

Figure No.

Title

Delivery Alternatives

 Delivery Alternatives Assumptions
 Scenario Assumptions
 Scenario Assumptions
 Results

 Non-Hydrogen Alternatives

 Inputs
 Inputs
 Power
 Industry
 Outputs
 Mobility
 Industry
 Outputs
 Mobility
 Industry
 Inpower
 Industry

This supplemental databook is complementary to the Angeles Link High-Level Economic Analysis and Cost Effectiveness Study prepared by Wood Mackenzie.

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024 Return to Index

inancial Assumptions			
Parameter	Unit	Value	Source
Federal tax rate	%	21.0%	Internal Revenue Service
State tax rate	%	8.8%	State of California
Inflation rate	%	2.0%	Wood Mackenzie
Period of valuation	years	25	Industry Standard
Discount date	dd/mm/yyyy	1/1/2024	SoCalGas
WACC	%	7.67%	SoCalGas WACC from CPU0 Resolution E-5306
Depreciation timeframe	years	20	
Depreciation method	na	Straight Line	A
Owners Cost	% of CAPEX	10.0%	Assumption
Days in year	Days	365	

Tax Credits

Parameter	Unit	Value	Source
Tax Credits			
H2 production tax credit	US\$/kg-H2, Real 2024	\$3.00	
H2 production tax credit last start year	year	2033	
H2 production tax credit years	year	10	
Power ITC	%	30.0%	Inflation Reduction Act
Power PTC	USS per kwn, Keai	\$0.03	
ITC/PTC last start year	year	2036	
Power PTC years	years	10	
Power Tax credits (ITC/PTC) phase out percent	tages		
2023-2033	year	100.00%	
2034-2035	year	75.00%	Inflation Doduction Act
2035-2036	year	50.00%	Innation Reduction Act
2036+	year	0.00%	

CAPEX Schedule			
Parameter	Unit	Value	Source
CAPEX Schedule			
2025	Start year -5	0.00%	
2026	Start year -4	0.00%	
2027	Start year -3	0.00%	Assumption
2028	Start year -2	75.00%	
2029	Start year -1	25.00%	

Parameter	Unit	Value	Source
Pipeline Route Distances			
San Joaquin Valley Route to Delivery Point	miles	250	
Palmdale / Lancaster Route to Delivery Point	miles	100	Design Study
Blythe Route to Delivery Point	miles	235	
Trucking Routes Distances			
San Joaquin Valley to San Joaquin Valley Depleted Oil Fields Storage	miles	140	
Palmdale / Lancaster to San Joaquin Valley Depleted Oil Fields Storage	miles	90	
Blythe to Out of State Salt Cavern Storage	miles	100	Estimated from Design Study
San Joaquin Valley Depleted Oil Fields Storage to Distribution Delivery Point	miles	140	mputs
Out of State Salt Cavern Storage to Distribution Delivery Point	miles	335	
Shipping Routes Distances			
Northern California	nm (vessel)	450	Assumption
In-Basin Production with Power T&D Routes Distance	s		
San Joaquin Valley	miles	300	
Palmdale / Lancaster	miles	100	Estimated from Design Study
Blythe	miles	235	inputs
Delivery Pipeline Length			
Delivery/Distribution Line	miles	79	Design Study

Upstream Assumptions for Angeles Link & Delivery Alternatives (Except Localized Hub)

Parameter Unit		Value	Source		
Power Feedstock					
H2 power demand	kWh / kg-H2	60	Deschartion Study		
Solar capacity factor	%	26.40%	Floduction Study		
Water Feedstock					
Water usage intensity	kg H2O per kg H2	14	Woton Study		
Water cost	US\$/m3	\$2.51	water Study		
Hydrogen Production					
Electrolyzer building block	MW	200			
Stack lifetime (hours)	hours	34,087			
Stack replacement CAPEX	US\$/kW	\$508.82	Production Study		
Electrolyzer unit cost	US\$/kW	\$2,707.38			
Fixed Electrolyzer O&M (% / yr of capex)	%	0.74%			
Production losses	%	2.00%	Air Studies		
Degradation factor	dation factor % 0.75%		Wood Mackenzie		
Electrolyzer owners cost	%	10.00%	Accumution		
Online factor	davs	365	Assumption		

Equeraction of Methanol Conversion	** •.	N7 1	0		
Parameter	Unit	Value	Source		
Hydrogen Liquefaction					
Liquefaction CAPEX per train	tion CAPEX per train US\$ MM \$124.96				
H2 liquefaction train size	tpd	30	Midstream Model		
Liquefaction fixed O&M (% / yr of capex)	%	1.00%	Wildstream Woder		
Power consumption	kWh/kgH2	10	National Petroleum Council		
Hydrogen conversion losses	%	0.00%	Assumption		
Methanol conversion					
Methanol plant CAPEX	US\$ MM/tpd hydrogen	\$2.49			
Methanol conversion losses	%	0.00%	We also de la colorada Manda en co		
Methanol storage time	days	14	Wood Mackenzie Hydrogen		
Fixed O&M (% / yr of capex)	%	1.24%	Musicani Model		
Methanol storage CAPEX	\$/m3	\$311.06			

