Factors (lb/MMscf)

Pollutant	HP1	HP2	HP3
ROC	16.3	8.26	7.47
NO _X	55.5	58.8	77.5
PM ₁₀	10	10	9.7
SO _X	0.6	0.6	0.6
CO	25.6	14.1	1.38

Notes:

1. Emission factors NOx, ROC, CO obtained from source tests conducted May 11-12, 2021.

2. Emission factors PM10, SOx from AP-42 Table 3.2-3.

Table B-4c: 2021 Compressor Emissions (tpy)

Pollutant	HP1	HP2	HP3	Total
ROC	0.21	0.12	0.10	0.44
NO _X	0.73	0.86	1.09	2.68
PM ₁₀	0.13	0.15	0.14	0.41
SO _X	0.01	0.01	0.01	0.03
СО	0.34	0.21	0.02	0.56

Table B-4d: 2022 Compressor Emissions (tpy)

Pollutant	HP1	HP2	HP3	Total
ROC	0.26	0.12	0.13	0.51
NO _X	0.89	0.83	1.36	3.08
PM ₁₀	0.16	0.14	0.17	0.47
SO _X	0.01	0.01	0.01	0.03
CO	0.41	0.20	0.02	0.63

Table B-4e: 2021/2022 Historic Average Compressor Emissions

Pollutant	Compressor Engines Emissions (tpy)
ROC	0.47
NO _X	2.88
PM ₁₀	0.44
SO _X	0.03
CO	0.60

Notes:

Baseline emissions based on HAE for 2021-2022 for natural gas compressors From SoCalGas

Table B-5: Existing Emergency Generator Emission Estimates

Table B-5a: Cummins Emergency Generator - Process Information

Source	Engine Rating (BHP)	HHV Heat Rate (BTU/BHP-hr)	Heat Input (mmBTU/hr)	Default HHV (BTU/gal)		Actual Average Fuel use (gal/yr)	Average Annual Hours	Process Description
Cummins Model 4B3.9-G2	68	7,000	0.48	137,000	3.50	61.26	17.5	Diesel 4SLB
Totals	68	_	0.48	—	3.5		—	_

Table B-5b: Cummins Emergency Generator - Criteria Pollutant Emissions

			Cummins Model 4B3.9-G2		
Pollutant	BACT EF	BACT Reference	Annual	Hourly	
	(g/BHP-hr)		Emissions (tpy)	Emissions (lb/hr)	
ROC ¹	0.18	Tier 3	0.0002	0.03	
NO _X ¹	3.33	Tier 3	0.0044	0.50	
PM ₁₀	0.30	Tier 3	0.0004	0.04	
SO _x	0.2 lb/1000gal	SCAQMD AER	6.43E-06	7.36E-04	
СО	3.70	Tier 3	0.005	0.55	

Note: 1. Tier 3 EF for NOx + ROC = 3.5 g/BHp-hr; assume NOx is 95% and ROC is 5% per BAAQMD guidance:

https://www.baaqmd.gov/~/media/files/engineering/policy_and_procedures/engines/emissionfactorsfordieselengines.pdf

Table B-5c: Emergency Generator Fuel Use

Year	Diesel (gal/yr)
2021	103.39
2022	19.12

Table B-6: Worker Commute Exhaust Emission Estimates

Table B-6a: VCM Worker Commuting Mobile Source Emissions -Baseline (3 workers)

Criteria Pollutants	Daily	Annual
Criteria Poliutarits	(lbs/day)	(tons/yr)
ROC	0.0166	0.0022
NO _X	0.0030	0.0004
CO	0.0344	0.0045
SO _X	0.0000	0.0000
PM ₁₀	0.0569	0.0074
PM _{2.5}	0.0143	0.0019

Table B-6b:VCM Worker Commuting Mobile Source Emissions -Project (4 workers)

Criteria Pollutants	Daily	Annual
Criteria Poliutarits	(lbs/day)	(tons/yr)
ROC	0.0221	0.0029
NO _X	0.0040	0.0005
СО	0.0458	0.0060
SO _X	0.0000	0.0000
PM ₁₀	0.0759	0.0099
PM _{2.5}	0.0191	0.0025

Table B-6c: VCM Worker Commuting Mobile Source Emissions -Project Increase (from 3 to 4 workers)

Criteria Pollutants	Daily	Annual
Criteria Poliutants	(lbs/day)	(tons/yr)
ROC	0.0055	0.0007
NO _X	0.0010	0.0001
CO	0.0115	0.0015
SO _X	0.0000	0.0000
PM ₁₀	0.0190	0.0025
PM _{2.5}	0.0048	0.0006

Sources: EMFAC2021, EPA 2011

Notes:

Aggregated LDA, LDT1, LDT2 mix for 2031; gasoline fuel

PM₁₀ & PM_{2.5} include engine exhaust, tire & brake wear, and fugitive road dust

Baseline assumes 3 workers in 3 vehicles

Daily VMT = 192 miles/day (6 trips x 32 miles one-way in Ventura County)

Sources: EMFAC2021, EPA 2011

Notes:

Aggregated LDA, LDT1, LDT2 mix for 2031; gasoline fuel

PM10 & PM25 include engine exhaust, tire & brake wear, and fugitive road dust

Project assumes 4 workers in 4 vehicles

Daily VMT = 256 miles/day (8 trips x 32 miles one-way in Ventura County)

Table B-7: Worker Commute Fugitive Dust Emission Estimates

Copyright ©2023, Yorke Engineering, LLC

Table B-7a: Road and Vehicle Data

	Vehicle	Weight	Acti	vity	Usage		
All Roads Travelled	Category	Class	Daily	Annual	Paved	Unpaved	
	category	Tons	VMT	VMT	%	%	
Phase 1							
Passenger Cars/Smaller SUVs	LDA	2	122	31,782	100%	0%	
Standard-Duty Pickup Trucks/Midsize SUVs	LDT1	3	9	2,404	100%	0%	
Heavy-Duty Pickup Trucks/Larger SUVs	LDT2	4	61	15,734	100%	0%	
Work/Trade Trucks	MDT	5			100%	0%	
Light Heavy-Duty Trucks 1	LHDT1	8			100%	0%	
Light Heavy-Duty Trucks 2	LHDT2	10			100%	0%	
Medium Heavy-Duty Trucks	MHDT	15			100%	0%	
Heavy Heavy-Duty Trucks	HHDT	30			100%	0%	

Table B-7b: Paved Road Dust Emission Estimates

	Vehicle	Activity		Required Variables					Uncontrolled		Controlled Emissions					
Paved Road Dust	Category	Daily	Annual	EET	Moisture (M)	Silt Load (sL)	Weight (W)	Speed (S)	Precip (P)	PM10	PM _{2.5}	Control	PM10	PM _{2.5}	PM10	PM _{2.5}
	category	VMT	VMT	code	percent	g/m²	tons	mph	days/yr	lbs/VMT	lbs/VMT	%	lbs/day	lbs/day	lbs/yr	lbs/yr
Phase 1																
Passenger Cars/Smaller SUVs	LDA	122	31,782	G	-	0.032	2	-	40	0.00019	0.00005	-	0.02	0.01	6.0	1.5
Standard-Duty Pickup Trucks/Midsize SUVs	LDT1	9	2,404	G	-	0.032	3	-	40	0.00029	0.00007	-	0.00	0.00	0.7	0.2
Heavy-Duty Pickup Trucks/Larger SUVs	LDT2	61	15,734	G	-	0.032	4	-	40	0.00039	0.00010	-	0.02	0.01	6.0	1.5
Work/Trade Trucks	MDT	-	-	G	-	0.032	5	-	40	0.00050	0.00012	-	-	-	-	-
Light Heavy-Duty Trucks 1	LHDT1	-	-	G	-	0.032	8	-	40	0.00080	0.00020	-	-	-	-	-
Light Heavy-Duty Trucks 2	LHDT2	-	-	G	-	0.032	10	-	40	0.00100	0.00025	-	-	-	-	-
Medium Heavy-Duty Trucks	MHDT	-	-	G	-	0.032	15	-	40	0.00152	0.00037	-	-	-	-	-
Heavy Heavy-Duty Trucks	HHDT	-	-	G	-	0.032	30	-	40	0.00308	0.00076	-	-	-	-	-

Table B-7b: Unpaved Road Dust Emission Estimates

	Vehicle	Acti	vity		Required Variables					Uncontrolled		Controlled Emissions				
Unpaved Road Dust	Category	Daily	Annual	EET	Moisture (M)	Silt (s)	Weight (W)	Speed (S)	Precip (P)	PM ₁₀	PM _{2.5}	Control	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
	Category	VMT	VMT	code	percent	percent	tons	mph	days/yr	lbs/VMT	lbs/VMT	%	lbs/day	lbs/day	lbs/yr	lbs/yr
Phase 1																
Passenger Cars/Smaller SUVs	LDA	-	-	н	7	8	2	15	40	0.68388	0.06823	56.3%	-	-	-	-
Standard-Duty Pickup Trucks/Midsize SUVs	LDT1	-	-	н	7	8	3	15	40	0.77073	0.07692	56.3%	-	-	-	-
Heavy-Duty Pickup Trucks/Larger SUVs	LDT2	-	-	н	7	8	4	15	40	0.84269	0.08411	56.3%	-	-	-	-
Work/Trade Trucks	MDT	-	-	н	7	8	5	15	40	0.90529	0.09037	56.3%	-	-	-	-
Light Heavy-Duty Trucks 1	LHDT1	-	-	н	7	8	8	15	40	1.05963	0.10581	56.3%	-	-	-	-
Light Heavy-Duty Trucks 2	LHDT2	-	-	н	7	8	10	15	40	1.14514	0.11436	56.3%	-	-	-	-
Medium Heavy-Duty Trucks	MHDT	-	-	н	7	8	15	15	40	1.32431	0.13227	56.3%	-	-	-	-
Heavy Heavy-Duty Trucks	HHDT	-	-	н	7	8	30	15	40	1.71754	0.17160	56.3%	-	-	-	-
				•			·					FPM ₁₀	0.05	lbs/day	12.74	lbs/yr

FPM_{2.5} 0.01 lbs/day 3.13 lbs/yr

Copyright © 2023, Yorke Engineering, LLC

Table B-8: Proposed Natural Gas Compressor TAC Emissions

Table B-8a: Waukesha Compressors - Process Information

Source	Rating (HP)	Design Value (MMBtu/hr)	Annual Operating Hours	Description
COMPRESSOR Waukesha #1	1900	14.97	8,760	4SRB w NSCR
COMPRESSOR Waukesha #2	1900	14.97	8,760	4SRB w NSCR

Table B-8b: Waukesha Compressors - TAC Emissions

				Waukesha Compressor 1		Waukesha C	ompressor 2	
Pollutant	Cas No.	Emission Factor (lb/MMScf)	Emission Factor (lb/MMBtu)	Annual Emissions (Ib/yr)	Hourly Emissions (Ib/hr)	Annual Emissions (Ib/yr)	Hourly Emissions (Ib/hr)	
1,1,2,2-Tetrachloroethane	79345	6.07E-03	5.95E-06	7.80E-01	8.91E-05	7.80E-01	8.91E-05	
1,1,2-Trichloroethane	79005	3.67E-03	3.60E-06	4.72E-01	5.39E-05	4.72E-01	5.39E-05	
1,1-Dichloroethane	75343	2.71E-03	2.66E-06	3.48E-01	3.98E-05	3.48E-01	3.98E-05	
1,2 Dichloroethane	107062	2.71E-03	2.66E-06	3.48E-01	3.98E-05	3.48E-01	3.98E-05	
1,3-Butadiene	106990	1.59E-01	1.56E-04	2.04E+01	2.33E-03	2.04E+01	2.33E-03	
Acetaldehyde	75070	6.70E-01	6.57E-04	8.61E+01	9.83E-03	8.61E+01	9.83E-03	
Benzene	71432	3.79E-01	3.72E-04	4.87E+01	5.56E-03	4.87E+01	5.56E-03	
Carbon tetrachloride	56235	4.25E-03	4.17E-06	5.46E-01	6.24E-05	5.46E-01	6.24E-05	
Chlorobenzene	108907	3.10E-03	3.04E-06	3.99E-01	4.55E-05	3.99E-01	4.55E-05	
Chloroform	67663	3.29E-03	3.23E-06	4.23E-01	4.83E-05	4.23E-01	4.83E-05	
Ethyl benzene	100414	5.95E-03	5.83E-06	7.65E-01	8.73E-05	7.65E-01	8.73E-05	
Ethylene dibromide	106934	5.11E-03	5.01E-06	6.57E-01	7.50E-05	6.57E-01	7.50E-05	
Formaldehyde	50000	4.92E+00	4.82E-03	6.33E+02	7.22E-02	6.33E+02	7.22E-02	
Methanol	67561	7.34E-01	7.20E-04	9.44E+01	1.08E-02	9.44E+01	1.08E-02	
Methylene chloride	75092	9.89E-03	9.70E-06	1.27E+00	1.45E-04	1.27E+00	1.45E-04	
Naphthalene	91203	2.33E-02	2.28E-05	3.00E+00	3.42E-04	3.00E+00	3.42E-04	
Styrene	100425	2.86E-03	2.80E-06	3.68E-01	4.20E-05	3.68E-01	4.20E-05	
Toluene	108883	1.34E-01	1.31E-04	1.72E+01	1.97E-03	1.72E+01	1.97E-03	
Vinyl Chloride	75014	1.72E-03	1.69E-06	2.21E-01	2.52E-05	2.21E-01	2.52E-05	
Xylene	1330207	4.68E-02	4.59E-05	6.02E+00	6.87E-04	6.02E+00	6.87E-04	
2-Methylnaphthalene	91576	3.20E-04	3.14E-07	4.12E-02	4.70E-06	4.12E-02	4.70E-06	
Acenaphthylene	208968	1.42E-04	1.39E-07	1.82E-02	2.08E-06	1.82E-02	2.08E-06	
Acenaphthene	83329	2.40E-05	2.35E-08	3.08E-03	3.52E-07	3.08E-03	3.52E-07	
Anthracene	120127	9.99E-05	9.79E-08	1.28E-02	1.47E-06	1.28E-02	1.47E-06	
Benz(a)anthracene	56553	2.40E-05	2.35E-08	3.08E-03	3.52E-07	3.08E-03	3.52E-07	
Benzo(a)pyrene	50328	6.32E-06	6.20E-09	8.13E-04	9.28E-08	8.13E-04	9.28E-08	
Benzo(b)fluoranthene	205992	7.66E-06	7.51E-09	9.85E-04	1.12E-07	9.85E-04	1.12E-07	
Benzo(e)pyrene	192972	1.13E-05	1.11E-08	1.46E-03	1.66E-07	1.46E-03	1.66E-07	
Benzo(g,h,i)perylene	191242	6.52E-06	6.39E-09	8.38E-04	9.57E-08	8.38E-04	9.57E-08	
Benzo(k)fluoranthene	207089	7.66E-06	7.51E-09	9.85E-04	1.12E-07	9.85E-04	1.12E-07	
Chrysene	218019	2.59E-05	2.54E-08	3.33E-03	3.80E-07	3.33E-03	3.80E-07	
Dibenz(a,h)anthracene	53703	1.92E-06	1.88E-09	2.47E-04	2.81E-08	2.47E-04	2.81E-08	
Fluoranthene	206440	9.18E-05	9.00E-08	1.18E-02	1.35E-06	1.18E-02	1.35E-06	
Fluorene	86737	1.02E-04	9.98E-08	1.31E-02	1.49E-06	1.31E-02	1.49E-06	
Indeno(1,2,3-c,d)pyrene	193395	3.84E-06	3.76E-09	4.93E-04	5.63E-08	4.93E-04	5.63E-08	
Perylene	198550	1.53E-06	1.50E-09	1.97E-04	2.25E-08	1.97E-04	2.25E-08	
Phenanthrene	85018	4.79E-04	4.70E-07	6.16E-02	7.04E-06	6.16E-02	7.04E-06	
Pyrene	129000	9.39E-05	9.21E-08	1.21E-02	1.38E-06	1.21E-02	1.38E-06	

