October 10, 2024

Ms. Alma Heustis, CHMM Southern California Gas Company Environmental Services | Team Lead – Air Quality 555 West 5th Street Los Angeles, CA 90013 Work: (213) 999-8469 E-mail: <u>aheustis@socalgas.com</u>

Subject: Response to the California Public Utilities Commission Deficiency Request Area No. 2, Deficiency Request Nos. 17 and 18, on the Proponent's Environmental Assessment for the Ventura Compressor Modernization Project

Dear Ms. Heustis:

In response to a request from SoCalGas, Yorke Engineering, LLC (Yorke) is providing this letter, responsive to California Public Utilities Commission (CPUC) Deficiency Request (DR) Nos. 17 and 18, to address the technical information related to estimated greenhouse gas (GHG) emissions and toxic air contaminant (TAC) emissions and potential health risks from (i) compressor venting, (ii) fugitive components, and (iii) blowdown emissions for the proposed Ventura Compressor Modernization (VCM) Project.

Potential TAC emissions from compressor venting, component fugitives, and blowdowns were not included in the operations Health Risk Assessment (HRA) of the Proponent's Environmental Assessment (PEA) because only emissions from permitted equipment are typically included in HRAs. However, per the CPUC's request and direction on the specific information requested, SoCalGas estimated the proposed project's GHG and TAC emission rates associated with natural gas volumes of vented emissions from compressor venting and blowdowns and fugitive emissions from component leaks. This response provides the technical considerations and strategies used to quantify these projected emissions. By way of summary, this response:

- 1) presents 2021 and 2022 baseline¹ data,
- 2) estimates natural gas volume releases,
- 3) uses estimated natural gas volumes to project future GHG and TAC emissions associated with natural gas releases from compressor venting, component fugitives, and blowdowns in response to DR No. 17,
- 4) analyzes predicted health impacts in response to DR No. 18, and

¹ The PEA was submitted in 2023 and the baseline period in the PEA was defined as the two most recent years that data were available, i.e., 2021 and 2022. The procedure of using the most recent two years is consistent with Ventura County Air Pollution Control District's Rule 26.6 New Source Review – Calculations, Section C., requirements, where the applicant is directed to use the two most recent years as the historical actual emissions (baseline period) unless, as determined by the Air Pollution Control Officer, another two-year period during the prior five years is more representative.

LOS ANGELES/ORANGE COUNTY/RIVERSIDE/VENTURA/SAN DIEGO/FRESNO/BERKELEY/BAKERSFIELD 31726 Rancho Viejo Road, Suite 218 ▼ San Juan Capistrano, CA 92675 ▼ Tel: (949) 248-8490 ▼ Fax: (949) 248-8499

5) provides an overall analysis of results that takes into consideration new equipment controls and best management practices.

Since specific, detailed component counts are unknown for the VCM Project at this early stage of engineering, SoCalGas utilized a conservative approach of estimating natural gas volume releases based on reported historical data at the existing Ventura Compressor Station (VCS) to respond to the CPUC's request.

The existing compressors at VCS were installed in the 1980s, making the existing components over 35 years old. Because details of component count or final design for the VCM Project will not be known until final engineering design is complete, responding to DR Nos. 17 and 18 to quantify certain information required an estimation approach. Therefore, as noted above, for DR Nos. 17 and 18, SoCalGas estimated the volume of natural gas emitted from compressor venting, fugitive components, and blowdowns using historical data to estimate future gas volume releases from compressor venting, fugitive components, and blowdowns with implementation of the VCM Project.

This approach in this analysis is conservative because it does not:

- 1) take into account that new components are anticipated to be less prone to leaks than older components,
- 2) take full emission reduction credit from installation of Compressor Static-Pac Seals (CSS) and Vapor Recovery Unit (VRU) technology for vented emissions,
- take any emission reduction credit from installation of a VRU for blowdown emissions, and
- 4) apply reductions from SoCalGas's existing best management practices (BMPs) and robust leak detection and repair (LDAR) process.

As such, it is anticipated implementation of the VCM Project will result in even fewer natural gas leaks and an associated GHG and TAC emissions reduction as compared to baseline conditions.

Laboratory analyses used in the estimation of TAC emission rates for DR 17 are provided in Attachment 1. Model inputs and output for the analysis prepared in response to DR 18 are provided in Attachment 2. For ease of review, we separately discuss Data Request Nos. 17 and 18 below.

DEFICIENCY REQUEST NO. 17 (DR 17)

Please quantify the reasonably foreseeable proposed project GHG and toxic air contaminant emissions rates associated with natural gas volumes of vented emissions and fugitive emissions from component leaks.

For the analysis below, SoCalGas estimated the natural gas volume releases, which were then used to estimate the associated GHG and TAC emissions.

Natural Gas Volume Releases

While it is difficult to quantify the reasonably foreseeable proposed VCM Project GHG and TAC emission rates associated with vented, fugitive, and blowdown volumes at this stage of engineering, SoCalGas took a conservative approach and first estimated the amount of natural gas that could be emitted from proposed equipment as vented, fugitive, and blowdown emissions using historical data as discussed further below. Once the gas volumes were estimated, Yorke could calculate GHG emissions in Metric Tons of CO₂-equivalent (MTCO₂e), and the amount of each TAC could be estimated based on the parts per million by volume (ppmv) of the TAC in the natural gas.

SoCalGas also provided Yorke with the estimated potential emission reductions associated with controls and BMPs. These estimates were applied in the specific categories where reductions were identified. These categories were compressor venting and blowdown. Emission reductions associated with CSS and VRU are only applicable to compressor venting estimates. BMPs from 2022 to present have resulted in reduced blowdown emissions, for example, there were zero blowdown emissions in 2022. Estimated reductions achieved with the use of CSS and VRU for compressor venting and BMPs associated with blowdowns resulted in estimated GHG and TAC emission reductions.

Compressor Venting

The volume of natural gas emitted from compressor venting was quantified using historical California Air Resources Board (CARB) Oil & Gas (O&G) rod packing vented flow rates and estimated future hours of compressor operations. To comply with CARB O&G Rule standards (California Code of Regulations, Title 17, §95668), SoCalGas annually reports Ventura Compressor Station's rod packing vented flow rates per cylinder for each existing compressor (HP1, HP2, HP3) in the CARB O&G Report (Table A7). The calculated average rod packing vented flow rate per cylinder for each existing compressor is 0.4225 Standard Cubic Feet per Minute (SCFM) using data from the 2021 and 2022 CARB O&G Report (Table A7). With two cylinders per compressor is 50.7 Standard Cubic Feet per Hour (SCFH).

As presented in PEA Section 5.6-6 Energy, SoCalGas analyzed two scenarios for energy impacts. Case 1 is based on two 2,500 nominal horsepower (HP) electric-driven compressors (EDCs) and Case 2 is based on two 2,000 nominal HP EDCs, where both cases have two 1,900 HP natural gas compressors. Case 1 EDCs will operate a maximum of 3,795 hours per year and Case 2 EDCs will operate a maximum of 3,890 hours per year. To be conservative, Case 2 was selected since it has the highest maximum hours of operations and highest annual process rate. Under normal operations using Case 2, the two proposed 2,000 HP EDCs are expected to be operated on a "first-on and last-off basis" and are expected to run a maximum of 3,890 hours/year each, while the two proposed 1,900 HP natural gas (NG) compressors are expected to run 1,935 hours/year each (see PEA, Appendix B, Air Quality & GHG Technical Report, Tables B-2a and F-4b).

As shown in Table 1 below, the average annual compressor vented natural gas volume for four compressors is projected to be 590.62 Thousand Standard Cubic Feet per Year (MSCF/year), with a total hourly volume of 0.20 MSCF/hour (approximately 0.051 MSCF/hour per compressor). However, this is a conservative estimate because it does not take into consideration the VCM Project's proposed utilization of a CSS or a VRU. The CSS includes compressor static-pack seals

with an ability to reduce up to 96%² of fugitive emissions and a VRU with a capture and recovery efficiency of up to 95%³. The proposed use of both the CSS and the VRU provides the foundation for the conservative estimate of an overall 50% reduction in the projected VCM compressor vented natural gas volumes. Fifty percent was chosen to be a conservative assessment, as compared to the potential 95%-96% reduction and capture/recovery rates, to account for any differences between the available literature and actual installation. Fifty percent of the projected compressor vented emissions would result in an approximate reduction of 295.3 MSCF/year of projected natural gas volumes.

Compressor	Average Actual Compressor Vent Measurement per Cylinder (SCFM) ⁽¹⁾	Average Actual Compressor Vent Measurement (SCFH) ⁽²⁾	Projected Annual Hours of Operation (Hour/Year)	Projected Annual Volume (MSCF/Year)
NG Unit 1	0.4225	50.7	1,935	98.09
NG Unit 2	0.4225	50.7	1,935	98.09
EDC Unit 1	0.4225	50.7	3,890	197.22
EDC Unit 2	0.4225	50.7	3,890	197.22
			Annual Volume (MSCF/year)	590.62
		Annual Volum CSS & VRU Projected Total (MSCF/year		295.31
	(for 4 Units)		Hourly Volume (MSCF/hour)	0.20
			Hourly Volume w/ CSS & VRU (MSCF/hour)	0.10

Table 1: Projected Compres	sor Vented Gas Volumes
-----------------------------------	------------------------

Notes:

- 1. The average actual compressor vent measurements are based on rod packing vent flow rates for Ventura Compressor Station's three existing compressors, per cylinder, from 2021 and 2022 CARB Oil and Gas reports.
- 2. Average Actual Compressor Vent Measurement (SCFH) = Average Actual Vent Compressor Vent Measurement per Cylinder (SCFM) * (60 minutes/hour) * 2 (two cylinders per compressor). Existing units have two cylinders per compressor and new proposed compressors are assumed to have two cylinders.

² See <u>Static-Pac Shutdown Seals - Cook Compression</u>

³ See <u>Vapor Recovery Units US Environmental Protection Agency</u>

Component Fugitives

The volume of natural gas emitted from component fugitives was quantified by SoCalGas using Senate Bill (SB) 1371 Natural Gas: Leakage Abatement data and historical CARB O&G Leak Detection and Repair (LDAR) Inspection Records. To comply with SB 1371 requirements, SoCalGas reports Ventura Compressor Station's annual natural gas volumes from compressor and component fugitive leaks to the CPUC and CARB. The calculated average natural gas volume from fugitive leaks is 61.49 MCF/year using the 2021 and 2022 SB 1371 Annual Report, Transmission Compressor Station: Compressor and Component Fugitive Leaks data table. The number of components inspected for fugitive leaks is approximately 3,263 with an average of 13,504 components inspected per year calculated using 2021 and 2022 CARB O&G LDAR Inspection Records (Table A4). Since the Ventura Compressor Station will increase from three to four compressors, SoCalGas is projecting a 33% increase in components and associated inspections, although actual numbers may be lower. With this increase, the projected compressor component count is estimated to be 4,340 with an estimated 17,361 components inspected per year. The annual component fugitive volume is projected to be 81.79 MSCF/year (33% increase), with an hourly volume of 0.009 MSCF/hour (Table 2). This is a conservative approach because this calculation does not account for the fact that newer components are expected to emit less than older components.