Storage			
Parameter	Unit	Value	Source
Gaseous Storage			
Total Storage Capacity for Scenario 7	tH2	425,000	
Total Storage Throughput for Scenario 7	tH2	968,000	Production Study
Turnover frequency, nameplate capacity basis for	1/year	2.28	Trouterion bruty
Scenario /	4112	5 000	
Storage Capacity per Unit (gaseous)	LFLZ	3,000	
Pressure (gaseous storage)	bar ¢ 1 HO	150	
Tank CAPEA (CH2 Storage)	\$/KgH2	\$17.88	National Patrolaum Council
Compressor CAPEX (cH2 Storage)	\$/kgH2-year	\$0.78	National Felioleum Council
Fixed O&M (cH2 Storage)	% CAPEX	2.00%	
cH2 Storage power demand	kWh/kgH2	2	
cH2 Storage boil-off rate	% per day	0.00%	
Liquid Storage			
Total Storage Capacity for Scenario 7	tH2	425,000	
Total Storage Throughput for Scenario 7	tH2	968,000	Production Study
Turnover frequency, nameplate capacity basis for Scenario 7	1/year	2.28	
Storage Capacity per unit (Liquid)	tH2	700	
Pressure (liquid storage)	bar	<5	
Tank Capex (LH2 Storage)	\$/kgH2	\$41.72	
Liquefier CAPEX (LH2 Storage)	\$/kgH2-year	\$10.58	National Petroleum Council
Fixed O&M (LH2 Storage)	% CAPEX	2.00%	
LH2 Storage power demand	kWh/kgH2	10	
LH2 Storage boil-off rate	% per day	0.03%	
Underground Storage: Depleted Oil Fields			
Total Storage Capacity for Scenario 7	tH2	425,000	
Total Storage Throughput for Scenario 7	tH2	968,000	
Turnover frequency, nameplate capacity basis for Scenario 7	1/year	2.28	Production Study
Pressure (gaseous storage)	bar	235	Troduction brudy
DOF CAPEX (cH2 Storage)	\$/koH2	\$2.43	
Fixed O&M (cH2 Storage)	% CAPEX	1.00%	
Compressor CAPEX (cH2 Storage)	\$/kgH2-year	\$0.95	Capacity Assessment and Cost
cH2 Storage power demand	kWh/kgH2	2 20	Analysis of Geologic Storage
Cushion gas percentage from canacity	%	100.00%	of Hydrogen: A Case Study in
cH2 Storage hoil-off rate	% ner dav	0.00%	National Petroleum Council
Underground Storage: Salt Caverns	to per day	0.0070	Hanolai Peroteani Coulei
Total Storage Canacity for Scenario 7	tH2	0	
Total Storage Throughput for Scenario 7	tH2	N/A	
Turnover frequency, namenlate canacity basis for	1112	14/21	
Scenario 7	1/year	N/A	Production Study
Pressure (gaseous storage)	bar	235	
Salt Cavern CAPEX (cH2 Storage) for Scenario 7	\$/kgH2	N/A	
Fixed O&M (cH2 Storage)	% CAPEX	1.00%	
Compressor CAPEX (cH2 Storage)	\$/kgH2-year	\$0.95	Capacity Assessment and Cost
cH2 Storage power demand	kWh/kgH2	2.20	Analysis of Geologic Storage
Cushion gas percentage from capacity		100.00%	of Hydrogen: A Case Study in
cH2 Storage hoil-off rate	% ner dav	0.00%	National Petroleum Council
erre otorage boll-off fate	,o per day	0.0070	radional i cuoleani Coulleli

Parameter	Unit	Value	Source				
Trucks (General)							
Truck speed	Mph	35	Accumution				
Shift time	hours per day	8.8	Assumption				
Truck lifetime	years	12.0					
Shifts per day	# 1.0						
Terminal bay lifetime (Trucks)	years	25.0					
Truck fuel consumption	MJ/mi	20.0	National Petroleum Council				
Truck fuel consumption	kgH2/Mi	0.167					
Truck fuel consumption	gal of Diesel/Mi	0.147					
Fuel cost	\$/MJ	0.037					
Gaseous Trucks and Terminal							
Loading bay capacity (gaseous)	tpd	4.0					
Capex per bay (gaseous)	US\$ MM	\$11.09					
Fixed O&M gaseous terminal	% of bay CAPEX	5.00%					
Gaseous terminal power demand	kWh/kgH2	3.0					
Gaseous truck CAPEX	US\$ MM	\$1.18					
Fixed O&M gaseous truck	US\$/truck-shift	\$70,627.79	National Petroleum Council				
Non Fuel gaseous truck O&M variable	US\$/mi	\$1.61					
Gaseous truck capacity	kgH2/round trip	1,000					
Gaseous truck loading/unloading losses	%	0.00%					
Gaseous truck unloading losses	%	0.00%					
Gaseous truck boil-off losses	%	2.00%					
Gaseous loading time	hours	1.45	A				
Gaseous unloading time	hours	1.45	Assumption				
Liquid Trucks and Terminal							
Loading bay capacity (liquid)	tpd	20.0					
Capex per bay (liquid)	US\$ MM	\$105.94					
Fixed O&M liquid terminal	% of bay CAPEX	3.30%					
Liquid terminal power demand	kWh/kgH2	10.0					
Liquid truck CAPEX	US\$ MM	\$1.41					
Fixed O&M liquid truck	US\$/truck	\$188,340.78	National Petroleum Council				
Non Fuel liquid truck O&M variable	US\$/mi	\$1.29					
Liquid truck capacity	kgH2/round trip	4,000					
Liquid truck loading losses	%	0.00%					
Liquid truck unloading losses	%	0.00%					
Liquid truck boil-off losses	%	5.00%					
Liquid loading time	hours	1.45	Accumention				
Liquid unloading time	hours	1.45	Assumption				