Source of emission factors:

AP-42 for speciated PAHs, SJVAPCD for all other TACs

Table B-9: Proposed Standby Generator TAC Emissions

Table B-9a: Waukesha Standby Generator - Process Information

Source	Rating (HP)	Design Value (MMBtu/hr)	Annual Operating Hours	Description	Comments
Waukesha Emergency Generator	840	7.48	1,000	4SRB w NSCR	

Table B-9b: Waukesha Standby Generator - TAC Emissions

		Emission Factor	Emission Factor	Waukesha Standby ICE			
Pollutant	Cas No.			Annual Emissions	Hourly Emissions		
		(lb/MMScf)	(lb/MMBtu)	(lb/yr)	(lb/hr)		
1,1,2,2-Tetrachloroethane	79345	6.07E-03	5.95E-06	4.45E-02	4.45E-05		
1,1,2-Trichloroethane	79005	3.67E-03	3.60E-06	2.69E-02	2.69E-05		
1,1-Dichloroethane	75343	2.71E-03	2.66E-06	1.99E-02	1.99E-05		
1,2 Dichloroethane	107062	2.71E-03	2.66E-06	1.99E-02	1.99E-05		
1,3-Butadiene	106990	1.59E-01	1.56E-04	1.17E+00	1.17E-03		
Acetaldehyde	75070	6.70E-01	6.57E-04	4.91E+00	4.91E-03		
Benzene	71432	3.79E-01	3.72E-04	2.78E+00	2.78E-03		
Carbon tetrachloride	56235	4.25E-03	4.17E-06	3.12E-02	3.12E-05		
Chlorobenzene	108907	3.10E-03	3.04E-06	2.27E-02	2.27E-05		
Chloroform	67663	3.29E-03	3.23E-06	2.41E-02	2.41E-05		
Ethyl benzene	100414	5.95E-03	5.83E-06	4.36E-02	4.36E-05		
Ethylene dibromide	106934	5.11E-03	5.01E-06	3.75E-02	3.75E-05		
Formaldehyde	50000	4.92E+00	4.82E-03	3.61E+01	3.61E-02		
Methanol	67561	7.34E-01	7.20E-04	5.38E+00	5.38E-03		
Methylene chloride	75092	9.89E-03	9.70E-06	7.25E-02	7.25E-05		
Naphthalene	91203	2.33E-02	2.28E-05	1.71E-01	1.71E-04		
Styrene	100425	2.86E-03	2.80E-06	2.10E-02	2.10E-05		
Toluene	108883	1.34E-01	1.31E-04	9.83E-01	9.83E-04		
Vinyl Chloride	75014	1.72E-03	1.69E-06	1.26E-02	1.26E-05		
Xylene	1330207	4.68E-02	4.59E-05	3.43E-01	3.43E-04		
2-Methylnaphthalene	91576	3.20E-04	3.14E-07	2.35E-03	2.35E-06		
Acenaphthylene	208968	1.42E-04	1.39E-07	1.04E-03	1.04E-06		
Acenaphthene	83329	2.40E-05	2.35E-08	1.76E-04	1.76E-07		
Anthracene	120127	9.99E-05	9.79E-08	7.32E-04	7.32E-07		
Benz(a)anthracene	56553	2.40E-05	2.35E-08	1.76E-04	1.76E-07		
Benzo(a)pyrene	50328	6.32E-06	6.20E-09	4.64E-05	4.64E-08		
Benzo(b)fluoranthene	205992	7.66E-06	7.51E-09	5.62E-05	5.62E-08		
Benzo(e)pyrene	192972	1.13E-05	1.11E-08	8.30E-05	8.30E-08		
Benzo(g,h,i)perylene	191242	6.52E-06	6.39E-09	4.78E-05	4.78E-08		
Benzo(k)fluoranthene	207089	7.66E-06	7.51E-09	5.62E-05	5.62E-08		
Chrysene	218019	2.59E-05	2.54E-08	1.90E-04	1.90E-07		
Dibenz(a,h)anthracene	53703	1.92E-06	1.88E-09	1.41E-05	1.41E-08		
Fluoranthene	206440	9.18E-05	9.00E-08	6.73E-04	6.73E-07		
Fluorene	86737	1.02E-04	9.98E-08	7.47E-04	7.47E-07		
Indeno(1,2,3-c,d)pyrene	193395	3.84E-06	3.76E-09	2.81E-05	2.81E-08		
Perylene	198550	1.53E-06	1.50E-09	1.12E-05	1.12E-08		
Phenanthrene	85018	4.79E-04	4.70E-07	3.52E-03	3.52E-06		
Pyrene	129000	9.39E-05	9.21E-08	6.89E-04	6.89E-07		

Source of emission factors:

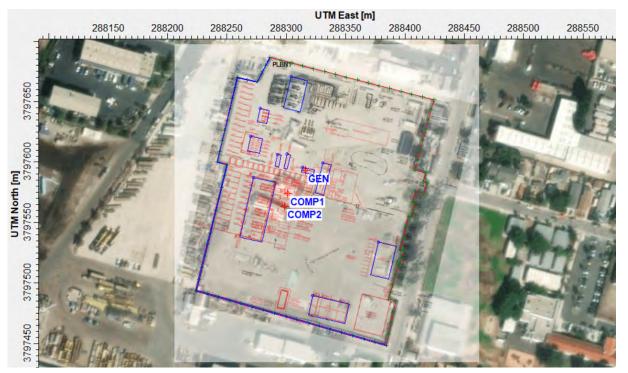
AP-42 for speciated PAHs, SJVAPCD for all other TACs

Table B-10: Total VCS Facility TAC Emissions

		Total	Project
Pollutant	Cas No.	Annual Emissions	Hourly Emissions
		(lb/yr)	(lb/hr)
1,1,2,2-Tetrachloroethane	79345	3.17E+00	4.01E-04
1,1,2-Trichloroethane	79005	1.91E+00	2.42E-04
1,1-Dichloroethane	75343	1.41E+00	1.79E-04
1,2 Dichloroethane	107062	1.41E+00	1.79E-04
1,3-Butadiene	106990	8.29E+01	1.05E-02
Acetaldehyde	75070	3.49E+02	4.42E-02
Benzene	71432	1.98E+02	2.50E-02
Carbon tetrachloride	56235	2.22E+00	2.81E-04
Chlorobenzene	108907	1.62E+00	2.05E-04
Chloroform	67663	1.72E+00	2.17E-04
Ethyl benzene	100414	3.10E+00	3.93E-04
Ethylene dibromide	106934	2.67E+00	3.37E-04
Formaldehyde	50000	2.57E+03	3.25E-01
Methanol	67561	3.83E+02	4.85E-02
Methylene chloride	75092	5.16E+00	6.53E-04
Naphthalene	91203	1.22E+01	1.54E-03
Styrene	100425	1.49E+00	1.89E-04
Toluene	108883	6.99E+01	8.85E-03
Vinyl Chloride	75014	8.97E-01	1.14E-04
Xylene	1330207	2.44E+01	3.09E-03
2-Methylnaphthalene	91576	1.67E-01	2.12E-05
Acenaphthylene	208968	7.40E-02	9.36E-06
Acenaphthene	83329	1.25E-02	1.58E-06
Anthracene	120127	5.21E-02	6.59E-06
Benz(a)anthracene	56553	1.25E-02	1.58E-06
Benzo(a)pyrene	50328	3.30E-03	4.18E-07
Benzo(b)fluoranthene	205992	4.00E-03	5.06E-07
Benzo(e)pyrene	192972	5.91E-03	7.48E-07
Benzo(g,h,i)perylene	191242	3.40E-03	4.30E-07
Benzo(k)fluoranthene	207089	4.00E-03	5.06E-07
Chrysene	218019	1.35E-02	1.71E-06
Dibenz(a,h)anthracene	53703	1.00E-03	1.27E-07
Fluoranthene	206440	4.79E-02	6.06E-06
Fluorene	86737	5.31E-02	6.72E-06
Indeno(1,2,3-c,d)pyrene	193395	2.00E-03	2.53E-07
Perylene	198550	7.98E-04	1.01E-07
Phenanthrene	85018	2.50E-01	3.17E-05
Pyrene	129000	4.90E-02	6.20E-06

Notes:

Project emissions based on PTE for the 2 new compressor engines and standby generator


ATTACHMENT C – OPERATIONS PM10 MODELING INPUT PARAMETERS AND RESULTS

Ventura Compressor Station Modernization Project Table C-1A Source Parameters and PM10 Emission Rates

Stack ID	D Description		Stack Diameter	Stack Velocity	Stack Temp	Stack Flow		Stack Diameter	Stack Velocity	Stack Temp	-	UTM y	PM Emission Rate	Stack configuration (fixed cap/flapper cap,
Stack ID	Description	Hs	Ds	Vs	Ts		Hs	Ds	Vs	Ts	NAD83 z11	NAD83 z11	reate	vertical/horizontal stack)
		(ft)	(ft)	(ft/s)	(°F)	(acfm)	(m)	(m)	(m/s)	(°K)	(m)	(m)	(lb/hr)	vertical/norizontal stack)
COMP1	Natural Gas-Fired RICE Driven Compressor	64.0	1.15	134.22	1098.0	8364.7	19.51	0.35	40.91	865.37	288,301.20	3,797,574.08	0.14	vertical, no cap
COMP2	Natural Gas-Fired RICE Driven Compressor	64.0	1.15	134.22	1098.0	8364.7	19.51	0.35	40.91	865.37	288,298.44	3,797,563.41	0.14	vertical, no cap
EM_ICE	Natural Gas-Fired Back-up Generator	21.5	1.15	67.94	1194.0	4234.0	6.55	0.35	20.71	918.7	288,316.20	3,797,593.27	0.07	vertical, no cap

Source Locations

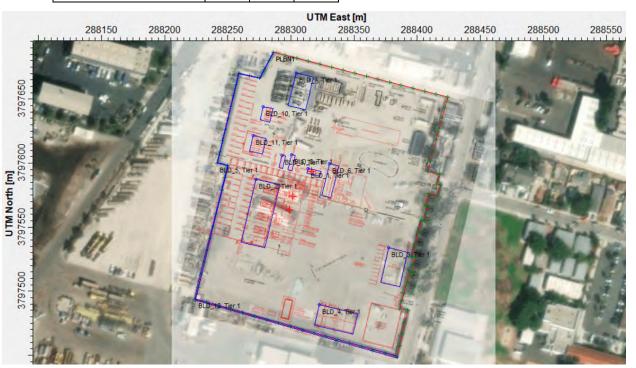

Ventura Compressor Station Modernization Project Table C-1A Source Parameters and PM10 Emission Rates

Table C-1B Building Parameters

Buildings

Building	Height (ft)	X-Length (ft)	Y-Length (ft)
New Compressor Building	52.5	63	166
New Warehouse Building	27.5	103	53
New Office Building	16.5	51	91
New Power Distribution Center (PDC)	20	24	84
New Generator Enclosure	18	34	13
Gas Cooler	12	34	41
Suction Gas Filter / Separator	16	26	36
Instrument Air Compressor Skid	10	9.5	33
Starting Air Compressor Skid	10	9.5	40
Old Compressor Building	32	47	86