Data	2021	2022	Average Data	Projected Data
Fugitive LDAR Component Count	3,266	3,261	3,263	4,340
Fugitive LDAR Components Inspected per Year	13,062	13,045	13,504	17,361
SB 1371 Component Fugitive Volume (MSCF/year) ⁽¹⁾	48.49	74.50	61.49	
			Projected Total ⁽²⁾ (MSCF/year)	81.79
		1	Projected Total (MSCF/hour)	0.009

Table 2:	Projected	Component	Fugitive	Volumes

Notes:

- 1. The reported historical volume is from the 2021 and 2022 SB 1371 Annual Reports submitted on June 15, 2022, and June 15, 2023, respectively.
- 2. Historical volume of 61.49 MSCF/year was multiplied by the projected component inspections per year divided by average historical component inspections per year.

Blowdowns

Vented gas "blowdown" emissions are associated with the operations of natural gas transmission systems to allow operators to safely perform maintenance, inspections, construction, and emergency response. The volume of natural gas emitted from blowdowns vented to atmosphere are reported within the SB 1371 Annual Reports. The projected annual blowdown volume was estimated for the new facility by averaging reported 2021 and 2022 blowdown volumes (MSCF/year) from the SB 1371 Annual Reports. A revision to the 2021 SB 1371 Annual Report submitted in August 2024, included a correction to reported blowdown volumes. Blowdown volumes were corrected from 0 MSCF to 51.4 MSCF.

The blowdown capacity for the existing station is approximately 105 MSCF, and the blowdown capacity estimated for the proposed Ventura Compressor Station project is 150 MSCF, representing a potential 42.86% capacity increase. The SB 1371 blowdown volumes for 2021 and 2022 are 51.4 MSCF and 0 MSCF, respectively. The average blowdown volume for these two years is 25.7 MSCF. A projected increase in capacity of 42.86% for the proposed VCM Project results in an average volume blowdown of 36.7 MSCF (Table 3).

Table 3: Projected Blowdown Volumes

Data	2021	2022	Average	Projected Volume
SB 1371 Blowdown Volume (MSCF/year)	51.4 ⁽¹⁾	0	25.7	36.7 ⁽²⁾

Notes:

1. See Ventura Data Request -A.23.09-018-Cause-SCG-01

2. Projected Volume= (2021 and 2022 Average SB 1371 Blowdown Volume)*(Projected Increase in Capacity Percentage)

SoCalGas has progressively employed best management practices to reduce potential vented emissions from blowdowns. The use of isolation and blowdown valves, cross compression, and other enhanced maintenance considerations have greatly reduced potential vented emissions associated with blowdowns. For example, in 2022, reported blowdown volumes were 0 MSCF. The VCM Project will also include a permanent VRU for capture and recovery of blowdown emissions. Potential reductions from the VRU are not included in the emissions reduction calculations.

Natural Gas Volume Releases Summary

Both Section 5.3 (Air Quality) and Section 5.8 (Greenhouse Gas Emissions) of the VCM Project PEA indicate that:

SoCalGas has a robust leak detection and repair process at the Ventura Compressor System to minimize natural gas leaks from the components in fugitive service, such as valves and flanges. The installation of new fugitive components coupled with the robust leak detection and repair process is anticipated to result in fewer natural gas leaks compared to baseline conditions. (p. 5.3-20)

and

To comply with the CARB Oil and Gas Regulation, SoCalGas has a robust leak detection and repair (LDAR) process at the Ventura Compressor Station to minimize natural gas

leaks from the components in fugitive service, such as valves and flanges. A vapor capture and recovery system will be implemented at the Project Site that will prevent 85%–100% of the natural gas from being released to the atmosphere during venting. The installation of brand-new fugitive components coupled with the robust LDAR process is anticipated to result in fewer natural gas leaks and associated GHG emissions as compared to baseline conditions. ... new components will be installed as part of the Project and new components are less prone to leaks than older components. (p. 5.8-12)

As provided in the PEA, SoCalGas continues to expect that emissions from fugitive leaks and compressor venting will decrease under the VCM Project compared to the existing station. However, as noted above, SoCalGas took a conservative approach in responding to the CPUC request for GHG and TAC emissions associated with natural gas volumes of vented, fugitive emissions from component leaks, and blowdowns. Natural gas volume releases were estimated and used to project future vented, component fugitive emissions, and blowdowns associated with GHG and TAC emissions. As such, this analysis does not account for the potential upgrades to new components.

A summary of the projected natural gas volume emissions from Tables 1, 2, and 3 are presented in Table 4. These estimates are based on scaling the baseline data to account for the difference in the number of compressors planned relative to the three existing engine driven compressors in the baseline.

Source Category	Annual Volume (MSCF/year)	Maximum Hourly Volume (MSCF/hour)
Compressor Venting (Mitigated)	295.3 ⁽¹⁾	0.0254
Fugitive Components	81.79	0.009
Blowdowns	36.7 ⁽²⁾	Not Applicable
Total	413.8	

Table 4:	Summary of E	Estimated Nat	tural Gas Volun	nes Emitted from	Compressor	Venting
(Mitigate	ed), Fugitive Co	omponents, a	nd Blowdowns			

Notes:

- $1. \quad Includes \ 50\% \ reduction \ from \ CSS \ and \ VRU \ for \ vented \ emissions.$
- 2. Blowdowns occur infrequently, over periods of time of up to 3 minutes, and therefore were only projected as annual volumes.

Greenhouse Gas Emission Calculations

SoCalGas Response to PEA Completeness Review, September 2023, dated November 2023, PEA Section 5.8.1 (p. 5.8.-1) gave the results of operations GHG emissions as excerpted below. As discussed in the Blowdowns section above, a revision to the 2021 SB 1371 Annual Report submitted in August 2024, included a correction to reported blowdown volumes from 0 MSCF to 51.4 MSCF. The corrections to SoCalGas's response text are shown below with deletions in strikeout and additions in bold underline):

Existing compressor leaks are summarized in the California Air Resources Board (CARB) Oil and Gas reports from 2021–2022. Based on CARB's Oil and Gas reports, Ventura Compressor Station recorded 24 leaks from components in fugitive service in 2021 and 17 in 2022. The existing compressor-vented emissions and emissions associated with leaks from components in fugitive service are summarized in Senate Bill (SB) 1371 reports that are submitted to the California Public Utilities Commission (CPUC) and CARB annually. The natural gas volumes reported in response to the requirements of SB 1371 were 398 449 thousand standard cubic feet (MSCF) in 2021 and 803 MSCF in 2022. In 2021, 8878% of the volume was associated with compressor vents, and 1211% was associated with fugitive components, and 11% was associated with blowdowns. In 2022, 91% of the volume was associated with compressor vents, and-9% was associated with fugitive components, and 0% was associated with blowdowns.

In response to the CPUC request for additional information, the GHG emissions estimated to be associated with these volumetric reported values were calculated in metric tons of CO₂-equivalent (MTCO₂e). For baseline years 2021 and 2022, the calculated values are 180203 MTCO₂e and 361 MTCO₂e, respectively, with a calculated average of 270.5282 MTCO₂e. The Ventura Compressor Station's on-site natural gas is limited to the volume stored in the on-site pipelines. In the event of an abnormal condition resulting in the accidental release of natural gas, the volume of natural gas released would be limited to the volume stored in the pipelines at that time.

To estimate future GHG emissions from the VCM Project, SoCalGas used the projected annual compressor vented, fugitive, and blowdown natural gas volumes shown in Table 4. GHG emissions associated with compressor vented emissions, component fugitive emissions, and blowdown emissions were calculated to be 133.5 MTCO₂e/year, 37 MTCO₂e/year, 16.6 MTCO₂e/year, respectively. As noted above, this analysis is conservative because it does not take into account the full reduction efficiency of the VRU and CSS system for vented emissions, does not take any reduction efficiency for VRU for blowdowns, and the upgrades to new components. The total projected calculated GHG emissions is 187 MTCO₂e/year as shown in Table 5.

	Compressor Vented (Mitigated) Emissions	Component Fugitive Emissions	Blowdown Emissions
NG Volume (MSCF/year)	295.3	81.79	36.7
NG Volume (SCF/year)	295,300	81,790	36,720
Mole Fraction Carbon Dioxide (CO ₂) ⁽¹⁾	0.0091	0.0091	0.0091
Mole Fraction Methane (CH ₄) ⁽¹⁾	0.9407	0.9407	0.9407
CO ₂ Volume (SCF) ⁽²⁾	2,687.23	744.29	334.15
CH ₄ Volume (SCF) ⁽³⁾	277,788.71	76,939.85	34,542.50
Density CO ₂	0.0526	0.0526	0.0526
Density CH ₄	0.0192	0.0192	0.0192
Global Warming Potential (GWP) CO ₂	1	1	1
GWP CH4 ⁽⁴⁾	25	25	25
MTCO ₂ /year ⁽⁵⁾	0.141	0.04	0.02
MTCH ₄ /year ⁽⁶⁾	5.33	1.48	0.66
MTCO ₂ e/year ⁽⁷⁾	133.5	37.0	16.6
Total Mitigated (MTCO2e/year)		187	

Table 5: Projected Greenhouse Gas Emissions (MTCO2e)

Notes:

- 1. Average mole fractions based on continuous Gas Control data
- 2. Converted NG (SCF) volume to CO₂ volume (SCF)= NG volume (SCF) * CO₂ (mole)
- 3. Converted NG (SCF) volume to CH_4 volume (SCF) = NG volume (SCF) * CH4 (mole)
- 4. GWP for methane from the CARB required reporting value based on the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)
- 5. Metric Tons of CO_2 (MTCO₂) = CO_2 Volume (SCF) * Density (CO₂) * 10^-3
- 6. Metric Tons of CH_4 (MTCH₄) = CH_4 Volume (SCF) * Density (CH₄) * 10^-3
- 7. Metric Tons of CO_2 -equivalent (MTCO₂e) = (MTCO₂ * GWP[CO₂]) + (MTCH₄ * GWP[CH₄])

A summary of baseline and projected vented, fugitive, and blowdown GHG emissions is shown in Table 6 below.