Parameter	Unit	Value	Source		
Shipping (General)					
Fuel price (VLSFO)	\$/tonne	\$595.00	Wood Mackenzie North America Product Markets		
On hire days	days	350.00	Wood Mackenzie Hydrogen		
Fill Rate	%	98.50%	Midstream Model		
Shipping Liquid H2					
Vessel size	m3	10,000			
Vessel speed	knots	19.00			
LH2 boil-off rate	% per day	0.23%			
Port days loading	days	0.75			
Port days discharge	days	0.75	We difference in the decision		
Port fuel consumption	tpd	4.00	Wood Mackenzie Hydrogen Midstream Model		
At sea fuel consumption laden	tpd	45.00	Widstream Woder		
At sea fuel consumption ballast	tpd	19.00			
Port charge loading/unloading	US\$ MM	\$0.03			
Vessel liquid H2 CAPEX	US\$ MM	\$51.02			
Vessel liquid H2 OPEX	US\$ MM	\$2.27			
Shipping Methanol					
Vessel size	m3	174,000			
Vessel speed	knots	19.00			
Methanol boil-off rate	% per day	0.00%			
Port days loading	days	1.50			
Port days discharge	days	1.50	Wood Moskanzia Undessan		
Port fuel consumption	tpd	25.00	Midstream Model		
At sea fuel consumption laden	tpd	105.00	Widstream Woder		
At sea fuel consumption ballast	tpd	105.00			
Port charge loading/unloading	US\$ MM	\$0.20			
Vessel liquid methanol CAPEX	US\$ MM	\$217.77			
Vessel liquid methanol OPEX	US\$ MM	\$4.13			

Parameter	Unit	Value	Source		
H2 Regasification					
Regasifier CAPEX	\$/Nm3/h	\$956.38			
Regas power consumption	kW/Nm3/h	0.05			
Fixed O&M H2 regas (% / yr of capex)	%	1.24%	Wood Mackenzie Hydrogen		
Hydrogen regas losses	%	0.00%	Midstream Model		
Liquid hydrogen storage CAPEX	\$/m3	\$4,251.11			
Hydrogen storage time	days	4.00			
Methanol Reconversion					
Methanol reformer CAPEX	US\$ MM/tpd hydrogen	\$6.08			
Methanol boil off	%/day	0.01%			
Methanol storage CAPEX	\$/m3	\$311.06			
Methanol storage time	days	14.00	Wood Mackenzie Hydrogen		
Methanol reconversion losses	%	0.00%	Midstream Model		
Fixed O&M (% / yr of capex)	%	0.90%			
LP hydrogen storage CAPEX	\$/kgH2	\$680.63			
Hydrogen storage time	days	0.00			

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 34, 32034 Remum to Index

Production by Scenario
Parameter Unit
Total Production
 Scenario 1
 Scenario 2
 Scenario 3
 Scenario 4
 Scenario 5
 Scenario 6
 Scenario 7
 Scenario 8

 0.5
 0.5
 0.5
 1
 1
 1
 1.5
 1.5
 Comments Total project size (Mtpa Volume Allocation by Corridor Parameter Allocation of volumes by Production Location Dependention for Comments From То Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 Split from production location Split from production location From From San Joaquin Valle Palmdale / Lancast
 50.0%
 50.0%

 50.0%
 50.0%

 50.0%
 50.0%
 100.0% 50.0% 3.3% Split from production location Production % 6 of Average Supply Delivered to Storage . LA Basin To LA Basin To LA Basin To LA Basin San Joaquin Valley Palmdale / Lancaster Blythe Assumption % of avg prod to destin Assumption % of avg prod to destin 36.8% 0.0% 68.6% 34.3% 0.0% 0.0% 70.9% 70.9% 36.8% 34.3% Average Average Assumption % of avg prod to desti Assumption % of avg prod to desti Assumption % of avg prod to desti 0.0% 100.0% 100.0% Average Blythe to OO SJV Depleted Oil Field St OOS Salt Cavern Stere Assumption % of avg prod to destinatio Total avg flow into storage Total avg flow into storage Average To Storage 0.0% 0.0% 0.0% 0.0% 64.5% of Maximum Supply Delivered to Storage Max Assumption % of max prod to desti Assumption % of max prod to desti To LA Basin San Joaquin Valley 43.3% 0.0% 34.2% 0.0% 0.0% 76.7% Max Assumption % of max prod to destination Total max flow into storage Total max flow into storage Max Blythe 100.0% 0.0% 56.7% Max Max San Joaquin Valley to SJV 56.7% 100.0% 0.0% 65.8% To Storage 65.8% 100.0% To Storage Palmdale / Lancaster to SJV 0.0% 31.6% 0.0% 23.3% 23.3% Blythe to OOS SJV Depleted Oil Field Store Max Max To Storage 0.0% 0.0% 0.0% 65.8% 65.8% 0.0% 61.6% out Sto ntio of Average to Maxir Ratio avg to max Ratio avg to max Ratio avg to max 1.44 San Joaquin Valley Palmdale / Lancaster 1.44 Max flow prod / avg flow prod Max flow prod / avg flow prod Production Production 1.44 1.44 1.44 1.44 1.44 1.44 Max flow prod / avg flow Max flow into storage / avg flow prod Max flow into storage / avg flow prod Max flow out / avg flow prod Max flow out / avg flow prod SJV Depleted Oil Field Storage to Port 0.00 0.00 0.00 0.00 Ratio avg to max To Storage 0.00 0.00 0.00 1.77 Ratio avg to ma: OOS Salt Cay rn Storage to Po Ratio avg to may To LA Basin SJV Depleted Oil Field Storage to Port 1.77 1.77 4.26 2.13 2.13 3.88 4.11