Ventura Compressor Station Modernization Project Table C-2 AERMOD Dispersion Model Options/Assumptions

Parameter			Value		Comments
Model Version					
AERMOD Version	22112				
AERMET Version	22112				
AERMAP Version	18081				
Lakes Environmental Software; AERMOD View™ Version	11.2.0				
Control Pathway					
Regulatory Options	Default	×	Non-Default		
Output Type	Concentration	×	Dry Deposition		
	Total Deposition		Wet Deposition		
	Dry Depletion		Wet Depletion		
Depletion Options	Disable Dry Depletion		Disable Wet Depletion		
Pollutant	Other				
Averaging Time Options	1-Hour; Period				
Dispersion Coefficient	Rural	×	Urban		Rural is the default assumption.
	Elevated		X		
Terrain Height Options	Non-Default Regul	atory Op	tions		
	Flat		Flat & Elevated		
Receptor Elevations / Hill Heights	Run AERMOD usin (*.ROU)	g the AE	RMAP Receptor Ou	tput file	
Source Pathway					
Building Downwash	Include	×	Exclude		
Background Concentrations	Include		Exclude	×	This project does not consider background concentrations.
Source Groups	Each exhaust stack	is assigi	ned to its own sour	e group.	
Urban Groups	N/A				
Variable Emissions	N/A				

Ventura Compressor Station Modernization Project Table C-2 AERMOD Dispersion Model Options/Assumptions Value Parameter Comments Receptor Pathway Flagpole Receptors × Include Exclude All receptors set to ground-level. Grid Origin: Centroid of Sources Polygon Distance from Tier Spacing Tier Center (m) (m) Multi-Tier Receptor Grid ---1000 50 1 2000 100 2 Off-Site Worker: Receptor Nos. 84-113 Discrete Cartesian Receptors Residential: Receptor Nos. 37-83 Sensitive: Receptor Nos. 1-36 Conservative receptor spacing. Plant Boundary Receptor Spacing: 10 m Onsite gridded receptors are disabled. Meteorology Pathway Station: Onsite MET Station Meteorological Data Years: 2002-2003 Onsite Meteorological data. Base Elevation of Surface Station: 18 m Terrain Pathway NED GEOTIFF Digital Terrain Files. Resolution: 1-arcsecond (30 Data File USGS_NED_1_n35w120.tif meters). User-Defined AERMAP Domain Options × Not Specified Domain

Results Summary

C:\Lakes\AERMOD View\VCS PM10

PM10 Run

PM10 - Concentration - Source Group: ALL

Averaging Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	3.92291	ug/m^3	288233.50	3797531.65	20.32	0.00	353.21	11/28/2002, 24
ANNUAL		0.37244	ug/m^3	288252.35	3797485.74	19.41	0.00	353.21	
ANNUAL Y1		0.37244	ug/m^3	288252.35	3797485.74	19.41	0.00	353.21	

PM10 - Concentration - Source Group: COMP1

Averaging Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	1.15675	ug/m^3	288233.50	3797531.65	20.32	0.00	353.21	11/28/2002, 24
ANNUAL		0.11837	ug/m^3	288252.35	3797485.74	19.41	0.00	353.21	
ANNUAL Y1		0.11837	ug/m^3	288252.35	3797485.74	19.41	0.00	353.21	

PM10 - Concentration - Source Group: COMP2

Averaging Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	1.62806	ug/m^3	288233.50	3797531.65	20.32	0.00	353.21	11/28/2002, 24
ANNUAL		0.13987	ug/m^3	288252.35	3797485.74	19.41	0.00	353.21	
ANNUAL Y1		0.13987	ug/m^3	288252.35	3797485.74	19.41	0.00	353.21	

Project File: C:\Lakes\AERMOD View\VCS PM10\VCS PM10.isc

Results Summary

C:\Lakes\AERMOD View\VCS PM10

PM10 Run

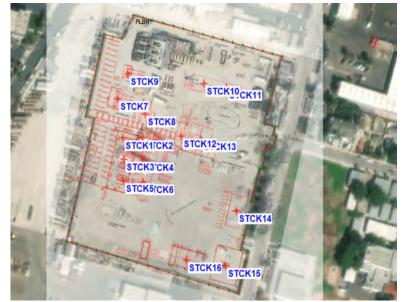
PM10 - Concentration - Source Group: GEN

Averaging Period	Rank	Peak	Units	X (m)	Y (m)	ZELEV (m)	ZFLAG (m)	ZHILL (m)	Peak Date, Start Hour
24-HR	1ST	1.15864	ug/m^3	288235.84	3797541.14	20.49	0.00	353.21	11/28/2002, 24
ANNUAL		0.14169	ug/m^3	288341.35	3797672.71	22.11	0.00	353.21	
ANNUAL Y1		0.14169	ug/m^3	288341.35	3797672.71	22.11	0.00	353.21	

Project File: C:\Lakes\AERMOD View\VCS PM10\VCS PM10.isc

ATTACHMENT D – CONSTRUCTION HRA INPUT PARAMETERS AND RESULTS

Ventura Compressor Station Modernization Project Table D-1 Source & Building Parameters


Stack ID	Source General Location Description	Stack Height	Stack Diameter	Stack Velocity	Stack Temp	UTM x	UTM y	Stack configuration
		(ft)	(ft)	(m/s)	(F)	(m)	(m)	(fixed cap/flapper cap, vertical/horizontal stack)
STCK1	New Compressor Building	7.4	0.34	43.16	899	288,281.18	3,797,636.55	vertical, no cap
STCK2	New Compressor Building	7.4	0.34	43.16	899	288,351.54	3,797,628.21	vertical, no cap
STCK3	New Compressor Building	7.4	0.34	43.16	899	288,372.60	3,797,624.78	vertical, no cap
STCK4	New Compressor Building	7.4	0.34	43.16	899	288,271.41	3,797,615.03	vertical, no cap
STCK5	New Compressor Building	7.4	0.34	43.16	899	288,297.10	3,797,602.24	vertical, no cap
STCK6	New Compressor Building	7.4	0.34	43.16	899	288,330.27	3,797,583.27	vertical, no cap
STCK7	Gas Cooler	7.4	0.34	43.16	899	288,348.89	3,797,580.76	vertical, no cap
STCK8	Air Compressor Skid	7.4	0.34	43.16	899	288,381.52	3,797,519.75	vertical, no cap
STCK9	Filter/Separator	7.4	0.34	43.16	899	288,371.65	3,797,472.79	vertical, no cap
STCK10	Deodorizing Unit	7.4	0.34	43.16	899	288,335.35	3,797,477.33	vertical, no cap
STCK11	Deodorizing Unit	7.4	0.34	43.16	899	288,276.39	3,797,581.72	vertical, no cap
STCK12	New Generator Enclosure	7.4	0.34	43.16	899	288,294.45	3,797,581.97	vertical, no cap
STCK13	Gravel Area	7.4	0.34	43.16	899	288,277.12	3,797,563.67	vertical, no cap
STCK14	New Office Building	7.4	0.34	43.16	899	288,295.18	3,797,563.06	vertical, no cap
STCK15	Detention Structure	7.4	0.34	43.16	899	288,276.76	3,797,545.25	vertical, no cap
STCK16	New Warehouse Building	7.4	0.34	43.16	899	288,294.93	3,797,544.40	vertical, no cap

Notes:

1. SBCAPCD Default Stack Parameters for ICEs for engine size 100-250 BHP.

2. Source locations are shown in the general vicinity of the proposed building to be constructed.

Source Locations

Comments

Ventura Compressor Station Modernization Project Table D-2 AERMOD Dispersion Model Options/Assumptions Parameter Value Model Version 22112 AERMOD Version 22112 AERMAP Version 18081 Lakes Environmental Software: AERMOD View™ Version 112.0

18081				
11.2.0				
Default	×	Non-Default		
Concentration	×	Dry Deposition		
Total Deposition		Wet Deposition		
Dry Depletion		Wet Depletion		
Disable Dry Depletion		Disable Wet Depletion		
Other				
1-Hour; Period				
Rural	×	Urban		Rural is the default assumption.
Elevated		×		
Non-Default Regul	atory Op	tions		
Flat		Flat & Elevated		
Run AERMOD usin (*.ROU)	g the AE	RMAP Receptor Out	tput file	
Include	×	Exclude		
Include		Exclude	×	This project does not consider background concentrations.
Each exhaust stack	is assigr	ed to its own sourc	e group.	
N/A				
N/A				
	11.2.0 Default Concentration Total Deposition Dry Depletion Disable Dry Depletion Other 1-Hour; Period Rural Elevated Non-Default Reguls Flat Run AERMOD usin (*.ROU) Include Include Each exhaust stack N/A	11.2.0 Default Concentration Total Deposition Dry Depletion Disable Dry Depletion Other 1-Hour; Period Rural Elevated Non-Default Regulatory Opt Flat Run AERMOD using the AE (*.ROU) Include Inc	11.2.0 Default Image: Second state state state state is assigned to its own source state state is assigned to its own source N/A Default Image: Second state state state state state state state state state is assigned to its own source N/A 11.2.0 Image: Second state	11.2.0 Default Image: Non-Default Concentration Image: Dry Deposition Total Deposition Image: Wet Deposition Total Deposition Image: Wet Depletion Dry Depletion Image: Wet Depletion Disable Dry Image: Disable Wet Depletion Depletion Image: Disable Wet Depletion Depletion Image: Disable Wet Depletion Other Image: Depletion 1-Hour; Period Image: Depletion Rural Image: Disable Vet Depletion 1-Hour; Period Image: Depletion Rural Image: Disable Vet Depletion Flat Image: Disable Vet Depletion Non-Default Regulatory Options Image: Depletion Flat Image: Flat & Elevated Image: Depletion Run AERMOD using the AERMAP Receptor Output file (*:ROU) Image: Depletion Include Image: Exclude Image: Depletion Include Image: Depletion Ima

Ventura Compressor Station Modernization Proje Table D-2 AERMOD Dispersion Model Options/A					
Parameter			Value		Comments
Receptor Pathway					
Flagpole Receptors	Include		Exclude	×	All receptors set to ground-level.
	Grid Origin: Centr	oid of So	ources Polygon		
	Tier		Distance from Center (m)	Tier Spacing (m)	
Multi-Tier Receptor Grid	1	1 1		50	
	2		2000	100	
Discrete Cartesian Receptors	Off-Site Worker: R Residential: Recep Sensitive: Recepto	tor Nos.	37-83		
Plant Boundary	Receptor Spacing:	10 m			Conservative receptor spacing. Onsite gridded receptors are disabled.
Meteorology Pathway					
Meteorological Data	Station: Onsite MET Station Years: 2002-2003 Base Elevation of Surface Station: 18 m				Onsite Meteorological data.
Terrain Pathway					
Data File	USGS_NED_1_n35v	v120.tif	-		NED GEOTIFF Digital Terrain Files. Resolution: 1-arcsecond (30 meters).
AERMAP Domain Options	Not Specified		User-Defined Domain	X	

Ventura Compressor Station Modernization Project Table D-3 HARP2 Model Options/Assumptions

Parameter	Value Comments										
Model Version	•										
HARP Version	22118										
HARP Health Table Version	22343										
Multi-Pathway											
Inhalation	Res	×	Work	x							
Soil	Res	×	Work	x							
Dermal	Res	×	Work	×	"Warm" climate.						
Mother's Milk	Res	×	Work								
Drinking Water	Res		Work								
Fish	Res		Work								
Homegrown Produce	Res	×	Work		Default for "Households that Garden".						
Beef/Dairy	Res		Work								
Pigs, Chickens, and/or Eggs	Res		Work								
Deposition Velocity	0.02 m/s				Particulate matter from all sources is < 2.5 µg/m3						
Residential Cancer Risk Assumptions											
Exposure Duration	30 years										
Fraction of Time at Home	3 rd Trimester to 16 16 years to 30 year				There is a school within the cancer risk ZOI.						
Inhalation Rate Basis	RMP										
Analysis Option	RMP Using the Der	rived Method									
Worker Cancer Risk Assumptions	•										
Exposure Duration	25 years										
Analysis Option	OEHHA Derived M	ethod									
Inhalation Rate Basis	8-hr Breathing Rate										
Worker Adjustment Factor	4.2	Worker Adjustment Factor = $(24 / 8) \times (7 / 5) = 4.2$.									
esidential and Worker Non-Cancer Risk Assumptions											
Analysis Option	OEHHA Derived Method										
Inhalation Rate Basis	Residential: Long- Off-Site Worker: 8		s, Moderate Intensi	ty							

Cancer Risk by Source for All Pollutants Combined at MEIR, MEIW, and Non-Residential Sensitive Receptor - VCS Construction HRA

			osed Individual t (MEIR)	Non-Residen	tial Sensitive	Maximally Exposed Individual Worker (MEIW)		
	Sources	receptor # 49 UTM Easting (m) UTM Northing (m)		receptor #	24	receptor #	107	
	0001000			UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		288,236.76	3,797,278.72	288,435.04	3,797,572.12	288,279.18	3,797,457.30	
		3-Year Cancer	Contribution	3-Year Cancer	Contribution	3-Year Cancer	Contribution	
		Risk	(%)	Risk	(%)	Risk	(%)	
ſ	ALL	2.30E-06	100%	1.49E-06	100%	3.14E-07	100%	