Source Category	Baseline 2021/2022 Average (MTCO2e/year)	Projected (MTCO2e/year)	Projected Difference (MTCO ₂ e/year)
Compressor Vented GHG Emissions (Mitigated)	243	133.5	(109)
Component Fugitive GHG Emissions	27.7	37.0	9.3
Blowdown Emissions	11.6	16.6	5
Total	281.8	187.1	(94.7)

 Table 6: Baseline and Projected Greenhouse Gas Emissions (MTCO2e)

Note: Numbers in parenthesis are negative numbers.

Based on this conservative approach, total GHG emissions from vented, fugitive, and blowdown emissions are estimated to decrease from an average 282.3 MTCO₂e/year (2021 and 2022 baseline emissions) to a projected 187.1 MTCO₂e/year for a net reduction of 94.7 MTCO₂e/year.

Vented emissions from compressors are projected to decrease by 109 MTCO₂e/year. Fugitive emissions from fugitive components are projected to increase by 33% due to the increase in the number of fugitive components. Blowdowns are projected to increase in volume potential by 42.86%, resulting in an average volume blowdown of 36.7 MSCF/year. However, this projected increase does not account for the benefits of upgraded equipment. The proposed new compressors are expected to vent less than existing compressors since the new equipment will include brandnew valves and instruments equipped with low emissions packing system. Additionally, the use of isolation and blowdown valves, cross compression, and other enhanced maintenance considerations have greatly reduced potential vented emissions associated with blowdowns.

With respect to fugitive emissions, SoCalGas also has a robust LDAR program as required by CARB O&G regulations and additionally performs routine proactive leak detection of fugitive components outside of regulatory required timelines, which may further minimize GHG leak related emissions. On January 1, 2020, CARB revised their Oil and Gas regulation to require that all leaks from >10,000 ppmv to >1,000 ppmv be repaired within 14 days. CARB is currently amending their rule and considering an even lower leak threshold level which may result in even further emission reductions.

Based on the analysis above, GHG emissions from vented, fugitive, and blowdown sources would not change the significance findings in the PEA.

TAC Emission Calculations

To estimate TAC emission rates associated with the gas emissions shown in Table 4, on August 13, 2024, SoCalGas collected six natural gas samples from three locations near the Ventura Compressor Station. The samples were collected along natural gas transmission lines 324, 406, and 404, which feed into the Ventura Compressor Station. Two samples were collected at each of the three locations, *i.e.*, a sample and a field duplicate were taken at each site. Samples were collected in 6-liter canisters using a Silonite-treated regulator. The regulator was flushed with high purity nitrogen prior to each sampling event. The samples were analyzed for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) according to United States Environmental Protection Agency (EPA) Method TO-15. Analysis results are summarized in Table 7 and provided in Attachment 1. TAC emission rates, estimated from the Table 4 volumetric flowrates and the Table 7 analysis results, are shown in Table 8.

Prior to the sampling, it is noted that a search was conducted by Yorke to find published emissions factors for TAC from natural gas transmissions stations. Multiple Air Pollution Control District (APCD)/Air Quality Management District (AQMD) databases, reporting guidelines, and/or permit information were searched including CARB, Ventura County APCD, Santa Barbara County APCD, San Luis Obispo County APCD, San Diego County APCD, South Coast AQMD, San Joaquin Valley APCD, and Bay Area AQMD. Some TAC information was available for natural gas production and processing plants, but no documents containing specific guidance related to fugitive emissions from fugitive components handling 100% natural gas or natural gas venting were found. For instance, San Joaquin Valley APCD TAC emission factors⁴ are provided for "Natural Gas (Unrefined) Fugitives." The factors are noted in the footnotes to the San Joaquin Valley APCD's table to be based "on a June 2001 Material Safety Data Sheet (MSDS) for Natural Gas Condensate provided by Pacific Gas and Electric Company. This composition represents raw natural gas and will differ from refined natural gas." Hence, sampling of the specific natural gas present at the Ventura Compressor Station was performed.

⁴ See <u>https://ww2.valleyair.org/media/4pmopthn/natural-gas-and-propane-fugitives.xls</u>

TAC	CAS No.	Molecular Weight (lb/lbmol)	Analysis Result ⁽¹⁾ (ppmv)	Emission Factor ⁽²⁾ (lb/mmscf)
Benzene	71432	78.11	1.550	3.19E-01
Toluene	108883	92.14	1.880	4.57E-01
Ethylbenzene	100414	106.17	0.096	2.689E-02
Xylenes	1330207	106.16	0.718	2.011E-01

Table 7: BTEX Analysis Results

Notes:

1. Analysis Result (ppmv) = Average of six sample results, in units of parts per million by volume. *The analysis results are in units of parts per billion by volume. The numbers shown in Table 7 are calculated by spreadsheet and may include rounding.*

Emission Factor (lb/mmscf) = Emission factor in units of pounds per million square feet. Emission Factor (lb/mmscf) = Analysis Result (ppmv) x Molecular Weight (lb/lbmol) / Molar Volume (scf/lbmol). Molar Volume = 379 scf/lbmol, is the molar volume of an ideal gas at 60 Degrees Fahrenheit. These numbers are calculated by spreadsheet and may differ from hand-calculation due to rounding.

		Compressor Venting (Mitigated)		Fugitive C	Blowdowns	
TAC	CAS No.	Annual Emissions ⁽¹⁾ (lb/yr)	Maximum Hourly Emissions ⁽²⁾ (lb/hr)	Annual Emissions ⁽¹⁾ (lb/yr)	Maximum Hourly Emissions ⁽²⁾ (lb/hr)	Annual Emissions ^(1,3) (lb/yr)
Benzene	71432	9.43E-02	8.11E-06	2.61E-02	2.98E-06	1.17E-02
Toluene	108883	1.35E-01	1.16E-05	3.74E-02	4.27E-06	1.68E-02
Ethylbenzene	100414	7.9E-03	6.8E-07	2.2E-03	2.5E-07	9.87E-04
Xylenes	1330207	5.9E-02	5.1E-06	1.6E-02	1.9E-06	7.38E-03

Table 8: Projected TAC Emission Rates

Notes:

1. Annual Emissions (lb/yr) = Annual Emissions (mscf/yr) [Table 4]/ 1,000 x Emission Factor (lb/mmscf) [Table 7]. The numbers shown in Table 8 are calculated by spreadsheet and may differ from hand-calculation using the numbers shown in Tables 4 and 7 due to rounding.

2. Maximum Hourly Emissions (lb/hr) = Maximum Hourly Emissions (mscf/hr) [Table 4]/ 1,000 x Emission Factor (lb/mmscf) [Table 7]. *The numbers shown in Table 8 are calculated by spreadsheet and may differ from hand-calculation using the numbers shown in Tables 4 and 7 due to rounding.*

3. Blowdowns occur infrequently, over periods of time of up to 3 minutes, and therefore were only projected as annual emissions.

DEFICIENCY REQUEST NO. 18 (DR 18)

Please confirm the vented emissions and fugitive emissions from component leaks are considered and included in the Health Risk Assessment for the predicted health risks during project operation. Please include quantified cancer risk and noncancer hazard indices for these sources.

SoCalGas Response to PEA Completeness Review, September 2023, dated November 2023, PEA Section 5.3 (p. 5.3-18) gave the results of an operations HRA for the proposed project as follows:

The operations HRA modeling analyzed the total post-Project TAC emissions based on the proposed Project's PTE from the new natural gas compressors and standby generator rather than the delta between pre-Project and post-Project TAC emissions. TAC emissions were calculated for the TACs expected from the combustion of natural gas in the proposed new natural gas equipment, using emission factors provided by the VCAPCD during prior permitting efforts. Dispersion modeling was conducted with AERMOD using the on-site meteorological data and receptor locations around the property boundary, gridded receptors, and receptors at specific sensitive receptor locations. The AERMOD results were input into the Hot Spots Analysis and Reporting Program (HARP2) software tool for conducting HRAs. The HRA followed the California Office of Environmental Health Hazard Assessment Guidelines (OEHHA 2015) as well as the VCAPCD Air Quality Assessment Guidelines (VCAPCD 2003). Additional information on the TAC emission calculations and the methodology, input parameters, and detailed results for each predicted health impact and at each receptor type, broken down by pollutant and source, for the operational HRA are provided in Appendix B.

The results of the HRA from the proposed Project's operational TAC emissions are summarized in [PEA] Table 5.3-10. The results show that the predicted health impacts are below the VCAPCD health risk thresholds; therefore, impacts from the Project's TAC emissions would be less than significant.

Predicted Health Impact	Maximally Exposed Individual Residential	Maximum Sensitive Receptor	Maximally Exposed Individual Worker	VCAPCD CEQA Threshold	Significant?
Cancer Risk (In One Million)	2.81	0.54	1.25	10	No
Chronic Hazard Index (HIC)	0.009	0.002	0.01 (annual) 0.05 (8-hour)	1	No
Acute Hazard Index (HIA)	0.03	0.03	0.02	1	No

Table 5.3-10. Operational Health Risk Assessment Results⁵

Notes: VCAPCD = Ventura County Air Pollution Control District; CEQA = California Environmental Quality Act.

⁵ This table is from Section 5.3 of the PEA and does not consider venting, fugitive, or blowdown emissions.

Potential TAC emissions from compressor venting, component fugitives, and blowdown were not included in the operations HRA in the PEA because only emissions from permitted equipment are typically included. The VCAPCD Air Quality Assessment Guidelines published in October 2003 do not include requirements for including TAC emissions from venting, component fugitives, or blowdowns in Air Quality Impact Analyses or HRAs. VCAPCD has not required including TAC emissions from venting, component fugitives, or blowdowns in HRAs done for air permit applications or for Assembly Bill (AB) 2588 Air Toxics "Hot Spots" Information and Assessment Act submittals for the Ventura Compressor Station. Hence, there was no expectation that potential TAC emissions from these sources should be included.

In response to this CPUC request, an analysis was done using the same methodology, meteorological data, receptor grid and discrete receptors, etc. as was used for the HRA provided for the VCM Project PEA. All applicable Ventura County APCD and OHHEA HRA Guidelines were followed. The analysis model inputs, and detailed output are provided in Attachment 2. As shown in Attachment 2, the compressor venting was modeled as point sources at the vent stack for each compressor, the blowdown emissions were modeled as a point source at the emergency shut down stack, and as a polygonal area source for the component fugitives. Since the VRU design has not been finalized, the model used unmitigated compressor venting volumes. The estimated vapor capture and recovery efficiency of 50% was not included in the model because the necessary model inputs are not available at this stage of the project design. The results of the analysis do not include proposed mitigations and therefore do not reflect the actual operation which is expected to result in lower predicted health impacts than those shown in Table 9. Because a blowdown event is infrequent and lasts only a few minutes at a time and not throughout the year like compressor venting and component fugitives, blowdown emissions were modeled separately, and the results are presented separately in Table 9 and Attachment 2.