Storage Cost Assumptions											
Cost Assumption	Parameter	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Source
Above Ground Storage Assumptions											
AG storage	Total capacity	ktpa	125.00	125.00	125.00	300.00	300.00	300.00	425.00	425.00	
AG storage	Throughput	ktpa	316.00	316.00	316.00	657.00	657.00	657.00	968.00	968.00	Production Study
AG storage	Turnover frequency, nameplate capacity basis	times	2.53	2.53	2.53	2.19	2.19	2.19	2.28	2.28	
Depleted Oil Fields Storage Assumptions											
DOF Storage	Total CAPEX	US\$MM	\$342.59	\$342.59		\$646.65	\$411.11	\$411.11	\$1,032.97	\$646.65	
DOF Storage	Total capacity	ktpa	125.00	125.00		300.00	150.00	150.00	425.00	300.00	See Storage Annendix
DOF Storage	Throughput	ktpa	316.00	316.00		657.00	329.00	329.00	968.00	657.00	bee bronge repensiv
DOF Storage	Turnover frequency, nameplate capacity basis	times	2.53	2.53	0.00	2.19	2.19	2.19	2.28	2.19	
Salt Cavern Storage Assumptions											
Salt Cavern Storage	Total CAPEX	US\$MM			2863.58		3436.29	3436.29		2863.58	
Salt Cavern Storage	Total capacity	ktpa			125.00		150.00	150.00		125.00	See Storage Annendiv
Salt Cavern Storage	Throughput	ktpa			316.00		329.00	329.00		316.00	bee bronge repensiv
Salt Cavern Storage	Turnover frequency, nameplate capacity basis	times	0.00	0.00	2.53	0.00	2.19	2.19	0.00	2.53	
Pineline CAPEX											
Parameter	Parameter	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Source
Angeles Link Transmission											
Path 1 - SJV (Nodes 1, 2, 3, 4, 6)	Total CAPEX	US\$MM	\$2,707.85	\$1,198.25		\$1,787.77	\$735.10	\$1,783.85	\$3,080.89	\$2,694.59	
Path 2 - Lancaster (Nodes 8, 9, 10)	Total CAPEX	US\$MM		\$753.45		\$567.48	\$566.75		\$834.19	\$751.78	
Path 3 - SJV & Lancaster (Node 13)	Total CAPEX	US\$MM	\$2,888.35	\$2,905.16		\$2,597.83	\$2,249.28	\$2,590.47	\$3,555.97	\$3,437.66	1
Path 4 - Blythe (Nodes 29, 36)	Total CAPEX	US\$MM			\$6,890.96		\$5,567.95	\$5,709.67		\$7,099.57	Estimated from Design Study to meet Max.
Path 5 - Blythe to OOS SC	Total CAPEX	US\$MM			\$3,076.32		\$2,496.84	\$2,560.39		\$3,169.45	throughput
Path 6	Total CAPEX	US\$MM									
Path 7	Total CAPEX	US\$MM									
Path 8	Total CAPEX	US\$MM									
Distribution for all Delivery Alternatives											
Distribution & Delivery	Total CAPEX	US\$MM	\$1,297.53	\$1,122.36	\$1,122.58	\$1,295.55	\$1,264.40	\$1,294.08	\$1,436.60	\$1,334.26	Design Study
Compressor Cost Assumptions											
Parameter	Parameter	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Source
Compressor CAPEX				1	1						
San Joaquin Valley	Total CAPEX	US\$MM	\$1,212.17			\$1,212.17		\$1,212.17	\$1,836.61	\$1,212.17	Estimated from Design Study to meet Max.
Palmdale / Lancaster	Total CAPEX	USSMM	_	\$1,212.17		\$1,212.17	\$1,212.17		\$1,836.61	\$1,212.17	throughput
Blythe	Total CAPEX	USSMM			\$1,212.17		\$1,212.17	\$1,212.17		\$1,212.17	
Pipeline and Compressor Fixed OPEX			1								
Pipeline	Fixed O&M	% of CAPEX	1%	1%	1%	1%	1%	1%	1%	1%	Design Study
Compressor	Fixed O&M	% of CAPEX	1%	1%	1%	1%	1%	1%	1%	1%	
Compressor Efficiency	N	1000 0 100	0.00			0.04		0.00	0.40	0.04	
San Joaquin Valley	Power consumption	kwn/kg H2	0.38			0.34		0.20	0.40	0.36	
Palmdale / Lancaster	Power consumption	kWh/kg H2	-	0.26	0.04	0.18	0.26	0.18	0.36	0.21	Design Study
Blythe	Power consumption	kwn/kg H2			0.21		0.24	0.17		0.28	
Compressor power drive	Electric / Hydrogen		Electric								

Pipeline distances											
Parameter	Parameter	Unit	Scenario 1	Scenario 2	Scenario 3	Scenario 4	Scenario 5	Scenario 6	Scenario 7	Scenario 8	Source
Path 1 - SJV (Nodes 1, 2, 3, 4, 6)	Total Distance	Miles	276	157		235	157	276	227	235	
Path 2 - Lancaster (Nodes 8, 9, 10)	Total Distance	Miles		37		37	37		41	37	
Path 3 - SJV & Lancaster (Node 13)	Total Distance	Miles		41		41	41		42	41	Davian Study
Path 4 - Blythe (Nodes 29, 36)	Total Distance	Miles			224		223	223		224	Design Study
Path 5 - Blythe to OOS SC	Total Distance	Miles			100		100	100		100	
Distribution & Delivery	Total Distance	Miles	79	79	79	79	79	79	80	79	

14 12.62 12.03 11.40 12 Delivery 10 9.20 8.73 ■ Regasification or 8.21 Hydrogen Reconversion \$/KgH2, Real 2024 8 Storage 5.50 б Transmission 4 Liquefaction or Methanol Production 2 Production 0 Angeles Link Liquid Hydrogen In-Basin Methanol Shipping Gaseous Trucking Localized Hub Liquid Trucking Pipeline System Shipping Production w/Power T&D