Maximum Cancer Risk by Pollutant at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Construction HRA

			oosed Individual nt (MEIR)	Non-Resider	ntial Sensitive		oosed Individual r (MEIW)
Pollutant CAS	Pollutant	receptor #	49	receptor #	24	receptor #	
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,236.76	3,797,278.72	288,435.04	3,797,572.12	288,279.18	3,797,457.30
		3-Year Cancer	Contribution (%)	3-Year Cancer	Contribution (%)	3-Year Cancer	Contribution (%)
		Risk	Contribution (%)	Risk	Contribution (%)	Risk	Contribution (%)
-	ALL	2.30E-06	100%	1.49E-06	100%	3.14E-07	100.00%
9901	DieselExhPM	2.30E-06	100.00%	1.49E-06	100.00%	3.14E-07	100.00%

3/29/2023

Copyright © 2023, Yorke Engineering, LLC

Chronic Hazard Index by Source for All Pollutants Combined at MEIR, MEIW, and Non-Residential Sensitive Receptor - VCS Construction HRA **Maximally Exposed Individual** Maximally Exposed Individual **Non-Residential Sensitive Resident (MEIR)** Worker (MEIW) receptor # 49 receptor # 24 receptor # 107 Sources UTM Easting (m) UTM Northing (m) UTM Easting (m) UTM Northing (m) UTM Easting (m) UTM Northing (m) 288,236.76 3,797,278.72 288,435.04 3,797,572.12 288,279.18 3,797,457.30 **Chronic Hazard Chronic Hazard Chronic Hazard Contribution (%) Contribution (%) Contribution (%)** Index Index Index 1.24E-03 100% 8.05E-04 100% 1.93E-03 100% ALL

Note:

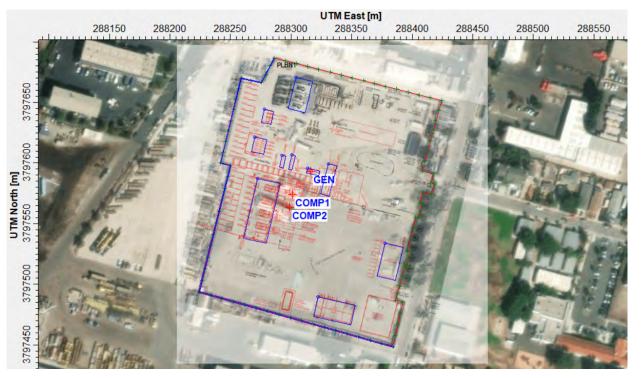
Individual sources are not additive because risk is based on specific target organs, which may be different per source

Maximum Chronic Hazard Index by Pollutant at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Construction HRA

			osed Individual t (MEIR)	Non-Residen	tial Sensitive		osed Individual (MEIW)
Pollutant CAS	Pollutant	receptor #	49	receptor #	24	receptor #	107
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,236.76	3,797,278.72	288,435.04	3,797,572.12	288,279.18	3,797,457.30
		Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)
		Index	Contribution (78)	Index	Contribution (78)	Index	contribution (78)
-	ALL	1.24E-03	100%	8.05E-04	100%	1.93E-03	100%
9901	DieselExhPM	1.24E-03	100.00%	8.05E-04	100.00%	1.93E-03	100.00%

Note:

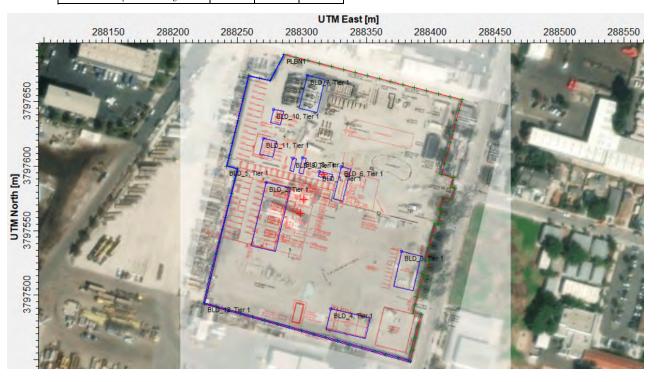
Individual pollutants are not additive because risk is based on specific target organs, which may be different per pollutant.


ATTACHMENT E – OPERATIONS HRA INPUT PARAMETERS AND RESULTS

Ventura Compressor Station Modernization Project Table E-1A Source Parameters

Stack ID	Description	Stack Height	Stack Diameter	Stack Velocity	Stack Temp	Stack Flow	Stack Height	Stack Diameter	Stack Velocity	Stack Temp	UTM x	(fixed can/flanne	
Stack ID	Description	H _S	Ds	Vs	Ts		Hs	Ds	Vs	Ts	NAD83 z11	NAD83 z11	(fixed cap/flapper cap, vertical/horizontal stack)
		(ft)	(ft)	(ft/s)	(°F)	(acfm)	(m)	(m)	(m/s)	(°K)	(m)	(m)	vertical/norizontal stack)
COMP1	Natural Gas-Fired RICE Driven Compressor	64.0	1.15	134.22	1098.0	8364.7	19.51	0.35	40.91	865.37	288,301.20	3,797,574.08	vertical, no cap
COMP2	Natural Gas-Fired RICE Driven Compressor	64.0	1.15	134.22	1098.0	8364.7	19.51	0.35	40.91	865.37	288,298.44	3,797,563.41	vertical, no cap
EM_ICE	Natural Gas-Fired Standby ICE	21.5	1.15	67.94	1194.0	4234.0	6.55	0.35	20.71	918.7	288,316.20	3,797,593.27	vertical, no cap

Source Locations



Ventura Compressor Station Modernization Project Table E-1A Source Parameters

Table E-1B Building Parameters

Buildings

Building	Height (ft)	X-Length (ft)	Y-Length (ft)
New Compressor Building	52.5	63	166
New Warehouse Building	27.5	103	53
New Office Building	16.5	51	91
New Power Distribution Center (PDC)	20	24	84
New Generator Enclosure	18	34	13
Gas Cooler	12	34	41
Suction Gas Filter / Separator	16	26	36
Instrument Air Compressor Skid	10	9.5	33
Starting Air Compressor Skid	10	9.5	40
Old Compressor Building	32	47	86

Ventura Compressor Station Modernization Project Table E-2 AERMOD Dispersion Model Options/Assumptions

		Value		Comments
22112				
22112				
18081				
11.2.0				
Default	×	Non-Default		
Concentration	×	Dry Deposition		
Total Deposition		Wet Deposition		
Dry Depletion		Wet Depletion		
Disable Dry Depletion		Disable Wet Depletion		
Other				
1-Hour; Period				
Rural	×	Urban		Rural is the default assumption.
Elevated		×		
Non-Default Regula	atory Op	tions		
Flat		Flat & Elevated		
Run AERMOD usin (*.ROU)	g the AE	RMAP Receptor Ou	tput file	
Include	×	Exclude		
Include Exclude X			×	This project does not consider background concentrations.
Each exhaust stack	is assig	ned to its own sour	e group.	
N/A				
N/A				
	22112 18081 11.2.0 Default Concentration Total Deposition Dry Depletion Disable Dry Depletion Other 1-Hour; Period Rural Elevated Non-Default Regul Flat Run AERMOD usin (*.ROU) Include Include Each exhaust stack N/A	22112 18081 11.2.0 Default Concentration Concentration Dry Depletion Dry Depletion Disable Dry Depletion Other 1-Hour; Period Rural Elevated Non-Default Regulatory Op Flat Run AERMOD using the AE (*.ROU) Include In	22112 22112 11.2.0 Default X Non-Default Concentration X Dry Deposition Total Deposition Dry Depletion Disable Dry Disable Dry Disable Dry Disable Dry Disable Vet Depletion Other 1-Hour; Period Rural X Ilevated X Non-Default Regulatory Options Flat Flat & Elevated Run AERMOD using the AERMAP Receptor Outors Include Exclude Include Exclude Include Non-Default to its own source N/A	22112 22112 12.20 Bo81 11.2.0 Default X Non-Default Concentration X Dry Deposition Image: Concentration Total Deposition Vet Deposition Total Deposition Vet Deposition Dry Depletion Vet Depletion Disable Dry Disable Wet Depletion Disable Wet Depletion Image: Concentration Other Disable Wet 1-Hour; Period Image: Concentration Rural X Urban Elevated X Non-Default Regulatory Options Image: Concentration Flat Image: Concentration Include Image: Concentration Include Image: Concentration Include Exclude Image: Concentration Include Image: Concentration Image: Concentration Include Image: Concentration Image: Concentration Include Image: Concentration Image: Concentration Include Image: Co

_					-
Parameter			Value		Comments
Receptor Pathway			•		
Flagpole Receptors	Include	Include		×	All receptors set to ground-level.
	Grid Origin: Centro	oid of So	ources Polygon		
	Tier		Distance from Center (m)	Tier Spacing (m)	
Multi-Tier Receptor Grid	1		1000	50	
	2		2000	100	
Discrete Cartesian Receptors	Off-Site Worker: R Residential: Recep Sensitive: Recepto	tor Nos.	37-83		
Plant Boundary	Receptor Spacing:	10 m			Conservative receptor spacing.
,					Onsite gridded receptors are disabled.
Meteorology Pathway					
Meteorological Data	Station: Onsite ME Years: 2002-2003 Base Elevation of S				Onsite Meteorological data.
Terrain Pathway					·
Data File	USGS_NED_1_n35v	v120.tif			NED GEOTIFF Digital Terrain Files. Resolution: 1-arcsecond (30 meters).
AERMAP Domain Options	Not Specified	Not Specified		×	

Ventura Compressor Station Modernization Project Table E-3 HARP2 Model Options/Assumptions

Parameter			Value		Comments			
Model Version								
HARP Version	22118							
HARP Health Table Version	22343							
Multi-Pathway								
Inhalation	Res	Res Work X						
Soil	Res	×	Work	×				
Dermal	Res	×	Work	×	"Warm" climate.			
Mother's Milk	Res	×	Work					
Drinking Water	Res		Work					
Fish	Res		Work					
Homegrown Produce	Res	×	Work		Default for "Households that Garden".			
Beef/Dairy	Res		Work					
Pigs, Chickens, and/or Eggs	Res		Work					
Deposition Velocity	0.02 m/s			Particulate matter from all sources is < 2.5 µg/m3				
Residential Cancer Risk Assumptions								
Exposure Duration	30 years							
Fraction of Time at Home	3 rd Trimester 1 16 years to 30	to 16 years: Off years: On			There is a school within the cancer risk ZOI.			
Inhalation Rate Basis	RMP							
Analysis Option	RMP Using th	e Derived Metho	d					
Worker Cancer Risk Assumptions	·							
Exposure Duration	25 years							
Analysis Option	OEHHA Deriv	ed Method						
Inhalation Rate Basis	8-hr Breathing	8-hr Breathing Rates, Moderate Intensity						
Worker Adjustment Factor	1	1 Continuous operation						
Residential and Worker Non-Cancer Ris	k Assumptions							
Analysis Option	OEHHA Deriv	ed Method						
Inhalation Rate Basis		Residential: Long-Term 24-hr Off-Site Worker: 8-hr Breathing Rates, Moderate Intensity						

Table E-4: Ventura Compressor Station HRA Residential, Sensitive and Worker Receptors