Table 9:	Analysis	Results from	Compressor	Venting,	Component	Fugitive, and	l Blowdown
TAC Em	issions						

Predicted Health Impact	Maximally Exposed Individual Residential	Maximum Sensitive Receptor	Maximally Exposed Individual Worker	VCAPCD CEQA Threshold	Significant ?
	Compress	or Venting ⁽¹⁾ an	d Fugitive Compone	nts	
Cancer Risk (In One Million)	0.008	0.003	0.002	10	No
Chronic Hazard Index (HIC)	0.00004	0.00002	0.0001 (annual) 0.0001 (8-hour)	1	No
Acute Hazard Index (HIA)	0.0005	0.0005	0.0009	1	No
		Blowd	owns		
Cancer Risk (In One Million)	0.00006	0.00003	0.00002	10	No
Chronic Hazard Index (HIC)	0.0000003	0.0000001	0.000001 (annual) 0.000001 (8-hour)	1	No

Notes:

1. The model includes the annual emissions per compressor at the total divided by 4; the model includes the maximum hourly emissions per compressor at the maximum hourly per unit. That is, the annual volume vented per year per compressor is 590.62 MSCF/year divided by 4, and the maximum hourly volume vented per hour per compressor is 50.7 SCF/hour.

CONCLUSION

SoCalGas used a conservative approach of estimating natural gas release volumes associated with compressor venting, fugitive components, and blowdowns based on reported historical data at the existing VCS. These natural gas volumes were scaled to account for the configuration of the proposed VCM Project relative to the existing configuration of the VCS. These volumes were used to estimate GHG and TAC emissions to respond to the CPUC's request. This analysis overestimates emissions as it is anticipated that new components will be less prone to leaks than older components. Additionally, the conservative approach used to develop the emissions rates does not account for the full reduction potential of the CSS or VRU for vented emissions, which is anticipated to have a much higher emissions reduction as it can reduce 95%-96% of vented emissions but only a 50% reduction was applied to conservatively address any unknown variables. Lastly, the analysis does not account for any potential from the VRU for blowdowns or account for SoCalGas's existing BMPs and robust LDAR process.

The VCM project is estimated to result in a net reduction of 94.7 MTCO₂e/year from compressor venting, fugitive components, and blowdowns as compared to existing conditions. The predicted health impacts from TAC emissions from compressor venting, fugitive components, and blowdowns are below the VCAPCD health risk thresholds.

Sincerely,

Jan J ada

James J. Adams Senior Engineer Yorke Engineering, LLC JAdams@YorkeEngr.com

Enclosures:

- 1. Attachment 1 Laboratory Report
- 2. Attachment 2 Analysis Model Inputs and Outputs

ATTACHMENT 1 – LABORATORY REPORT

LABORATORY REPORT

August 26, 2024

Shahid Razzak, M.L. 723B Southern California Gas Company Terminal Annex Los Angeles, CA 90051

RE: Ventura Station Testing / TS2024-CO12

Dear Shahid:

Enclosed are the results of the samples submitted to our laboratory on August 13, 2024. For your reference, these analyses have been assigned our service request number P2403329.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

ALS | Environmental

rl By Sue Anderson at 4:22 pm, Aug 26, 2024

Sue Anderson Project Manager

Client: Southern California Gas Company Project: Ventura Station Testing / TS2024-CO12 Service Request No: P2403329

CASE NARRATIVE

The samples were received intact under chain of custody on August 13, 2024 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph/mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The containers were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. For projects requiring DoD QSM 5.4 compliance canisters were cleaned to <1/2 the MRL. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	https://dec.alaska.gov/spar/csp/lab-approval/list-of-approved-labs	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	https://internet.deq.louisiana.gov/portal/divisions/lelap/accredited- laboratories	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtm	2022028
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	006-999-456
New Jersey DEP (NELAP)	https://dep.nj.gov/dsr/oqa/certified-laboratories/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oklahoma DEQ (NELAP)	labaccreditation.deq.ok.gov/labaccreditation/	2207
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaboratoryA ccreditation/Pages/index.aspx	4068-012
Pennsylvania DEP	hhttp://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env lab accreditation.html	T104704413
Utah DOH (NELAP)	https://uphl.utah.gov/certifications/environmental-laboratory-certification/	CA01627
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Southern California Gas Company Service Request: P2403329 Project ID: Ventura Station Testing / TS2024-CO12 Date Received: 8/13/2024 Time Received: 09:24 TO-15 - VOC Cans Date Time Container Pi1 Pf1 Client Sample ID Lab Code Matrix Collected Collected ID (psig) (psig) 2553T-324 P2403329-001 Air 8/13/2024 06:46 SC00374 5.12 5.12 Х 2553T-324-D P2403329-002 Air 8/13/2024 06:50 SC01547 5.10 5.10 Х 2553T-406 P2403329-003 8/13/2024 07:16 SC01904 4.08 Х 4.08 Air 2553T-406-D P2403329-004 8/13/2024 07:21 Х Air SC00151 4.55 4.55 805T-404 P2403329-005 Air 8/13/2024 08:15 SC01558 3.14 3.14 Х Х 805T-404-D P2403329-006 Air 8/13/2024 08:21 SC00568 3.77 3.77

Air - Chain of Custody Record & Analytical Service Request

Page of

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Requested Turnaround Time in Business Days (Surcharges) please circle

ALS Project No.

				1 Day (100%) 2 Day	(75%) 3 Day (50%	6) 4 Day (35%) 3	5 Day (25%) 10	Day-Stand	ard		
									ALS Contact:		
Company Name & Address (Reporting Informati	ion)			Project Name	4 Stater	n Techin	2		Analysis	Method	
So Col 445		2 1		Project Number_	a JMIT	- vuoinn	<i>t</i>				
8101 Rosemande Blud	, Pru	o Ri	veva	IS20	<u>714 - COI</u> ation	2			×		
Project Manager Shuhrd Ruzzuk						E.		e a Actual			
Phone Fax		-		300 873-		8		Preservative or			
Email Address for Result Reporting				Sampler (Print & Sign)		1 ni	/		16		specific instructions
SRAZEORK @ Socale	195-1	OM		David Kum	mever	flast the	Conistor	-	75		
Client Sample ID Labor	atory mber C	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # - FC #)	Start Pressure "Hg	End Pressure "Hg/psig	Sample Volume	2		
25537-324	5	3/13/24	L:46 A	560374	-	-29.28	4.60	-			
2553T- 37.4- D		t	6 5.50 A	561547	128	-29.83	4.46	-			
25S3T-406			7:16A	521904	-	-24.72	3.57	-			
2553T-406-0			2:21 k	5100151	-	-79.85	3.98	-			
8057-404			8.15A	541558	-	-30-12	2,20	-			
8+57-404-D		X	8:21A	SCOSL8	-	-30-04	3.58	-	J		
pust - lut -											
									ļ		
			1								
					-						
Report Tier	Levels - I Tier III (R	please selo lesults + QC	ect & Calibration S	Jummaries)	EDD required	/es / No		Chain of	Custody Sea	il: (Circle)	Project Requiremer (MRLs, QAPP)
Tier II (Results + QC Summaries) T	ier IV (Dat	ta Validation	Package) 10%	Surcharge	Туре:	Units		INTAC	I BROKEN	ABSENT	-
Relinquished by: (Signature)			Date: AJIS/24	Time: 24	Received by: (Sign	Tatuse)	0	2-13-	Date:	0927	1
Relinquished by: (Signature)			Date:	Time:	Received by (Bigi	nature)			Date:	Time:	Cooler / Blank Temperature

ALS Environmental Sample Acceptance Check Form

Client	: Southern Calif	ornia Gas Company	-	-		Work order:	P2403329			
Project	: Ventura Station	n Testing / TS2024-C	012							
Sample	(s) received on:	8/13/2024		I	Date opened:	8/13/2024	by:	ANTHO	ONY.VA	SQUEZ
Note. This	s form is used for all	complex received by ALS	The use of this fo	orm for custody se	ale is strictly me	ant to indicate pres	ance/absence and n	ot as an ir	dication	of
<u>Inore</u> This		Samples received by ALS.	-II will only he or	orm for custouy se	als is strictly me	ant to indicate pres	ence/absence and in		dication	01
compnance	e or noncomorniny.	Thermal preservation and	pH will only be ev	/aluated entiter at u	ne request or the	e client and/or as re	quired by the metho	Yes	No	N/A
1	Were sample (containers properly n	narked with cli	ent sample ID'	?			X		
2	Did sample co	ntainers arrive in goo	od condition?					X		
3	Were chain-of	-custody papers used	l and filled out	?				X		
4	Did sample container labels and/or tags agree with custody papers?									
5	Was sample v	olume received adequ	ate for analysi	is?				X		
6	Are samples w	Are samples within specified holding times?								
7	Was proper temperature (thermal preservation) of cooler at receipt adhered to?									X
8	Were custody	seals on outside of co	ooler/Box/Cont	tainer?					X	
		Location of seal(s)?					Sealing Lid?			X
	Were signature	e and date included?								X
	Were seals inta	act?								X
9	Do container	rs have appropriate pr	r eservation , ac	ccording to me	thod/SOP or	Client specified	l information?			X
	Is there a clier	nt indication that the s	ubmitted samp	oles are pH pre	served?					X
	Were <u>VOA vi</u>	als checked for prese	nce/absence of	f air bubbles?						X
	Does the client	t/method/SOP require	that the analys	st check the sar	nple pH and	<u>if necessary</u> alt	er it?			X
10	Tubes:	Are the tubes capp	ped and intact?)						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
		Are dual bed bads	ges separated a	and individually	capped and	intact?				X
12	Lab Notification	on: Analyst and PM	were alerted of a	Short HT or RU	SH samples?					X
13	Client Notifica	tion: Client has been no	otified regarding	g HT exceedance	s and/or other	CoC discrepanci	es?			X
			D	D 1 1		NOTA		(D		

Lab Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receipt / Preservation
	Description	pH *	pH	pH	(Presence/Absence)	Comments
P2403329-001.01	6.0 L Source Can					
P2403329-002.01	6.0 L Source Can					
P2403329-003.01	6.0 L Source Can					
P2403329-004.01	6.0 L Source Can					
P2403329-005.01	6.0 L Source Can					
P2403329-006.01	6.0 L Source Can					
P2403329-007.01	6.0 L Source Can					

Explain any discrepancies: (include lab sample ID numbers):