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024

Return to Index

Notes: Reflects costs from Scenario 7 for 1.5 Mtpa. Production is assumed to begin in 2030 to take advantage of tax incentives, including Production Tax Credits (PTC) for hydrogen (45V)⁶⁶ and power (45Y),⁶⁷ which provide up to \$3 per kgH₂ and \$0.028 per kWh for ten years. Storage assumptions were based on proximity to production sites, and the geographic footprint under consideration for storage in the Production Study.⁶⁸ For Angeles Link and the trucking alternatives (gaseous and liquid), identified routes allowed for access to underground storage sites, therefore, underground storage costs were assumed. Delivery alternatives with production sites that did not overlap with the identified geological storage sites, were assumed to rely on above ground storage. These alternatives include shipping, in-basin production with T&D, and localized hub. The shipping solutions include the costs of specialized handling required to deliver methanol and liquid hydrogen. The cost for liquefaction in the liquid hydrogen trucking alternative is included as a part of transmission costs.

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024 Return to Index

Mobility Input Assumptions

c .		0	lass 8 Sleeper	Cab				Transit Bus Base High 17 Argon 29 Argon 370 Representative vi 300 S623 \$0.94 S623 \$89 Argon 30 Argon \$89 Argon \$60 Argon \$60 Argon \$60 S1.85 distributi \$2.04 L S1.85 distributi \$2.04 L Assuming a SCE \$0.43 \$0.60	
Assumptions	Low	Base	High	Sources	Assumptions	Low	Base	High	Sources
Fuel economy (M	Class 8 Sleeper Cab Low Base High 13 23 13 12 23 13 i): 23 13 i): 23 Represent 5228 \$456 \$510 \$255 \$510 11 ii): \$50.94 11 ii): 589 10 i(mins): 10 30 20 60 Argo of applicable LCFS) 54.51 \$6.01 \$7.51 Includes I \$0.31 \$0.43 \$0.60 Argo		Fuel economy (MPG						
FCEV		13		Argonno National Laboratory	FCEV		17		Argonno National Laboratory
BEV		23		Algointe National Laboratory	BEV		29		Algoine National Laboratory
Tank range (mi):	:				Tank range (mi):				
FCEV		420		Popresentative vehicle specifications from OEMs	FCEV		370		Representative vehicle specifications from OEMs
BEV		275		Representative venicle specifications from OEWs	BEV		300		Representative venicle specifications from OEWs
Purchase cost (\$1	k):			-	Purchase cost (\$k):			•
FCEV	5	\$228	\$456		FCEV		\$311	\$623	
BEV		\$255	\$510		BEV		\$311	\$623	
Labor cost (\$/mi		\$0.94		Argonne National Laboratory	Labor cost (\$/mi)		\$0.94		Argonne National Laboratory
Dwell cost (\$/hr)		\$89			Dwell cost (\$/hr)		\$89		
Refueling rate (n	nins):				Refueling rate (m	ins):			
FCEV		10	30	Argonne National Laboratory	FCEV		10	30	Argonne National Laboratory
BEV		20	60	Argonne National Laboratory and Wood Mackenzie TCO Model	BEV		20	60	Argonne National Laboratory and Wood Mackenzie TCO Model
Fuel cost (net of a	applicable LC	FS)	Base High Sources 13 Argonne National Laboratory 23 Argonne National Laboratory 420 Representative vehicle specifications from OEMs 275 Representative vehicle specifications from OEMs 50.94 S456 50.94 Argonne National Laboratory 30 Argonne National Laboratory 30 Argonne National Laboratory 30 Argonne National Laboratory 30 Argonne National Laboratory 60 Argonne National Laboratory 56.01 \$7.51 \$1.85 distribution cost + \$0.70 dispensing cost- \$2.04 LCFS credit area schurdup \$2.043 \$0.60 \$2.043 \$0.60 \$2.042 Class & Dravane	<u>.</u>					
FCEV (\$/kg)	\$4.51	\$6.01	\$7.51	Includes the LCOH from Angeles Link of \$5.29 + \$1.85 distribution cost + \$0.70 dispensing cost - \$2.04 LCFS credit pass through	FCEV (\$/kg)	\$4.51	\$6.01	\$7.51	Includes the LCOH from Angeles Link of \$5.29 + \$1.85 distribution cost + \$0.70 dispensing cost - \$2.04 LCFS credit pass through
BEV (\$/kWh)	\$0.31	\$0.43	\$0.60	Assuming a SCE EV charging tariff and applying a retail projection along with a retail markup. Assuming LCFS credits are included in the retail markup	BEV (\$/kWh)	\$0.31	\$0.43	\$0.60	Assuming a SCE EV charging tariff and applying a retail projection along with a retail markup. Assuming LCFS credits are included in the retail markup
			Close 9 Duove					Close 9 Day C	ab