UTM	UTM Easting	Elevation (m)	Hill Height (m)	Crown	Name	Address/Location
Northing (m)	(m)	. /	8 ()	Group		
288,518.13	3,797,452.01	19.78	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,568.59	3,797,440.01	19.92	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,613.55 288,627.40	3,797,427.57 3,797,395.62	20.32 20.20	353.21 353.21	School School	E. P. Foster Elementary School E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001 20 Pleasant Pl Ventura, CA 93001
288,617.41	3,797,357.26	19.98	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,564.90	3,797,370.95	19.38	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,511.76	3,797,387.96	19.04	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,514.30	3,797,413.69	19.28	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,486.31	3,797,421.61	19.24	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,454.07	3,797,429.53	18.99	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,635.75	3,797,352.98	20.04	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,481.02	3,797,460.89	19.44	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,483.03	3,797,487.04	19.52	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,489.73	3,797,509.17	19.72	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,484.37	3,797,522.92	19.84	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,487.58	3,797,538.42	20.08	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,487.58	3,797,554.17	20.33	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,509.50	3,797,505.41	19.85	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,509.90 288,515.81	3,797,522.77 3,797,541.70	19.97 20.27	353.21 353.21	School School	E. P. Foster Elementary School E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001 20 Pleasant Pl Ventura, CA 93001
288,515.81 288,513.84	3,797,482.13	19.82	353.21	School	E. P. Foster Elementary School E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001 20 Pleasant Pl Ventura, CA 93001
288,499.64	3,797,482.13	19.82	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001 20 Pleasant Pl Ventura, CA 93001
288,537.12	3,797,540.52	20.37	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,435.04	3,797,572.12	20.30	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,427.55	3,797,544.50	19.95	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,421.24	3,797,523.20	19.71	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,417.09	3,797,503.99	19.53	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,414.94	3,797,493.75	19.45	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,453.94	3,797,509.25	19.62	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,460.75	3,797,547.63	20.11	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,445.12	3,797,485.69	19.41	353.21	School	E. P. Foster Elementary School	20 Pleasant Pl Ventura, CA 93001
288,558.62	3,797,551.71	20.72	353.21	Daycare	Macias Lynn Family Day Care	91 W McFarlane Dr Ventura, CA 93001
288,571.42	3,797,547.62	20.88	353.21	Daycare	Macias Lynn Family Day Care	91 W McFarlane Dr Ventura, CA 93001
288,569.05	3,797,566.98	20.96	353.21 353.21	Daycare	Macias Lynn Family Day Care	91 W McFarlane Dr Ventura, CA 93001
288,580.67 288,567.12	3,797,579.24 3,797,583.22	21.22 21.02	353.21	Daycare Daycare	Macias Lynn Family Day Care Macias Lynn Family Day Care	91 W McFarlane Dr Ventura, CA 93001 91 W McFarlane Dr Ventura, CA 93001
288,480.13	3,797,873.00	23.97	353.21	Daycare	VUSD Property (La Petite Academy)	261 W Stanley Ave Ventura, CA 93001
288,480.13	3,797,923.00	24.74	353.21	Daycare	VUSD Property (La Petite Academy)	261 W Stanley Ave Ventura, CA 93001 261 W Stanley Ave Ventura, CA 93001
288,398.96	3,797,443.23	19.02	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,393.14	3,797,420.20	18.74	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,404.53	3,797,428.17	18.84	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,417.60	3,797,424.67	18.76	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,435.72	3,797,420.92	18.66	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,446.83	3,797,418.42	18.76	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,421.07	3,797,437.18	18.94	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,415.36	3,797,412.23	18.57	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,433.24	3,797,408.87	18.47	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,445.15	3,797,406.34	18.57	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,438.15	3,797,433.14	18.89	353.21	Resident	Residential Receptor	Resident Southeast of Facility
288,447.62 288,236.76	3,797,430.04 3,797,278.72	18.93 17.18	353.21 353.21	Resident Resident	Residential Receptor Residential Receptor	Resident Southeast of Facility Resident South of Facility
288,236.76	3,797,290.99	17.18	353.21	Resident	Residential Receptor	Resident South of Facility Resident South of Facility
288,223.45	3,797,281.00	17.18	353.21	Resident	Residential Receptor	Resident South of Facility
288,170.88	3,797,295.02	17.44	353.21	Resident	Residential Receptor	Resident South of Facility
288,131.21	3,797,305.59	17.75	353.21	Resident	Residential Receptor	Resident South of Facility
288,117.87	3,797,309.36	17.74	353.21	Resident	Residential Receptor	Resident South of Facility
288,078.58	3,797,319.84	17.62	353.21	Resident	Residential Receptor	Resident South of Facility
288,065.59	3,797,323.59	17.67	353.21	Resident	Residential Receptor	Resident South of Facility
288,285.22	3,797,245.72	17.12	353.21	Resident	Residential Receptor	Resident South of Facility
288,299.07	3,797,241.69	17.19	353.21	Resident	Residential Receptor	Resident South of Facility
288,289.78	3,797,238.71	17.06	353.21	Resident	Residential Receptor	Resident South of Facility
288,246.84	3,797,258.87	16.98	353.21	Resident	Residential Receptor	Resident South of Facility
288,244.73	3,797,252.03	16.91	353.21	Resident	Residential Receptor	Resident South of Facility
288,235.80	3,797,259.65	16.99	353.21	Resident	Residential Receptor	Resident South of Facility
288,213.19	3,797,265.61	17.02	353.21	Resident	Residential Receptor	Resident South of Facility
288,431.99	3,797,644.65 3,797,630.42	21.18 20.99	353.21 353.21	Resident	Residential Receptor Residential Receptor	Resident Bordering Eastern Fenceline Resident Bordering Eastern Fenceline
288,428.65	5,191,030.42	20.99	555.21	Resident	Residential Receptor	Resident Dolucing Eastern Fencenne

Table E-4: Ventura Compressor Station HRA Residential, Sensitive and Worker Receptors

UTM	UTM Easting (m)	Elevation (m)	Hill Height (m)	Group	Name	Address/Location
Northing (m) 288,435.73	3,797,643.33	21.15	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,432.77	3,797,629.25	20.97	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,425.23	3,797,646.44	21.24	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,421.49	3,797,631.89	21.02	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,430.28	3,797,638.66	21.10	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,417.16	3,797,619.64	20.84	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,413.88	3,797,607.72	20.66	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,410.46	3,797,595.80	20.47	353.21	Resident	Residential Receptor	Resident Bordering Eastern Fenceline
288,446.39	3,797,617.24	20.84	353.21	Resident	Residential Receptor	Resident East of Facility
288,441.49	3,797,599.66	20.63	353.21	Resident	Residential Receptor	Resident East of Facility
288,443.94	3,797,605.77	20.71	353.21	Resident	Residential Receptor	Resident East of Facility
288,439,96	3,797,587.37	20.50	353.21	Resident	Residential Receptor	Resident East of Facility
288,473.47	3,797,591.82	20.79	353.21	Resident	Residential Receptor	Resident East of Facility
288,488.94	3,797,589.14	20.86	353.21	Resident	Residential Receptor	Resident East of Facility
288,475.32	3,797,611.42	20.94	353.21	Resident	Residential Receptor	Resident East of Facility
288,492.04	3,797,606.05	20.99	353.21	Resident	Residential Receptor	Resident East of Facility
288,467.69	3,797,576.34	20.60	353.21	Resident	Residential Receptor	Resident East of Facility
288,484.40	3,797,571.80	20.62	353.21	Resident	Residential Receptor	Resident East of Facility
288,429.51	3,797,689.52	21.93	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,433.02	3,797,700.40	22.07	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,381.96	3,797,701.98	22.36	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,387.05	3,797,715.66	22.46	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,408.00	3,797,702.91	22.22	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,426.08	3,797,661.25	21.50	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,400.94	3,797,667.82	21.74	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,378.08	3,797,673.82	21.97	353.21	Worker	B & R Fabrication	1715 N Olive St Ventura, CA 93001
288,376.57	3,797,718.45	22.56	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,370.01	3,797,690.52	22.28	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,336.01	3,797,697.56	22.48	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,301.04	3,797,706.79	22.56	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,274.81	3,797,713.83	22.59	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,325.81	3,797,719.90	22.71	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,283.79	3,797,744.92	23.01	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,330.18	3,797,733.99	22.81	353.21	Worker	Ntt Equipment Repair & Fab	280A W Stanley Ave Ventura, CA 93001
288,297.95	3,797,696.06	22.43	353.21	Worker	Western Wireline Inc.	1689 N Olive St Ventura, CA 93001
288,314.94	3,797,691.24	22.43	353.21	Worker	Western Wireline Inc.	1689 N Olive St Ventura, CA 93001
288,475.65	3,797,618.90	20.98	353.21	Worker	United Rentals - Trench Safety	1680 N Olive St Ventura, CA 93001
288,479.37	3,797,629.85	21.05	353.21	Worker	United Rentals - Trench Safety	1680 N Olive St Ventura, CA 93001
288,531.21	3,797,652.15	21.33	353.21	Worker	United Rentals - Trench Safety	1680 N Olive St Ventura, CA 93001
288,521.29	3,797,619.52	21.10	353.21	Worker	United Rentals - Trench Safety	1680 N Olive St Ventura, CA 93001
288,517.78	3,797,606.51	20.99	353.21	Worker	United Rentals - Trench Safety	1680 N Olive St Ventura, CA 93001
288,279.18	3,797,457.30	19.20	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001
288,320.71	3,797,446.30	19.08	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001
288,353.95	3,797,436.91	19.14	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001
288,371.90	3,797,434.18	19.03	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001
288,224.39	3,797,489.85	19.73	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001
288,232.23	3,797,488.48	19.61	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001
288,224.39	3,797,476.22	19.58	353.21	Worker	T & T Truck & Crane Services	1375 N Olive St Ste A Ventura, CA 93001

Cancer Risk by Source for All Pollutants Combined at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Operations HRA

			osed Individual t (MEIR)		tial Sensitive ptor	•••	osed Individual (MEIW)
Sources	Source Description	receptor #	52	receptor #	36	receptor #	ting (m) UTM Northing (m) 32.23 3,797,488.48 Cancer Contribution
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m) UTM Northing	
		288,170.88	3,797,295.02	288,567.12	3,797,583.22	288,232.23	3,797,488.48
		30-Year Cancer	Contribution	30-Year Cancer	Contribution	25-Year Cancer	Contribution
		Risk	(%)	Risk	(%)	Risk	(%)
ALL		2.81E-06	100%	5.40E-07	100%	1.25E-06	100%
COMP1	Compressor 1	1.28E-06	45.66%	2.47E-07	45.83%	5.67E-07	45.20%
COMP2	Compressor 2	1.42E-06	50.55%	2.62E-07	48.56%	6.11E-07	48.76%
GEN	Emergency Generator	1.06E-07	3.78%	3.03E-08	5.61%	7.57E-08	6.04%

Maximum Cancer Risk by Pollutant at MEIR, MEIW, and Non-Residential Sensitive Receptor
VCS Operations HRA

			oosed Individual nt (MEIR)		ntial Sensitive eptor		oosed Individual r (MEIW)
Pollutant CAS	Pollutant	receptor #	52	receptor #	36	receptor #	112
r onatant cAs	ronatant	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,170.88	3,797,295.02	288,567.12	3,797,583.22	288,232.23	3,797,488.48
		30-Year Cancer	Contribution (%)	30-Year Cancer	Contribution (%)	25-Year Cancer	Contribution (%)
		Risk	Contribution (%)	Risk	Contribution (%)	Risk	Contribution (%)
-	ALL	2.81E-06	100%	5.40E-07	100%	1.25E-06	100.00%
50000	Formaldehyde	1.15E-06	41.07%	2.22E-07	41.07%	5.17E-07	41.27%
106990	1,3-Butadiene	1.07E-06	37.93%	2.05E-07	37.93%	4.78E-07	38.10%
71432	Benzene	4.23E-07	15.07%	8.13E-08	15.07%	1.90E-07	15.14%
75070	Acetaldehyde	7.48E-08	2.66%	1.44E-08	2.66%	3.35E-08	2.68%
91203	Naphthalene	3.12E-08	1.11%	6.00E-09	1.11%	1.40E-08	1.12%
106934	EDB	1.43E-08	0.51%	2.74E-09	0.51%	6.40E-09	0.51%
79345	TetraClEthane	1.36E-08	0.48%	2.60E-09	0.48%	6.08E-09	0.48%
50328	B[a]P	7.72E-09	0.27%	1.48E-09	0.27%	2.58E-10	0.02%
56235	CCI4	7.12E-09	0.25%	1.37E-09	0.25%	3.19E-09	0.25%
75014	Vinyl Chloride	5.19E-09	0.18%	9.96E-10	0.18%	2.33E-09	0.19%
56553	B[a]anthracene	2.93E-09	0.10%	5.62E-10	0.10%	9.77E-11	0.01%
79005	1,1,2TriClEthan	2.34E-09	0.08%	4.49E-10	0.08%	1.05E-09	0.08%
107062	EDC	2.18E-09	0.08%	4.19E-10	0.08%	9.77E-10	0.08%
205992	B[b]fluoranthen	9.35E-10	0.03%	1.80E-10	0.03%	3.12E-11	0.00%
207089	B[k]fluoranthen	9.35E-10	0.03%	1.80E-10	0.03%	3.12E-11	0.00%
53703	D[a,h]anthracen	8.41E-10	0.03%	1.62E-10	0.03%	5.33E-11	0.00%
67663	Chloroform	6.98E-10	0.02%	1.34E-10	0.02%	3.13E-10	0.02%
100414	Ethyl Benzene	5.78E-10	0.02%	1.11E-10	0.02%	2.59E-10	0.02%
193395	In[1,2,3-cd]pyr	4.68E-10	0.02%	8.99E-11	0.02%	1.56E-11	0.00%
75092	Methylene Chlor	3.87E-10	0.01%	7.42E-11	0.01%	1.73E-10	0.01%
218019	Chrysene	3.16E-10	0.01%	6.07E-11	0.01%	1.06E-11	0.00%
75343	1,1-DiClEthane	1.72E-10	0.01%	3.31E-11	0.01%	7.73E-11	0.01%
108907	Chlorobenzn	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
67561	Methanol	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100425	Styrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
91576	2MeNaphthalene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
208968	Acenaphthylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
83329	Acenaphthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
120127	Anthracene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
192972	B[e]pyrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
191242	B[g,h,i]perylen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
206440	Fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
86737	Fluorene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
198550	Perylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
85018	Phenanthrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
129000	Pyrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

	Chronic Hazard Index by Source for All Pollutants Combined at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Operations HRA									
			Maximally Exposed Individual Resident (MEIR)		Non-Residential Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
	Sources Source Description	receptor #	52	receptor #	36	receptor #	113	receptor #	113	
Sources		Source Description	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,170.88	3,797,295.02	288,567.12	3,797,583.22	288,224.39	3,797,476.22	288,224.39	3,797,476.22	
		Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)	
ALL		9.14E-03	100%	1.76E-03	100%	1.11E-02	100%	4.62E-02	100%	
COMP1	Compressor 1	4.18E-03	45.66%	8.05E-04	45.83%	5.03E-03	45.22%	2.09E-02	45.22%	
COMP2	Compressor 2	4.62E-03	50.55%	8.53E-04	48.56%	5.41E-03	48.64%	2.25E-02	48.64%	
GEN	Emergency Generator	3.46E-04	3.78%	9.86E-05	5.61%	6.83E-04	6.14%	2.84E-03	6.14%	

Note:

Individual sources are not additive because risk is based on specific target organs, which may be different per source