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Southern California Gas Compa 2553T-324 Ventura Station Testing / TS2024-C	nny CO12	ALS Project ID: P2403329 ALS Sample ID: P2403329-001					
Test Code:	EPA TO-15		Date Collected: 8/13/24					
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977	/B/MS26	Date Received: 8/13/24					
Analyst:	Pruthuvi Heenatigala		Date Analyzed: 8/22/24					
Sample Type:	6.0 L Summa Canister		Volume(s) Analyzed: 0.0050 Liter(s)					
Test Notes:								
Container ID:	SC00374							
	Initial Pressure (psig):	5.12	Final Pressure (psig):	5.12 Canister	Dilution F	actor: 1.00		
CAS #	Compound	Result	MRL	Result	MRL	Data		
		μg/m³	µg/m³	ppbV	ppbV	Qualifier		
71-43-2	Benzene	3,400	100	1,100	32			
108-88-3	Toluene	5,200	110	1,400	29			
100-41-4	Ethylbenzene	320	110	74	25			
179601-23-1	m,p-Xylenes	1,900	210	430	49			
95-47-6	o-Xylene	390	110	90	25			

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Southern California Gas Compa	nny						
Client Sample ID:	2553T-324-D	•		ALS Project ID: P2403329				
Client Project ID:	Ventura Station Testing / TS2024-C	2012	ALS Sample ID: P2403329-002					
Test Code:	EPA TO-15			Date Collected: 8	3/13/24			
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977	/B/MS26	Date Received: 8/13/24					
Analyst:	Pruthuvi Heenatigala		Date Analyzed: 8/15/24					
Sample Type:	6.0 L Summa Canister		Volume(s) Analyzed: 0.010 Liter(s)					
Test Notes:								
Container ID:	SC01547							
	Initial Pressure (psig):	5.10	Final Pressure (psig)): 5.10				
				Canister	Dilution Fa	actor: 1.00		
CAS #	Compound	Result	MRL	Result	MRL	Data		
	_	μg/m³	$\mu g/m^3$	ppbV	ppbV	Qualifier		
71-43-2	Benzene	4,900	51	1,500	16			
108-88-3	Toluene	6,800	54	1,800	14			
100-41-4	Ethylbenzene	350	55	79	13			
179601-23-1	m,p-Xylenes	2,100	110	470	25			
95-47-6	o-Xylene	430	54	98	12			

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Southern California Gas Compa	any	ALS Project ID: D2402220					
Client Sample ID: Client Project ID:	25551-400 Ventura Station Testing / TS2024-C	CO12	ALS FI0ject ID: F2403329-003					
	· ····································		Ĩ					
Test Code:	EPA TO-15		Date Collected: 8/13/24					
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977	7B/MS26	Date Received: 8/13/24					
Analyst:	Pruthuvi Heenatigala		Date Analyzed: 8/15/24					
Sample Type:	6.0 L Summa Canister		Volume(s) Analyzed: 0.010 Liter(s)					
Test Notes:								
Container ID:	SC01904							
	Initial Pressure (psig):	4.08	Final Pressure (psig)	: 4.08				
				Canister	Dilution Fa	actor: 1.00		
CAS #	Compound	Result	MRL	Result	MRL	Data		
71.42.2	D	$\mu g/m^3$	μg/m ³		ppbV	Qualifier		
/1-43-2	Benzene	4,600	51	1,400	16			
108-88-3	Toluene	6,100	54	1,600	14			
100-41-4	Ethylbenzene	360	55	83	13			
179601-23-1	m,p-Xylenes	2,300	110	530	25			
95-47-6	o-Xvlene	490	54	110	12			

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Southern California Gas Comj 2553T-406-D Ventura Station Testing / TS2024-	pany -CO12	ALS Project ID: P2403329 ALS Sample ID: P2403329-004				
Test Code:	EPA TO-15			Date Collected: 8	/13/24		
Instrument ID:	Entech 7200CTS/Agilent 7890B/59	77B/MS26	Date Received: 8/13/24				
Analyst:	Pruthuvi Heenatigala		Date Analyzed: 8/15/24				
Sample Type:	6.0 L Summa Canister		Volume(s) Analyzed: 0.010 Liter(s)				
Test Notes:							
Container ID:	SC00151						
	Initial Pressure (psig):	4.55	Final Pressure (psig):	4.55			
				Canister	Dilution Fa	ctor: 1.00	
CAS #	Compound	Result	MRL	Result	MRL	Data Qualifier	
71-43-2	Benzene	<u> </u>	<u>51</u>	1,600	<u>16</u>	Quanner	
108-88-3	Toluene	7,100	54	1,900	14		
100-41-4	Ethylbenzene	390	55	91	13		
179601-23-1	m,p-Xylenes	2,600	110	600	25		

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

o-Xylene

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

530

54

120

12

95-47-6

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Southern California Gas Compa 805T-404 Ventura Station Testing / TS2024-C	nny CO12	ALS Project ID: P2403329 ALS Sample ID: P2403329-005					
Test Code:	EPA TO-15			Date Collected: 8	/13/24			
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977	/MS26	Date Received: 8/13/24					
Analyst:	Pruthuvi Heenatigala		Date Analyzed: 8/15/24					
Sample Type:	6.0 L Summa Canister		V	volume(s) Analyzed:	0.010 L	iter(s)		
Test Notes:								
Container ID:	SC01558							
	Initial Pressure (psig):	3.14	Final Pressure (psig)	: 3.14				
				Canister	Dilution Fa	actor: 1.00		
CAS #	Compound	Result	MRL	Result	MRL	Data		
		μg/m³	μg/m³	ppbV	ppbV	Qualifier		
71-43-2	Benzene	6,100	51	1,900	16			
108-88-3	Toluene	8,900	54	2,400	14			
100-41-4	Ethylbenzene	560	55	130	13			
179601-23-1	m,p-Xylenes	3,400	110	770	25			
95-47-6	o-Xylene	860	54	200	12			

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Southern California Gas Compa 805T-404-D Ventura Station Testing / TS2024-C	any CO12	ALS Project ID: P2403329 ALS Sample ID: P2403329-006					
Test Code:	EPA TO-15			Date Collected: 8	3/13/24			
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977	7B/MS26	Date Received: 8/13/24					
Analyst:	Pruthuvi Heenatigala			Date Analyzed: 8	3/15/24			
Sample Type:	6.0 L Summa Canister		Volume(s) Analyzed: 0.010 Liter(s)					
Test Notes:								
Container ID:	SC00568							
	Initial Pressure (psig):	3.77	Final Pressure (psig)): 3.77 Canister	Dilution Fa	actor: 1.00		
CAS #	Compound	Result μg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier		
71-43-2	Benzene	5,800	51	1,800	16			
108-88-3	Toluene	8,400	54	2,200	14			
100-41-4	Ethylbenzene	520	55	120	13			
179601-23-1	m,p-Xylenes	3,100	110	710	25			
95-47-6	o-Xylene	790	54	180	12			

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Southern California Gas Company		
Client Sample ID	: Method Blank	ALS Project ID: P24	403329
Client Project ID	: Ventura Station Testing / TS2024-CO12	ALS Sample ID: P24	40815-MB
Test Code:	EPA TO-15	Date Collected: NA	L
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977B/MS26	Date Received: NA	L
Analyst:	Pruthuvi Heenatigala	Date Analyzed: 8/1	5/24
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
71-43-2	Benzene	ND	0.51	ND	0.16	
108-88-3	Toluene	ND	0.54	ND	0.14	
100-41-4	Ethylbenzene	ND	0.55	ND	0.13	
179601-23-1	m,p-Xylenes	ND	1.1	ND	0.25	
95-47-6	o-Xylene	ND	0.54	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Southern California Gas Company		
Client Sample ID	D: Method Blank	ALS Project ID: P2	2403329
Client Project II	D: Ventura Station Testing / TS2024-CO12	ALS Sample ID: P2	240821-MB
Test Code:	EPA TO-15	Date Collected: N	A
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977B/MS26	Date Received: N	А
Analyst:	Pruthuvi Heenatigala	Date Analyzed: 8/	21/24
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	μg/m³	ppbV	ppbV	Qualifier
71-43-2	Benzene	ND	0.51	ND	0.16	
108-88-3	Toluene	ND	0.54	ND	0.14	
100-41-4	Ethylbenzene	ND	0.55	ND	0.13	
179601-23-1	m,p-Xylenes	ND	1.1	ND	0.25	
95-47-6	o-Xylene	ND	0.54	ND	0.12	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:Southern California Gas CompanyClient Project ID:Ventura Station Testing / TS2024-CO12

ALS Project ID: P2403329

Test Code:	EPA TO-15
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977B/MS26
Analyst:	Pruthuvi Heenatigala
Sample Type:	6.0 L Summa Canister(s)
Test Notes:	

Date(s) Collected: 8/13/24 Date(s) Received: 8/13/24 Date(s) Analyzed: 8/15 - 8/22/24

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	ALS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P240815-MB	99	103	103	70-130	
Method Blank	P240821-MB	98	103	101	70-130	
Lab Control Sample	P240815-LCS	98	104	110	70-130	
Lab Control Sample	P240821-LCS	99	105	110	70-130	
Duplicate Lab Control Sample	P240815-DLCS	99	103	109	70-130	
Duplicate Lab Control Sample	P240821-DLCS	101	105	109	70-130	
2553T-324	P2403329-001	100	104	104	70-130	
2553T-324-D	P2403329-002	99	100	100	70-130	
2553T-406	P2403329-003	100	101	102	70-130	
2553T-406-D	P2403329-004	99	101	100	70-130	
805T-404	P2403329-005	101	101	100	70-130	
805T-404-D	P2403329-006	101	100	100	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Southern California Gas Company	
Client Sample ID:	Duplicate Lab Control Sample	ALS Project ID: P2403329
Client Project ID:	Ventura Station Testing / TS2024-CO12	ALS Sample ID: P240815-DLCS
Test Code:	EPA TO 15	Data Collected: NA
Test Code.		Date Conected. NA
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977B/MS26	Date Received: NA
Analyst:	Pruthuvi Heenatigala	Date Analyzed: 8/15/24
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

		Spike Amount	Re	Result		ALS				
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/m³	$\mu g/m^3$	μg/m³	LCS	DLCS	Limits		Limit	Qualifier
71-43-2	Benzene	41.2	33.7	35.0	82	85	73-128	4	25	
108-88-3	Toluene	42.8	38.0	38.8	89	91	64-121	2	25	
100-41-4	Ethylbenzene	43.6	40.2	41.3	92	95	64-119	3	25	
179601-23-1	m,p-Xylenes	86.4	83.1	85.8	96	99	64-121	3	25	
95-47-6	o-Xylene	43.2	42.5	43.5	98	101	66-122	3	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Southern California Gas Company	
Client Sample ID:	Duplicate Lab Control Sample	ALS Project ID: P2403329
Client Project ID:	Ventura Station Testing / TS2024-CO12	ALS Sample ID: P240821-DLCS
Test Code:	ЕРА ТО-15	Date Collected: NA
Instrument ID:	Entech 7200CTS/Agilent 7890B/5977B/MS26	Date Received: NA
Analyst:	Pruthuvi Heenatigala	Date Analyzed: 8/21/24
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