x				Class 8 Draya	ge				Class 8 Day C	ab	
	Assumptions	Low	Base	High	Sources	Assumptions	Low	Base	High	Sources	
ſ	Fuel economy (M	PGe)				Fuel economy (MI	PGe)				
ſ	FCEV		12		American National Laboratory	FCEV		13		Anonyma National I about the	
[BEV		22		Argonne National Laboratory	BEV		23		Argonne National Laboratory	
[Tank range (mi):					Tank range (mi):					
	FCEV		450		Boprocentative vehicle specifications from OEMs	FCEV		500		Pennesentative vehicle specifications from OFMs	
	BEV		200		Representative venicle specifications from OEMs	BEV		300		Representative venicle specifications from OEWs	
	Purchase cost (\$k):				Purchase cost (\$k)	:				
	FCEV		\$185	\$371		FCEV		\$201	\$402		
ſ	BEV		\$166	\$331	Argonno National Laboratory	BEV		\$187	\$373	Argonno National Laboratory	
ſ	Labor cost (\$/mi)		\$0.94		Argonne National Laboratory	Labor cost (\$/mi)	\$0.94			Augoine reatolial Laboratory	
ľ	Dwell cost (\$/hr)		\$89			Dwell cost (\$/hr)		\$89			
ľ	Refueling rate (m	ins):				Refueling rate (mi	ns):				
ľ	FCEV		10	30	Argonne National Laboratory	FCEV		10	30	Argonne National Laboratory	
	BEV		20	60	Argonne National Laboratory and Wood Mackenzie TCO Model	BEV		20	60	Argonne National Laboratory and Wood Mackenzie TCO Model	
ľ	Fuel cost (net of a	pplicable LO	CFS)			Fuel cost (net of a	plicable LC	FS)			
	FCEV (\$/kg)	\$4.51	\$6.01	\$7.51	Includes the LCOH from Angeles Link of \$5.29 + \$1.85 distribution cost + \$0.70 dispensing cost - \$2.04 LCFS credit pass through	FCEV (\$/kg)	\$4.51	\$6.01	\$7.51	Includes the LCOH from Angeles Link of \$5.29 + \$1.85 distribution cost + \$0.70 dispensing cost - \$2.04 LCFS credit pass through	
	BEV (\$/kWh)	\$0.34	\$0.35	\$0.49	Assuming a SCE EV charging tariff and applying a retail projection along with a retail markup. Assuming LCFS credits are included in the retail markup	Sources Assumptions Lo Fuel economy (MPGe) Fuel economy (MPGe) FUEV Image: Sources Sources Fuel economy (MPGe) FUEV Image: Sources Image: Sources Sources FUEV Image: Sources Image: Sources Image: Sources Sources FUEV Image: Sources Image: Sources Image: Sources Sources FUEV Image: Sources Image: Sources Sources Sources Sources FUEV Image: Sources Image: Sources Sources	\$0.34	\$0.34 \$0.35 \$0.49		Assuming a SCE EV charging tariff and applying a retail projection along with a retail markup. Assuming LCFS credits are included in the retail	

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024

Return to Index

Power Input Assumptions

	H	ydrogen Comb	oustion Turbin	ne Retrofit
Assumptions	Low	Base	High	Sources
Facility size (MW)		500		Wood Mackenzie LCOE Model
Net capacity factor (%)				
Baseload	60%	50%	40%	Wood Maskanzia LCOE Madel
Peaking	11%	10%	9%	wood Mackenzie LCOE Moder
Capex (\$/kW)				
Baseload – retrofit	\$156	\$208	\$260	NDC Study
Peaking - retrofit	\$156	\$208	\$260	NFC Study
Fixed O&M (\$/kW-yr)				
Baseload	\$70	\$78	\$86	Wood Maskanzia LCOE Model
Peaking	\$51	\$56	\$62	wood Mackenzie LCOE Moder
Variable O&M (\$/MWh)				
Baseload	\$3	\$4	\$4	Wood Maskanzia LCOF Model
Peaking	\$11	\$13	\$14	wood Mackenzie LCOE Moder
Fuel cost				
Angeles Link LCOH (\$/kg)	\$4.13	\$5.50	\$6.88	Cost Effectiveness Study LCOH
Energy equivalent (\$/MMBtu _e)	\$31	\$41	\$51	Conversion of LCOH to energy equivalent in MMBtu

х

х

		Battery Stora	age Facility -	12 hour		
Assumptions	Low	Base	High	Sources		
Facility size (MW)		400	rage Facility - 12 hour High Sources Based on Moss Landing, largest operating facil in Califiornia Wood Mackenzie LCOE Model 8% Follows from duration and assumes 30+ cycles year \$4,209 \$143 Wood Mackenzie LCOE Model \$16 \$71 Forecast of average annual wholesale price forecast for CAISO SP15 Forecast reflecting outlook on current policy			
Discharge duration (Hours)		12				
Roundtrip efficiency (%)		86%		Wood Mackenzie LCOE Model		
Net capacity factor (%)	12%	10%	8%	Follows from duration and assumes 30+ cycles per year		
Capex (\$/kW)	\$2,526	\$3,367	\$4,209			
Fixed O&M (\$/kW-yr)	\$95	\$119	\$143	Wood Mackenzie LCOE Model		
Variable O&M (\$/MWh)	\$10	\$13	\$16			
Charging cost (\$/MWh)	\$44	\$59	\$71	Forecast of average annual wholesale price forecast for CAISO SP15		
ITC (%)		30%		Forecast reflecting outlook on current policy		

		Gas Turbin	e with CCS I	Retrofit
Assumptions	Low	Base	High	Sources
Facility size (MW)		500		Wood Moskennia LCOE Model
Net capacity factor (%)	60%	50%	40%	wood Mackenzie LCOE Model
Capex (\$/kW)				
Baseload - retrofit	\$1,243	\$1,775	\$2,308	Wood Mackenzie LCOE Model
Fixed O&M (\$/kW-year)	\$64	\$91	\$119	Wood Moskennia LCOE Model
Variable O&M (\$/MWh)	\$4	\$5	\$7	wood Mackenzie LCOE Model
Fuel cost				
Delivered fuel cost (\$/MMBtu _e)	\$3.6	\$4.5	\$5.4	Forecast of delivered gas price at SoCalGas Citygate
T&D adder (\$/MMBtu)		\$3.5		Wood Mackenzie LCOE Model
CO ₂ transport and sequestration (\$/ton)	5	\$92	\$368	Wood Mackenzie CCS Model (California-specific)
45Q credit value (\$/MWh)		\$18		Forecast reflecting outlook on current policy