Maximum Chronic Hazard Index by Pollutant at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Operations HRA

			osed Individual t (MEIR)	Non-Residential S	Sensitive Receptor		osed Individual (MEIW)	Maximally Exposed Individual Worker (MEIW) 8-hour	
Pollutant CAS	Pollutant	receptor #	52	receptor #	36	receptor #	113	receptor #	113
· onuture of to		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,170.88	3,797,295.02	288,567.12	3,797,583.22	288,224.39	3,797,476.22	288,224.39	3,797,476.22
		Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic Hazard Index	Contribution (%)	Chronic 8-hr Hazard Index	Contribution (%)
-	ALL	9.14E-03	100.00%	1.76E-03	100.00%	1.11E-02	100.00%	4.62E-02	100.00%
50000	Formaldehyde	9.02E-03	98.66%	1.73E-03	98.66%	1.10E-02	98.66%	4.61E-02	99.59%
71432	Benzene	2.08E-03	22.80%	4.00E-04	22.80%	2.53E-03	22.80%	1.06E-02	23.02%
106990	1,3-Butadiene	1.31E-03	14.35%	2.52E-04	14.35%	1.59E-03	14.35%	1.49E-03	3.22%
106934	EDB	1.05E-04	1.15%	2.02E-05	1.15%	1.28E-04	1.15%	0.00E+00	0.00%
75070	Acetaldehyde	7.90E-05	0.86%	1.52E-05	0.86%	9.60E-05	0.86%	1.88E-04	0.41%
91203	Naphthalene	4.27E-05	0.47%	8.21E-06	0.47%	5.19E-05	0.47%	0.00E+00	0.00%
108883	Toluene	5.26E-06	0.06%	1.01E-06	0.06%	6.40E-06	0.06%	1.36E-05	0.03%
67561	Methanol	3.03E-06	0.03%	5.82E-07	0.03%	3.68E-06	0.03%	0.00E+00	0.00%
56235	CCI4	1.75E-06	0.02%	3.37E-07	0.02%	2.13E-06	0.02%	0.00E+00	0.00%
1330207	Xylenes	1.10E-06	0.01%	2.12E-07	0.01%	1.34E-06	0.01%	0.00E+00	0.00%
75092	Methylene Chlor	4.08E-07	0.00%	7.84E-08	0.00%	4.96E-07	0.00%	0.00E+00	0.00%
67663	Chloroform	1.81E-07	0.00%	3.48E-08	0.00%	2.20E-07	0.00%	0.00E+00	0.00%
107062	EDC	1.12E-07	0.00%	2.15E-08	0.00%	1.36E-07	0.00%	0.00E+00	0.00%
100425	Styrene	5.24E-08	0.00%	1.01E-08	0.00%	6.37E-08	0.00%	0.00E+00	0.00%
108907	Chlorobenzn	5.12E-08	0.00%	9.83E-09	0.00%	6.22E-08	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	4.91E-08	0.00%	9.43E-09	0.00%	5.97E-08	0.00%	0.00E+00	0.00%
75014	Vinyl Chloride	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79345	TetraClEthane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
50328	B[a]P	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
56553	B[a]anthracene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
79005	1,1,2TriClEthan	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
205992	B[b]fluoranthen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
207089	B[k]fluoranthen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
53703	D[a,h]anthracen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
193395	In[1,2,3-cd]pyr	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
75343	1,1-DiClEthane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
91576	2MeNaphthalene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
208968	Acenaphthylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
83329	Acenaphthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
120127	Anthracene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
192972	B[e]pyrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
191242	B[g,h,i]perylen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
206440	Fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
86737	Fluorene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
198550	Perylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
85018	Phenanthrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
129000	Pyrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

Note:

Individual pollutants are not additive because risk is based on specific target organs, which may be different per pollutant.

Act	Acute Hazard Index by Source for All Pollutants Combined at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Operations HRA									
Maximally Exposed Individual Resident (MEIR) Non-Residential Sensitive Receptor Work										
		receptor #	53	receptor #	29	receptor #	108			
Sources	Source Description	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)			
		288,131.21	3,797,305.59	288,453.94	3,797,509.25	288,320.71	3,797,446.30			
		Acute Hazard	Contribution (%)	Acute Hazard	Contribution (%)	Acute Hazard	Contribution (9/)			
		Index	Contribution (%)	Index	Contribution (%)	Index	Contribution (%)			
ALL		3.23E-02	100%	3.08E-02	100%	2.34E-02	100%			
COMP1	Compressor 1	9.50E-03	29.37%	7.92E-03	25.71%	7.43E-03	31.69%			
COMP2	Compressor 2	9.75E-03	30.15%	8.16E-03	26.48%	8.83E-03	37.69%			
GEN	Emergency Generator	1.31E-02	40.49%	1.47E-02	47.81%	7.18E-03	30.62%			

Note:

Individual sources are not additive because risk is based on specific target organs, which may be different per source

Maximum Acute Hazard Index by Pollutant at MEIR, MEIW, and Non-Residential Sensitive Receptor VCS Operations HRA

		Maximally Exp Residen		Non-Residential S	Sensitive Receptor	Maximally Exposed Individual Worker (MEIW)		
Pollutant CAS	Pollutant	receptor #	53	receptor #	29	receptor #	108	
i oliutulit CAS	ronutunt	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	
		288,131.21	3,797,305.59	288,453.94	3,797,509.25	288,320.71	3,797,446.30	
		Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	
-	ALL	3.23E-02	100%	3.08E-02	100%	2.34E-02	100%	
50000	Formaldehyde	3.18E-02	98.40%	3.03E-02	98.40%	2.31E-02	98.40%	
71432	Benzene	4.99E-03	15.44%	4.76E-03	15.44%	3.62E-03	15.44%	
75070	Acetaldehyde	5.07E-04	1.57%	4.83E-04	1.57%	3.67E-04	1.57%	
106990	1,3-Butadiene	8.57E-05	0.27%	8.17E-05	0.26%	6.21E-05	0.26%	
108883	Toluene	9.54E-06	0.03%	9.08E-06	0.03%	6.91E-06	0.03%	
67561	Methanol	9.33E-06	0.03%	8.89E-06	0.03%	6.76E-06	0.03%	
67663	Chloroform	7.80E-06	0.02%	7.43E-06	0.02%	5.65E-06	0.02%	
56235	CCl4	7.96E-07	0.00%	7.58E-07	0.00%	5.77E-07	0.00%	
1330207	Xylenes	7.57E-07	0.00%	7.21E-07	0.00%	5.48E-07	0.00%	
75092	Methylene Chlor	2.51E-07	0.00%	2.39E-07	0.00%	1.82E-07	0.00%	
100425	Styrene	4.85E-08	0.00%	4.62E-08	0.00%	3.51E-08	0.00%	
75014	Vinyl Chloride	3.40E-09	0.00%	3.24E-09	0.00%	2.46E-09	0.00%	
91203	Naphthalene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
106934	EDB	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
79345	TetraClEthane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
50328	B[a]P	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
56553	B[a]anthracene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
79005	1,1,2TriClEthan	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
107062	EDC	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
205992	B[b]fluoranthen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
207089	B[k]fluoranthen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
53703	D[a,h]anthracen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
100414	Ethyl Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
193395	In[1,2,3-cd]pyr	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
218019	Chrysene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
75343	1,1-DiClEthane	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
108907	Chlorobenzn	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
91576	2MeNaphthalene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
208968	Acenaphthylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
83329	Acenaphthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
120127	Anthracene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
192972	B[e]pyrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
191242	B[g,h,i]perylen	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
206440	Fluoranthene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
86737	Fluorene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
198550	Perylene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
85018	Phenanthrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	
129000	Pyrene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	

Note:

Individual pollutants are not additive because risk is based on specific target organs, which may be different per pollutant

Figure E-1: Cancer Risk Locations of MEIR, MEIW, and Non-Residential Sensitive Receptor

Purple Triangle	MEIR
Orange Triangle	MEIW
Blue Triangle	Non-Residential Sensitive

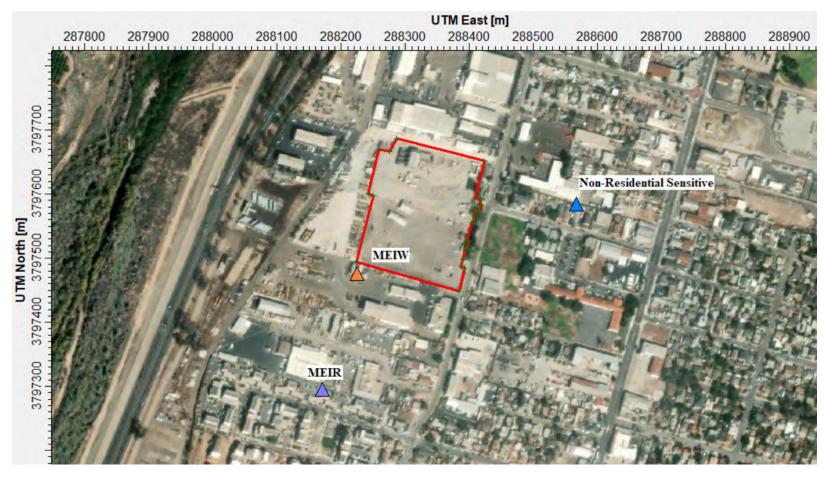


Figure E-2: Chronic Risk Locations of MEIR, MEIW, and Non-Residential Sensitive Receptor

Purple Triangle	MEIR
Orange Triangle	MEIW (annual, 8-hour)
Blue Triangle	

Figure E-3: Acute Risk Locations of MEIR, MEIW, and Non-Residential Sensitive Receptor

Purple Triangle	MEIR
Orange Triangle	
Blue Triangle	

Table E-11: Cancer Risk Results

Receptor	Exposure Duration	Cancer Risk (in a million)	UTM Easting (m)	UTM Northing (m)	Receptor Number	Receptor Name
MEIR		2.81	288,171	3,797,295	52	Westview Apartments
Non- Residential Sensitive	30-Year	0.54	288,567	3,797,583	36	Macias Lynn Family Day Care
MEIW	25-Year	1.25	288,232	3,797,488	112	T & T Truck & Crane Services

Table E-12: Chronic Risk Results

Receptor	Exposure Duration	Chronic Hazard Index	UTM Easting (m)	UTM Northing (m)	Receptor Number	Receptor Name
MEIR		0.009	288,171	3,797,295	52	Westview Apartments
Non- Residential Sensitive	Annual	0.002	288,567	3,797,583	36	Macias Lynn Family Day Care
MEIW		0.01	288,224	3,797,476	113	T & T Truck & Crane Services
MEIW	8-Hour	0.05	288,224	3,797,476	113	T & T Truck & Crane Services

Table E-13: Acute Risk Results

Receptor	Exposure Duration	Acute Hazard Index	UTM Easting (m)	UTM Northing (m)	Receptor Number	Receptor Name
MEIR		0.03	288,131	3,797,306	53	Westview Apartments
Non- Residential Sensitive	1-Hour	0.03	288,454	3,797,509	29	E. P. Foster Elementary School
MEIW		0.02	288,321	3,797,446	108	T & T Truck & Crane Services

ATTACHMENT F – GHG EMISSIONS AND ENERGY CALCULATIONS

Table F-1: Ventura Compressor Modernization Project - Summary GHG Emissions - Case 1 (2 x 2,500 HP EDC)

Table F-1a: Baseline GHG Emissions (MT/yr)

Greenhouse Gases	Existing Compressor Engines	Existing Emergency Generator	Worker Vehicles	Indirect Auxiliary Electric Power	Total Baseline Emissions
CO ₂	4,845	0.63	13.22	92.12	4,951
CH ₄	0.09	0.00	0.00	0.01	0.10
N ₂ O	0.01	0.00	0.00	0.00	0.01
CO ₂ e	4,850	1	13	93	4,957

Table F-1b: Project GHG Emissions (MT/yr) - Case 1 (2 x 2,500 HP EDC)

Greenhouse Gases	New Compressor Engines	New Standby Generator	Worker Vehicles	Indirect Auxiliary & EDC Electric Power	Total Project Emissions
CO ₂	1,723	79	17.62	2,526	4,346
CH ₄	0.03	0.00	0.00	0.32	0.35
N ₂ O	0.00	0.00	0.00	0.04	0.04
CO ₂ e	1,725	79	18	2,546	4,368

Table F-1c: Project GHG Significance Evaluation

ltem	Annual CO ₂ e (MT/yr)
Total Direct Project Net Emissions (Project-Baseline)	(3,042)
Total Indirect Project Net Emissions (Project-Baseline)	2,453
Amortized Construction Emissions	198
Total Operation Net Emissions + Construction	(391)
Significance Threshold	10,000
NEI Significant?	No
Mitigation Required	None

Notes:

Project emissions based on Projected actual usage for the new compressor engines, emergency generator, and electric power Baseline emissions based on HAE for 2021-2022 for gas compressors, emergency generator and electric power

Table F-2: Ventura Compressor Modernization Project - Summary GHG Emissions - Case 2 (2 x 2,000 HP EDC)

Table F-2a: Baseline GHG Emissions (MT/yr)

Greenhouse Gases	Existing Compressor Engines	Existing Emergency Generator	Worker Vehicles	Indirect Auxiliary Electric Power	Total Baseline Emissions
CO ₂	4,845	0.63	13.22	92.12	4,951
CH ₄	0.09	0.00	0.00	0.01	0.10
N ₂ O	0.01	0.00	0.00	0.00	0.01
CO ₂ e	4,850	1	13	93	4,957

Table F-2b: Project GHG Emissions (MT/yr) - Case 2 (2 x 2,000 HP EDC)

Greenhouse Gases	New Compressor Engines	New Standby Generator	Worker Vehicles	Indirect Auxiliary & EDC Electric Power	Total Project Emissions
CO ₂	3,071	79	17.62	2,209	5,377
CH ₄	0.06	0.00	0.00	0.28	0.34
N ₂ O	0.01	0.00	0.00	0.03	0.04
CO ₂ e	3,074	79	18	2,226	5,397

Table F-2c: Project GHG Significance Evaluation

ltem	Annual CO ₂ e (MT/yr)
Total Direct Project Net Emissions (Project-Baseline)	(1,693)
Total Indirect Project Net Emissions (Project-Baseline)	2,133
Amortized Construction Emissions	198
Total Operation Net Emissions + Construction	639
Significance Threshold	10,000
NEI Significant?	No
Mitigation Required	None