		Spike Amount	Re	Result		ALS				
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/m³	μg/m³	μg/m³	LCS	DLCS	Limits		Limit	Qualifier
71-43-2	Benzene	41.2	34.7	34.7	84	84	73-128	0	25	
108-88-3	Toluene	42.8	39.0	39.3	91	92	64-121	1	25	
100-41-4	Ethylbenzene	43.6	41.1	41.6	94	95	64-119	1	25	
179601-23-1	m,p-Xylenes	86.4	85.4	86.4	99	100	64-121	1	25	
95-47-6	o-Xylene	43.2	44.0	44.4	102	103	66-122	1	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

ATTACHMENT 2 – ANALYSIS MODEL INPUTS AND OUTPUTS

Table / Figure	Contains
	Compressor Venting and Fugitive Components
Table 2.1	Source parameters for the dispersion model setup.
Figure 2.1	Image showing the location of each source identified in Attachment 2 Table 2.1.
Table 2.2	Dispersion modeling and HRA modeling software used to prepare the response to DR18.
Table 2.3	Dispersion modeling software options and assumptions.
Table 2.4	Health risk modeling software options and assumptions.
Figure 2.2	Image showing the residential / sensitive receptors identified in Table 9.
Figure 2.3	Image showing the worker receptors identified in Table 9.
Figure 2.4	Image showing the Point of Maximum Impact for Non-Cancer Acute Hazard Index.
Table 2.5	Cancer Risk by TAC at the residential / sensitive and worker receptors identified in Table 9.
Table 2.6	Cancer Risk by source at the residential / sensitive and worker receptors identified in Table 9.
Table 2.7	Non-Cancer Chronic and 8-hour Non-Cancer Chronic Cancer Hazard Indices by TAC at the residential / sensitive and worker receptors identified in Table 9.
Table 2.8	Non-Cancer Chronic and 8-hour Non-Cancer Chronic Cancer Hazard Indices by source at the residential / sensitive and worker receptors identified in Table 9.
Table 2.9	Non-Cancer Acute Hazard Index by TAC at the residential / sensitive and worker receptors identified in Table 9.
Table 2.10	Non-Cancer Acute Hazard Index by source at the residential / sensitive and worker receptors identified in Table 9.
	Blowdowns
Table 2.11	Source parameters for the dispersion model setup.
Figure 2.5	Image showing the location of each source identified in Attachment 2 Table 2.11.
Table 2.12	Dispersion modeling and HRA modeling software used to prepare the response to DR18.
Table 2.13	Dispersion modeling software options and assumptions.
Table 2.14	Health risk modeling software options and assumptions.
Figure 2.6	Image showing the residential / sensitive receptors identified in Table 9.
Figure 2.7	Image showing the worker receptors identified in Table 9.
Table 2.15	Cancer Risk by TAC at the residential / sensitive and worker receptors identified in Table 9.
Table 2.16	Cancer Risk by source at the residential / sensitive and worker receptors identified in Table 9.
Table 2.17	Non-Cancer Chronic and 8-hour Non-Cancer Chronic Cancer Hazard Indices by TAC at the residential / sensitive and worker receptors identified in Table 9.
Table 2.18	Non-Cancer Chronic and 8-hour Non-Cancer Chronic Cancer Hazard Indices by source at the residential / sensitive and worker receptors identified in Table 9.

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output

Table 2.1Source Parameters

Compressor Venting / Fugitive Components	Source ID (Image Notation)	Source Type	Stack Orienation ¹	Release Height ² (ft)	Stack Diameter ³ (in)	Exhaust Velocity ⁴ (m/s)	Exhaust Temperature⁵ (Deg F)	Emission Rate ⁶
Compressor Venting	VENT01	Point Source	~Downward	52.5	2	0.001	Ambient	1 g/s
Compressor Venting	VENT02	Point Source	~Downward	52.5	2	0.001	Ambient	1 g/s
Compressor Venting	VENT03	Point Source	~Downward	52.5	2	0.001	Ambient	1 g/s
Compressor Venting	VENT04	Point Source	~Downward	52.5	2	0.001	Ambient	1 g/s
Fugitive Components	FUGTVS	Polygonal Area Source		6				0.000189 g/s- m2

¹ Point source stack orientation provided by SoCalGas.

² Point source release height assumed to be approximately equivalent to building height.

Polygonal area source release height is an approximation of the average height of potential sources of fugitive emissions (e.g., pipe runs).

³ Point source stack diameter provided by SoCalGas.

⁴ Per guidance from the lowa Department of Natural Resources, point sources with downward discharge should be modeled using a point source with an exit velocity of 0.001 m/s.

Reference (Page 6 of 19):	https://www.iowadnr.gov/Portals/idnr/uploads/air/dispmodel/psd_modeling_guideline.pdf	Downward Any stack or vent where the exhaust is directed 30 degrees or more below horizontal at the point of release to the
Also See (Page 2 of 3):	https://www.iowadnr.gov/portals/idnr/uploads/air/dispmodel/stacks_and_vents.pdf>	atmosphere. Downward stacks and vents should be modeled using the POINT source type and the exit velocity should be set to the nominally low value of 0.001 m/s in order to suppress momentum plume rise ² .
⁵ Exhaust temperature provided by SoCa	IGas.	
6 Fach course is medaled with unitized a		

⁵ Each source is modeled with unitized emission rate in its own source group.

Copyright © 2024 , Yorke Engineering, LLC

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Analysis Input and Output Attachment 2

Figure 2.1 Source Locations

Point Source Icon Red Crosses (Compressor Venting)

Copyright © 2024, Yorke Engineering, LLC

Polygonal Area Source Icon Dotted Green Line (Fugitive Components)

Note: Buildings, property boundary receptors, and discrete receptors are unchanged from previous submittals for the Project.

Southern California Gas Company Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Analysis Input and Output

Attachment 2

Table 2.2 Models

Dispersion Modeling

AERMOD v 23132 AERMET v 19191 (On-Site MET Data) AERMAP v 18081 HARP2 ADMRT (dated 22118) Health Table Version 23279

Risk Modeling

Software Interface:

Lakes Environmental Software; AERMOD View™, Version 12.0.0

Date Printed: 10/2/2024

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2

ent 2 Analysis Input and Output

Table 2.3 Dispersion Model Options/Assumptions

Parameter	Value				Comments	
Control Pathway						
Regulatory Options	Default	×	Non-Default			
Output Tune	Concentration	×	Dry Deposition			
Output Type	Total Deposition		Wet Deposition			
	Dry Depletion		Wet Depletion			
Depletion Options	Disable Dry Depletion		Disable Wet Depletion			
Pollutant	Other					
Averaging Time Options	1-Hour; Period					
Dispersion Coefficient	Rural	×	Urban		Consistent with previous submittals for the Project.	
	Elevated		X			
Terrain Height Options	Non-Default Regul	atory Options	•			
	Flat		Flat & Elevated			
Receptor Elevations / Hill Heights	Run AERMOD usin	Run AERMOD using the AERMAP Receptor Output file (*.ROU)				
Source Pathway						
Building Downwash	Include	×	Exclude			
Background Concentrations	Include		Exclude	×	This project does not consider background concentrations.	
Source Groups	Each source (FUGTVS, VENTS01-04) is assigned to its own source group.			n source group.		
Urban Groups	N/A	N/A -				
Variable Emissions	N/A				This project does not consider variable emissions. All sources are assumed to operate continuously.	
Receptor Pathway						
Flagpole Receptors	Include		Exclude	×	Consistent with previous submittals for the Project, all receptor heights are set to ground-level.	
Multi-Tier Receptor Grid Discrete Cartesian Receptors Plant Boundary Receptors	See Comments				All receptors are identical to previous submittals for the Project. The dispersion model includes a Multi-Tier Receptor Grid, Discrete Cartesian Receptors, and Plant Boundary Receptors.	
Meteorology Pathway						
Meteorological Data	See Comments	See Comments			Consistent with previous submittals for the Project, Meteorological (MET) data is from on-site data collected in 2002 and 2003.	
Terrain Pathway						
Data File	USGS_NED_1_n35v	v120.tif			NED GEOTIFF Digital Terrain Files. Resolution: 1-arcsecond (30 meters).	
AERMAP Domain Options	Not Specified		User-Defined Domain	×	Elevations and hill heights are calculated from a region measuring approximately 6,850 meters (width) by approximately 6,000 meters (heigh	

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2

Analysis Input and Output

Table 2.4 HARP2 Model Options/Assumptions

Parameter	Value			Comments	
Multi-Pathway	•				
Inhalation	Res Work				
Soil	Res 🗶 Work 🗶				
Dermal	Res	×	Work	×	"Warm" climate.
Mother's Milk	Res	×	Work		
Drinking Water	Res		Work		
Fish	Res		Work		
Homegrown Produce	Res	×	Work		Default for "Households that Garden".
Beef/Dairy	Res		Work		
Pigs, Chickens, and/or Eggs	Res		Work		
Deposition Velocity	0.02 m/s				BTEX compounds are not multipathway substances. The value used in HARP2 is 0.02 m/s. However, 0.05 m/s vs. 0.02 m/s will not affect the results.
Residential Cancer Risk Assumptions					
Exposure Duration	30 years	0 years			
Fraction of Time at Home	3 rd Trimester to 16 years: Off 16 years to 30 years: Off s				This is a conservative assumption. Given the results (no school receptors with cancer risk greater than one in one million), both parameters could be set to On, which would further reduce the results.
Inhalation Rate Basis	RMP				
Analysis Option	RMP Using the Der	ived Method			
Worker Cancer Risk Assumptions					
Exposure Duration	25 years				
Analysis Option	OEHHA Derived Me	ethod			
Inhalation Rate Basis	8-hr Breathing Rate	es, Moderate Inten	sity		
Worker Adjustment Factor	1				The Project sources are assumed to operate continuously.
Residential and Worker Non-Cancer Risk Assumptions	•				
Analysis Option	OEHHA Derived Method				
Inhalation Rate Basis	Residential: Long- Off-Site Worker: 8-	Ferm 24-hr hr Breathing Rate	s, Moderate Intensit	/	
Worker Adjustment Factor (8-hr Chronic Only)	1				The Project sources are assumed to operate continuously.