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024

Return to Index

Cogeneration Input Assumptions

Hydrogen Turbine Retrofit							
Assumptions	Low	Sources					
Facility size (MW)		30		-			
Net capacity factor (%)	69	58	46				
Capex (\$/kW)	\$266	\$380 \$117	\$494	Wood Mackenzie LCOE Model			
Fixed O&M (\$/kW-year)	\$105		\$129				
Variable O&M (\$/MWh)	\$8	\$9	\$9				
Fuel cost							
Angeles Link LCOH (\$/kg)	\$4.13	\$5.50	\$6.88	Angles Link LCOH			
Energy equivalent (\$/MMBtu _e)	\$31	\$41	\$51	Conversion of LCOH to energy equivalent in MMBtu			

Gas Turbine with CCS Retrofit							
Assumptions	Low	Base	High	Sources			
Facility size (MW)		30					
Net capacity factor (%)	69	58	46				
Capex (\$/kW)	\$2,100	\$3,000	\$3,900	Wood Mackenzie LCOE Model			
Fixed O&M (\$/kW-year)	\$124	\$137	\$151]			
Variable O&M (\$/MWh)	\$10	\$11	\$13				
Fuel cost							
Delivered fuel cost (\$/MMBtu _e)	\$3.6	\$4.5	\$5.4	Forecast of delivered gas price at SoCal Citygate Wood Mackenzie North America Gas Model			
T&D adder (\$/MMBtu)		\$3.5					
CO ₂ transport and sequestration (\$/ton)	\$92		\$368	Wood Mackenzie CCS Model (California-specific			
45Q credit value (\$/MWh)		\$18		Forecast reflecting outlook on current policy			

Food & Beverage Input Assumptions

х	Food & Beverage Alternatives						
	Assumptions	Low	Base	High	Sources		
	Hydrogen						
Delivered fuel cost \$4.1 \$5.5 \$6.9 Angeles Link LCOH							
	Electricity						
	Retail cost (\$/MWh)	\$180	\$225	\$270	SCE Industrial Service Tariffs and Third-Party Forecasts		
	Green premium - CA REC prices (\$/MWh)		\$25		Wood Mackenzie Long Term Power Model		

Cement Input Assumptions

Cement Alternatives

		Cemer	nt Alternative	es		
Assumptions	Low	Base	High	Sources		
Hydrogen						
Delivered fuel cost (\$/kg)	\$4.1	\$5.5	\$6.9	Angeles Link LCOH		
Gas + CCS				•		
Delivered fuel cost (\$/MMBtu)	\$3.6	\$4.5	\$5.4	Wood Maskanzia Narth America Cos and CCS		
T&D adder (\$/MMBtu)	\$3.5			Wood Mackenzie North America Gas and CCS		
CO2 transport and sequestration cost (\$/ton)		\$92	\$368	Models		
Electricity						
Retail cost (\$/MWh)	\$180	\$225	\$270	SCE Industrial Service Tariffs and Third-Party Forecasts		
CA REC prices (\$/MWh)		\$25		Wood Mackenzie Long Term Power Model		

Refineries Input Assumptions

ĸ			Refine	ry Alternative	s		
	Assumptions	Low	High	Sources			
	Clean Renewable Hydrogen	L					
	Delivered feedstock cost (\$/kg)	\$4.1	\$5.5	\$6.9	Angeles Link LCOH		
	Hydrogen Abated with CCS	5					
	Delivered feedstock cost (\$/kg)		\$1.8	\$3.5	Wood Mackenzie LCOH Model		
	CO ₂ transport and sequestration cost (\$/ton)		\$92	\$368	Wood Mackenzie CCS Models (California- specific)		

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024 Return to Index Note: The output tables shown below were used to generate the charts in the Cost Effectiveness Report. A screenshot of the corresponding chart has been provided.

- M	ob	416	fæ
	00		·y

x

TCO Cost Effectiveness - Mobility											
	Sleepe	er Cab	Trans	sit Bus	Drayag	Drayage Truck		Cab			
	FCEV	BEV	FCEV	BEV	FCEV	BEV	FCEV	BEV			
Vehicle Purchase	\$0.15	\$0.17	\$0.19	\$0.19	\$0.12	\$0.11	\$0.13	\$0.12			
Maintenance & Repairs	\$0.04	\$0.02	\$0.05	\$0.02	\$0.04	\$0.02	\$0.04	\$0.02			
Operations & Other	\$0.90	\$1.36	\$0.88	\$1.20	\$0.77	\$0.79	\$0.76	\$0.80			
Fuel/Charging	\$0.59	\$0.81	\$0.35	\$0.53	\$0.64	\$0.70	\$0.59	\$0.67			
TCO - Base	\$1.68	\$2.36	\$1.47	\$1.94	\$1.57	\$1.62	\$1.52	\$1.61			
TCO - High	\$1.99	\$3.43	\$1.86	\$2.76	\$1.84	\$2.59	\$1.80	\$2.46			
TCO - Low	\$1.47	\$1.94	\$1.33	\$1.64	\$1.43	\$1.52	\$1.39	\$1.52			