Notes:

Project emissions based on Projected actual usage for the new compressor engines, emergency generator, and electric power Baseline emissions based on HAE for 2021-2022 for gas compressors, emergency generator and electric power

Table F-3: Project Case 1 GHG Emission Estimates

Table F-3a: Natural Gas Process Rates

Parameter	New Compressor Engine 1	New Compressor Engine 2	New Standby Generator ¹	Total
Annual Process Rate (MMBtu/yr)	16,249.0	16,249.0	1,496	33,994
Annual Fuel Use (MMscf/yr) ²	15.930	15.930	1.467	33.327

Notes:

¹ 7.48 MMBtu/hr for 200 hrs/yr

² Default HHV = 1,020 Btu/cf

Table F-3b: Electric Power Process Rates - Case 1 (2 x 2,500 HP EDC)

Parameter	New EDC 1	New EDC 2	Average Plant Loads ¹	Total
Annual Process Rate (MWh/yr)	7,451	7,451	6,454	21,356
Rated Load (kW)	1,963.2	1,963.2	736.8	—
Operating Hours at Rated Load	3,795	3,795	8,760	_

Notes:

¹ Average Plant Loads at 51.9% annual capacity factor

Table F-3c: GHG Emission Factors

Greenhouse Gases	GWP ¹	Natural Gas (kg/MMBtu) ²	Electric Power (lbs/MWh) ³
CO ₂	1	53.02	260.788
CH ₄	25	0.001	0.033
N ₂ O	298	0.0001	0.004
CO ₂ e	-	53.07	262.8

Notes:

¹ Table A-1 to Subpart A of Part 98—Global Warming Potentials ($CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$)

² 40 CFR 98 Subpart C - Default GHG Emission Factors and Higher Heating Values for Various Fuels

³ CalEEMod SCE 2031 Power Content (https://www.caleemod.com/user-guide)

Table F-3d: Project Emissions (MT/yr) - Case 1 (2 x 2,500 HP EDC)

Greenhouse Gases	New Compressor Engines	New Standby Generator	Worker Vehicles	Indirect Emissions	Total Project Emissions
CO ₂	1723.0	79.3	17.6	2526.3	4346.2
CH ₄	0.0325	0.0015	0.00	0.32	0.35
N ₂ O	0.0032	0.0001	0.00	0.04	0.04
CO ₂ e	1,725	79	18	2,546	4,368

Notes:

Project emissions based on Projected actual usage for the 2 new compressor engines and emergency generator and electricity usage Commuting emissions based on 4 worker vehicles commuting up to 32 miles per trip one way calculated with EMFAC

1,900 HP NG units (engines)=	32,498	MMBtu/year total for both gas engine units (projected)
2,500 HP EDC units (motors)=	14,901,644	kWh/year total for both electric motor units (projected)

Table F-3e: Standard Physical Constants

Description	Value	Units
Mass Conversion	453.6	g/lb
Mass Conversion	2,204.6	lbs/MT
Default HHV	1,020	BTU/scf

Table F-4: Project Case 2 GHG Emission Estimates

Table F-4a: Natural Gas Process Rates

Parameter	New Compressor Engine 1	New Compressor Engine 2	New Standby Generator ¹	Total
Annual Process Rate (MMBtu/yr)	28,962.0	28,962.0	1,496	59,420
Annual Fuel Use (MMscf/yr) ²	28.394	28.394	1.467	58.255

Notes:

¹ 7.48 MMBtu/hr for 200 hrs/yr

² Default HHV = 1,020 Btu/cf

Table F-4b: Electric Power Process Rates - Case 2 (2 x 2,000 HP EDC)

Parameter	New EDC 1	New EDC 2	Average Plant Loads ¹	Total
Annual Process Rate (MWh/yr)	6,109	6,109	6,454	18,672
Rated Load (kW)	1,570.5	1,570.5	736.8	_
Operating Hours at Rated Load	3,890	3,890	8,760	_

Notes:

¹ Average Plant Loads at 51.9% annual capacity factor

Table F-4c: GHG Emission Factors

Greenhouse Gases	GWP ¹	Natural Gas (kg/MMBtu) ²	Electric Power (lbs/MWh) ³
CO ₂	1	53.02	260.788
CH ₄	25	0.001	0.033
N ₂ O	298	0.0001	0.004
CO ₂ e	-	53.07	262.8

Notes:

¹ Table A-1 to Subpart A of Part 98—Global Warming Potentials ($CO_2 = 1$, $CH_4 = 25$, $N_2O = 298$)

² 40 CFR 98 Subpart C - Default GHG Emission Factors and Higher Heating Values for Various Fuels

³ CalEEMod SCE 2031 Power Content (https://www.caleemod.com/user-guide)

Table F-4d: Project Emissions (MT/yr) - Case 2 (2 x 2,000 HP EDC)

Greenhouse Gases	New Compressor Engines	New Standby Generator	Worker Vehicles	Indirect Emissions	Total Project Emissions
CO ₂	3071.1	79.3	17.6	2208.7	5376.8
CH ₄	0.0579	0.0015	0.00	0.28	0.34
N ₂ O	0.0058	0.0001	0.00	0.03	0.04
CO ₂ e	3,074	79	18	2,226	5,397

Notes:

Project emissions based on Projected actual usage for the 2 new compressor engines and emergency generator and electricity usage Commuting emissions based on 4 worker vehicles commuting up to 32 miles per trip one way calculated with EMFAC

1,900 HP NG units (engines)=	57,924	MMBtu/year total for both gas engine units (projected)
2,000 HP EDC units (motors)=	12,217,175	kWh/year total for both electric motor units (projected)

Table F-4e: Standard Physical Constants

Description	Value	Units
Mass Conversion	453.6	g/lb
Mass Conversion	2,204.6	lbs/MT
Default HHV	1,020	BTU/scf

Table F-5: Project Baseline GHG Emission Estimates

Table F-5a: Baseline Process Throughputs

Year	HP1 (MMscf)	HP2 (MMscf)	HP3 (MMscf)	Diesel Generator (gallons)	Electric Power (MWh)
2021	26.316	29.364	28.003	103.39	529.151
2022	32.076	28.276	35.150	19.12	569.621

Table F-5b: Emission Factors

Greenhouse Gases	GWP ¹	Natural Gas (kg/MMBtu) ²	Natural Gas (lbs/MMscf)	Diesel Fuel (kg/gal) ²	Electric Power (lbs/MWh) ³
CO ₂	1	53.02	119,225	10.21	369.671
CH ₄	25	0.001	2.25	0.0004	0.033
N ₂ O	298	0.0001	0.22	0.00008	0.004
CO ₂ e	-	53.07	119,348	10.24	371.7

Notes:

¹ Table A-1 to Subpart A of Part 98—Global Warming Potentials ($CO_2 = 1, CH_4 = 25, N_2O = 298$)

² 40 CFR 98 Subpart C - Default GHG Emission Factors and Higher Heating Values for Various Fuels

³ CalEEMod SCE 2021 & 2022 Average Power Content (https://www.caleemod.com/user-guide)

Table F-5c: 2021 Emissions (MT/yr)

Greenhouse Gases	HP1	HP2	HP3	Total
CO ₂	1,423	1,588	1,514.40	4,525.58
CH ₄	0.027	0.030	0.029	0.085
N ₂ O	0.003	0.003	0.003	0.009
CO ₂ e	1,425	1,590	1,516	4,530

Table F-5d: 2022 Emissions (MT/yr)

Greenhouse Gases	HP1	HP2	HP3	Total
CO ₂	1,734.67	1,529.17	1,900.91	5,164.75
CH ₄	0.033	0.029	0.036	0.097
N ₂ O	0.003	0.003	0.004	0.010
CO ₂ e	1,736	1,531	1,903	5,170

Table F-5e: Baseline GHG Emissions (MT/yr)

Greenhouse Gases	Compressor Engines	Emergency Generator	Worker Vehicles	Indirect Emissions	Total Baseline Emissions
CO ₂	4,845.17	0.63	13.22	92.12	4,951.13
CH ₄	0.091	0.00003	0.0002	0.008	0.100
N ₂ O	0.009	0.00001	0.0003	0.001	0.010
CO ₂ e	4,850	1	13	93	4,957

Notes:

Baseline emissions based on HAE for 2021-2022 for gas compressors and emergency generator

Baseline indirect emissions based 2021-2022 electricity usage

Commuting emissions based on 3 worker vehicles commuting up to 32 miles per trip one way calculated with EMFAC

Table F-5f: Standard Physical Constants

Description	Value	Units
Mass Conversion	453.6	g/lb
Mass Conversion	2,204.6	lbs/MT
Default HHV	1,020	BTU/scf

Table F-6: Energy Estimates - Case 1 (2 x 2,500 HP EDC)

Table F-6a: Estimated Operation Natural Gas Consumption - Case 1 (2 x 2,500 HP EDC)

Device	Туре	Power Output (BHP)	Fuel Consumption (MMcf/yr)
New Equipment Operation (Project			
New Compressor Engine 1	Gas Engine	1,900	15.93
New Compressor Engine 2	Gas Engine	1,900	15.93
New Standby Generator	Gas Engine	840	1.47
Total Ani	33.33		
Existing Equipment Actuals (2021-2	2022 Baseline)		
Existing Compressor HP1	Gas Engine	1,100	29.20
Existing Compressor HP2	Gas Engine	1,100	28.82
Existing Compressor HP3	Gas Engine	1,100	31.58
Total A	89.59		
	(56.27)		

Table F-6b: Estimated Operation Electric Power Usage - Case 1 (2 x 2,500 HP EDC)

Device	Туре	Type Energy Input (kW)									
New Equipment Operation (Projected Actual)											
New 2,500 HP EDC 1 3-Phase Motor 1,963.2 7,451											
New 2,500 HP EDC 2	3-Phase Motor	7,451									
Plant Utilities & Auxiliaries ¹	Other Loads	6,454									
Total Annu	21,356										
Existing Equipment Actuals (2021-2022 Baseline)											
Plant Utilities & Auxiliaries ²	Other Loads	62.7	549								
Total Anr	549										
	Net Annual Electric	Power Consumption	20,807								

Notes:

¹ Projected annual capacity for non-compressor equipment

² Average actual electric power usage during 2021 and 2022

4.66 MW peak load

Table F-7: Energy Estimates - Case 2 (2 x 2,000 HP EDC)

Table F-7a: Estimated Operation Natural Gas Consumption - Case 2 (2 x 2,000 HP EDC)

Device	Туре	Type Power Output (BHP)								
New Equipment Operation (Project	New Equipment Operation (Projected Actual)									
New Compressor Engine 1	Gas Engine	1,900	28.39							
New Compressor Engine 2	Gas Engine	28.39								
New Back-up Generator	Gas Engine	840	1.47							
Total Anı	58.25									
Existing Equipment Actuals (2021-2	Existing Equipment Actuals (2021-2022 Baseline)									
Existing Compressor HP1	Gas Engine	1,100	29.20							
Existing Compressor HP2	Gas Engine	1,100	28.82							
Existing Compressor HP3	Gas Engine	31.58								
Total A	89.59									
	Net Annual Natural Gas Consumption									

Table F-7b: Estimated Operation Electric Power Usage - Case 2 (2 x 2,000 HP EDC)

Device	Туре	Type Energy Input (kW)									
New Equipment Operation (Projected Actual)											
New 2,000 HP EDC 1 3-Phase Motor 1,570.5 6,109											
New 2,000 HP EDC 2	3-Phase Motor	6,109									
Plant Utilities & Auxiliaries ¹	Other Loads	6,454									
Total Annu	18,672										
Existing Equipment Actuals (2021-2022 Baseline)											
Plant Utilities & Auxiliaries ²	Other Loads	62.7	549								
Total Ann	549										
	Net Annual Electric	Power Consumption	18,122								

Notes:

¹ Projected annual capacity for non-compressor equipment

² Average actual electric power usage during 2021 and 2022

3.88 MW peak load

Table F-8: Worker Commute GHG Emission Estimaates

Copyright ©2023, Yorke Engineering, LLC

Table F-8a: VCM Worker Commuting Mobile Source Emissions - Baseline

(3 workers)

	. ,	
Greenhouse Gases	Daily (lbs/day)	Annual (MT/yr)
CO ₂	112.1	13.22
CH_4	0.001	0.0002
N ₂ O	0.002	0.0003
CO ₂ e	113	13

Sources: EMFAC2021, IPCC 2007 (AR4)

Notes:

Aggregated LDA, LDT1, LDT2 mix for 2031; gasoline fuel

Baseline assumes 3 workers in 3 vehicles

Daily VMT = 192 miles/day (6 trips x 32 miles one-way in Ventura County)

Table F-8d: VCM Worker Commuting Estimated Energy Use

Fuel/Period	MT CO ₂	CO ₂ Emission Factor (kg/gal)	Fuel Consumption (gal/yr)			
Gasoline/Baseline	13.2	8.78	1,510			
Gasoline/Project	17.6	8.78	2,010			
Gasoline/Increase	4.4	8.78	500			

Sources: EMFAC2021, 40 CFR 98 Subpart C

Notes:

Aggregated LDA, LDT1, LDT2 mix for 2031; gasoline fuel

Assumes 3 workers in 3 vehicles Baseline

Assumes 4 workers in 4 vehicles Project

Baseline Daily VMT = 192 miles/day (6 trips x 32 miles one-way in Ventura County)

Project Daily VMT = 256 miles/day (8 trips x 32 miles one-way in Ventura County)