Copyright © 2024, Yorke Engineering, LLC

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2

Analysis Input and Output

Figure 2.2 Analysis Results Discrete Cartesian Receptors - Residential / Sensitive Exposure Assumptions

Residential Receptors

Yellow Circles

51

Blue Triangle Overlay on Maximum Dark Pink Triangle Overlay on Maximum (Acute) Cancer Risk Standard **Receptor No.** Result

8.11E-03

1.00E+01

Standard

1.00E+00

Non-Cancer Chronic Hazard Index Receptor No. Result 51 3.89E-05

Target Organ: Blood

Non-Cancer Acute Hazard Index				
Receptor No. Result Standard				
38	4.96E-04	1.00E+00		

Target Organ: Immune System, Reproductive / Developmental System, Blood

Sensitive Receptors

Green Circles, Dark Blue Circles

Pink Triangle Overlay on Maximum

Cancer Risk					
Receptor No.	Standard				
25	3.18E-03	1.00E+01			

Non-Cancer Chronic Hazard Index					
Receptor No.	Result	Standard			
25	1.52E-05	1.00E+00			
Target Organ: Bl	bod				

Non-Cancer Acute Hazard Index				
Receptor No. Result Standard				
25	5.28E-04	1.00E+00		

Target Organ: Immune System, Reproductive / Developmental System, Blood

12.21

Copyright © 2024, Yorke Engineering, LLC

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2

Analysis Input and Output

Figure 2.3 Analysis Results Discrete Cartesian Receptors - Worker Exposure Assumptions

Worker Receptors Light Purple Circles Orange Triangle Overlay on Maximum Dark Pink Triangle Overlay on Maximum (Acute)

Cancer Risk					
Receptor No.	Result	Standard			
107	2.09E-03	1.00E+01			

Non-Cancer Chronic Hazard Index Receptor No. Result Standard 107 1.23E-04 1.00E+00

Target Organ: Blood

8-hr Non-Cancer Chronic Hazard Index					
Receptor No. Result Standard					
107 1.23E-04 1.00E+00					
Town at Owners Bl	l				

Target Organ: Blood

Non-Cancer Acute Hazard Index				
Receptor No. Result Standard				
112	8.86E-04	1.00E+00		

Target Organ: Immune System, Reproductive / Developmental System, Blood

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2

Analysis Input and Output

Figure 2.4 Analysis Results

All Receptors - Point of Maximum Impact for Non-Cancer Acute Hazard Index

Copyright © 2024 , Yorke Engineering, LLC

All Receptors

Dark Pink Triangle Overlay on Maximum

Non-Cancer Acute Hazard Index				
Receptor No.	Result	Standard		
3981	1.46E-03	1.00E+00		

Target Organ: Immune System, Reproductive / Developmental System, Blood

Table 2.5: Maximum Cancer Risk by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Compressor Venting and Fugitive Components

		Point of Maximu	ım Impact (PMI)	Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	3946	receptor #	51	receptor #	25	receptor #	107
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,250	3,797,598	288,223	3,797,281	288,428	3,797,545	288,279	3,797,457
		30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	25-Year Cancer Risk	Contribution (%)
-	ALL	4.03E-08	100%	8.11E-09	100%	3.18E-09	100%	2.09E-09	100%
71432	Benzene	4.01E-08	99.27%	8.05E-09	99.27%	3.16E-09	99.27%	2.08E-09	99.27%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	2.93E-10	0.73%	5.90E-11	0.73%	2.31E-11	0.73%	1.52E-11	0.73%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

in a million 8.11E-03

3.18E-03

2.09E-03

Table 2.6: Cancer Risk by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Compressor Venting and Fugitive Components

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)	
Source ID	Compressor Venting /	receptor #	3946	receptor #	51	receptor #	25	receptor #	107
	Fugitive Components	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,250	3,797,598	288,223	3,797,281	288,428	3,797,545	288,279	3,797,457
		30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	25-Year Cancer Risk	Contribution (%)
ALL		4.03E-08	100%	8.11E-09	100%	3.18E-09	100%	2.09E-09	100%
VENT01	Compressor Venting	3.85E-09	9.54%	1.33E-09	16.89%	5.19E-10	16.83%	2.95E-10	1 4.11%
VENT02	Compressor Venting	3.95E-09	9.79%	1.32E-09	16.28%	5.33E-10	16.74%	3.11E-10	14.85%
VENT03	Compressor Venting	3.88E-09	9.61%	1.35E-09	16.70%	5.37E-10	16.87%	3.40E-10	16 .22%
VENT04	Compressor Venting	3.62E-09	8.97%	1.46E-09	17.98%	5.30E-10	16.65%	3.62E-10	17.26%
FUGTVS	Fugitive Components	2.51E-08	62.09%	2.65E-09	32.66%	1.06E-09	33.40%	7.87E-10	37.56%

Table 2.7: Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Compressor Venting and Fugitive Components

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	3946	receptor #	51	receptor #	25	receptor #	107	receptor #	107
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,250	3,797,598	288,223	3,797,281	288,428	3,797,545	288,279	3,797,457	288,279	3,797,457
		Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic 8-hr	Contribution (%)
		Index		Index		Index		Index		Hazard Index	
-	ALL	1.93E-04	100%	3.89E-05	100%	1.52E-05	100%	1.23E-04	100%	1.23E-04	100%
71432	Benzene	1.93E-04	100.00%	3.89E-05	100.00%	1.52E-05	100.00%	1.23E-04	100.00%	1.23E-04	100.00%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1220207	Vulanas	0.005.00	0.00%	0.005.00	0.00%	0.005.00	0.00%	0.005.00	0.00%	0.005.00	0.00%

Target Organ(s): BLOOD

Table 2.8: Chronic Hazard Index by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Compressor Venting and Fugitive Components

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
Source ID	Compressor Venting /	receptor #	3946	receptor #	51	receptor #	25	receptor #	107	receptor #	107
	Fugitive Components	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,250	3,797,598	288,223	3,797,281	288,428	3,797,545	288,279	3,797,457	288,279	3,797,457
		Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic 8-hr	Contribution (%)
		Index	Contribution (%)	Index		Index	Contribution (76)	Index	Contribution (%)	Hazard Index	contribution (70)
ALL		1.93E-04	100%	3.89E-05	100%	1.52E-05	100%	1.23E-04	100%	1.23E-04	100%
VENT01	Compressor Venting	1.84E-05	9.54%	6.38E-06	16.89%	2.49E-06	16.33%	1.74E-05	14.11%	1.74E-05	14.11%
VENT02	Compressor Venting	1.89E-05	9.79%	6.33E-06	16.28%	2.55E-06	16.74%	1.83E-05	14.85%	1.83E-05	14.85%
VENT03	Compressor Venting	1.86E-05	9.61%	6.49E-06	16.70%	2.57E-06	16.87%	2.00E-05	16 .22%	2.00E-05	16 .22%
VENT04	Compressor Venting	1.74E-05	8.97%	6.99E-06	17.98%	2.54E-06	16.65%	2.13E-05	17.26%	2.13E-05	17.26%
FUGTVS	Fugitive Components	1.20E-04	62.09%	1.27E-05	32.66%	5.09E-06	33.40%	4.63E-05	37.56%	4.63E-05	37.56%

Target Organ(s): BLOOD

Table 2.9: Maximum Acute Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Compressor Venting and Fugitive Components

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive	Receptor	Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	3981	receptor #	38	receptor #	25	receptor #	112
i onutant ono		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,238	3,797,551	288,393	3,797,420	288,428	3,797,545	288,232	3,797,488
		Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)
-	ALL	1.46E-03	100%	4.96E-04	100%	5.28E-04	100%	8.86E-04	100%
71432	Benzene	1.46E-03	100.00%	4.96E-04	100.00%	5.28E-04	100.00%	8.86E-04	100.00%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

Target Organ(s): IMMUN, REPRO/DEVEL, BLOOD

Table 2.10: Maximum Acute Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Compressor Venting and Fugitive Components

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)	
Source ID	Compressor Venting /	receptor #	3981	receptor #	38	receptor #	25	receptor #	112
	Fugitive Components	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,238	3,797,551	288,393	3,797,420	288,428	3,797,545	288,232	3,797,488
		Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)	Acute Hazard Index	Contribution (%)
ALL		1.46E-03	100%	4.96E-04	100%	5.28E-04	100%	8.86E-04	100%
VENT01	Compressor Venting	2.80E-04	19.10%	8.90E-05	17.95%	1.25E-04	23.75%	1.70E-04	19.24%
VENT02	Compressor Venting	3.48E-04	23.80%	9.95E-05	20.07%	1.29E-04	24.43%	1.83E-04	20.67%
VENT03	Compressor Venting	3.63E-04	24.82%	1.10E-04	22.13%	1.11E-04	20.96%	1.95E-04	22.07%
VENT04	Compressor Venting	3.49E-04	23.83%	1.17E-04	23.65%	9.04E-05	17.14%	2.08E-04	23.47%
FUGTVS	Fugitive Components	1.24E-04	8.44%	8.04E-05	16.22%	7.23E-05	13.71%	1.29E-04	14.55%

Target Organ(s): IMMUN, REPRO/DEVEL, BLOOD

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output (Blowdowns)

Table 2.11Source Parameters

Release Description	Source ID (Image Notation)	Source Type	Stack Orienation ¹	Release Height ² (ft)	Stack Diameter ³ (ft)	Exhaust Velocity ⁴ (m/s)	Exhaust Temperature ⁵ (Deg F)	Emission Rate ⁶
Blowdowns	BDNSTK	Point Source	Vertical	62.5	8	1.241	70	1 g/s
¹ Point source stat	ck orientation provided by SoCalGas	5.						
² Point source rele	ease height provided by SoCalGas.							
³ Point source stat	ck diameter provided by SoCalGas.							
⁴ Point source exh	aust velocity estimated from data p	rovided by SoCal	Gas.					
	Average Flowrate (scfm) = Volume	Vented (mscf) x	,000 / Vent Time	(minutes)				
	Volume Vented		36.7	mscf; Table 4				
	Vent Time		3	minutes; Table 4,	Footnote 1			
	Average Flowrate	9	12233	scfm				
	Average Flowrate (acfm) = Average	e Flowrate (scfm)	k [460 + Exhaust T	emperature (Deg	F)] / [460 + 68]			
	Average Flowrate	e	12233	scfm				
	Exhaust Tempera	ature	70	Deg F				
	Average Flowrate	e	12280	acfm				
	Exhaust Velocity (m/s) = Average F	lowrate (acfm) / [pi / 4 x (Stack Dia	meter (ft)) ²] / 60 x	0.3048			
	Average Flowrate	9	12280	acfm				
	Stack Diameter		8	ft				
	Exhaust Velocity		1.241	m/s				

⁵ Per SoCalGas, point source exhaust temperature assumed to be ambient. To allow for estimation of exhaust velocity, ambient temperature is assumed to be approximately 70 Deg F.