Figure 4, 19 and it was for ----

Dwell Cost Proportion of Operations Cost x

	Sleeper Cab and Transit Bus					I	Orayage an	d Day Cat)S			
		FCEV			BEV			FCEV			BEV	
	Low	Base	High	Low	Base	High	Low	Base	High	Low	Base	High
Other Operations Cost	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94	\$0.94
Dwell Cost	\$0.08	\$0.16	\$0.24	\$0.18	\$0.35	\$0.56	\$0.00	\$0.00	\$0.09	\$0.00	\$0.00	\$0.34

x Fuel/Charging Cost Breakdown

		FCEV		BI	EV - En-Ro	ute	I	BEV - Dep	ot
	Low	Base	High	Low	Base	High	Low	Base	High
Delivered Fuel	\$30.69	\$40.92	\$51.15	\$58.31	\$73.84	\$104.89	\$58.31	\$73.84	\$104.89
Distribution	\$13.76	\$13.76	\$13.76						
Dispensing	\$5.21	\$5.21	\$5.21						
LCFS	-\$15.18	-\$15.18	-\$15.18						
Retail Markup				\$26.24	\$44.30	\$62.94	\$17.49	\$22.15	\$47.20
Cost of RECs				\$7.44	\$7.44	\$7.44	\$7.44	\$7.44	\$7.44
Total Refueling Cost	\$34.49	\$44.72	\$54.95	\$91.99	\$125.58	\$175.27	\$83.24	\$103.43	\$159.54

Figure 5. Fault Ranging Cost Devolutions by Technology and Bellading Padara?

the state of the s

Wood Mackenzie

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024

x

Return to Index Note: The output tables shown below were used to generate the charts in the Cost Effectiveness Report. A screenshot of the corresponding chart has been provided.

Figure 310 Cold #3

Power and Cogeneration Outputs

Hydrogen vs Electrification

LCOE Cost Effectiveness - Power					
	Hydrogen	Battery Storage			
	(Retrofit)	(12-hr)			

Capex	\$38	\$606
O&M	\$73	\$189
Fuel/Charging	\$303	\$67
Taxes & Incentives	-\$30	-\$252
LCOE - Base	\$384	\$609
LCOE - High	\$483	\$923
LCOE - Low	\$288	\$419

all Danking title

age) (10.00

Same Barry (Clar) Winey & Barry William *C.... 1 damana

x Capital Cost

	Hydrogen (Retrofit)			Battery - 12 hr			
	Low	Base	High	Low	Base	High	
Capital Expenditures	\$156	\$208	\$260	\$2,526	\$3,367	\$4,209	

x Fuel/Charging Cost Breakdown

	Hydrogen (Retrofit)			Battery - 12 hr			
	Low	Base	High	Low	Base	High	
Fuel/Charging Expenditure	\$31	\$41	\$51	\$15	\$17	\$19	

Figure 11: Capital Cost of Hydrogen Turkner vs. Battery Storage

Hydrogen vs CCS

x LCOE Breakdown - Power

	Hydrogen (Retrofit)	CCS (Retrofit)
Capex	\$12	\$50
O&M	\$19	\$25
Fuel/Charging	\$227	\$70
CO2 T&S Cost	\$0	\$31
Taxes & Incentives	-\$30	-\$19
LCOE - Base	\$229	\$157
LCOE - High	\$298	\$294
LCOE - Low	\$164	\$120

LCOE Breakdown - Cogeneration

	Hydrogen (Retrofit)	CCS (Retrofit)
Capex	\$16	\$74
O&M	\$31	\$40
Fuel/Charging	\$227	\$67
CO2 T&S Cost	\$0	\$30
Taxes & Incentives	\$2	-\$23
LCOE - Base	\$277	\$189
LCOE - High	\$351	\$333
LCOE - Low	\$208	\$144

Figure 14: Cost Effectivanes: Power & Cogeneration (Bydrogen and CCS) (2009)

x Fuel Cost Variation

	H	Hydrogen (Retrofit)			CCS (Retrofit)		
	Low	Base	High	Low	Base	High	
Fuel Cost	\$30.7	\$40.9	\$51.2	\$6.4	\$8.0	\$9.5	

Figure 15: Fuel Cert Variation Arrow Byringen and CCS Alternatives in Power and Cogen¹¹¹

Figure 56: Variations in CO; Transport and Sequestration Costs for CCS Facilities¹¹⁷

	Tra	insport	Storage	Tra Si	nsport + torage
Base	\$	69	\$ 23	\$	92
High	\$	207	\$ 69	\$	276

Wood Mackenzie

Supplemental Databook | Angeles Link Phase One | High-Level Economics & Cost Effectiveness Study July 24, 2024 Return to Index Note: The output tables shown below were used to generate the charts in the Cost Effectiveness Report. A screenshot of the corresponding chart has been provided.

Hydrogen vs Electrification

Industry - Food & Beverage and Cement Outputs

x Cost Effectiveness - F&B and Cement

	Hydrogen-Fueled	Electric-Powered
Delivered Fuel	\$40.9	\$65.9
Cost of RECs	\$0.0	\$7.3
Total - Base	\$40.9	\$73.2
Total - High	\$51.2	\$88.0
Total - Low	\$30.7	\$58.7

Figure 13: Cost Effects reage and Consent (Nydrogen and Electrification) Fred & B. (SIMI)^{III}

Hydrogen vs CCS

Industry - Cement Outputs

Paper 15 Cost Effectiveness Conest (Bylenges and CCS) (2009)

x Cost Effectiveness - Cement

	Hydrogen-Fueled	CCS
Delivered Fuel	\$40.9	\$8.0
CO2 T&S Cost	\$0.0	\$4.2
Total - Base	\$40.9	\$12.2
Total - High	\$51.2	\$25.8
Total - Low	\$30.7	\$11.3

Industry - Refineries Outputs

	Clean Renewable Hydrogen	Hydrogen Abated with CCS
Delivered Hydrogen	\$5.5	\$1.7
CO2 T&S Cost	\$0.0	\$0.1
Total - Base	\$5.5	\$1.8
Total - High	\$6.9	\$3.8
Total - Low	\$4.1	\$1.8

Non-YEN offerin 12 and and an

Figure 18: Cast Effectiveness: Bellancies (Close Renewable Sydnegra and CCS) (2020)

New, "TAS" while is 12% transport and sequences. Defined by degree for the UVS attention synchrotic during or of opport registered.