Table F-8b: VCM Worker Commuting Mobile Source Emissions - Project

(4 workers)									
Greenhouse Gases	Daily	Annual							
Greennouse Gases	(lbs/day)	(MT/yr)							
CO ₂	149.4	17.62							
CH ₄	0.002	0.0002							
N ₂ O	0.003	0.0003							
CO ₂ e	150	18							

Sources: EMFAC2021, IPCC 2007 (AR4)

Notes:

Aggregated LDA, LDT1, LDT2 mix for 2031; gasoline fuel

Project assumes 4 workers in 4 vehicles

Daily VMT = 256 miles/day (8 trips x 32 miles one-way in Ventura County)

Table F-8c: VCM Worker Commuting Mobile Source Emissions - Project Increase (from 3 to 4 workers)

Greenhouse Gases	Daily (lbs/day)	Annual (MT/yr)		
CO ₂	37.4	4.4		
CH ₄	0.000	0.0001		
N ₂ O	0.001	0.0001		
CO ₂ e	38	4		

WORKE ENGINEERING, LLC www.YorkeEngr.com

Copyright ©2023, Yorke Engineering, LLC

	LOAD DESCRIPTION		LOA	D			SOURCE		CONNECTED			RUNNII	NG	
Tag	Description	Voltage			PF	EFF	On Generator Source	Connected Amps	Connected KVA	Connected KW	Demand Factor	Running Amps		Running KW
EM-3402	Jacket Water / Auxiliary Water Cooler Fan (Train 1)	480		IO HP	0.9		Y MCC-1000	46.92	39.01	35.11	0.8	37.53	31.21	28.08
PM-3404 CP-3400	Aux Lube Oil Pump (Train 1) Engine/Compressor Control Panel #1	480		5 HP 1 KW	0.9	0.85	Y MCC-1000 Y MCC-1000	5.86	4.88		0.0		0.00	0.00
HE-3400	Hot Start Compressor Engine Oil Heater (Train 1)	480		9 KW		-	Y MCC-1000	1.20	9.00		1.0		9.00	9.00
HE-3405	Hot Start Circulating Water Heater (Train 1)	480		10 KW	1	-	Y MCC-1000	36.08	30.00		1.0	36.08	30.00	30.00
PM-3402	Hot Start Circulating Water Pumps (Train 1)	480		.5 KW	1	-	Y MCC-1000	1.80	1.50		1.0		1.50	1.50
PM-3405 HE-3404	Hot Start Engine Circulating Oil Pump (Train 1) Compressor Frame Oil Heater (Train 1)	480		10 KW	1	-	Y MCC-1000 Y MCC-1000	36.08	30.00		1.0		30.00	30.00
PM-3404	Compressor Cylinder Oil Peurp (Train 1)	480		1 HP	0.9	- 0.85	Y MCC-1000	3.01	0.98		0.8		2.50	0.70
EM-3400A	Discharge Cooler Fan #1 (Train 1)	480		25 HP	0.9		Y MCC-1000	29.32	24.38		0.8		19.50	17.55
EM-3400B	Discharge Cooler Fan #2 (Train 1)	480		5 HP	0.9		Y MCC-1000	29.32	24.38		0.8		19.50	17.55
EM-3502	Jacket Water / Auxiliary Water Cooler Fan (Train 2)	480		IO HP	0.9		Y MCC-1000	46.92	39.01	35.11	0.8		31.21	28.08
PM-3504 CP-3500	Aux Lube Oil Pump (Train 2) Engine/Compressor Control Panel #2	480		5 HP 1 KW	0.9		Y MCC-1000 Y MCC-1000	5.86	4.88	4.39	0.0		0.00	0.00
HE-3502	Hot Start Compressor Engine Oil Heater (Train 2)	480		9 KW	1		Y MCC-1000	10.83	9.00		1.0		9.00	9.00
HE-3505	Hot Start Circulating Water Heater (Train 2)	480		10 KW	1	-	Y MCC-1000	36.08	30.00		1.0		30.00	30.00
PM-3502	Hot Start Circulating Water Pumps (Train 2)	480		.5 KW	1		Y MCC-1000	1.80			1.0		1.50	1.50
PM-3505 HE-3504	Hot Start Engine Circulating Oil Pump (Train 2) Compressor Frame Oil Heater (Train 2)	480		3 HP .5 KW	0.9	0.85	Y MCC-1000 Y MCC-1000	3.52	2.93		1.0		2.93 2.50	2.63
PM-3503	Compressor Cylinder Oil Pump (Train 2)	480		1 HP	0.9	-	Y MCC-1000	1.17	0.98		0.8		0.78	0.70
EM-3500A	Discharge Cooler Fan #1 (Train 2)	480		5 HP	0.9		Y MCC-1000	29.32	24.38		0.8		19.50	17.55
EM-3500B	Discharge Cooler Fan #2 (Train 2)	480		15 HP	0.9			29.32	24.38		0.8		19.50	17.55
CP-3600	Engine/Compressor Control Panel #3	480		1 KW 9 KW	0.9		N MCC-1001	1.34	1.11 9.00		1.0		1.11 9.00	1.00
HE-3602 PM-3605	Hot Start Compressor Engine Oil Heater (Train 3) Hot Start Circulating Oil Pump (Train 3)	480		9 KW 3 HP		- 0.85		10.83	9.00		1.0		9.00	9.00
HE-3604	Compressor Fame Oil Heater (Train 3)	480		.5 KW	1		N MCC-1001	3.01	2.50		1.0		2.50	2.50
PM-3603	Compressor Cylinder Oil Pump (Train 3)	480		1 HP	0.9			1.17	0.98		0.8		0.78	0.70
EM-3600A	Discharge Cooler Fan #1 (Train 3)	480		5 HP	0.9			29.32	24.38		0.8		19.50	17.55
EM-3600B EM-360X	Discharge Cooler Fan #2 (Train 3) Lube Oil Cooler Fan #1 (Train 3)	480		25 HP .5 HP	0.9			29.32	24.38		0.8		19.50 1.95	17.55
TBA	Cylinder Lubricator Pump Motor (Train 3)	480		5 HP	0.9			0.88	0.73		0.8		0.59	0.53
CP-3700	Engine/Compressor Control Panel #4	480		1 KW	0.9		N MCC-1001	1.34	1.11	1.00	1.0		1.11	1.00
HE-3702	Hot Start Compressor Engine Oil Heater (Train 4)	480		9 KW	1	-	N MCC-1001	10.83	9.00		1.0		9.00	9.00
PM-3705 HE-3704	Hot Start Engine Circulating Oil Pump (Train 4) Compressor Frame Oil Heater (Train 4)	480		3 HP .5 KW	0.9		N MCC-1001 N MCC-1001	3.52	2.93		1.0		2.93 2.50	2.63
PM-3703	Compressor Cylinder Oil Pump (Train 4)	480		1 HP	0.9	-		1.17	0.98		0.8		0.78	0.70
EM-3700A	Discharge Cooler Fan #1 (Train 4)	480		25 HP	0.9			29.32	24.38		0.8		19.50	17.55
EM-3700B	Discharge Cooler Fan #2 (Train 4)	480		5 HP	0.9	0.85	N MCC-1001	29.32	24.38	21.94	0.8		19.50	17.55
EM-370X	Lube Oil Cooler Fan #1 (Train 4)	480		.5 HP	0.9			2.93	2.44		0.8		1.95	1.76
TBA CM-4001A	Cylinder Lubricator Pump Motor (Train 4) Instrument Air Compressor A	480		15 HP	0.9		Y MCC-1001 Y MCC-1000	0.88 46.92	0.73 39.01	0.66	0.8		0.59 31.21	0.53
CM-4001R CM-4001B	Instrument Air Compressor A	480		IO HP	0.9		Y MCC-1000	46.92	39.01		0.0		0.00	0.00
EM-4001	Instrument Air Cooler / Oil Cooler Fan	480		2 HP	0.9	0.85	Y MCC-1000	2.35	1.95		0.8		1.56	1.40
C-4003A	Starting Air Compressor A	480		IO HP	0.9	0.85	Y MCC-1000	46.92	39.01	35.11	0.1		3.90	3.51
C-4003B D-4003A/B	Starting Air Compressor B	480		0 HP 5 HP	0.9	0.85	Y MCC-1001 Y MCC-1000	46.92	39.01 14.63	35.11	0.1		3.90 1.46	3.51
D-4003A/B D-4001A/B	Starting Air Compressor - Dryer Booster Instrument Air Compressor - Dryer Booster	480		5 HP	0.9	0.85		17.59	14.63		0.1		1.46	1.32
EM-4003	Starting Air Cooler / Oil Cooler Fan	480		1 HP	0.9		Y MCC-1001	1.17	0.98		0.1		0.10	0.09
GEN-1000	Generator Auxiliary Loads	480		5 HP	0.9	0.85	Y MCC-1000	17.59	14.63		0.8		11.70	10.53
PM-4001 M-1001	Engine Oil Charge Pump	480		3 HP 2 HP	0.9	0.85		3.52	2.93	2.63	0.8		2.34	2.11
M-1002	Compressor Building Induced Fan #1 Compressor Building Induced Fan #2	480		2 HP	1	1		1.79	1.49		0.8		1.19	1.19
M-1003	Compressor Building Induced Fan #3	480		2 HP	1	1		1.79	1.49		0.8		1.19	1.19
M-1004	Compressor Building Induced Fan #4	480		2 HP	1	1	Y MCC-1001	1.79	1.49		0.8		1.19	1.19
M-1005	Compressor Building Induced Fan #5	480		2 HP	1	1		1.79	1.49		0.8	1.44	1.19	1.19
M-1006 M-1007	Compressor Building Induced Fan #6 Compressor Building Roll Up Door	480		2 HP 1 KW	1	-	N MCC-1001 N MCC-1001	1.79	1.49		0.8	1.44	1.19	1.19
CR-4001	Compressor House EOT Crane	480		13 HP	1	-	N MCC-1001	20.64	17.16		0.8		13.73	13.73
CR-4002	Jib Crane	480		5 HP	0.9	0.85	N MCC-1001	5.86	4.88		0.1	0.59	0.49	0.44
TX-1001	Outdoor Lighting Panel XFMR	480		0 KVA	0.85		Y MCC-1000	36.08	30.00		0.5		15.00	12.75
TX-1003 UPS-1000-1	Power Distribution Panel XFMR UPS	480		0 KVA 5 KW	0.85		Y MCC-1001 Y MCC-1001	36.08	30.00	25.50	0.5	18.04	15.00 15.00	12.75
UPS-1000-1 UPS-1000-2	UPS UPS (Redundant Feed)	480		5 KW	0.9	-	Y MCC-1001	20.05	16.67		0.9		0.00	0.00
TX-1002	Lighting/Receptacle XFMR #1	480	3 3	IO KVA	0.85		Y MCC-1000	36.08	30.00	25.50	0.5	18.04	15.00	12.75
TX-1004	Lighting/Receptacle XFMR #2	480		0 KVA	0.85		Y MCC-1001	36.08			0.1		3.00	2.55
HVAC-1000 HVAC-1001	PDC AC-1 (37 Tons) PDC AC-2 (37 Tons)	480		17 A 17 A	0.9	-	Y MCC-1001 Y MCC-1000	37.00			0.8		24.61	22.15
HVAC-1001 HVAC-1002	PDC AC-2 (37 Tons) PDC AC-3 (3 Tons)	480		2 A	0.9	-	Y MCC-1000 Y MCC-1001	37.00	30.76	8.98	0.0		7.98	7.18
HVAC-1002	PDC AC-4 (5 Tons)	480		20 A	0.9	-	Y MCC-1000	20.00	16.63	14.96	0.8		13.30	11.97
HVAC-1004	PDC AC-5 (5 Tons)	480		20 A	0.9		Y MCC-1001	20.00	16.63		0.0		0.00	0.00
WR-1000	Welding Outlet #1	480		O HP		0.85		58.65			0.1	5.86	4.88	4.39
WR-1001 WR-1002	Welding Outlet #2 Welding Outlet #3	480		0 HP	0.9	0.85		58.65			0.1	5.86 5.86	4.88 4.88	4.39
WR-1002 WR-1003	Welding Outlet #4	480		10 HP	0.9			58.65			0.1		4.00	4.39
WR-1004	Welding Outlet #5	480	3 5	0 HP	0.9	0.85	N MCC-1001	58.65	48.76	43.88	0.1	5.86	4.88	4.39
WR-1005	Welding Outlet #6	480		0 HP		0.85		58.65			0.1		4.88	4.39
TBA	CEMS Shelter (Train #1 & #2)	480		0 KVA	0.85		Y MCC-1000	36.08			0.8		24.00	20.40
BC-1000 BC-1001	Battery Charger #1 Battery Charger #2	480		0 A 0 A	0.9		Y MCC-1000 Y MCC-1001	10.00					6.65 6.65	5.99
	PDC-1001 Auxiliary Loads	480		0 KW	0.85		Y MCC-1001	70.75	58.82		0.8		47.06	40.00
TBA				0 KVA	0.85		Y MCC-1001	36.08			0.5		15.00	12.75
TBA	Antenna Building	480												
TBA TBA	Office Building	480	3 14	2 KVA	0.85	-	Y SG-1001	170.80	142.00	120.70	0.4	68.32	56.80	48.28
TBA TBA TBA	Office Building Warehouse Building	480 480	3 14	12 KVA 18 KVA	0.85	-	Y SG-1001 Y SG-1001	45.71	142.00 38.00	120.70		68.32 31.99	56.80 26.60	22.61
TBA TBA	Office Building	480	3 14 3 3 3 2	2 KVA	0.85 0.85 0.85	-	Y SG-1001 Y SG-1001 N TBD		142.00 38.00 17.00	120.70 32.30 15.00	0.4	68.32	56.80	

Table F-9: Electrical Load Chart