⁶ The stack is modeled with unitized emission rate in its own source group.

Copyright © 2024, Yorke Engineering, LLC

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output (Blowdowns)

Figure 2.5 Source Locations

Point Source Icon Red Crosses (Blowdown Stack)

Note: Buildings, property boundary receptors, and discrete receptors are unchanged from previous submittals for the Project.

Southern California Gas Company Response to Deficiency Request No. 18 (DR18) Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output (Blowdowns)

Table 2.12 Models

Dispersion Modeling

AERMOD v 23132 AERMET v 19191 (On-Site MET Data) AERMAP v 18081 HARP2 ADMRT (dated 22118) Health Table Version 23279

Risk Modeling

Software Interface:

Lakes Environmental Software; AERMOD View™, Version 12.0.0

Date Printed: 10/9/2024

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output (Blowdowns)

Table 2.13 Dispersion Model Options/Assumptions

Parameter	Value				Comments
Control Pathway					
Regulatory Options	Default	×	Non-Default		
Output Tune	Concentration	×	Dry Deposition		
	Total Deposition		Wet Deposition		
	Dry Depletion		Wet Depletion		
Depletion Options	Disable Dry Depletion		Disable Wet Depletion		
Pollutant	Other				
Averaging Time Options	1-Hour; Period				
Dispersion Coefficient	Rural	×	Urban		Consistent with previous submittals for the Project.
	Elevated		x		
Terrain Height Options	Non-Default Regula	atory Options	•		
	Flat		Flat & Elevated		
Receptor Elevations / Hill Heights	Run AERMOD using	g the AERMAP Rec	eptor Output file (*.	ROU)	
Source Pathway					
Building Downwash	Include	×	Exclude		
Background Concentrations	Include		Exclude	×	This project does not consider background concentrations.
Source Groups	Each source (BDNS	TCK) is assigned to	its own source gro	up.	
Urban Groups	N/A				
Variable Emissions	N/A				This project does not consider variable emissions. Although blowdowns are an infrequent occurrence, the AERMOD model assumes that the source vents throughout the year. This is expected to provide a conservative estimate of average Ground-Level Concentration over the period of the Meteorological Data.
Receptor Pathway					
Flagpole Receptors	Include		Exclude	×	Consistent with previous submittals for the Project, all receptor heights are set to ground-level.
Multi-Tier Receptor Grid Discrete Cartesian Receptors Plant Boundary Receptors	See Comments				All receptors are identical to previous submittals for the Project. The dispersion model includes a Multi-Tier Receptor Grid, Discrete Cartesian Receptors, and Plant Boundary Receptors.
Meteorology Pathway					
Meteorological Data	See Comments				Consistent with previous submittals for the Project, Meteorological (MET) data is from on-site data collected in 2002 and 2003.
Terrain Pathway					
Data File	USGS_NED_1_n35w	/120.tif			NED GEOTIFF Digital Terrain Files. Resolution: 1-arcsecond (30 meters).
AERMAP Domain Options	Not Specified		User-Defined Domain	x	Elevations and hill heights are calculated from a region measuring approximately 6,850 meters (width) by approximately 6,000 meters (height).

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output (Blowdowns)

Table 2.14 HARP2 Model Options/Assumptions

Parameter	Value				Comments
Multi-Pathway	•				
Inhalation	Res	×	Work	×	
Soil	Res	×	Work	×	
Dermal	Res	×	Work	×	"Warm" climate.
Mother's Milk	Res	×	Work		
Drinking Water	Res		Work		
Fish	Res		Work		
Homegrown Produce	Res	×	Work		Default for "Households that Garden".
Beef/Dairy	Res		Work		
Pigs, Chickens, and/or Eggs	Res		Work		
Deposition Velocity	0.02 m/s				BTEX compounds are not multipathway substances. The value used in HARP2 is 0.02 m/s. However, 0.05 m/s vs. 0.02 m/s will not affect the results.
Residential Cancer Risk Assumptions					
Exposure Duration	30 years				
Fraction of Time at Home	3 rd Trimester to 16 16 years to 30 years	years: Off s: Off			This is a conservative assumption. Given the results (no school receptors with cancer risk greater than one in one million), both parameters could be set to On, which would further reduce the results.
Inhalation Rate Basis	RMP				
Analysis Option	RMP Using the Deri	ived Method			
Worker Cancer Risk Assumptions					
Exposure Duration	25 years				
Analysis Option	OEHHA Derived Me	ethod			
Inhalation Rate Basis	8-hr Breathing Rate	es, Moderate Inten	sity		
Worker Adjustment Factor	1				The Project sources are assumed to operate continuously.
Residential and Worker Non-Cancer Risk Assumptions					
Analysis Option	OEHHA Derived Me	ethod			
Inhalation Rate Basis	Residential: Long-1 Off-Site Worker: 8-	Ferm 24-hr •hr Breathing Rate	s, Moderate Intensit	/	
Worker Adjustment Factor (8-hr Chronic Only)	1				The Project sources are assumed to operate continuously.

Copyright © 2024, Yorke Engineering, LLC

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Analysis Input and Output (Blowdowns) Attachment 2

Analysis Results Figure 2.6

Discrete Cartesian Receptors - Residential / Sensitive Exposure Assumptions

Residential Receptors Yellow Circles Blue Triangle Overlay on Maximum

Cancer Risk							
Receptor No.	Result	Standard					
51	6.25E-05	1.00E+01					

Non-Cancer Chronic Hazard Index Receptor No. Result Standard 51 3.00E-07 1.00E+00

Target Organ: Blood

Sensitive Receptors Green Circles, Dark Blue Circles Pink Triangle Overlay on Maximum

Cancer Risk						
Receptor No.	Result	Standard				
24	2.78E-05	1.00E+01				

Ĩ.	Non-Cancer Chronic Hazard Index								
5	Receptor No.	Result	Standard						
1	24	1.33E-07	1.00E+00						

Target Organ: Blood

Copyright © 2024 , Yorke Engineering, LLC

Southern California Gas Company

Response to Deficiency Request No. 18 (DR18)

Proponent's Environmental Assessment (PEA) for Ventura Compressor Modernization Project

Attachment 2 Analysis Input and Output (Blowdowns)

Figure 2.7 Analysis Results

Discrete Cartesian Receptors - Worker Exposure Assumptions

0 <u>Worker Receptors</u> Light Purple Circles Orange Triangle Overlay on Maximum

Cancer Risk						
Receptor No.	Result	Standard				
93	2.02E-05	1.00E+01				

8-hr Non-Cancer Chronic Hazard Index								
Receptor No. Result								
1.19E-06	1.00E+00							
	ancer Chronic Ha Result 1.19E-06							

Target Organ: Blood

Table 2.15: Maximum Cancer Risk by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Blowdowns

		Point of Maximu	ım Impact (PMI)	Maximally Exposed (MI	Individual Resident EIR)	Sensitive	Receptor	Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	93	receptor #	51	receptor #	24	receptor #	93
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,370	3,797,691	288,223	3,797,281	288,435	3,797,572	288,370	3,797,691
		30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	25-Year Cancer Risk	Contribution (%)
-	ALL	2.48E-10	100%	6.25E-11	100%	2.78E-11	100%	2.02E-11	100%
71432	Benzene	2.47E-10	99.27%	6.20E-11	99.27%	2.76E-11	99.27%	2.01E-11	99.27%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	1.81E-12	0.73%	4.55E-13	0.73%	2.03E-13	0.73%	1.47E-13	0.73%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

in a million 6.25E-05

2.78E-05

2.02E-05

Table 2.16: Cancer Risk by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Blowdowns

Source ID		Point of Maximu	um Impact (PMI)	Maximally Exposed (MI	Individual Resident EIR)	Sensitive	Receptor	Maximally Exposed Individual Worker (MEIW)	
	Release Description	receptor #	93	receptor #	51	receptor #	24	receptor #	93
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,370	3,797,691	288,223	3,797,281	288,435	3,797,572	288,370	3,797,691
			30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	30-Year Cancer Risk	Contribution (%)	25-Year Cancer Risk
ALL		2.48E-10	100%	6.25E-11	100%	2.78E-11	100%	2.02E-11	100%
BDNSTK	Blowdowns	2.48E-10	100.00%	6.25E-11	100.00%	2.78E-11	100.00%	2.02E-11	100.00%

Table 2.17: Maximum Chronic Hazard Index by Pollutant at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Blowdowns

		Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
Pollutant CAS	Pollutant	receptor #	93	receptor #	51	receptor #	24	receptor #	93	receptor #	93
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
		288,370	3,797,691	288,223	3,797,281	288,435	3,797,572	288,370	3,797,691	288,370	3,797,691
		Chronic Hazard	Contribution (%) Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic Hazard	Contribution (%)	Chronic 8-hr	Contribution (%)	
		Index	contribution (70)	Index	contribution (70)	Index	contribution (76)	Index	contribution (76)	Hazard Index	contribution (70)
-	ALL	1.19E-06	100%	3.00E-07	100%	1.33E-07	100%	1.19E-06	100%	1.19E-06	100%
71432	Benzene	1.19E-06	100.00%	3.00E-07	100.00%	1.33E-07	100.00%	1.19E-06	100.00%	1.19E-06	100.00%
108883	Toluene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
100414	Ethyl Benzene	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%
1330207	Xylenes	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%	0.00E+00	0.00%

Target Organ(s): BLOOD

Table 2.18: Chronic Hazard Index by Source for All Pollutants Combined at PMI, MEIR, MEIW and Sensitive Receptor Ventura Compressor Modernization Project - Analysis for Blowdowns

	Source ID Release Description	Point of Maximum Impact (PMI)		Maximally Exposed Individual Resident (MEIR)		Sensitive Receptor		Maximally Exposed Individual Worker (MEIW)		Maximally Exposed Individual Worker (MEIW)	
Source ID		receptor #	93	receptor #	51	receptor #	24	receptor #	93	receptor #	93
		UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)	UTM Easting (m)	UTM Northing (m)
			288,370	3,797,691	288,223	3,797,281	288,435	3,797,572	288,370	3,797,691	288,370
			Chronic Hazard	Contribution (9/)	Chronic Hazard	zard	Chronic Hazard	Construitory (0/)	Chronic Hazard	nronic Hazard	Chronic 8-hr
		Index	Contribution (%)	Index	Contribution (%)	Index	Contribution (%)	Index	Contribution (%)	Hazard Index	Contribution (%)
ALL		1.19E-06	100%	3.00E-07	100%	1.33E-07	100%	1.19E-06	100%	1.19E-06	100%
BDNSTK	Blowdowns	1.19E-06	100.00%	3.00E-07	100.00%	1.33E-07	100.00%	1.19E-06	100.00%	1.19E-06	100.00%

Target Organ(s): BLOOD